JP4421404B2 - Purification method for contaminated soil - Google Patents

Purification method for contaminated soil Download PDF

Info

Publication number
JP4421404B2
JP4421404B2 JP2004211044A JP2004211044A JP4421404B2 JP 4421404 B2 JP4421404 B2 JP 4421404B2 JP 2004211044 A JP2004211044 A JP 2004211044A JP 2004211044 A JP2004211044 A JP 2004211044A JP 4421404 B2 JP4421404 B2 JP 4421404B2
Authority
JP
Japan
Prior art keywords
contaminated soil
heavy metal
mixing
soil
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004211044A
Other languages
Japanese (ja)
Other versions
JP2006026569A (en
Inventor
哲也 下田
秀一 三橋
昌裕 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippo Corp
Original Assignee
Nippo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippo Corp filed Critical Nippo Corp
Priority to JP2004211044A priority Critical patent/JP4421404B2/en
Publication of JP2006026569A publication Critical patent/JP2006026569A/en
Application granted granted Critical
Publication of JP4421404B2 publication Critical patent/JP4421404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、汚染土壌を土壌浄化材により浄化する方法に関する。   The present invention relates to a method for purifying contaminated soil with a soil purification material.

一般に土壌の力学特性(地盤強度、含水比)を改善するために、セメントや石灰と土壌とを混合することがよく行われるが、このときのセメントや石灰の添加量は通常土壌の重量に対して5〜10%程度である。この場合、所定の配合量となるセメントや石灰を対象土壌上に敷き均し、例えばスタビライザを片道2回ないし4回混合しながら走行させたり、バックホウにより数回混合を行うのが通常の手段である。   In general, cement and lime are mixed with soil in order to improve the mechanical properties (soil strength, water content ratio) of the soil. About 5 to 10%. In this case, the usual means is to spread cement and lime with a predetermined blending amount on the target soil, and for example, run the stabilizer while mixing two to four times one way, or mix several times with a backhoe. is there.

これに対して、汚染土壌の種類等に応じて比較的少量の土壌浄化材を用いる工法も種々知られている。例えば重金属(砒素も含む)汚染土壌の対策における不溶化処理のように、不溶化材と重金属汚染土壌とを混合して重金属の溶出を抑制する工法がある。この場合は汚染濃度にもよるが、汚染土壌の重量に対して0.01%や0.02%といったごく少量の材料を混合することが多い。また、油汚染土壌の場合はバイオレメディエーションにおける微生物の活性を促す材料として、例えばピートモスや栄養剤、酸素発生剤等を用い、これらを油汚染土壌と混合するが、この場合は、汚染土壌の重量に対して0.1〜1%程度混合することが多い。しかし、このように比較的少量の土壌浄化材を用いる場合には、前記したスタビライザやバックホウ等の施工機械による直接混合方法では長時間混合しても均一に混合することは困難である。   On the other hand, various methods using a relatively small amount of soil purification material depending on the type of contaminated soil are known. For example, there is a method of suppressing elution of heavy metals by mixing insolubilized material and heavy metal-contaminated soil, such as insolubilization treatment for measures against soil contaminated with heavy metals (including arsenic). In this case, although depending on the contamination concentration, a very small amount of material such as 0.01% or 0.02% is often mixed with the weight of the contaminated soil. In the case of oil-contaminated soil, for example, peat moss, nutrients, oxygen generators, etc. are used as materials for promoting the activity of microorganisms in bioremediation, and these are mixed with oil-contaminated soil. In many cases, about 0.1 to 1% is mixed. However, when a relatively small amount of soil purification material is used in this way, it is difficult to mix evenly for a long time by the above-described direct mixing method using a construction machine such as a stabilizer or a backhoe.

そこで上記したように比較的少量の土壌浄化材を汚染土壌と混合する場合には、現場にプラントを構築し、精度のよいミキサ等の混合装置を用いて所定の土壌浄化材と所定の汚染土壌を一定量づつ撹拌、混合する方法が用いられるが、この方法は現場でのプラント構築のためのコストや混合装置の稼働コストによるコストアップにつながる。またあらかじめ土壌浄化材と混合しやすい他材料を均一に混合した材料を増量材として作製しておき、汚染土壌に対する混合割合を増加して、原位置で混合する方法も考えられるが、この方法は混合物をつくるコストや浄化現場まで運搬するコストが必要となり、コストアップにつながる。   Therefore, when a relatively small amount of soil purification material is mixed with contaminated soil as described above, a plant is constructed on the site, and a predetermined soil purification material and predetermined contamination soil are mixed using an accurate mixing device such as a mixer. Although a method of stirring and mixing a certain amount is used, this method leads to an increase in cost due to the cost for constructing a plant in the field and the operating cost of the mixing device. In addition, it is also possible to prepare a material that is mixed with other materials that are easy to mix with the soil purification material in advance as an extender, increase the mixing ratio with respect to the contaminated soil, and mix in situ. The cost of making the mixture and the cost of transporting to the purification site are necessary, leading to increased costs.

本発明の目的は、上記した問題点を解決することにあり、特に比較的少量の重金属不溶化材を重金属汚染土壌と混合する効率的で経済性に優れた方法を提供することにある。 An object of the present invention is to solve the above-described problems, and particularly to provide an efficient and economical method for mixing a relatively small amount of heavy metal insolubilizing material with heavy metal contaminated soil.

本発明は、第1に、重金属汚染土壌を重金属不溶化材を用いて不溶化するに際し、重金属不溶化材と重金属汚染土壌もしくは砂の一部とを混合する第1工程と該第1工程により得られた混合物を、新たに重金属不溶化材を加えることなく新しい重金属汚染土壌と混合する第2工程と、からなることを特徴とする汚染土壌の浄化方法である。 In the present invention, firstly , when heavy metal-contaminated soil is insolubilized with a heavy metal insolubilizing material, the heavy metal insolubilized material and a part of heavy metal-contaminated soil or sand are mixed and obtained by the first step. A second step of mixing a mixture with new heavy metal-contaminated soil without newly adding a heavy metal insolubilizing material, and a method for purifying contaminated soil.

本発明は、第2に、第2工程を2回以上繰り返す上記の方法。 Second, the present invention relates to the above method wherein the second step is repeated twice or more.

本発明は、第3に、上記の工程を2回以上繰り返す上記の方法である。   Thirdly, the present invention is the above method in which the above steps are repeated twice or more.

本発明は、第4に、重金属不溶化材がシュベルトマナイト、ゲータイト、ジャイロサイト及びフェリハイドライドから選ばれる鉄系化合物である上記の方法である。 Fourthly , the present invention is the above method, wherein the heavy metal insolubilizing material is an iron-based compound selected from schbert manite, goethite, gyrosite and ferrihydride.

本発明は、第5に、重金属不溶化材と重金属汚染土壌もしくは土壌混合性材料の一部とを混合した材料を新しい重金属汚染土壌上に敷き均し、施工機械で所定の地盤深さまで均一に混合した後、重金属不溶化材を新たに加えることなく、さらに深い地盤まで均一に混合する作業を繰り返すことを特徴とする上記の方法である。 Fifth, according to the present invention, a material obtained by mixing a heavy metal insolubilizing material and a heavy metal-contaminated soil or a part of a soil mixed material is spread on a new heavy metal- contaminated soil and uniformly mixed to a predetermined ground depth by a construction machine. Then, the above-mentioned method is characterized in that the work of uniformly mixing to a deeper ground is repeated without newly adding a heavy metal insolubilizing material .

本発明は、第6に、重金属土壌不溶化材の量が重金属汚染土壌の2重量%以下、好ましくは0.01〜1重量%である上記載の方法。 The present invention sixthly provides the method as described above, wherein the amount of the heavy metal soil insolubilizing material is 2% by weight or less, preferably 0.01 to 1% by weight of the heavy metal contaminated soil .

本発明により、原位置で重金属汚染土壌に重金属不溶化材を効率的且つ安価に均一混合することが可能となる。 According to the present invention, it is possible to uniformly mix a heavy metal insolubilizing material with heavy metal contaminated soil in an in-situ manner efficiently and inexpensively.

本発明は、比較的少量、好ましくは汚染土壌の2重量%以下、より好ましくは0.01〜1重量%の重金属不溶化材を汚染土壌に混合して行う汚染土壌の不溶化方法における改良混合方法を主たる対象としている。 The present invention relates to an improved mixing method in a method for insolubilizing contaminated soil, which is carried out by mixing a relatively small amount, preferably 2% by weight or less of contaminated soil, more preferably 0.01 to 1% by weight of heavy metal insolubilizer with contaminated soil. The main target.

重金属不溶化材(以下、「不溶化材」と称する場合がある)としては、重金属を不溶化させる各種の不溶化材や重金属を吸着する作用や結晶内に閉じ込める作用を有する鉱物等がある。具体的には砒素を包含する重金属に対するシュベルトマナイト、ゲータイト、ジャロサイト、フェリハイドライト等の鉄系化合物がある。 Examples of heavy metal insolubilizing materials (hereinafter sometimes referred to as “insolubilizing materials”) include various insolubilizing materials that insolubilize heavy metals, minerals that have the effect of adsorbing heavy metals, and the function of confining them in crystals. Specifically, there are iron-based compounds such as schwertmannite, goethite, jarosite, ferrihydrite for heavy metals including arsenic.

一次混合物をつくる際の混合割合は、それぞれの成分に応じた混合効率に適した均一な混合物が得られやすい量が用いられるが、好ましくは土壌浄化材1重量部当り汚染土壌もしくは土壌混合性材料を3〜15重量部、より好ましくは5〜10重量部程度を混合する。汚染土壌がこの混合物と均一に混合できる量であれば、この状態で汚染土壌と均一に混合する。均一に混合するためには汚染土壌の量が多すぎる場合には、さらにこの混合物と汚染土壌もしくは土壌混合性材料とを混合する。この作業を汚染土壌と均一に混合できる量となるまで繰り返し、最後に汚染土壌と混合する。通常上記工程は2〜4回繰り返される。   The mixing ratio when making the primary mixture is such that a uniform mixture suitable for the mixing efficiency corresponding to each component is easily obtained, but preferably contaminated soil or soil mixed material per 1 part by weight of the soil purification material. 3 to 15 parts by weight, more preferably about 5 to 10 parts by weight. If the contaminated soil is in an amount that can be uniformly mixed with this mixture, it is uniformly mixed with the contaminated soil in this state. If the amount of contaminated soil is too large for uniform mixing, this mixture is further mixed with the contaminated soil or soil-mixing material. This operation is repeated until the amount can be uniformly mixed with the contaminated soil, and finally mixed with the contaminated soil. Usually, the above steps are repeated 2-4 times.

本発明の各工程は原則として原位置で行われるが、土壌混合性材料を用いる際の工程は原位置以外で行うことができる。   Although each process of this invention is performed in principle, the process at the time of using a soil mixed material can be performed in place other than an original position.

次に図面を用いて本発明の施工例を説明する。
図1の混合方法は一次混合用材料として汚染土壌を用いて、原位置にて、土壌浄化材と混合する場合を示している。図1の混合方法では、土壌浄化材を人力や機械で敷き均した後に一次混合用材料であって増量材となる所定の汚染土壌の深さを設定し、この深さまで均一に混合した混合物をつくる。次にこの混合物とより深い深度までの汚染土壌とを混合し、これを繰り返すことによって土壌浄化材と汚染土壌とを均一に混合する。なお、ここでは一次混合用材料(増量材)として汚染土壌を用いる場合を示したが、砂や砂質土といった土壌浄化材と混合しやすい材料や、土壌浄化材が効果的に働く材料、もしくは両者を組合せた材料を用いることもできる。原位置での撹拌・混合を行う機械としては、バックホウやスタビライザ等の施工機械があるが、撹拌・混合が行える機械であればこれに制限されるものではない。
Next, a construction example of the present invention will be described with reference to the drawings.
The mixing method of FIG. 1 shows a case where contaminated soil is used as a primary mixing material and is mixed with a soil purification material in situ. In the mixing method of FIG. 1, after the soil purification material is spread with human power or a machine, the depth of the predetermined contaminated soil, which is the primary mixing material and the weight increasing material, is set, and the mixture uniformly mixed up to this depth is set. to make. Next, this mixture and the contaminated soil to a deeper depth are mixed, and this process is repeated to uniformly mix the soil purification material and the contaminated soil. In addition, although the case where the contaminated soil is used as the primary mixing material (increase material) is shown here, a material that can be easily mixed with a soil purification material such as sand or sandy soil, a material on which the soil purification material works effectively, or A material in which both are combined can also be used. As a machine that performs agitation and mixing in-situ, there are construction machines such as a backhoe and a stabilizer, but the machine is not limited to this as long as it is a machine capable of agitation and mixing.

図1に示す混合方法は一例であり、この他にも、例えばタンク内に少量の土壌浄化材と一次混合用材料とを投入して均一に混合することにより均一な混合物をつくり、次いで所定量の汚染土壌を投入して混合する工程を繰り返すことにより最終的に少量の土壌浄化材と汚染土壌とを均一に混合する方法等も本発明に包含される。   The mixing method shown in FIG. 1 is an example. In addition to this, for example, a small amount of soil purification material and primary mixing material are put into a tank and mixed uniformly to form a uniform mixture, and then a predetermined amount. A method of uniformly mixing a small amount of soil purification material and contaminated soil by repeating the step of adding and mixing the contaminated soil is also included in the present invention.

砒素による汚染土壌に対して土壌浄化材として所定の不溶化材を用いた一実施例を示す。砒素の溶出量および含有量は、環境省告示第18号に準じた溶出量試験では0.024mg/kg、環境省告示第19号に準じた含有量試験では93.5mg/kgであった。砒素の溶出量基準は0.01mg/kg、含有量基準は150mg/kgである。したがって、この汚染土壌は溶出量基準を超えているため粉体状の不溶化材を用いて汚染土壌の不溶化処理を行った。不溶化材は鉱物系の粉体材料を用い、汚染土壌に対する混合割合を0.02重量%とし、汚染土壌500gに対して0.1gの不溶化材を混合することとした。対象とした汚染土壌は砂質土であり比較的混合しやすい材料だったので、一次混合用材料を汚染土壌とした。まず不溶化材0.1gに対して汚染土壌0.9gを混合して1gの混合物とし、該混合物1gを汚染土壌9gと混合して10gの混合物とし、該混合物10gを汚染土壌90gと混合して100gの混合物とし、該混合物100gを残りの汚染土壌400.1gと混合するという手順で段階的に混合した。なお、混合時間は各段階毎に2分づつとした。   An embodiment in which a predetermined insolubilizing material is used as a soil purification material for soil contaminated with arsenic will be described. The elution amount and content of arsenic were 0.024 mg / kg in the elution amount test according to Ministry of the Environment Notification No. 18 and 93.5 mg / kg in the content test according to Ministry of the Environment Notification No. 19. The arsenic elution amount standard is 0.01 mg / kg, and the content standard is 150 mg / kg. Therefore, since this contaminated soil exceeded the elution amount standard, the soil was insolubilized using a powder insolubilizer. The mineralized powder material was used as the insolubilizing material, the mixing ratio with respect to the contaminated soil was 0.02% by weight, and 0.1 g of the insolubilizing material was mixed with 500 g of the contaminated soil. The target contaminated soil was sandy soil and was a relatively easy material to mix, so the primary mixing material was contaminated soil. First, 0.9 g of contaminated soil is mixed with 0.1 g of insolubilized material to form a mixture of 1 g, 1 g of the mixture is mixed with 9 g of contaminated soil to form a mixture of 10 g, and 10 g of the mixture is mixed with 90 g of contaminated soil. 100 g of the mixture was made and mixed stepwise by the procedure of mixing 100 g of the mixture with the remaining 400.1 g of contaminated soil. The mixing time was 2 minutes for each stage.

表1に環境省告示第18号に準じた砒素の溶出量試験結果を示す。溶出量試験は今回の試料において任意に3ヶ所から採取した試料で行った。なお、比較のために0.1gの不溶化材に汚染土壌500gを一度に混合した結果を併せて示す(表中では従来法と呼ぶ)。なお一度に混合した場合の混合時間は、段階的に混合した場合の合計の混合時間が8分なので、この時間と同じにした。   Table 1 shows the arsenic dissolution test results according to Ministry of the Environment Notification No. 18. The elution amount test was performed on samples collected from three arbitrary locations in this sample. For comparison, the result of mixing 500 g of contaminated soil at once with 0.1 g of insolubilized material is also shown (referred to as the conventional method in the table). The mixing time when mixing at one time was the same as this time because the total mixing time when mixing stepwise was 8 minutes.

Figure 0004421404
Figure 0004421404

従来法では試験結果にかなりのバラツキが生じており、溶出量基準以上(0.01mg/kg)の試料も認められるが、本発明による混合方法ではいずれも溶出量基準以下であり、かつバラツキのない結果となっている。本発明による混合方法により均一に混合できたことが分かる。   In the conventional method, there is considerable variation in the test results, and there are samples that are above the elution amount standard (0.01 mg / kg), but in the mixing method according to the present invention, both are below the elution amount standard and there is no variation. No results. It can be seen that uniform mixing was achieved by the mixing method according to the present invention.

砒素による汚染土壌に対して本発明による混合方法を原位置で適用した。対象とした汚染土壌の面積は120m(10m×12m)であり、地表より1mの深度までの汚染土壌を砒素浄化材により浄化した。砒素の測定は12地点で実施し、砒素の土壌含有量は116〜132mg/kgで平均値は121mg/kg、土壌溶出量は0.014〜0.023mg/kgで平均値は0.017gm/kgであった。砒素の含有量基準は150mg/kg、溶出量基準は0.01mg/kgであり、この土壌では溶出量が基準を超えているため、土壌浄化を行った。砒素浄化材は鉱物系を粉体にしたものを採用し、汚染土壌の重量に対して0.02%を用いた。 The mixing method according to the present invention was applied in situ to soil contaminated with arsenic. The area of the target contaminated soil was 120 m 2 (10 m × 12 m), and the contaminated soil up to a depth of 1 m from the ground surface was purified with an arsenic purification material. Arsenic was measured at 12 locations, the soil content of arsenic was 116-132 mg / kg, the average value was 121 mg / kg, the soil elution amount was 0.014-0.023 mg / kg, and the average value was 0.017 gm / kg. kg. The arsenic content standard was 150 mg / kg and the elution standard was 0.01 mg / kg. Since the elution amount exceeded the standard in this soil, soil purification was performed. As the arsenic purification material, a mineral-based powder was used, and 0.02% of the weight of the contaminated soil was used.

浄化対象土量は200m×1m=200mであり、汚染土壌の湿潤密度は1.9t/mであったので、汚染土壌の量は1.9t/m×200m=380tとなり、浄化に必用な砒素浄化材は380t×0.10%=380kgとなる。なお汚染土壌は比較的混合性の良い砂質土であったので、一次混合用材料は汚染土壌とした。 The amount of soil to be purified was 200 m 2 × 1 m = 200 m 3 and the wet density of the contaminated soil was 1.9 t / m 3 , so the amount of contaminated soil was 1.9 t / m 3 × 200 m 3 = 380 t, The arsenic purification material necessary for purification is 380 t × 0.10% = 380 kg. Since the contaminated soil was sandy soil with relatively good mixing properties, the primary mixing material was contaminated soil.

図2に施工手順を示す。混合は原位置にて行い、均一な混合を行うために、1層の仕上がり厚が10〜30cmの範囲で設定可能なベーススタビライザと、1層の仕上がり厚が30〜100cmの範囲で設定可能なディープスタビライザの2機種を用いた。   Fig. 2 shows the construction procedure. Mixing is performed in-situ, and in order to perform uniform mixing, a base stabilizer that can be set in a range of 10 to 30 cm in the finished thickness of one layer and a finish thickness in the range of 30 to 100 cm that can be set in one layer can be set. Two types of deep stabilizers were used.

以下に施工手順について説明する。
(1)砒素浄化材380kgを対象汚染土壌の表面(面積120m)に均一に敷き均した。
(2)混合深度10cmに調整したベーススタビライザにより時速2kmで片道2回走行し、入念に混合した。
(3)混合深度30cmに調整したベーススタビライザにより時速2kmで片道2回走行し、入念に混合した。
(4)施工機械をベーススタビライザからディープスタビライザに変更し、混合深度60cmに調整したディープスタビライザにより時速2kmで片道2回走行し、入念に混合した。
(5)混合深度100cmに調整したディープスタビライザにより時速2kmで片道2回走行し、入念に混合した。
The construction procedure will be described below.
(1) Arsenic purification material 380 kg was uniformly spread on the surface (area 120 m 2 ) of the target contaminated soil.
(2) Using a base stabilizer adjusted to a mixing depth of 10 cm, the vehicle traveled twice at 2 km / h and mixed carefully.
(3) Using a base stabilizer adjusted to a mixing depth of 30 cm, the vehicle traveled twice at 2 km / h and mixed carefully.
(4) The construction machine was changed from the base stabilizer to the deep stabilizer, and the deep stabilizer adjusted to a mixing depth of 60 cm was run twice at a speed of 2 km and mixed carefully.
(5) Using a deep stabilizer adjusted to a mixing depth of 100 cm, the vehicle traveled twice one way at a speed of 2 km per hour, and was carefully mixed.

混合を行ってから1週間後に、混合エリアから10mメッシュ毎に合計12地点で試料を採取し、溶出量試験を行った。その結果、表2に示すようにバラツキはほとんどなく、すべての地点で溶出量基準値(0.01mg/kg)を満足した。   One week after mixing, samples were collected at a total of 12 points every 10 m mesh from the mixing area, and an elution amount test was performed. As a result, as shown in Table 2, there was almost no variation, and the elution amount reference value (0.01 mg / kg) was satisfied at all points.

Figure 0004421404
Figure 0004421404

本発明の方法の一例を示す工程図。Process drawing which shows an example of the method of this invention. 本発明の方法の一例(実施例2)を示す工程図。Process drawing which shows an example (Example 2) of the method of this invention.

Claims (5)

重金属汚染土壌を重金属不溶化材を用いて不溶化するに際し、重金属不溶化材と重金属汚染土壌もしくは砂の一部とを混合する第1工程と該第1工程により得られた混合物を、新たに重金属不溶化材を加えることなく新しい重金属汚染土壌と混合する第2工程と、からなることを特徴とする汚染土壌の浄化方法。   When the heavy metal-contaminated soil is insolubilized with the heavy metal insolubilizing material, the first step of mixing the heavy metal insolubilizing material and a part of the heavy metal-contaminated soil or sand and the mixture obtained by the first step are newly added to the heavy metal insolubilizing material. And a second step of mixing with new heavy metal-contaminated soil without adding water, and a method for purifying contaminated soil. 第2工程を2回以上繰り返す請求項1に記載の方法。   The method according to claim 1, wherein the second step is repeated twice or more. 重金属不溶化材がシュベルトマナイト、ゲータイト、ジャイロサイト及びフェリハイドライドから選ばれる鉄系化合物である請求項1〜2のいずれか1項に記載の方法。   The method according to any one of claims 1 to 2, wherein the heavy metal insolubilizing material is an iron-based compound selected from Schwertmannite, goethite, gyrosite, and ferrihydride. 重金属不溶化材と重金属汚染土壌もしくは砂の一部とを混合した材料を新しい重金属汚染土壌上に敷き均し、施工機械で所定の地盤深さまで均一に混合した後、重金属不溶化材を新たに加えることなく、さらに深い地盤まで均一に混合する作業を繰り返すことを特徴とする請求項1〜3のいずれか1項に記載の方法。 A material mixed with heavy metal insolubilized material and heavy metal contaminated soil or part of sand is spread on the new heavy metal contaminated soil and uniformly mixed to the specified ground depth with construction machinery, and then a new heavy metal insolubilized material is added. The method according to any one of claims 1 to 3 , wherein the operation of uniformly mixing up to a deeper ground is repeated. 重金属不溶化材の量が汚染土壌の2重量%以下である請求項1〜4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4 , wherein the amount of the heavy metal insolubilizing material is 2% by weight or less of the contaminated soil.
JP2004211044A 2004-07-20 2004-07-20 Purification method for contaminated soil Active JP4421404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004211044A JP4421404B2 (en) 2004-07-20 2004-07-20 Purification method for contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004211044A JP4421404B2 (en) 2004-07-20 2004-07-20 Purification method for contaminated soil

Publications (2)

Publication Number Publication Date
JP2006026569A JP2006026569A (en) 2006-02-02
JP4421404B2 true JP4421404B2 (en) 2010-02-24

Family

ID=35893533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004211044A Active JP4421404B2 (en) 2004-07-20 2004-07-20 Purification method for contaminated soil

Country Status (1)

Country Link
JP (1) JP4421404B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283229A (en) * 2006-04-18 2007-11-01 Nippon Sheet Glass Co Ltd Remediation method of contaminated soil

Also Published As

Publication number Publication date
JP2006026569A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
Kumpiene et al. In situ chemical stabilization of trace element-contaminated soil–Field demonstrations and barriers to transition from laboratory to the field–A review
CN104004524B (en) Environmental-friendly heavy metal stabilizer and application method thereof
JP4109017B2 (en) Solidification and insolubilization methods for contaminated soil
Warrinnier et al. Anaerobic respiration in the unsaturated zone of agricultural soil mobilizes phosphorus and manganese
CN101720258B (en) Soil treatment method
CN111303888A (en) Heavy metal combined pollution soil stabilization repairing agent with low environmental risk, and preparation method and application thereof
CN103331299A (en) Composite ecomaterial for solidified soil polluted by heavy metal
JP4421404B2 (en) Purification method for contaminated soil
JP2014227457A (en) Insolubilizing agent of heavy metal or the like and insolubilizing method
JP4687969B2 (en) Methods for insolubilizing hazardous substances
EP2982450A1 (en) In-situ process for stabilization and solidification of contaminated soil into composite material - building material
KR100356344B1 (en) Founding method of wall for blocking a leachate from a buried wastes
CN106077069A (en) A kind of humic fertilizer and silicate compound the method for passivation heavy metal-polluted soil
JP5025379B2 (en) Treatment method for fluorine-containing contaminated soil
US5651831A (en) Process for immobilizing organic and inorganic pollutants in a contaminated soil material on a remediation site
JP2005131574A (en) Insolubilization method of heavy metal contaminated soil
JP6567288B2 (en) Recycling method of selected soil extracted from earth and sand mixed waste
JP2007216069A (en) Treating method of contaminated soil
JP5308068B2 (en) Method for improving contaminated soil
JP2010207675A (en) Method of cleaning heavy metal-contaminated soil
Xu et al. Effects of in situ Remediation on Copper Distribution and Soil Aggregate Adsorption–Desorption Characteristics in Smelter-Impacted Soil
JP2004113854A (en) Engineering method of constructing underground water decontaminating wall
JP3966371B2 (en) Containment method for spilled heavy metals from waste final disposal site
JPH11347531A (en) Method for improving soil contaminated by hexavalent chromium
JP2011098319A (en) Method for cleaning contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4421404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250