JP2008045736A - Resin member, and method for manufacturing the same - Google Patents

Resin member, and method for manufacturing the same Download PDF

Info

Publication number
JP2008045736A
JP2008045736A JP2007102975A JP2007102975A JP2008045736A JP 2008045736 A JP2008045736 A JP 2008045736A JP 2007102975 A JP2007102975 A JP 2007102975A JP 2007102975 A JP2007102975 A JP 2007102975A JP 2008045736 A JP2008045736 A JP 2008045736A
Authority
JP
Japan
Prior art keywords
resin
resin member
external input
input load
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007102975A
Other languages
Japanese (ja)
Inventor
Kyosuke Yasumi
恭介 八角
Fumiko Takano
文子 高野
Ichiro Takeda
一朗 武田
Koji Yamaguchi
晃司 山口
Masaaki Yamazaki
真明 山崎
Akihiko Kitano
彰彦 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Toray Industries Inc
Original Assignee
Nissan Motor Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Toray Industries Inc filed Critical Nissan Motor Co Ltd
Priority to JP2007102975A priority Critical patent/JP2008045736A/en
Publication of JP2008045736A publication Critical patent/JP2008045736A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Laminated Bodies (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin member and a method for manufacturing the resin member reducing cost and compatibly providing rigidity and energy absorbing performance. <P>SOLUTION: The resin member 1 comprising a body part 2 made of resin is provided with a buffer part for dispersing external input load, on the side to which external input load is applied, and a plastically deformable reinforcing member 3 fixed to the body part 2, on the opposite side to the side to which external input load is applied, of the buffer part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内部に形成される中空部に補強部材が設けられる樹脂製部材およびその樹脂製部材の製造方法に関するものである。   The present invention relates to a resin member in which a reinforcing member is provided in a hollow portion formed inside, and a method for manufacturing the resin member.

近年、例えば車両用の構造部材等において、軽量化のために樹脂が使用されてきており、特に、繊維材により強化されたFRP(繊維強化プラスチック)が使用されている。FRPにより構造部材を製造する場合、強度性能の要求から連続繊維である成形方法が好ましく、例えばオートクレーブやRTM(樹脂注入成形法)などの工法が用いられる。このような成形方法を用いる場合、FRPにハニカム材やウレタン材を挿入し、更なる強度の向上が図られている((例えば、特許文献1参照)。   In recent years, for example, in structural members for vehicles, resins have been used for weight reduction, and in particular, FRP (fiber reinforced plastic) reinforced with fiber material is used. When manufacturing a structural member by FRP, a molding method that is a continuous fiber is preferred from the viewpoint of strength performance. For example, an autoclave or RTM (resin injection molding method) is used. When such a forming method is used, a honeycomb material or a urethane material is inserted into the FRP to further improve the strength (for example, see Patent Document 1).

しかし、例えば、剛性、静的荷重に対する性能、動的荷重に対する性能(エネルキー吸収性能)に優れるハニカム材を挿入する場合、コストが高く、量産品としては好ましくない。   However, for example, when a honeycomb material excellent in rigidity, performance with respect to static load, and performance with respect to dynamic load (energy absorption performance) is inserted, the cost is high and it is not preferable as a mass-produced product.

また、例えばウレタン材を構造部材の内部に充填したり、または設置する場合には、剛性を重視すると高密度ウレタン材を使用することになり、動的荷重が付与された際の構造部材の変形量が小さくなってエネルギー吸収性能が低下するため、剛性とエネルギー吸収性能の両立が困難である。
特開平9−131817
For example, when filling or installing urethane material inside the structural member, if rigidity is important, high-density urethane material will be used, and deformation of the structural member when dynamic load is applied Since the amount decreases and the energy absorption performance decreases, it is difficult to achieve both rigidity and energy absorption performance.
JP-A-9-131817

本発明は、上記従来技術に伴う課題を解決するためになされたものであり、コストを削減でき、剛性とエネルギー吸収性能を両立できる樹脂製部材およびその樹脂製部材の製造方法を提供することを目的とする。   The present invention has been made in order to solve the problems associated with the above-described prior art, and provides a resin member that can reduce costs and achieve both rigidity and energy absorption performance, and a method for manufacturing the resin member. Objective.

上記目的を達成する本発明に係る樹脂製部材は、樹脂製の本体部を備える樹脂製部材であって、外部入力荷重が作用する側に外部入力荷重を分散させる緩衝部が設けられるとともに、当該緩衝部の外部入力荷重が作用する側と反対側に、本体部に固定される塑性変形が可能な補強部材が設けられることを特徴とする。   The resin member according to the present invention that achieves the above object is a resin member having a resin main body, and is provided with a buffer portion that disperses the external input load on the side on which the external input load acts. A reinforcing member capable of plastic deformation fixed to the main body is provided on the side opposite to the side on which the external input load acts on the buffer.

上記目的を達成する本発明に係る樹脂製部材の製造方法は、樹脂製の本体部を備える樹脂製部材の製造方法であって、外部入力荷重が作用する側に外部入力荷重を分散させる緩衝部を設けるとともに、当該緩衝部の外部入力荷重が作用する側と反対側に、塑性変形が可能な補強部材を配置して本体部に固定することを特徴とする。   The method for manufacturing a resin member according to the present invention that achieves the above object is a method for manufacturing a resin member including a resin main body, and the buffer portion disperses the external input load on the side on which the external input load acts. And a reinforcing member capable of plastic deformation is arranged on the side opposite to the side on which the external input load acts on the buffer portion and fixed to the main body portion.

上記のように構成した本発明に係る樹脂製部材は、緩衝部に対して外部入力荷重が作用する側と反対側に、塑性変形が可能な補強部材が設置されるため、外部入力荷重が付与される際に、緩衝部から徐々に荷重が作用した後に補強部材で荷重を受けるため、エネルギーを吸収しつつ剛性を保つことができる。また、ハニカム材等の高価な部材を使用する必要もないので、コストを低減できる。   The resin member according to the present invention configured as described above is provided with an external input load because a reinforcing member capable of plastic deformation is installed on the side opposite to the side on which the external input load acts on the buffer portion. In this case, since the load is received by the reinforcing member after the load is gradually applied from the buffer portion, the rigidity can be maintained while absorbing energy. Moreover, since it is not necessary to use expensive members such as honeycomb materials, the cost can be reduced.

上記のように構成した本発明に係る樹脂製部材の製造方法は、緩衝部に対して外部入力荷重が作用する側と反対側に、塑性変形が可能な補強部材を設置するため、製造される樹脂製部材は、外部入力荷重が付与される際に、緩衝部から徐々に荷重が作用した後に補強部材で荷重を受けることとなる。したがって、エネルギーを吸収しつつ剛性を保つことが可能な樹脂製部材を製造でき、また、ハニカム材等の高価な部材を使用する必要もないので、コストを低減できる。   The method of manufacturing a resin member according to the present invention configured as described above is manufactured because a reinforcing member capable of plastic deformation is installed on the side opposite to the side on which the external input load acts on the buffer portion. When an external input load is applied to the resin member, the resin member receives the load by the reinforcing member after the load is gradually applied from the buffer portion. Accordingly, a resin member capable of maintaining rigidity while absorbing energy can be manufactured, and it is not necessary to use an expensive member such as a honeycomb material, so that the cost can be reduced.

以下、図面を参照して本発明を実施するための最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

<第1実施形態>
図1は本発明の第1実施形態に係る樹脂製部材の断面図、図2は同樹脂製部材の補強部材を示す断面図である。
<First Embodiment>
FIG. 1 is a sectional view of a resin member according to the first embodiment of the present invention, and FIG. 2 is a sectional view showing a reinforcing member of the resin member.

第1実施形態に係る樹脂製部材1は、図1,2に示すように、繊維強化プラスチック(FRP:Fiber Reinforced Plastics)からなる本体部2と、本体部2に取り付けられる補強部材3と、を有している。本体部2のFRPは、本実施形態では、例えばエポキシ樹脂をマトリックス樹脂とするCFRPである。   As shown in FIGS. 1 and 2, the resin member 1 according to the first embodiment includes a main body 2 made of fiber reinforced plastic (FRP) and a reinforcing member 3 attached to the main body 2. Have. In this embodiment, the FRP of the main body 2 is, for example, CFRP using an epoxy resin as a matrix resin.

本体部2のFRPに適用される繊維には、強化材となるものであれば特に制限はなく、炭素繊維の他に、例えば黒鉛繊維、またはガラス繊維や、アラミド、パラフェニレンベンゾビスオキサゾール、ポリビニルアルコール、ポリアリレート等の有機繊維等が挙げあられ、またはこれらの2種類以上を併用したものも使用できる。   The fiber applied to the FRP of the main body 2 is not particularly limited as long as it is a reinforcing material. In addition to carbon fiber, for example, graphite fiber or glass fiber, aramid, paraphenylene benzobisoxazole, polyvinyl Examples include organic fibers such as alcohol and polyarylate, or those using two or more of these in combination.

また、本体部2のFRPに適用される樹脂には、FRPのマトリックス樹脂となるものであればあらゆる樹脂が使用可能であり、エポキシ樹脂の他に、例えば不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂等の熱硬化性樹脂や、ポリエステル、ポリオレフィン、ポリアミド樹脂等の熱可塑性樹脂、更にはこれらの混合樹脂も使用できる。   As the resin applied to the FRP of the main body 2, any resin can be used as long as it becomes a matrix resin of FRP. In addition to the epoxy resin, for example, unsaturated polyester resin, vinyl ester resin, phenol Thermosetting resins such as resins, thermoplastic resins such as polyester, polyolefin, and polyamide resin, and mixed resins thereof can also be used.

本体部2は、ハット形状のアウター部材4とインナー部材5とが、内部に中空部6が形成されるように接合されている。なお、本体部2は、内部に中空部6が形成されればその形状や部材数に制限はなく、例えば1部材であったり、または3部材以上が接合されていてもよい。   As for the main-body part 2, the hat-shaped outer member 4 and the inner member 5 are joined so that the hollow part 6 may be formed inside. In addition, as long as the hollow part 6 is formed in the inside, the shape and the number of members of the main body part 2 are not limited. For example, one member or three or more members may be joined.

本実施形態に係る樹脂製部材1は、例えば車両用部材であり、アウター部材4が車両の外側となり、インナー部材5が車両の内側となる。したがって、衝突等によって、アウター部材4側からの外部入力荷重が作用する。   The resin member 1 according to the present embodiment is, for example, a vehicle member, and the outer member 4 is the outside of the vehicle and the inner member 5 is the inside of the vehicle. Therefore, an external input load from the outer member 4 side acts due to a collision or the like.

アウター部材4は、インナー部材5よりも板厚を薄くしたり、または外部入力荷重が作用する部位の板厚のみを薄くしてもよい。この場合には、アウター部材4が破壊されやすくなるため、外部入力荷重が付与された場合の初期反力を低減でき、例えば樹脂製部材1が車両用部材である場合には、車両の内部の乗員等への負荷を低減できる。   The outer member 4 may be made thinner than the inner member 5, or only the thickness of the portion where the external input load acts may be made thinner. In this case, since the outer member 4 is easily broken, the initial reaction force when an external input load is applied can be reduced. For example, when the resin member 1 is a vehicle member, The load on passengers can be reduced.

インナー部材5の内側面(中空部6の外部入力荷重が作用する側と反対側)には、接着剤10により補強部材3が接合される。このとき、補強部材3とアウター部材4の間には、間隔が設けられる。このアウター部材4および間隔が、外部入力荷重が作用した際に、緩衝部として機能することとなる。   The reinforcing member 3 is joined to the inner side surface of the inner member 5 (the side opposite to the side on which the external input load acts on the hollow portion 6) with an adhesive 10. At this time, a space is provided between the reinforcing member 3 and the outer member 4. The outer member 4 and the interval function as a buffer when an external input load is applied.

補強部材3は、図2に示すように、剛性保持部7と、引張り保持部9と、を有しており、剛性保持部7には、本実施形態では軽量化を図りつつ強度を保持するためにアルミ押出し材を用いているが、塑性変形が可能な材料であれば他の材料であってもよく、またその形状は限定されない。   As shown in FIG. 2, the reinforcing member 3 includes a rigid holding portion 7 and a tensile holding portion 9. The rigid holding portion 7 holds strength while reducing the weight in the present embodiment. For this purpose, an aluminum extruded material is used, but other materials may be used as long as they can be plastically deformed, and the shape is not limited.

引張り保持部9は、剛性保持部7のインナー部材5と接合される側に設置される。引張り保持部9はCFRPであり、炭素繊維にエポキシ樹脂を含浸させたプリプレグである。引張り保持部9には、本体部2において前述したFRPのように、他の繊維を使用するF
RPも適用できる。また、引張り保持部9にはエポキシ樹脂が使用されるが、本体部2において前述したように、FRPのマトリックス樹脂となるものであればあらゆる樹脂が使用可能である。
The tension holding unit 9 is installed on the side of the rigid holding unit 7 to be joined with the inner member 5. The tension holding unit 9 is CFRP, which is a prepreg obtained by impregnating carbon fiber with an epoxy resin. The tension holding part 9 is F which uses other fibers like the FRP described above in the main body part 2.
RP can also be applied. In addition, an epoxy resin is used for the tension holding portion 9, but any resin can be used as long as it becomes a matrix resin of FRP in the main body portion 2 as described above.

引張り保持部9に使用される繊維の方向は、樹脂製部材1に外部入力荷重が付与される際に生じる引張り方向と一致し、本実施形態では、図1,2における図面の奥行き方向に対応する。   The direction of the fibers used for the tension holding portion 9 matches the tension direction generated when an external input load is applied to the resin member 1 and corresponds to the depth direction of the drawings in FIGS. To do.

補強部材3をインナー部材5に接合するための接着剤10には、伸度が30%以上の接着剤を用いることが好ましく、本実施形態では、例えば伸度が50%、引張り剪断強度が20MPaのアクリル系接着剤を用いている。   As the adhesive 10 for joining the reinforcing member 3 to the inner member 5, an adhesive having an elongation of 30% or more is preferably used. In this embodiment, for example, the elongation is 50% and the tensile shear strength is 20 MPa. An acrylic adhesive is used.

本実施形態に係る樹脂製部材1の作用を説明する。   The operation of the resin member 1 according to this embodiment will be described.

樹脂製部材1にアウター部材4側から外部入力荷重が付与されると、アウター部材4と補強部材3の間に空間が形成されているために補強部材3には直接荷重が入力されず、まず樹脂製の本体部2から亀裂伸展や層間剥離等が発生する。したがって、本体部2の破壊によりエネルギーが吸収され、初期反力を低く抑えることができる。このため、外部入力荷重付与直後における樹脂製部材1のインナー部材5側(例えば車両の室内側)への影響を低減できる。   When an external input load is applied to the resin member 1 from the outer member 4 side, since a space is formed between the outer member 4 and the reinforcing member 3, no load is directly input to the reinforcing member 3, Crack extension, delamination, and the like occur from the resin main body 2. Therefore, energy is absorbed by the destruction of the main body 2 and the initial reaction force can be kept low. For this reason, the influence on the inner member 5 side (for example, the vehicle interior side) of the resin member 1 immediately after the external input load is applied can be reduced.

本体部2が破壊された後、荷重は補強部材3に伝わる。これにより、補強部材3で入力荷重を受けることができ、構造体の維持荷重の低下を抑制できる。   After the main body 2 is destroyed, the load is transmitted to the reinforcing member 3. Thereby, an input load can be received by the reinforcing member 3, and the fall of the maintenance load of a structure can be suppressed.

また、補強部材3の剛性保持部7は塑性変形が可能であるため、エネルギーを吸収し、樹脂製部材1のインナー部材5側への衝撃を低減できる。   Further, since the rigid holding portion 7 of the reinforcing member 3 can be plastically deformed, it can absorb energy and reduce the impact of the resin member 1 on the inner member 5 side.

また、アウター部材4側から入力される荷重により、アウター部材4と反対側に取り付けられる補強部材3はインナー部材5側へ変形するが、このとき、引張り保持部9が補強部材3のインナー部材5側に設けられているため、引張り保持部9には引張り力が生じる。引張り保持部9は、FRPの繊維が引張り方向と一致するため、引張り力に強く、構造体の維持荷重の低下を抑制できる。   In addition, the reinforcing member 3 attached to the opposite side of the outer member 4 is deformed to the inner member 5 side by a load input from the outer member 4 side. At this time, the tension holding portion 9 is the inner member 5 of the reinforcing member 3. Since the tension holding portion 9 is provided on the side, a tensile force is generated. The tensile holding portion 9 is strong in tensile force because the FRP fiber matches the tensile direction, and can suppress a decrease in the maintenance load of the structure.

また、負荷が付与される側とは反対側に補強部材3が設けられるため、負荷が付与される側の造形の自由度が向上し、内部の補強部材3は造形面からの形状制約を受け難い。   Further, since the reinforcing member 3 is provided on the side opposite to the side to which the load is applied, the degree of freedom of modeling on the side to which the load is applied is improved, and the internal reinforcing member 3 is subjected to shape constraints from the modeling surface. hard.

また、ハニカム材のような高価な材料を使用する必要がないため、材料費を安価に抑えることができる。   Further, since it is not necessary to use an expensive material such as a honeycomb material, the material cost can be reduced.

また、補強部材3を本体部2に接合するための接着剤10の伸度が30%以上であるため、補強部材3や本体部2が変形する際の変形差を接着剤10が吸収し、補強部材3と本体部2が完全に剥がれず、強度を保持することができる。また、剛性保持部7にアルミ等の導電性材料を使用する場合には、接着剤10により形成される接着層が電触防止の役割を果すことができる。   Moreover, since the elongation of the adhesive 10 for joining the reinforcing member 3 to the main body 2 is 30% or more, the adhesive 10 absorbs the deformation difference when the reinforcing member 3 or the main body 2 is deformed, The reinforcing member 3 and the main body 2 are not completely peeled off, and the strength can be maintained. Moreover, when using electroconductive materials, such as aluminum, for the rigid holding | maintenance part 7, the contact bonding layer formed with the adhesive agent 10 can play the role of electrical contact prevention.

また、本実施形態では、補強部材3を本体部2と別部品で設けるため、本体部2を補強部材3とは別に成形できることにより、RTM工法等による成形が可能となり、量産性に優れている。   Moreover, in this embodiment, since the reinforcing member 3 is provided as a separate part from the main body 2, the main body 2 can be formed separately from the reinforcing member 3, thereby enabling molding by the RTM method or the like, and excellent mass productivity. .

このように、本実施形態によれば、補強部材3により剛性を維持しつつ、本体部2の破
壊によりエネルギーを吸収でき、剛性とエネルギー吸収性能を両立できる。
As described above, according to the present embodiment, while the rigidity is maintained by the reinforcing member 3, energy can be absorbed by the destruction of the main body 2, and both rigidity and energy absorption performance can be achieved.

<第2実施形態>
図3は本発明の第2実施形態に係る樹脂製部材の断面図を示す。なお、第1実施形態と同様の機能を有する部位については同一の符号を使用し、重複を避けるため、その説明を省略する。
<Second Embodiment>
FIG. 3 is a sectional view of a resin member according to the second embodiment of the present invention. In addition, about the site | part which has the same function as 1st Embodiment, the same code | symbol is used and in order to avoid duplication, the description is abbreviate | omitted.

第2実施形態に係る樹脂製部材1’は、補強部材3とアウター部材4の間に、補強部材3よりも剛性の低い予備補強材11が設けられる。予備補強材11は、例えばウレタン材であるが、補強部材3よりも剛性が低ければ、他の材料でもよい。このアウター部材4および予備補強材11が、外部入力荷重が作用した際に、緩衝部として機能することとなる。   In the resin member 1 ′ according to the second embodiment, a preliminary reinforcing material 11 having a rigidity lower than that of the reinforcing member 3 is provided between the reinforcing member 3 and the outer member 4. The preliminary reinforcing material 11 is, for example, a urethane material, but may be another material as long as the rigidity is lower than that of the reinforcing member 3. The outer member 4 and the preliminary reinforcing material 11 function as a buffer portion when an external input load is applied.

第2実施形態に係る樹脂製部材1’に、アウター部材4側から外部入力荷重が付与されると、本体部2から亀裂伸展や層間剥離等が発生するとともに、予備補強材11により荷重が分散されつつ補強部材3に荷重が入力される。したがって、第1実施形態と比較して、初期反力が大きくなる。   When an external input load is applied to the resin member 1 ′ according to the second embodiment from the outer member 4 side, crack extension or delamination occurs from the main body 2, and the load is dispersed by the preliminary reinforcing material 11. While being done, a load is input to the reinforcing member 3. Therefore, the initial reaction force is larger than that in the first embodiment.

<第3実施形態>
第3実施形態に係る樹脂製部材の構造は、図1,2で示される第1実施形態と略同様であり、繊維強化プラスチックであるインナー部材5に適用される強化繊維が、所定の配向を有する点のみで異なる。
<Third Embodiment>
The structure of the resin member according to the third embodiment is substantially the same as that of the first embodiment shown in FIGS. 1 and 2, and the reinforcing fibers applied to the inner member 5 that is a fiber-reinforced plastic have a predetermined orientation. It differs only in having it.

第3実施形態に係る樹脂製部材のインナー部材5は、外部入力荷重が入力される際にインナー部材5に生じる引張り方向と同一方向(0度)および垂直方向(90度)の配向で繊維が並ぶ第1クロス材と、引張り方向と傾斜する2方向(+45度および−45度)の配向で繊維が並ぶ第2クロス材とを重ねて強化繊維とし、RTM工法などにより成形される。なお、引張り方向と傾斜する2方向は、必ずしも+45度および−45度である必要はなく、例えば+30度および−30度とすることもできる。また、第1クロス材および第2クロス材は複数重ねられてもよく、また、他の配向を有するクロス材を更に重ねてもよい。   In the inner member 5 of the resin member according to the third embodiment, the fibers are oriented in the same direction (0 degree) and perpendicular direction (90 degrees) as the tensile direction generated in the inner member 5 when an external input load is input. The first cloth material arranged and the second cloth material in which fibers are arranged in two directions (+45 degrees and -45 degrees) inclined with respect to the tensile direction are overlapped to form reinforcing fibers, which are formed by an RTM method or the like. The two directions inclined with respect to the pulling direction are not necessarily +45 degrees and −45 degrees, and may be +30 degrees and −30 degrees, for example. Further, a plurality of first cloth materials and second cloth materials may be stacked, and cloth materials having other orientations may be further stacked.

引張り方向と同一方向の配向を有する第1クロス材は、高い引張り強度を有し、構造体の維持荷重の低下を抑制する。   The 1st cross material which has the orientation of the same direction as a tension direction has high tensile strength, and suppresses the fall of the maintenance load of a structure.

引張り方向と傾斜した配向を有する第2クロス材は、荷重が付与される際に、織目が広がることができるために破断ひずみが大きくなる。これにより、インナー部材5の曲げ変形への追従性が向上し、インナー部材5の破断を抑制できる。また、インナー部材5の曲げ変形の際の破断を抑制できるため、樹脂製部材のエネルギー吸収量を向上できる。   The second cloth material having an orientation inclined with respect to the tensile direction has a large breaking strain because a texture can be spread when a load is applied. Thereby, the followable | trackability to the bending deformation of the inner member 5 improves, and the fracture | rupture of the inner member 5 can be suppressed. Moreover, since the fracture | rupture at the time of the bending deformation of the inner member 5 can be suppressed, the energy absorption amount of a resin-made member can be improved.

<第4実施形態>
図4は本発明の第4実施形態に係る樹脂製部材の断面図を示す。なお、第1,2実施形態と同様の機能を有する部位については同一の符号を使用し、重複を避けるため、その説明を省略する。
<Fourth embodiment>
FIG. 4 shows a sectional view of a resin member according to the fourth embodiment of the present invention. In addition, about the site | part which has a function similar to 1st, 2 embodiment, the same code | symbol is used and in order to avoid duplication, the description is abbreviate | omitted.

第4実施形態に係る樹脂製部材41は、図4に示すように、第1〜3実施形態と異なり、本体部42がアウター部材を有しておらず、インナー部材45のみから形成される。したがって、本体部42には中空部が形成されず、インナー部材45の外部入力荷重が作用する側に、塑性変形が可能な補強部材3が設置され、補強部材3の外部入力荷重(図4中の矢印参照)が作用する側に、緩衝部としての緩衝材43が露出されて設けられる。すなわち緩衝材43の外部入力荷重が作用する側と反対側に、補強部材3が設けられる。緩衝材43は、補強部材3よりも剛性が低く、例えばウレタン材であるが、補強部材3よりも剛性が低ければ、他の材料でもよい。   As shown in FIG. 4, the resin member 41 according to the fourth embodiment differs from the first to third embodiments in that the main body portion 42 does not have an outer member and is formed only from the inner member 45. Therefore, the main body portion 42 is not formed with a hollow portion, and the reinforcing member 3 capable of plastic deformation is installed on the side of the inner member 45 where the external input load acts, and the external input load of the reinforcing member 3 (in FIG. 4). The buffer material 43 as a buffer portion is exposed and provided on the side on which the arrow (see arrow) acts. That is, the reinforcing member 3 is provided on the side of the cushioning material 43 opposite to the side on which the external input load acts. The cushioning material 43 is lower in rigidity than the reinforcing member 3 and is, for example, a urethane material. However, other materials may be used as long as the rigidity is lower than that of the reinforcing member 3.

第4実施形態に係る樹脂製部材41に外部入力荷重が付与されると、外部入力荷重は、まず緩衝材43から入力されることとなる。緩衝材43は、補強部材3よりも剛性が低いために荷重を分散させ、この後、補強部材3に荷重が入力される。したがって、緩衝材43の変形によりエネルギーが吸収され、初期反力を低く抑えることができる。このため、外部入力荷重付与直後における樹脂製部材41のインナー部材45側(例えば車両の室内側)への影響を低減できる。   When an external input load is applied to the resin member 41 according to the fourth embodiment, the external input load is first input from the cushioning material 43. Since the cushioning material 43 has lower rigidity than the reinforcing member 3, the load is dispersed, and thereafter, the load is input to the reinforcing member 3. Therefore, energy is absorbed by the deformation of the buffer material 43, and the initial reaction force can be kept low. For this reason, the influence on the inner member 45 side (for example, the vehicle interior side) of the resin member 41 immediately after the external input load is applied can be reduced.

この後、荷重は補強部材3に伝わり、補強部材3で入力荷重を受けることができる。これにより、構造体の維持荷重の低下を抑制できる。   Thereafter, the load is transmitted to the reinforcing member 3, and the input load can be received by the reinforcing member 3. Thereby, the fall of the maintenance load of a structure can be suppressed.

第4実施形態では、アウター部材を必要としないため、アウター部材の費用およびアセンブリ工数を低減でき、性能を低下させることなくコストの削減が可能である。   In 4th Embodiment, since an outer member is not required, the expense of an outer member and an assembly man-hour can be reduced, and cost reduction is possible, without reducing performance.

次に、上述したそれぞれの実施形態に関する衝撃試験について説明する。   Next, the impact test regarding each embodiment mentioned above is demonstrated.

第1実施形態および第2実施形態に係る樹脂製部材1,1’に荷重を負荷する衝撃試験を実施した。   An impact test was performed in which a load was applied to the resin members 1 and 1 ′ according to the first and second embodiments.

図5は衝撃試験における供試体への荷重と供試体の変位量を示す供試体の断面図、図6は衝撃試験に用いられるスチール製構造体を示す断面図、図7は衝撃試験結果である荷重と変位量の関係を示すグラフである。   FIG. 5 is a sectional view of the specimen showing the load on the specimen and the displacement of the specimen in the impact test, FIG. 6 is a sectional view showing a steel structure used in the impact test, and FIG. 7 is the impact test result. It is a graph which shows the relationship between a load and a displacement amount.

下記表は、各試験例に使用される供試体の構造を示す。   The following table shows the structure of the specimen used in each test example.

Figure 2008045736
Figure 2008045736

試験例1および試験例2は、第1実施形態に係る樹脂製部材1であり、試験例1と比較して試験例2における樹脂製部材1のアウター部材4の板厚が薄く形成されている。   Test Example 1 and Test Example 2 are resin members 1 according to the first embodiment, and the thickness of the outer member 4 of the resin member 1 in Test Example 2 is formed thinner than that of Test Example 1. .

試験例3は、第2実施形態に係る樹脂製部材1’を供試体とするものである。試験例4は、図6に示すようなスチール製構造体21である。   Test Example 3 uses the resin member 1 ′ according to the second embodiment as a specimen. Test Example 4 is a steel structure 21 as shown in FIG.

スチール製構造体21は、高張力鋼板からなるアウター鋼板22、インナー鋼板23、ブレース24および補強鋼板25から構成される。   The steel structure 21 includes an outer steel plate 22, an inner steel plate 23, a brace 24, and a reinforcing steel plate 25 made of a high-tensile steel plate.

衝撃試験では、図5に示すように、アウター部材4(またはアウター鋼板22)側から外部入力荷重Fを与え、樹脂製部材1(またはスチール製構造体21)の荷重方向への変位量Xを計測した。   In the impact test, as shown in FIG. 5, an external input load F is applied from the outer member 4 (or outer steel plate 22) side, and the displacement amount X of the resin member 1 (or steel structure 21) in the load direction is determined. Measured.

結果として、図7に示すように、試験例4では、最大荷重を受けた後に維持荷重が低下するが、第1,第2実施形態に対応する試験例1〜3では、最大荷重を受けた後も、インナー部材5および補強部材3により、荷重を維持していることが確認できる。   As a result, as shown in FIG. 7, in Test Example 4, the maintenance load decreases after receiving the maximum load, but in Test Examples 1 to 3 corresponding to the first and second embodiments, the maximum load was received. After that, it can be confirmed that the load is maintained by the inner member 5 and the reinforcing member 3.

また、試験例1〜3では、補強部材3が、中空部6における外部入力荷重が入力される側の反対側に取り付けられているため、試験例4のような荷重の突出がなく、過剰な初期反力が抑えられることが確認できる。   Further, in Test Examples 1 to 3, the reinforcing member 3 is attached to the opposite side of the hollow portion 6 from which the external input load is input. It can be confirmed that the initial reaction force can be suppressed.

また、試験例1と試験例2を比較すると、試験例2の方が荷重の立ち上がりが速い。試験例1と比較して試験例2のようにアウター部材4の板厚を薄くすることで、アウター部材4の破壊領域が広がり、補強部材3に加わる荷重が増えたためであり、試験例2では、試験例4のスチール製構造体と同程度のエネルギー吸収量が得られている。   Moreover, when Test Example 1 and Test Example 2 are compared, the rise of the load is faster in Test Example 2. This is because, by reducing the plate thickness of the outer member 4 as in Test Example 2 as compared with Test Example 1, the fracture region of the outer member 4 is expanded and the load applied to the reinforcing member 3 is increased. As a result, the same amount of energy absorption as that of the steel structure of Test Example 4 was obtained.

また、第2実施形態に対応する試験例3では、荷重を受けてから維持荷重が低下することなく、理想的なエネルギー吸収形態となっており、試験例4のスチール構造体の約1.3倍のエネルギー吸収量が得られている。   Moreover, in Test Example 3 corresponding to the second embodiment, the sustain load does not decrease after receiving the load, and an ideal energy absorption mode is obtained, which is about 1.3 of the steel structure of Test Example 4. Double the amount of energy absorption.

次に、補強部材3をインナー部材5に設置した場合とアウター部材4に設置した場合を比較するための衝撃試験を実施した。   Next, an impact test was performed to compare the case where the reinforcing member 3 was installed on the inner member 5 and the case where the reinforcing member 3 was installed on the outer member 4.

図8はアウター部材に補強部材を設置した供試体を示す断面図、図9は補強部材をインナー部材に設置した場合とアウター部材に設置した場合を比較するための、衝撃試験結果である荷重と変位量の関係を示すグラフである。   FIG. 8 is a cross-sectional view showing a specimen in which a reinforcing member is installed on the outer member, and FIG. 9 shows a load as an impact test result for comparing the case where the reinforcing member is installed on the inner member with the case where the reinforcing member is installed on the outer member. It is a graph which shows the relationship of displacement amount.

下記表は、各試験例に使用される供試体の構造を示す。   The following table shows the structure of the specimen used in each test example.

Figure 2008045736
Figure 2008045736

試験例4は、前述と同様のスチール製構造体21(図6参照)であり、試験例5は、インナー部材5に補強部材3を設置した第1実施形態に対応する樹脂製部材(図1参照)を供試体とするものであり、試験例6は、アウター部材4に補強部材3を設置した樹脂製部材(図8参照)を供試体とするものである。   Test Example 4 is the same steel structure 21 (see FIG. 6) as described above, and Test Example 5 is a resin member corresponding to the first embodiment in which the reinforcing member 3 is installed on the inner member 5 (FIG. 1). Reference Example) is a specimen, and Test Example 6 is a specimen made of a resin member (see FIG. 8) in which the reinforcing member 3 is installed on the outer member 4.

なお、試験例5の樹脂製部材1は、試験例4のスチール製構造体21と比較して、重量が約70%となっている。   The resin member 1 of Test Example 5 has a weight of about 70% compared to the steel structure 21 of Test Example 4.

図9に示すように、アウター部材4に補強部材3を設置した試験例6では、アウター部材4に入力される荷重を、最初に補強部材3により受けることとなり、初期反力が試験例4よりも高くなってしまっている。   As shown in FIG. 9, in Test Example 6 in which the reinforcing member 3 is installed on the outer member 4, the load input to the outer member 4 is first received by the reinforcing member 3. Has also become higher.

また、試験例6では、補強部材3の変形とともにアウター部材4も”く”の字状に変形し、インナー部材5との接合部に伸びが生じるが、CFRPであるインナー部材5は引張り強度が高くあまり伸びないため、アウター部材4とインナー部材5の接合部において剥がれが生じやすい。   In Test Example 6, along with the deformation of the reinforcing member 3, the outer member 4 is also deformed into a "<" shape and the joint portion with the inner member 5 is elongated, but the inner member 5 that is CFRP has a tensile strength. Since it is high and does not extend so much, peeling is likely to occur at the joint between the outer member 4 and the inner member 5.

このように、試験例5(第1実施形態)のように補強部材3をインナー部材5に設置することで、初期反力を抑えつつ、エネルギーを吸収できることが確認できる。   Thus, it can confirm that energy can be absorbed, suppressing initial reaction force by installing the reinforcement member 3 in the inner member 5 like Test example 5 (1st Embodiment).

次に、第1実施形態と第3実施形態を比較するための衝撃試験を実施した。   Next, an impact test for comparing the first embodiment and the third embodiment was performed.

図10は、インナー部材の繊維配向による荷重と変位量の関係を示すグラフである。   FIG. 10 is a graph showing the relationship between the load due to fiber orientation of the inner member and the amount of displacement.

下記表は、各試験例に使用される供試体の構造を示す。   The following table shows the structure of the specimen used in each test example.

Figure 2008045736
Figure 2008045736

試験例7は、インナー部材5に、0度および90度の配向を有するクロス材を用いた第1実施形態に対応する樹脂製部材(図1参照)を供試体とするものであり、試験例8は、インナー部材5に、0度および90度の配向を有する第1クロス材と、+45度および−45度の配向で繊維が並ぶ第2クロス材とを重ねて強化繊維とした第3実施形態に対応する樹脂製部材を供試体とするものである。   Test Example 7 uses a resin member (see FIG. 1) corresponding to the first embodiment in which a cloth material having an orientation of 0 degrees and 90 degrees is used for the inner member 5 as a test sample. 8 is a third embodiment in which a first cloth material having an orientation of 0 degrees and 90 degrees and a second cloth material in which fibers are aligned at +45 degrees and -45 degrees are stacked on the inner member 5 to form reinforcing fibers. A resin member corresponding to the form is used as a specimen.

図10に示すように、第1実施形態に対応する試験例7では、変位が増加することにより強化繊維が破断して荷重が低下するが、第3実施形態に対応する試験例8では、変位が増加しても荷重が低下していない。これは、引張り方向に傾斜した配向を有する第2クロス材の織目が広がって破断ひずみが大きくなると推測され、インナー部材5の曲げ変形への追従性が向上していることが確認できる。   As shown in FIG. 10, in Test Example 7 corresponding to the first embodiment, the reinforcing fiber breaks and the load decreases due to the increase in displacement, but in Test Example 8 corresponding to the third embodiment, the displacement decreases. The load does not decrease even if the value increases. This is presumed that the texture of the second cloth material having an orientation inclined in the tensile direction spreads and the breaking strain increases, and it can be confirmed that the followability to bending deformation of the inner member 5 is improved.

図11は、クーポン試験片を用いた引張り試験結果を示す応力ひずみ線図である。図11に示すように、0,90度配向のクーポン試験片よりも、−45,+45度配向のクーポン試験片の方がひずみが5倍以上となっており、繊維が引張り方向に傾斜した配向を有することにより、変形に対する追従性が向上することが確認できる。   FIG. 11 is a stress strain diagram showing a tensile test result using a coupon test piece. As shown in FIG. 11, the coupon test piece of −45, +45 degree orientation has a strain of 5 times or more than the coupon test piece of 0,90 degree orientation, and the fiber is inclined in the tensile direction. It can be confirmed that the followability to deformation is improved by having.

次に、第2実施形態と第4実施形態を比較するための衝撃試験を実施した。   Next, the impact test for comparing 2nd Embodiment and 4th Embodiment was implemented.

図12は、アウター部材の有無による荷重と変位量の関係を示すグラフである。   FIG. 12 is a graph showing the relationship between the load and the displacement amount depending on the presence or absence of the outer member.

下記表は、各試験例に使用される供試体の構造を示す。   The following table shows the structure of the specimen used in each test example.

Figure 2008045736
Figure 2008045736

試験例9は、アウター部材4が設けられた第2実施形態に対応する樹脂製部材1’(図3参照)を供試体とするものであり、試験例10は、アウター部材が設けられない第4実施形態に対応する樹脂製部材41(図4参照)を供試体とするものである。   Test Example 9 uses a resin member 1 ′ (see FIG. 3) corresponding to the second embodiment in which the outer member 4 is provided as a specimen, and Test Example 10 is a first example in which no outer member is provided. A resin member 41 (see FIG. 4) corresponding to the fourth embodiment is used as a specimen.

図12に示すように、第4実施形態に対応する試験例10においても、荷重が緩衝材43で分散された後に補強部材3に作用するため、アウター部材が設けられる試験例9と比較しても、エネルギー吸収量は損なわれないことが確認できる。   As shown in FIG. 12, in Test Example 10 corresponding to the fourth embodiment, the load acts on the reinforcing member 3 after being dispersed by the buffer material 43, so that it is compared with Test Example 9 in which an outer member is provided. It can also be confirmed that the amount of energy absorption is not impaired.

なお、本発明は上述した実施の形態に限定されるものではなく、特許請求の範囲の範囲内で種々改変することができる。例えば、本体部2がFRPではなく、強化繊維の適用されていない樹脂材であってもよい。また、補強部材3に、引張り保持部9を設けず、補強部材3を直接本体部2のFRP部と一体化しても良い。また、第3実施形態における繊維が配向されたインナー部材を、第2,4実施形態に適用することもできる。   The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims. For example, the main body 2 may be a resin material to which reinforcing fibers are not applied instead of FRP. Further, the reinforcing member 3 may be directly integrated with the FRP portion of the main body 2 without providing the tension holding portion 9 on the reinforcing member 3. Moreover, the inner member in which the fibers in the third embodiment are oriented can be applied to the second and fourth embodiments.

本発明の第1実施形態に係る樹脂製部材の断面図である。It is sectional drawing of the resin-made members which concern on 1st Embodiment of this invention. 本発明の第1実施形態に係る樹脂製部材の補強部材を示す断面図である。It is sectional drawing which shows the reinforcement member of the resin-made members which concern on 1st Embodiment of this invention. 本発明の第2実施形態に係る樹脂製部材の断面図である。It is sectional drawing of the resin-made members which concern on 2nd Embodiment of this invention. 本発明の第4実施形態に係る樹脂製部材の断面図を示す。Sectional drawing of the resin-made members which concern on 4th Embodiment of this invention is shown. 衝撃試験における供試体への荷重と供試体の変位量を示す供試体の断面図である。It is sectional drawing of the specimen which shows the load to the specimen in an impact test, and the displacement amount of a specimen. 衝撃試験に用いられるスチール製構造体を示す断面図である。It is sectional drawing which shows the steel structure used for an impact test. 衝撃試験結果である荷重と変位量の関係を示すグラフである。It is a graph which shows the relationship between the load and displacement amount which are an impact test result. アウター部材に補強部材を設置した供試体を示す断面図である。It is sectional drawing which shows the test body which installed the reinforcement member in the outer member. 補強部材をインナー部材に設置した場合とアウター部材に設置した場合を比較するための、衝撃試験結果である荷重と変位量の関係を示すグラフである。It is a graph which shows the relationship of the load and displacement amount which are the impact test results for comparing the case where a reinforcement member is installed in an inner member, and the case where it installs in an outer member. インナー部材の繊維配向による荷重と変位量の関係を示すグラフである。It is a graph which shows the relationship between the load by the fiber orientation of an inner member, and a displacement amount. クーポン試験片を用いた引張り試験結果を示す応力ひずみ線図である。It is a stress strain diagram which shows the tension test result using a coupon test piece. アウター部材の有無による荷重と変位量の関係を示すグラフである。It is a graph which shows the relationship between the load by the presence or absence of an outer member, and a displacement amount.

符号の説明Explanation of symbols

1,1’,41 樹脂製部材、
2,42 本体部、
3 補強部材、
4 アウター部材、
5,45 インナー部材、
6 中空部、
7 剛性保持部、
9 引張り保持部、
10 接着剤、
11 予備補強材、
43 緩衝材、
F 外部入力荷重、
X 変位量。
1,1 ', 41 resin member,
2,42 body part,
3 Reinforcing members,
4 outer member,
5,45 inner member,
6 hollow part,
7 Rigid holding part,
9 Tension holding part,
10 Adhesive,
11 Pre-reinforcement material,
43 cushioning material,
F External input load,
X Displacement amount.

Claims (26)

樹脂製の本体部を備える樹脂製部材であって、
外部入力荷重が作用する側に外部入力荷重を分散させる緩衝部が設けられるとともに、当該緩衝部の外部入力荷重が作用する側と反対側に、本体部に固定される塑性変形が可能な補強部材が設けられることを特徴とする樹脂製部材。
A resin member provided with a resin main body,
A buffer member for dispersing the external input load is provided on the side on which the external input load acts, and a reinforcing member capable of plastic deformation fixed to the main body on the side opposite to the side on which the external input load acts. A resin member characterized in that is provided.
内部に中空部が形成される樹脂製の本体部を備える樹脂製部材であって、
前記中空部には、外部入力荷重が作用する側と反対側に、塑性変形が可能な補強部材が設置されることを特徴とする請求項1に記載の樹脂製部材。
A resin member provided with a resin main body part in which a hollow part is formed,
The resin member according to claim 1, wherein a reinforcing member capable of plastic deformation is installed in the hollow portion on a side opposite to a side on which an external input load acts.
前記中空部には、外部入力荷重が作用する側と前記補強部材の間に、前記補強部材よりも剛性の低い予備補強材が設けられることを特徴とする請求項2に記載の樹脂製部材。   The resin member according to claim 2, wherein a pre-reinforcing material having rigidity lower than that of the reinforcing member is provided in the hollow portion between the side on which an external input load acts and the reinforcing member. 前記本体部は、外部入力荷重が作用する側のアウター部材と、外部入力荷重が作用する側と反対側に配置されて前記補強部材が取り付けられるインナー部材とを有し、前記アウター部材は、インナー部材よりも薄く形成されることを特徴とする請求項2または3に記載の樹脂製部材。   The main body includes an outer member on the side on which an external input load acts and an inner member on the side opposite to the side on which the external input load acts, and the reinforcing member is attached to the outer member. 4. The resin member according to claim 2, wherein the resin member is formed thinner than the member. 前記緩衝部は、外部入力荷重が作用する側に露出される、前記補強部材よりも剛性の低い緩衝材であることを特徴とする請求項1に記載の樹脂製部材。   2. The resin member according to claim 1, wherein the buffer portion is a buffer material having a lower rigidity than the reinforcing member, which is exposed to a side on which an external input load acts. 前記本体部は、繊維強化プラスチックにより形成されることを特徴とする請求項1〜5のいずれか1項に記載の樹脂製部材。   The resin body according to any one of claims 1 to 5, wherein the main body is formed of fiber reinforced plastic. 前記本体部は、炭素繊維強化プラスチックにより形成されることを特徴とする請求項6に記載の樹脂製部材。   The resin body according to claim 6, wherein the main body is made of carbon fiber reinforced plastic. 前記本体部の前記補強部材が取り付けられる部位の強化繊維は、外部入力荷重が入力される際に当該部位に生じる引張り方向と同一方向で並ぶ繊維と、当該引張り方向と傾斜して並ぶ繊維とが重ねられたことを特徴とする請求項6または7に記載の樹脂製部材。   Reinforcing fibers in a portion of the main body portion to which the reinforcing member is attached include fibers arranged in the same direction as the tensile direction generated in the portion when an external input load is input, and fibers arranged in an inclined manner with respect to the tensile direction. The resin member according to claim 6 or 7, wherein the resin member is overlapped. 前記補強部材は、金属製の剛性保持部を有することを特徴とする請求項1〜8のいずれか1項に記載の樹脂製部材。   The resin member according to claim 1, wherein the reinforcing member has a metal rigid holding portion. 前記剛性保持部は、アルミ製であることを特徴とする請求項9に記載の樹脂製部材。   The resin member according to claim 9, wherein the rigidity holding portion is made of aluminum. 前記補強部材は、前記本体部に固定される側に、繊維強化プラスチックにより形成される引張り保持部を有することを特徴とする請求項1〜10のいずれか1項に記載の樹脂製部材。   The resin member according to any one of claims 1 to 10, wherein the reinforcing member has a tensile holding portion formed of fiber reinforced plastic on a side fixed to the main body portion. 前記引張り保持部の繊維は、作用する外部入力荷重が入力される際に当該引張り保持部に生じる引張り方向と同一方向で並ぶことを特徴とする請求項11に記載の樹脂製部材。   The resin member according to claim 11, wherein the fibers of the tension holding portion are arranged in the same direction as a tension direction generated in the tension holding portion when an external input load that acts is input. 前記引張り保持部は、炭素繊維強化プラスチックにより形成されることを特徴とする請求項11または12に記載の樹脂製部材。   The resin member according to claim 11 or 12, wherein the tension holding portion is made of carbon fiber reinforced plastic. 樹脂製の本体部を備える樹脂製部材の製造方法であって、
外部入力荷重が作用する側に外部入力荷重を分散させる緩衝部を設けるとともに、当該緩衝部の外部入力荷重が作用する側と反対側に、塑性変形が可能な補強部材を配置して本体部に固定することを特徴とする樹脂製部材の製造方法。
A method for producing a resin member comprising a resin main body,
A buffer part for dispersing the external input load is provided on the side on which the external input load acts, and a reinforcing member capable of plastic deformation is arranged on the side opposite to the side on which the external input load acts on the body part. A method for producing a resin member, comprising fixing.
内部に中空部が形成される樹脂製の本体部を備える樹脂製部材の製造方法であって、
前記中空部には、外部入力荷重が作用する側と反対側に、塑性変形が可能な補強部材を設置することを特徴とする請求項14に記載の樹脂製部材の製造方法。
It is a manufacturing method of a resin member provided with a resin main body portion in which a hollow portion is formed,
The method for manufacturing a resin member according to claim 14, wherein a reinforcing member capable of plastic deformation is installed in the hollow portion on a side opposite to a side on which an external input load acts.
前記中空部の外部入力荷重が作用する側と前記補強部材の間に、前記補強部材よりも剛性の低い予備補強材を設けることを特徴とする請求項15に記載の樹脂製部材の製造方法。   16. The method for producing a resin member according to claim 15, wherein a pre-reinforcing material having rigidity lower than that of the reinforcing member is provided between the side of the hollow portion on which an external input load acts and the reinforcing member. 前記本体部を、外部入力荷重が作用する側のアウター部材と、外部入力荷重が作用する側と反対側に配置されて前記補強部材が取り付けられるインナー部材とを有して構成し、前記アウター部材を、インナー部材よりも薄く形成することを特徴とする請求項15または16に記載の樹脂製部材の製造方法。   The main body portion includes an outer member on the side on which an external input load acts, and an inner member on the side opposite to the side on which the external input load acts, to which the reinforcing member is attached, and the outer member The method for producing a resin member according to claim 15 or 16, wherein the thickness is formed thinner than the inner member. 前記緩衝部として、外部入力荷重が作用する側に露出される、前記補強部材よりも剛性の低い緩衝材を設けることを特徴とする請求項14に記載の樹脂製部材の製造方法。   The method for manufacturing a resin member according to claim 14, wherein a buffer material having rigidity lower than that of the reinforcing member, which is exposed to a side on which an external input load acts, is provided as the buffer portion. 前記本体部を、繊維強化プラスチックにより形成することを特徴とする請求項14〜18のいずれか1項に記載の樹脂製部材の製造方法。   The method of manufacturing a resin member according to any one of claims 14 to 18, wherein the main body portion is formed of fiber reinforced plastic. 前記本体部を、炭素繊維強化プラスチックにより形成することを特徴とする請求項19に記載の樹脂製部材の製造方法。   The method of manufacturing a resin member according to claim 19, wherein the main body portion is formed of a carbon fiber reinforced plastic. 前記本体部の前記補強部材が取り付けられる部位の強化繊維を、外部入力荷重が入力される際に当該部位に生じる引張り方向と同一方向で並ぶ繊維と、当該引張り方向と傾斜して並ぶ繊維とを重ねて配置することを特徴とする請求項19または20に記載の樹脂製部材の製造方法。   Reinforcing fibers in a portion of the main body portion to which the reinforcing member is attached include fibers aligned in the same direction as the tensile direction generated in the portion when an external input load is input, and fibers aligned in an inclined manner with respect to the tensile direction. The method for producing a resin member according to claim 19 or 20, wherein the resin member is arranged in a stacked manner. 前記補強部材に、金属製の剛性保持部を設けることを特徴とする請求項14〜21のいずれか1項に記載の樹脂製部材の製造方法。   The method for producing a resin member according to any one of claims 14 to 21, wherein the reinforcing member is provided with a metal rigid holding portion. 前記剛性保持部を、アルミにより形成することを特徴とする請求項22に記載の樹脂製部材の製造方法。   The method for manufacturing a resin member according to claim 22, wherein the rigid holding portion is formed of aluminum. 前記補強部材の、前記本体部に固定される側に、繊維強化プラスチックよりなる引張り保持部を形成することを特徴とする請求項22または23に記載の樹脂製部材の製造方法。   The method for producing a resin member according to claim 22 or 23, wherein a tension holding portion made of fiber reinforced plastic is formed on a side of the reinforcing member fixed to the main body portion. 前記引張り保持部を、作用する外部入力荷重が入力される際に当該引張り保持部に生じる引張り方向と同一方向で並ぶ繊維を用いて形成することを特徴とする請求項24に記載の樹脂製部材の製造方法。   25. The resin member according to claim 24, wherein the tensile holding portion is formed using fibers arranged in the same direction as a tensile direction generated in the tensile holding portion when an external input load that acts is input. Manufacturing method. 前記引張り保持部を、炭素繊維強化プラスチックにより形成することを特徴とする請求項24または25に記載の樹脂製部材の製造方法。   26. The method for producing a resin member according to claim 24 or 25, wherein the tensile holding portion is formed of carbon fiber reinforced plastic.
JP2007102975A 2006-07-19 2007-04-10 Resin member, and method for manufacturing the same Pending JP2008045736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102975A JP2008045736A (en) 2006-07-19 2007-04-10 Resin member, and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006197310 2006-07-19
JP2007102975A JP2008045736A (en) 2006-07-19 2007-04-10 Resin member, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2008045736A true JP2008045736A (en) 2008-02-28

Family

ID=39179657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102975A Pending JP2008045736A (en) 2006-07-19 2007-04-10 Resin member, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2008045736A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045657A1 (en) * 2013-09-27 2015-04-02 トヨタ自動車株式会社 Vehicle body reinforcement structure
JP2016169000A (en) * 2015-03-12 2016-09-23 現代自動車株式会社Hyundai Motor Company Vehicular hybrid side sill, manufacturing method of the same, and vehicle body having the same
JP2017149187A (en) * 2016-02-22 2017-08-31 株式会社神戸製鋼所 Vehicular side door
WO2022176661A1 (en) * 2021-02-16 2022-08-25 帝人株式会社 Impact-absorbing member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122336U (en) * 1974-08-07 1976-02-18
JPH07277112A (en) * 1994-04-11 1995-10-24 Showa Alum Corp Shock absorbing stay
JPH08142784A (en) * 1994-11-24 1996-06-04 Tokai Rubber Ind Ltd Shock absorbing structure body
JPH08174726A (en) * 1994-12-26 1996-07-09 Honda Motor Co Ltd Shock-absorbing structure
JP2006027433A (en) * 2004-07-15 2006-02-02 Honda Motor Co Ltd Shock absorbing member for automobile
JP2006168535A (en) * 2004-12-16 2006-06-29 Ootsuka:Kk Impact energy absorbing member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122336U (en) * 1974-08-07 1976-02-18
JPH07277112A (en) * 1994-04-11 1995-10-24 Showa Alum Corp Shock absorbing stay
JPH08142784A (en) * 1994-11-24 1996-06-04 Tokai Rubber Ind Ltd Shock absorbing structure body
JPH08174726A (en) * 1994-12-26 1996-07-09 Honda Motor Co Ltd Shock-absorbing structure
JP2006027433A (en) * 2004-07-15 2006-02-02 Honda Motor Co Ltd Shock absorbing member for automobile
JP2006168535A (en) * 2004-12-16 2006-06-29 Ootsuka:Kk Impact energy absorbing member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045657A1 (en) * 2013-09-27 2015-04-02 トヨタ自動車株式会社 Vehicle body reinforcement structure
JP2015067090A (en) * 2013-09-27 2015-04-13 トヨタ自動車株式会社 Vehicle body reinforcing structure
JP2016169000A (en) * 2015-03-12 2016-09-23 現代自動車株式会社Hyundai Motor Company Vehicular hybrid side sill, manufacturing method of the same, and vehicle body having the same
JP2017149187A (en) * 2016-02-22 2017-08-31 株式会社神戸製鋼所 Vehicular side door
WO2022176661A1 (en) * 2021-02-16 2022-08-25 帝人株式会社 Impact-absorbing member

Similar Documents

Publication Publication Date Title
US6406088B1 (en) Crash rail for a vehicle
JP4918567B2 (en) Shock absorbing structure and manufacturing method thereof
JP2009166408A (en) Structural member
JP5797713B2 (en) Shock absorber
JP6264448B2 (en) Shock absorbing structure and vehicle outer plate member having the same
JP2008051224A (en) Bolt attaching structure for composite panel, and vehicle having the bolt attaching structure
JP2009255799A (en) Insert, and insert structure
JP2012504075A (en) Fiber composite parts for energy absorption in the case of an aircraft or spacecraft collision, aircraft structural parts of aircraft or spacecraft, and aircraft or spacecraft
JP2017061068A (en) Metal-CFRP composite member
US20030175455A1 (en) Structural element made from fibre-reinforced plastic
JP2005238837A (en) Frp laminate structure
JP2008281429A (en) Bonding strength evaluating method of double wrap coupling
JP2008045736A (en) Resin member, and method for manufacturing the same
JP2006027435A (en) Shock absorbing member
JP2006200703A (en) Shock absorbing member
JP2015175430A (en) Resin shock absorption member
JP2010030501A (en) Automobile hood panel
WO2020017662A1 (en) Vehicle structural member
JP2944967B2 (en) High-speed vehicle outer wall structure and high-speed vehicle outer wall manufacturing method
JP2005273872A (en) Mounting structure of energy absorbing member made of fiber-reinforced plastic
JP2006200702A (en) Shock absorbing member
JP4443954B2 (en) FRP energy absorbing member structure
JP4118263B2 (en) Shock absorber for automobile
JP4910873B2 (en) Shock absorbing member
JP6560568B2 (en) Energy absorbing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403