JP4419651B2 - High frequency element - Google Patents

High frequency element Download PDF

Info

Publication number
JP4419651B2
JP4419651B2 JP2004105921A JP2004105921A JP4419651B2 JP 4419651 B2 JP4419651 B2 JP 4419651B2 JP 2004105921 A JP2004105921 A JP 2004105921A JP 2004105921 A JP2004105921 A JP 2004105921A JP 4419651 B2 JP4419651 B2 JP 4419651B2
Authority
JP
Japan
Prior art keywords
power supply
vibrator
frequency
supply wiring
vibrators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004105921A
Other languages
Japanese (ja)
Other versions
JP2005295120A (en
Inventor
均洋 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004105921A priority Critical patent/JP4419651B2/en
Publication of JP2005295120A publication Critical patent/JP2005295120A/en
Application granted granted Critical
Publication of JP4419651B2 publication Critical patent/JP4419651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Connection Structure (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、高周波信号素子とこの高周波信号素子に直流バイアス電圧を供給するための直流電圧供給手段とを有した高周波素子に関する。   The present invention relates to a high frequency device having a high frequency signal device and a DC voltage supply means for supplying a DC bias voltage to the high frequency signal device.

例えば複数の高周波回路ブロックに、同一の直流バイアス電圧を直列、あるいは並列に給電するときに、単純な線路を用いると、直流給電配線上を高周波信号(以下、RF信号という)が流れ、信号雑音レベルが上がることが予想される。しかしながら、従来、これらの悪影響については十分に配慮されていないか、あるいは無視される場合が殆どであった。このような悪影響を回避したい時には、完全に独立した直流給電回路を用いることになるが、電源に係わるコストの増大を招く。   For example, when supplying the same DC bias voltage to a plurality of high frequency circuit blocks in series or in parallel, if a simple line is used, a high frequency signal (hereinafter referred to as an RF signal) flows on the DC power supply wiring, and signal noise is generated. The level is expected to rise. Conventionally, however, these adverse effects have not been sufficiently considered or ignored in most cases. When it is desired to avoid such an adverse effect, a completely independent DC power supply circuit is used, but this increases the cost of the power supply.

例えば、MEMS(微小電気機械系)素子を用いて構成した高周波フィルタが提案されているが、このような高周波フィルタでは、直流バイアス電圧が供給されているので、高周波信号の一部が直流給電配線側に迂回することになり、良好なフィルタ特性が得にくい。MEMS素子を利用した高周波フィルタは、ミシガン大学を始めとする研究機関から提案されている(非特許文献1)。
C.T.−Nguyen,Micromechanical components for miniaturized low−powercommunications(invited plenary),proceedings,1999 IEEE MTT−S International Microwave Symposium RF MEMS Workshop, June,18,1999,pp,48−77.
For example, a high-frequency filter configured using a MEMS (micro electro mechanical system) element has been proposed. In such a high-frequency filter, a DC bias voltage is supplied. It is difficult to obtain good filter characteristics. A high-frequency filter using a MEMS element has been proposed by research institutions such as the University of Michigan (Non-Patent Document 1).
C. T. T. -Nguyen, Micromechanical components for miniaturized low-power communications (invited plenary), proceedings, 1999 IEEE MTT-S International Msp.

高周波領域の微弱な信号を取り扱うとき、例えば高周波(RF)信号のフィルタリングを行うとき、信号経路以外の回路を迂回しての信号の漏洩は、フィルタリング後の信号の信号/雑音比を著しく悪化させる。従って、直流(DC)給電回路などのRF信号線路と電気的な結合をなす回路部分の設置が不可避である素子の場合には、実効的な意味で、信号経路以外の迂回回路を除去することは、最重要な課題である。   When handling weak signals in the high frequency region, for example, when filtering high frequency (RF) signals, signal leakage bypassing circuits other than the signal path significantly degrades the signal / noise ratio of the filtered signal. . Therefore, in the case of an element in which it is inevitable to install a circuit portion that is electrically coupled to an RF signal line such as a direct current (DC) power supply circuit, a detour circuit other than the signal path should be removed in an effective sense. Is the most important issue.

さらに、図13、図15に示す静電駆動ビーム型のMEMS素子を用いた共振器の先行技術の比較例を参照して説明する。図13はこのMEMS静電駆動ビーム型共振器の等価回路を示すものであり、図15はMEMS静電駆動ビーム型共振器の概略構成を示している。 Further, a description will be given with reference to a comparative example of a prior art resonator using the electrostatic drive beam type MEMS element shown in FIGS. FIG. 13 shows an equivalent circuit of the MEMS electrostatic drive beam type resonator, and FIG. 15 shows a schematic configuration of the MEMS electrostatic drive beam type resonator.

図13の等価回路で示すMEMSビーム型共振器1は、高周波信号線路2を信号線路3と接地されるグランド線路4からなるマイクロストリップ線路で構成し、その信号線路3の入出力間に図15に示すMEMSビーム型振動子5を挿入し、振動子5の振動電極(駆動部分)と下部電極の入力電極との間にDC電源回路6からの所要のDCバイアス電圧を印加して構成される。実際の直流電圧は、接地面と駆動部分との間に印加され、入力電極と接地面との間には高周波(RF)信号が印加される。ZsはMEMSビーム型振動子5の合成インピーダンス、C1 はDC給電配線7の浮遊容量を夫々示す。   In the MEMS beam type resonator 1 shown by the equivalent circuit of FIG. 13, the high-frequency signal line 2 is constituted by a microstrip line including a signal line 3 and a ground line 4 that is grounded. And a required DC bias voltage from the DC power supply circuit 6 is applied between the vibrating electrode (driving portion) of the vibrator 5 and the input electrode of the lower electrode. . The actual DC voltage is applied between the ground plane and the driving portion, and a radio frequency (RF) signal is applied between the input electrode and the ground plane. Zs represents the combined impedance of the MEMS beam type vibrator 5, and C 1 represents the stray capacitance of the DC power supply wiring 7.

MEMSビーム型振動子5は、図15に示すように、半導体基板11上に絶縁膜12を介して下部電極、すなわち入力電極13及び出力電極14を形成し、この入出力電極13、14に対向して空間15を挟んで振動板となる電極、いわゆるビーム(梁)16を形成して構成される。ビーム16は、入出力電極13、14をブリッジ状に跨ぎ、入出力電極13、14の外側に配置した配線層18に接続されるように、両端を支持部(いわゆるアンカー部)19〔19a,19b〕で一体に支持される。半導体基板11の裏面には絶縁膜21を介してグランド線路となる導電層22が形成される。   As shown in FIG. 15, the MEMS beam type vibrator 5 has a lower electrode, that is, an input electrode 13 and an output electrode 14 formed on a semiconductor substrate 11 with an insulating film 12 therebetween, and is opposed to the input / output electrodes 13 and 14. Thus, an electrode serving as a diaphragm, that is, a so-called beam 16 is formed with the space 15 interposed therebetween. The beam 16 straddles the input / output electrodes 13, 14 in a bridge shape and is connected to a wiring layer 18 disposed outside the input / output electrodes 13, 14 at both ends with support portions (so-called anchor portions) 19 [19 a, 19b]. A conductive layer 22 serving as a ground line is formed on the back surface of the semiconductor substrate 11 via an insulating film 21.

ビーム16には、DC給電配線7を介してDC電源回路6が接続され、ビーム16に所要のDCバイアス電圧V1 が供給される。(電極13、又は14にRF信号とDC電圧が重畳されて印加される場合もある。) 入力電極13には入力端子Tinが導出され、入力端子Tinを通じてRF信号が入力される。出力電極14には出力端子Toutが導出され、出力端子Toutから目的周波数のRF信号が出力される。このMEMSビーム振動子5では、入力電極13に高周波信号が入力されると、DCバイアス電圧が供給されたビーム16と入力電極13間に生じる静電気的な力でビーム16が共振し、出力電極14から目的周波数のRF信号が出力される。   A DC power supply circuit 6 is connected to the beam 16 via the DC power supply wiring 7, and a required DC bias voltage V 1 is supplied to the beam 16. (An RF signal and a DC voltage may be superimposed and applied to the electrode 13 or 14.) The input terminal Tin is derived to the input electrode 13, and the RF signal is input through the input terminal Tin. An output terminal Tout is derived from the output electrode 14, and an RF signal having a target frequency is output from the output terminal Tout. In the MEMS beam vibrator 5, when a high frequency signal is input to the input electrode 13, the beam 16 resonates due to electrostatic force generated between the beam 16 supplied with the DC bias voltage and the input electrode 13, and the output electrode 14. To output an RF signal having a target frequency.

上記構成のMEMSビーム型共振器1においては、上述の振動子5が複数、例えば100個が並列化して構成される。RF信号が入力電極13から出力電極14へ伝達されて出力されるとき、RF信号の一部20がDC給電配線7を迂回して漏洩し、RF信号の混信が発生し、共振器特性に悪影響を与える。図14は、このときのMEMSビーム型共振器1の透過特性値S21(Sパラメータ)の周波数依存性を示す。測定した上記MEMSビーム型共振器1は、振動子群の中心周波数が98MHzであり、振動子5の合成インピーダンスZsが直列抵抗Rx=5kΩ、接地容量C0 =1×1015Fからなる。振動子5のビーム16にはDC電源回路6から−30Vを印加した。このMEMSビーム型共振器1によれば、本来の98MHz付近のピーク24に加え、この共振ピークの強度と同程度の強度をもつ雑音(いわゆるゴースト)のピーク25、26が観測された。 In the MEMS beam resonator 1 having the above-described configuration, a plurality of, for example, 100 vibrators 5 described above are configured in parallel. When the RF signal is transmitted from the input electrode 13 to the output electrode 14 and is output, a part 20 of the RF signal leaks around the DC power supply wiring 7, causing interference of the RF signal and adversely affecting the resonator characteristics. give. FIG. 14 shows the frequency dependence of the transmission characteristic value S21 (S parameter) of the MEMS beam resonator 1 at this time. In the measured MEMS beam resonator 1, the center frequency of the vibrator group is 98 MHz, the combined impedance Zs of the vibrator 5 is composed of a series resistance Rx = 5 kΩ, and a grounded capacitance C 0 = 1 × 10 15 F. −30 V was applied from the DC power supply circuit 6 to the beam 16 of the vibrator 5. According to the MEMS beam type resonator 1, in addition to the original peak 24 near 98 MHz, noise (so-called ghost) peaks 25 and 26 having the same intensity as that of the resonance peak were observed.

本発明は、上述の点に鑑み、高周波信号の信号経路以外への漏洩を抑制し、高周波信号の信号/雑音比の向上を図った高周波素子を提供するものである。   In view of the above, the present invention provides a high-frequency element that suppresses leakage of a high-frequency signal to other than the signal path and improves the signal / noise ratio of the high-frequency signal.

本発明に係る高周波素子は、複数のMEMSビーム型振動子を並列化した振動子群を有するフィルタと、振動子群に直流給電配線を介して接続され、複数のMEMSビーム型振動子の各ビームに直流バイアス電圧を供給する1つの共通した直流電源回路と、フィルタに接続された高周波信号線を有する。さらに本発明は、直流給電配線と振動子群のビームとの間に介挿され、高周波信号線と直流給電配線との間をインピーダンス不整合とする素子を有する。 The high-frequency device according to the present invention includes a filter having a transducer group in which a plurality of MEMS beam-type transducers are arranged in parallel, and each beam of the plurality of MEMS beam-type transducers connected to the transducer group via a DC power supply wiring. And a common DC power supply circuit for supplying a DC bias voltage to the filter, and a high-frequency signal line connected to the filter. Furthermore, the present invention includes an element that is interposed between the DC power supply wiring and the beam of the vibrator group and makes impedance mismatch between the high-frequency signal line and the DC power supply wiring.

本発明に係る高周波素子は、複数のMEMSビーム型振動子を並列化した振動子群による直列振動子と、複数のMEMSビーム型振動子を並列化した振動子群によるシャント振動子とで構成されたラダー型フィルタと、直列振動子及びシャント振動子に直流給電配線を介して接続され、直列振動子及びシャント振動子を構成する振動子群の複数のMEMSビーム型振動子の各ビームに直流バイアス電圧を供給する1つの共通した直流電源回路を有する。さらに本発明は、ラダー型フィルタに接続された高周波信号線と、直列振動子のビームと直流給電配線との間、及びシャント振動子のビームと直流給電配線との間にそれぞれ介挿され、高周波信号線と直流給電配線との間をインピーダンス不整合とする素子を有する。 The high-frequency element according to the present invention is composed of a series vibrator having a vibrator group in which a plurality of MEMS beam vibrators are arranged in parallel and a shunt vibrator having a vibrator group in which a plurality of MEMS beam vibrators are arranged in parallel. DC bias is applied to each beam of a plurality of MEMS beam-type vibrators of a vibrator group that is connected to the series type filter and the series vibrator and the shunt vibrator via a DC power supply wiring. It has one common DC power supply circuit that supplies voltage. The present invention further includes a high-frequency signal line connected to the ladder filter, the series vibrator beam and the DC power supply wiring, and the shunt vibrator beam and the DC power supply wiring, respectively. An element that causes impedance mismatch between the signal line and the DC power supply wiring is provided.

本発明に係る高周波素子は、複数のMEMSビーム型振動子を並列化した振動子群を有する共振器と、振動子群に直流給電配線を介して接続され、複数のMEMSビーム型振動子の各ビームに直流バイアス電圧を供給する1つの共通した直流電源回路と、共振器に接続された高周波信号線を有する。さらに本発明は、直流給電配線と振動子群のビームとの間に介挿され、高周波信号線と直流給電配線との間をインピーダンス不整合とする素子を有する。 A high-frequency device according to the present invention includes a resonator having a vibrator group in which a plurality of MEMS beam-type vibrators are arranged in parallel, and the vibrator group connected to each other via a DC power supply wiring. One common DC power supply circuit for supplying a DC bias voltage to the beam and a high-frequency signal line connected to the resonator . Furthermore, the present invention includes an element that is interposed between the DC power supply wiring and the beam of the vibrator group and makes impedance mismatch between the high-frequency signal line and the DC power supply wiring.

本発明に係る高周波素子は、複数のMEMSビーム型振動子のビームが連結された複合MEMSビーム型振動子を複数、並列化した振動子群を有する複合振動子型フィルタと、振動子群に直流給電配線を介して接続され、複数のMEMSビーム型振動子の各ビームに直流バイアス電圧を供給する1つの共通した直流電源回路と、複合振動子型フィルタに接続された高周波信号線を有する。さらに本発明は、直流給電配線と振動子群のビームとの間に介挿され、高周波信号線と直流給電配線との間をインピーダンス不整合とする素子を有する。 A high-frequency device according to the present invention includes a composite vibrator type filter having a vibrator group in which a plurality of complex MEMS beam type vibrators each having a beam of a plurality of MEMS beam vibrators connected to each other, and a direct current applied to the vibrator group. One common DC power supply circuit that is connected via a power supply wiring and supplies a DC bias voltage to each beam of the plurality of MEMS beam type vibrators, and a high-frequency signal line connected to the composite vibrator type filter. Furthermore, the present invention includes an element that is interposed between the DC power supply wiring and the beam of the vibrator group and makes impedance mismatch between the high-frequency signal line and the DC power supply wiring.

本発明に係る高周波素子によれば、複数のMEMSビーム型振動子を並列化した振動子群と、振動子群に直流給電配線を介して接続され、複数のMEMSビーム型振動子の各ビームに直流バイアス電圧を供給する1つの共通した直流電源回路を有する。そして、直流給電配線と振動子群のビームとの間に、高周波信号線路と直流給電配線との間をインピーダンス不整合とする素子を介挿することにより、高周波信号の直流給電配線への漏洩が抑制される。従って、直流給電配線を通しての高周波信号の迂回により発生する高周波信号の混信を、最小限にすることができ、高周波信号の信号/雑音比を向上することができる。即ち、信号/雑音比の良好な高周波素子を実現することができる。また、別に独立電源を必要としなので、電源に係わるコスト低減を図ることができる。 According to the high frequency device of the present invention , a vibrator group in which a plurality of MEMS beam type vibrators are arranged in parallel, and the vibrator group are connected to each beam of the plurality of MEMS beam type vibrators through a DC power supply wiring. It has one common DC power supply circuit that supplies a DC bias voltage. And by inserting an element that makes impedance mismatch between the high frequency signal line and the DC power supply line between the DC power supply line and the beam of the vibrator group , leakage of the high frequency signal to the DC power supply line is prevented. It is suppressed. Therefore, high-frequency signal interference caused by bypassing the high-frequency signal through the DC power supply wiring can be minimized, and the signal / noise ratio of the high-frequency signal can be improved. That is, a high frequency device with a good signal / noise ratio can be realized. In addition, since an independent power supply is required, the cost associated with the power supply can be reduced.

本発明に係る高周波素子によれば、複数のMEMSビーム型振動子を並列化した振動子群による直列振動子とシャント振動子とで構成されたラダー型フィルタと、直列振動子及びシャント振動子に直流給電配線を介して接続され、それぞれの複数のMEMSビーム型振動子の各ビームに直流バイアス電圧を供給する1つの共通した直流電源回路を有する。そして、直列振動子、シャント振動子のそれぞれと直流給電配線との間に、高周波信号線路と直流給電配線との間をインピーダンス不整合とする素子を介挿することにより、高周波信号の直流給電配線への漏洩が抑制される。従って、直流給電配線を通しての高周波信号の迂回により発生する高周波信号の混信を、最小限にすることができ、高周波信号の信号/雑音比を向上することができる。また、別に独立電源を必要としなので、電源に係わるコスト低減を図ることができる。 According to the high frequency device of the present invention, a ladder type filter composed of a series vibrator and a shunt vibrator formed of a vibrator group in which a plurality of MEMS beam vibrators are arranged in parallel, and the series vibrator and the shunt vibrator One common DC power supply circuit is connected through a DC power supply wiring and supplies a DC bias voltage to each beam of each of the plurality of MEMS beam type vibrators. Then, a DC power supply wiring for a high-frequency signal is inserted between each of the series vibrator and the shunt vibrator and the DC power supply wiring by interposing an element having impedance mismatch between the high-frequency signal transmission line and the DC power supply wiring. Leakage is suppressed. Therefore, high-frequency signal interference caused by bypassing the high-frequency signal through the DC power supply wiring can be minimized, and the signal / noise ratio of the high-frequency signal can be improved. In addition, since an independent power supply is required, the cost associated with the power supply can be reduced.

本発明に係る高周波素子によれば、複数のMEMSビーム型振動子を並列化した振動子群を有する共振器と、振動子群に直流給電配線を介して接続され、複数のMEMSビーム型振動子の各ビームに直流バイアス電圧を供給する1つの共通した直流電源回路を有する。そして、そして、直流給電配線と直流給電配線との間に、高周波信号線路と直流給電配線との間をインピーダンス不整合とする素子を介挿することにより、高周波信号の直流給電配線への漏洩が抑制される。従って、直流給電配線を通しての高周波信号の迂回により発生する高周波信号の混信を、最小限にすることができ、高周波信号の信号/雑音比を向上することができる。また、別に独立電源を必要としなので、電源に係わるコスト低減を図ることができる。 According to the high frequency device of the present invention, a resonator having a group of transducers in which a plurality of MEMS beam type transducers are arranged in parallel, and the plurality of MEMS beam type transducers are connected to the transducer group via a DC power supply wiring. One common DC power supply circuit for supplying a DC bias voltage to each of the beams is provided. And by inserting an element that makes impedance mismatch between the high frequency signal line and the DC power supply line between the DC power supply line and the DC power supply line, leakage of the high frequency signal to the DC power supply line is prevented. It is suppressed. Therefore, high-frequency signal interference caused by bypassing the high-frequency signal through the DC power supply wiring can be minimized, and the signal / noise ratio of the high-frequency signal can be improved. In addition, since an independent power supply is required, the cost associated with the power supply can be reduced.

本発明に係る高周波素子によれば、複数のMEMSビーム型振動子のビームが連結された複合MEMSビーム型振動子を複数、並列化した振動子群を有する複合振動子型フィルタと、振動子群に直流給電配線を介して接続され、複数のMEMSビーム型振動子の各ビームに直流バイアス電圧を供給する1つの共通した直流電源回路を有する。そして、直流給電配線と直流給電配線との間に、高周波信号線路と直流給電配線との間をインピーダンス不整合とする素子を介挿することにより、高周波信号の直流給電配線への漏洩が抑制される。従って、直流給電配線を通しての高周波信号の迂回により発生する高周波信号の混信を、最小限にすることができ、高周波信号の信号/雑音比を向上することができる。また、別に独立電源を必要としなので、電源に係わるコスト低減を図ることができる。 According to the high frequency device of the present invention, a composite vibrator type filter having a vibrator group in which a plurality of composite MEMS beam type vibrators each having a plurality of MEMS beam type vibrators connected to each other are arranged in parallel, and the vibrator group And a common DC power supply circuit for supplying a DC bias voltage to each beam of the plurality of MEMS beam type vibrators. Then, by interposing an element that causes impedance mismatch between the high frequency signal line and the DC power supply line between the DC power supply line and the DC power supply line, leakage of the high frequency signal to the DC power supply line is suppressed. The Therefore, high-frequency signal interference caused by bypassing the high-frequency signal through the DC power supply wiring can be minimized, and the signal / noise ratio of the high-frequency signal can be improved. In addition, since an independent power supply is required, the cost associated with the power supply can be reduced.

本実施の形態に係わる高周波素子は、1つあるいは複数の高周波回路ブロック(例えば並列振動子)に、直流バイアス電圧を給電する場合に、高周波回路ブロックを適切に分割し、その間を、高周波回路ブロック内のRF信号線路の一部をなす直流給電部から見たRF信号線路のインピーダンスとは異なるインピーダンスで接続する。このような接続方法を用いて直流給電配線を形成すると、高周波回路ブロック内で直流バイアス電圧と高周波信号が混在して印加されている信号線路から、直流給電回路を通じてブロック外への漏洩を最小限に抑制することができる。最良の接続方法は、ローパスフィルタを通じて直流給電配線を接続することであるが、抵抗の差異のみであっても十分な効果を得ることができる。特に、MEMS(微小電気機械系)ビーム型振動子群を用いて高周波素子を構成する場合は、直流給電線路には極めて微小な直流電流しか流れないために、かなり大きな抵抗、例えば数MΩの抵抗を振動子群と直流給電配線の間に挿入しても、抵抗による電圧の降下が起こらず、従って効果的なインピーダンス不整合を実現できる。   The high-frequency element according to the present embodiment appropriately divides a high-frequency circuit block when a DC bias voltage is supplied to one or a plurality of high-frequency circuit blocks (for example, a parallel vibrator), It connects with the impedance different from the impedance of RF signal line seen from the direct current electric power feeding part which makes a part of RF signal line inside. When the DC power supply wiring is formed using such a connection method, the leakage from the signal line to which the DC bias voltage and the high frequency signal are mixedly applied in the high frequency circuit block to the outside of the block through the DC power supply circuit is minimized. Can be suppressed. Although the best connection method is to connect the DC power supply wiring through a low-pass filter, a sufficient effect can be obtained even with only a difference in resistance. In particular, when a high-frequency element is configured using a MEMS (micro electro mechanical system) beam type transducer group, since a very small direct current flows through the direct current feed line, a considerably large resistance, for example, a resistance of several MΩ is provided. Is inserted between the vibrator group and the DC power supply wiring, a voltage drop due to the resistance does not occur, so that an effective impedance mismatch can be realized.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明に係る高周波素子を高周波フィルタに適用した第1実施形態の等価回路である。本実施の形態に係る高周波フィルタは、1段構成のラダー型フィルタである。
本実施の形態のラダー型フィルタ31は、高周波信号線路32をマイクロストリップ線路で構成し、その信号線路33の入力端子Tin及びTout間に直列に並列化された複数の振動子(振動子群)で構成された振動子35が接続され、この直列振動子35の出力側とグランド線路34間に同様に並列化された複数の振動子(振動子群)で構成されたシャント振動子36が接続される。この直列振動子35及びシャント振動子36は、直流バイアス電圧の供給によって動作するように構成される。このため、直流電圧供給手段、例えば直流電源回路37と直流給電線路38を有した直流給電回路が設けられ、直流電源回路37から直流給電回路、すなわち直流給電配線38を通じて直列振動子35及びシャント振動子36の後述する信号線路33の一部となる駆動部分に接続される。直流電源回路37としては、例えば交流から定電圧・直流に変換して供給する回路構成、あるいは直流から電圧変換された定電圧・直流電圧に変換して供給する回路構成とすることができる。
FIG. 1 is an equivalent circuit of a first embodiment in which a high-frequency element according to the present invention is applied to a high-frequency filter. The high-frequency filter according to the present embodiment is a one-stage ladder type filter.
In the ladder filter 31 of the present embodiment, the high-frequency signal line 32 is constituted by a microstrip line, and a plurality of vibrators (vibrator group) paralleled in series between the input terminals Tin and Tout of the signal line 33. Is connected to the output side of the series vibrator 35 and a ground line 34. Similarly, a shunt vibrator 36 comprising a plurality of vibrators (vibrator groups) connected in parallel is connected. Is done. The series vibrator 35 and the shunt vibrator 36 are configured to operate by supplying a DC bias voltage. Therefore, a DC voltage supply means, for example, a DC power supply circuit having a DC power supply circuit 37 and a DC power supply line 38 is provided, and the series vibrator 35 and the shunt vibration are provided from the DC power supply circuit 37 through the DC power supply circuit, that is, the DC power supply wiring 38. It is connected to a driving part of the child 36 which becomes a part of a signal line 33 described later. The DC power supply circuit 37 may have, for example, a circuit configuration that is converted from an alternating current to a constant voltage / DC and supplied, or a circuit configuration that is converted from a direct current into a constant voltage / DC voltage and supplied.

そして、本実施の形態では、特に、この直列振動子35及びシャント振動子36における信号線路33の直流給電端子側から見たインピーダンスと直列給電配線38のインピーダンスとの間にインピーダンスの不整合が存するよう構成される。すなわち、直列振動子35及びシャント振動子36における信号線路33と、直列給電配線38との間にインピーダンス不整合を形成するための素子を接続する。この素子としては、本例では抵抗素子R1 ,R2 が用いられている。   In the present embodiment, in particular, there is an impedance mismatch between the impedance of the series vibrator 35 and the shunt vibrator 36 as viewed from the DC feed terminal side of the signal line 33 and the impedance of the series feed wiring 38. It is configured as follows. That is, an element for forming an impedance mismatch is connected between the signal line 33 in the series vibrator 35 and the shunt vibrator 36 and the series power supply wiring 38. As this element, resistance elements R1 and R2 are used in this example.

直列振動子35及びシャント振動子36としては、MEMS静電駆動ビーム型振動子で形成される。図2A及びBに、MEMS静電駆動ビーム型振動子の概略構成を示す。このMEMS静電駆動ビーム型振動子50は、前述と同様に半導体基板41上に絶縁膜42を介して下部電極、すなわち入力電極43及び出力電極44が形成され、この入力電極43及び出力電極44に対向して空間45を挟んで振動板となるビーム(梁)型の振動電極(以下、ビームという)46が形成されてなる。ビーム46は、入出力電極43,44をブリッジ状に跨ぎ、入出力電極43,44の外側に配置した配線層48に接続されるように、両端を支持部49A,49Bで一体に支持される。半導体基板41の裏面には絶縁膜51を介して接地されるグランド配線34となる導電層52が形成される。   The series vibrator 35 and the shunt vibrator 36 are formed of MEMS electrostatic drive beam vibrators. 2A and 2B show a schematic configuration of a MEMS electrostatic drive beam type vibrator. In the MEMS electrostatic drive beam type vibrator 50, the lower electrode, that is, the input electrode 43 and the output electrode 44 are formed on the semiconductor substrate 41 via the insulating film 42 as described above, and the input electrode 43 and the output electrode 44 are formed. A beam-type vibrating electrode (hereinafter referred to as a beam) 46 is formed as a vibrating plate across the space 45. Both ends of the beam 46 are integrally supported by the support portions 49A and 49B so as to cross the input / output electrodes 43 and 44 in a bridge shape and to be connected to the wiring layer 48 disposed outside the input / output electrodes 43 and 44. . A conductive layer 52 is formed on the back surface of the semiconductor substrate 41 to be the ground wiring 34 that is grounded through the insulating film 51.

このMEMS静電駆動ビーム型振動子50では、図3に示すように、信号線路33の一部となる駆動部分46と接地される配線34となる導電層52の間に直流電源回路37が接続されて、ビーム46に所要の直流バイアス電圧が印加される。そして、本実施の形態においては、図1及び図3に示すように、インピーダンス不整合を形成するための素子、本例では所要の抵抗値を有する抵抗素子Rが直流給電配線38と信号線路33の一部となる例えばビーム46との間に接続される。従って、図1においては、直列振動子35のビーム46(図3参照)と直流給電配線38との間に抵抗素子R1 が接続され、シャント振動子36のビーム46(図3参照)と直流給電配線38との間に抵抗素子R2 が接続される。 In the MEMS electrostatic drive beam type vibrator 50, as shown in FIG. 3, a DC power supply circuit 37 is connected between a drive portion 46 that is a part of the signal line 33 and a conductive layer 52 that is a wiring 34 that is grounded. Then, a required DC bias voltage is applied to the beam 46. In this embodiment, as shown in FIGS. 1 and 3, an element for forming an impedance mismatch, in this example, a resistance element R having a required resistance value is connected to the DC power supply wiring 38 and the signal line 33. For example, it is connected to the beam 46 which becomes a part of the beam. Therefore, in FIG. 1, the resistance element R1 is connected between the beam 46 (see FIG. 3) of the series vibrator 35 and the DC power supply wiring 38, and the beam 46 (see FIG. 3) of the shunt vibrator 36 and the DC power supply. A resistance element R 2 is connected between the wiring 38.

図1における直列振動子35は、図2に示すような個別のMEMS静電駆動ビーム型振動子50を複数、例えば40個並列化して構成される。シャント振動子36は、複数、例えば160個のMEMSビーム型振動子50を並列化して構成される。直列振動子35の合成インピーダンスZsは、例えば直列抵抗Rx=5kΩ、接地C0 =1×1013Fからなる。シャント振動子36の合成インピーダンスZpは、例えば直列抵抗Rx=1kΩ、接地容量C0 =8×1013Fからなる。信号線路33の一部をなすビーム46と直流給電線路38間に接続される上記抵抗素子R1 ,R2 は、例えば多結晶シリコン膜による細線を用いて形成され、その抵抗値は、例えばR1 ,R2 =1MΩとすることができる。図1に示された信号線路33の特性インピーダンスは、シャント振動子36の合成インピーダンスZpと同じに設計される。
本実施の形態の1段ラダー型高周波フィルタ31は、直列振動子35及びシャント振動子36からなる高周波回路ブロックと、直流電源回路37及び直流給電配線38を含む直流給電ブロックを同一の半導体チップ上に形成して構成される。
The serial vibrator 35 in FIG. 1 is configured by paralleling a plurality of, for example, 40 individual MEMS electrostatic drive beam vibrators 50 as shown in FIG. The shunt vibrator 36 is configured by paralleling a plurality of, for example, 160 MEMS beam-type vibrators 50. The combined impedance Zs of the series vibrator 35 is composed of, for example, a series resistance Rx = 5 kΩ and a ground C0 = 1 × 10 13 F. The combined impedance Zp of the shunt vibrator 36 is composed of, for example, a series resistance Rx = 1 kΩ and a grounded capacitance C0 = 8 × 10 13 F. The resistance elements R1 and R2 connected between the beam 46 forming a part of the signal line 33 and the DC power supply line 38 are formed by using, for example, a thin line made of a polycrystalline silicon film, and the resistance values thereof are, for example, R1 and R2. = 1 MΩ. The characteristic impedance of the signal line 33 shown in FIG. 1 is designed to be the same as the combined impedance Zp of the shunt vibrator 36.
The one-stage ladder type high frequency filter 31 of the present embodiment includes a high frequency circuit block including a series vibrator 35 and a shunt vibrator 36 and a DC power supply block including a DC power supply circuit 37 and a DC power supply wiring 38 on the same semiconductor chip. It is formed and configured.

図4〜図7は、図1の等価回路で表される1段構成のラダー型フィルタ31のフィルタ特性を示す。すなわちシリコン半導体プロセスにより作製されMEMSビーム型振動子群を用いて構成されたラダー型フィルタ31を、アドバンテック社製ネットワーク・アナライザ3767Gを用いて測定した透過特性値S21(Sパラメータ)の周波数依存性を示す。直列振動子(振動子群)35及びシャント振動子(振動子群)36には、共通電源を用い直流−15Vを印加した。直列振動子(振動子群)35の共振周波数は98MHz、シャント振動子(振動子群)36の中心周波数は、2MHz、3MHz、6MHz低い、96MHz、95MHz、92MHzにそれぞれ設定して測定した。
図4はシャント周波数依存性を示したフィルタ特性(図5〜図7で示す各シャント周波数を変えた曲線を重ねたもの)である。図5、図6、図7はそれぞれシャント振動子36の中心周波数を96MHz、95MHz、92MHzにしたときの図4の要部Aに対応した拡大周波数特性を示す。図4から明らかなように、いずれのシャント周波数の場合も、ゴースト(雑音)のない略同じ曲線を呈し、特に共振、反共振のピーク部分では同じ曲線であり、雑音のない予想通りの周波数特性を示している。シャント振動子36の効果が不明瞭にしか観測できないのは、ネットワーク・アナライザの入力インピーダンスが50Ωであるためである。
4 to 7 show the filter characteristics of the one-stage ladder type filter 31 represented by the equivalent circuit of FIG. In other words, the frequency dependence of the transmission characteristic value S21 (S parameter) measured by using a network analyzer 3767G manufactured by Advantech Co., Ltd. for a ladder filter 31 manufactured by a silicon semiconductor process and configured using a MEMS beam type transducer group. Show. A DC-15V was applied to the series vibrator (vibrator group) 35 and the shunt vibrator (vibrator group) 36 using a common power source. The resonance frequency of the series vibrator (vibrator group) 35 was set to 98 MHz, and the center frequency of the shunt vibrator (vibrator group) 36 was set to 96 MHz, 95 MHz, and 92 MHz, which were lower by 2 MHz, 3 MHz, and 6 MHz, respectively.
FIG. 4 is a filter characteristic showing shunt frequency dependence (overlapping curves with different shunt frequencies shown in FIGS. 5 to 7). 5, FIG. 6, and FIG. 7 show enlarged frequency characteristics corresponding to the main part A of FIG. 4 when the center frequency of the shunt vibrator 36 is 96 MHz, 95 MHz, and 92 MHz, respectively. As is apparent from FIG. 4, in any shunt frequency, substantially the same curve without ghost (noise) is exhibited, and in particular, at the peak portion of resonance and anti-resonance, the same curve is obtained, and the expected frequency characteristics without noise. Is shown. The reason why the effect of the shunt oscillator 36 can be observed only indefinitely is that the input impedance of the network analyzer is 50Ω.

第1実施形態の1段構成のラダー型フィルタ31によれば、MEMS静電駆動ビーム型振動子で形成された直列振動子35及びシャント振動子36の、信号線路33の一部をなすビーム46と直流給電配線38との間にインピーダンス不整合とする抵抗素子R1 ,R2 を接続することにより、直流給電配線38を通じての高周波信号の迂回が抑制され、フィルタリングされた高周波信号の信号/雑音比を向上することができる。また、複数の独立電源を必要としないので、電源に係わるコストを低減することができる。   According to the one-stage ladder filter 31 of the first embodiment, the beam 46 forming a part of the signal line 33 of the series vibrator 35 and the shunt vibrator 36 formed by the MEMS electrostatic drive beam type vibrator. By connecting resistance elements R1 and R2 that are impedance mismatched between the DC power supply wiring 38 and the DC power supply wiring 38, the bypass of the high frequency signal through the DC power supply wiring 38 is suppressed, and the signal / noise ratio of the filtered high frequency signal is increased. Can be improved. In addition, since a plurality of independent power supplies are not required, the cost associated with the power supplies can be reduced.

図8は、本発明に係る高周波素子を高周波フィルタに適用した第2実施形態の等価回路である。本実施の形態に係る高周波フィルタは、2段構成のラダー型フィルタである。
本実施の形態のラダー型フィルタ61は、前述と同様にマイクロストリップ線路で構成された高周波信号線路32に、それぞれ並列化された複数の振動子(振動子群)で構成された直列振動子651、652とそれぞれ並列化された複数の振動子(振動子群)で構成されたシャント振動子661、662からなるラダー型フィルタが2段に接続されてなる。すなわち、その信号線路33の入力端子TIN及び出力端子Tout間に直列振動子651が接続され、直列振動子651の出力側とグランド線路34間にシャント振動子661が接続された1段目のラダー型フィルタが設けられ、その後段に同じく信号線路33に直列振動子652が接続され、直列振動子652の出力側とグランド線路34間にシャント振動子662が接続された2段目のラダー型フィルタが設けられる。
FIG. 8 is an equivalent circuit of a second embodiment in which the high-frequency element according to the present invention is applied to a high-frequency filter. The high frequency filter according to the present embodiment is a two-stage ladder filter.
The ladder filter 61 according to the present embodiment has a series vibrator 651 constituted by a plurality of vibrators (vibrator groups) respectively arranged in parallel on the high-frequency signal line 32 constituted by a microstrip line as described above. , 652 are connected in two stages to a ladder type filter composed of shunt vibrators 661 and 662 each composed of a plurality of vibrators (vibrator groups) arranged in parallel. That is, the series vibrator 651 between the input terminals T IN and the output terminal Tout of the signal line 33 is connected between the output side and the ground line 34 of the series vibrator 651 of the first stage shunt vibrator 661 is connected A ladder type filter is provided, and a series vibrator 652 is connected to the signal line 33 at the subsequent stage, and a shunt vibrator 662 is connected between the output side of the series vibrator 652 and the ground line 34. A filter is provided.

各直列振動子651、652及びシャント振動子661、662は、直流バイアス電圧の供給によって動作するように構成される。このため、前述と同様に直流電圧供給手段、例えば直流電源回路37と直流給電線路38を有した直流給電回路が設けられ、直流電源回路37から直流給電回路、すなわち直流給電配線38を通じて直列振動子651、652及びシャント振動子661、662の信号線路33の一部となる振動電極に接続される。   Each of the series vibrators 651 and 652 and the shunt vibrators 661 and 662 is configured to operate by supplying a DC bias voltage. Therefore, a DC voltage supply means, for example, a DC power supply circuit having a DC power supply circuit 37 and a DC power supply line 38 is provided in the same manner as described above, and the series vibrator is connected from the DC power supply circuit 37 through the DC power supply circuit, that is, the DC power supply wiring 38. 651 and 652 and shunt vibrators 661 and 662 are connected to vibration electrodes that are part of the signal line 33.

そして、本実施の形態では、特に、この直列振動子651、652及びシャント振動子661、662における信号線路33のインピーダンスと直列給電配線38のインピーダンスとの間にインピーダンスの不整合が存するよう構成される。すなわち、直列振動子651、652及びシャント振動子661、662における信号線路33と、直列給電配線38との間にインピーダンス不整合を形成するための素子、例えば抵抗素子R3 〜R6 を接続する。   In this embodiment, in particular, there is an impedance mismatch between the impedance of the signal line 33 and the impedance of the series power supply wiring 38 in the series vibrators 651 and 652 and the shunt vibrators 661 and 662. The That is, elements for forming an impedance mismatch, such as resistance elements R3 to R6, are connected between the signal lines 33 in the series vibrators 651 and 652 and the shunt vibrators 661 and 662 and the series power supply wiring 38.

直列振動子651、652及びシャント振動子661、662は、前述と同様に図2に示すMEMSビーム型振動子50で構成される。そして、1段目の直列振動子651のビーム46と直流給電配線38との間に抵抗素子R3 が接続され、シャント振動子661のビーム46と直流給電配線38との間に抵抗素子R4 が接続される。また、2段目の直列振動子652のビーム46と直流給電配線38との間に抵抗素子R5 が接続され、シャント振動子662のビーム46と直列給電配線38との間に抵抗素子R6 が接続される。   The serial vibrators 651 and 652 and the shunt vibrators 661 and 662 are configured by the MEMS beam type vibrator 50 shown in FIG. A resistance element R3 is connected between the beam 46 of the first-stage series vibrator 651 and the DC power supply wiring 38, and a resistance element R4 is connected between the beam 46 of the shunt vibrator 661 and the DC power supply wiring 38. Is done. A resistance element R5 is connected between the beam 46 of the second stage series vibrator 652 and the DC power supply wiring 38, and a resistance element R6 is connected between the beam 46 of the shunt vibrator 662 and the series power supply wiring 38. Is done.

図8における直列振動子661、662は、図2に示すような個別のMEMS静電駆動ビーム型振動子50を複数、例えば100個並列化して構成される。シャント振動子661、662は、複数、例えば400個のMEMS静電駆動ビーム型振動子50を並列化して構成される。直列振動子651、652のインピーダンスZsは、例えば直列抵抗Rx=5kΩ、接地容量C0 =1×1013Fからなる。シャント振動子661、662のインピーダンスZpは、例えば直列抵抗Rx=1kΩ、接地容量C0 =8×1013Fからなる。抵抗素子R3 ,R4 ,R5 ,R6 は、例えば多結晶シリコン膜による細線を用いて形成され、その抵抗値は、例えばR3 ,R4 ,R5 ,R6 =1MΩとすることができる。図8に示された信号線路33の特性インピーダンスは、シャント振動子661、662のインピーダンスZpと同じに設計される。
本実施の形態の高周波フィルタ61は、直列振動子651、652及びシャント振動子661、662からなる高周波回路ブロックと、直流電源回路37及び直流給電配線38を含む直流給電ブロックを同一の半導体チップ上に形成して構成される。
The series vibrators 661 and 662 in FIG. 8 are configured by paralleling a plurality of, for example, 100 individual MEMS electrostatic drive beam vibrators 50 as shown in FIG. The shunt vibrators 661 and 662 are configured by arranging a plurality of, for example, 400 MEMS electrostatic drive beam vibrators 50 in parallel. The impedance Zs of the series vibrators 651 and 652 is composed of, for example, a series resistance Rx = 5 kΩ and a grounding capacitance C0 = 1 × 10 13 F. The impedance Zp of the shunt vibrators 661 and 662 is composed of, for example, a series resistance Rx = 1 kΩ and a grounding capacitance C0 = 8 × 10 13 F. The resistance elements R3, R4, R5, and R6 are formed using, for example, a thin line made of a polycrystalline silicon film, and the resistance values thereof can be set to R3, R4, R5, R6 = 1 MΩ, for example. The characteristic impedance of the signal line 33 shown in FIG. 8 is designed to be the same as the impedance Zp of the shunt vibrators 661 and 662.
In the high frequency filter 61 of the present embodiment, the high frequency circuit block including the series vibrators 651 and 652 and the shunt vibrators 661 and 662 and the DC power supply block including the DC power supply circuit 37 and the DC power supply wiring 38 are arranged on the same semiconductor chip. It is formed and configured.

図9は、図8の等価回路で表される2段構成のラダー型フィルタ61のフィルタ特性を示す。すなわちシリコン半導体プロセスにより作製されたMEMSビーム型振動子群を用いて構成されたラダー型フィルタ61を、アドバンテック社製ネットワーク・アナライザ3767Gを用いて測定した透過特性値S21(Sパラメータ)の周波数依存性を示す。直列振動子(振動子群)651、652及びシャント振動子(振動子群)661、662には、共通電源を用い直流−15Vを印加した。直列振動子(振動子群)651、652の共振周波数は98MHz、シャント振動子(振動子群)661、662の中心周波数は、直列振動子のそれより4MHz低い、94MHzにそれぞれ設定して測定した。この図9の特性曲線から明らかなように、雑音のない予想通りの周波数特性を示している。シャント振動子661、662の効果が不明瞭にしか観測できないのは、ネットワーク・アナライザの入力インピーダンスが50Ωであるためである。   FIG. 9 shows filter characteristics of a two-stage ladder filter 61 represented by the equivalent circuit of FIG. That is, the frequency dependence of the transmission characteristic value S21 (S parameter) measured by using a network analyzer 3767G manufactured by Advantech Co., Ltd. for a ladder filter 61 configured using a MEMS beam type vibrator group manufactured by a silicon semiconductor process. Indicates. A DC-15V was applied to the series vibrators (vibrator groups) 651 and 652 and the shunt vibrators (vibrator groups) 661 and 662 using a common power source. The resonance frequency of the series vibrators (vibrators) 651 and 652 was set to 98 MHz, and the center frequency of the shunt vibrators (vibrators group) 661 and 662 was set to 94 MHz, which is 4 MHz lower than that of the series vibrators. . As is apparent from the characteristic curve of FIG. 9, the expected frequency characteristic without noise is shown. The reason why the effects of the shunt oscillators 661 and 662 can be observed only indefinitely is that the input impedance of the network analyzer is 50Ω.

第2実施形態の2段構成のラダー型フィルタ61によれば、MEMS静電駆動ビーム型振動子で形成された直列振動子651、652及びシャント振動子661、662の、信号線路33の一部となるビーム46と直流給電配線38との間にインピーダンス不整合とする抵抗素子R3 ,R4 ,R5 ,R6 を接続することにより、直流給電配線38を通じての高周波信号の迂回が抑制され、フィルタリングされた高周波信号の信号/雑音比を向上することができる。また、複数の独立電源を必要としないので、電源に係わるコストを低減することができる。   According to the two-stage ladder filter 61 of the second embodiment, a part of the signal line 33 of the series vibrators 651 and 652 and the shunt vibrators 661 and 662 formed of MEMS electrostatic drive beam vibrators. By connecting resistance elements R3, R4, R5, and R6, which are impedance mismatches, between the beam 46 and the DC power supply wiring 38, the bypass of the high-frequency signal through the DC power supply wiring 38 is suppressed and filtered. The signal / noise ratio of the high frequency signal can be improved. In addition, since a plurality of independent power supplies are not required, the cost associated with the power supplies can be reduced.

図10は、本発明に係る高周波素子を高周波共振器に適用した第3実施形態の等価回路である。本実施の形態に係る高周波共振器71は、マイクロストリップ線路で構成された高周波信号線路72の、信号線路73の入出力端子Tin及びTout間に並列化された複数の振動子(振動子群)で構成された振動子75が接続され、この振動子75を動作させるための直流電源回路77からの直流給電配線78と振動子75の信号線路の一部となるビーム46(例えば図3の)との間に、実効的にインピーダンスを不整合にする素子、本例ではローパスフィルタ79を接続して構成される。振動子75としては、前述と同様に図2のMEMSビーム型振動子50で構成される。   FIG. 10 is an equivalent circuit of a third embodiment in which the high-frequency element according to the present invention is applied to a high-frequency resonator. The high-frequency resonator 71 according to the present embodiment includes a plurality of vibrators (vibrator group) arranged in parallel between the input and output terminals Tin and Tout of the signal line 73 of the high-frequency signal line 72 configured by a microstrip line. And a beam 46 (for example, as shown in FIG. 3), which is a part of the signal line of the vibrator 75 and the DC power supply wiring 78 from the DC power supply circuit 77 for operating the vibrator 75. And an element that effectively mismatches the impedance, in this example, a low-pass filter 79 is connected. The vibrator 75 is configured by the MEMS beam type vibrator 50 of FIG. 2 as described above.

図10における振動子75は、前述と同様に複数、例えば100個のMEMSビーム型振動子50を並列化して構成される。振動子75の合成インピーダンスZsは、直列抵抗Rx=5kΩ、接地容量C0 =1×1013Fからなる。高周波信号線路72の信号線路73の特性インピーダンスは、振動子75のインピーダンスZsと同じに設計される。C1 は直流給電配線78の浮遊容量、あるいはローパス回路の一部をなす容量を示す。 The vibrator 75 in FIG. 10 is configured by arranging a plurality of, for example, 100 MEMS beam type vibrators 50 in parallel as described above. The combined impedance Zs of the vibrator 75 includes a series resistance Rx = 5 kΩ and a grounded capacitance C0 = 1 × 10 13 F. The characteristic impedance of the signal line 73 of the high-frequency signal line 72 is designed to be the same as the impedance Zs of the vibrator 75. C1 indicates the stray capacitance of the DC power supply wiring 78 or the capacitance forming a part of the low-pass circuit.

図11は、図10の等価回路で表された高周波共振器71の共振特性を示す。すなわち、シリコン半導体プロセスにより作製されたMEMS静電駆動ビーム型振動子群50を用いて構成された高周波共振器71を、アドバンテック社製ネットワーク・アナライザ3767Gを用いて測定した透過特性値S21(Sパラメータ)の周波数依存性を示す。振動子群にはローパスフィルタ79が組み込まれた直流電源回路77を用い、直流−20Vを印加した。信号線路73の一部となる振動子75のビーム46と、直流電源回路77側のローパスフィルタ79とはワイヤー・ボンド法によりAu細線で接続した。
図10から明らかなように、雑音のない、98MHz付近にピークを持つ共振曲線が観測できる。
FIG. 11 shows the resonance characteristics of the high-frequency resonator 71 represented by the equivalent circuit of FIG. That is, the transmission characteristic value S21 (S parameter) measured by using a network analyzer 3767G manufactured by Advantech Co., Ltd. for the high frequency resonator 71 configured using the MEMS electrostatic drive beam type vibrator group 50 manufactured by the silicon semiconductor process. ) Frequency dependence. A DC power supply circuit 77 incorporating a low-pass filter 79 was used for the vibrator group, and DC-20V was applied. The beam 46 of the vibrator 75, which is a part of the signal line 73, and the low-pass filter 79 on the DC power supply circuit 77 side are connected by an Au fine wire by a wire bond method.
As is apparent from FIG. 10, a resonance curve without noise and having a peak near 98 MHz can be observed.

なお、図10の例では、実効的にインピーダンスを不整合にするための素子として、ローパスフィルタ79を用いたが、その他、LC回路、抵抗素子などを用いることもできる。   In the example of FIG. 10, the low-pass filter 79 is used as an element for effectively making the impedance mismatch, but an LC circuit, a resistance element, or the like can also be used.

第3実施形態の高周波共振器71によれば、MEMS静電駆動ビーム型振動子で形成された振動子75の、信号線路73の一部となるビーム46と直流給電配線78との間にローパスフィルタ79を接続することにより、直流給電配線78を通じての高周波信号の不要反射が抑制され、共振周波数の高周波信号の信号/雑音比を向上することができる。   According to the high frequency resonator 71 of the third embodiment, the vibrator 75 formed of the MEMS electrostatic drive beam type vibrator has a low pass between the beam 46 that is a part of the signal line 73 and the DC power supply wiring 78. By connecting the filter 79, unnecessary reflection of the high-frequency signal through the DC power supply wiring 78 is suppressed, and the signal / noise ratio of the high-frequency signal at the resonance frequency can be improved.

上例では、本発明を複数のMEMS静電駆動ビーム型振動子を電気的な結合で構成したラダー型フィルタあるいは共振器に適用したが、その他、複数のMEMSビーム型振動子を機械的な結合で構成した複合静電駆動振動子型フィルタに適用することができる。この場合、複合振動子型フィルタを構成する振動子あるいは振動子群への直流バイアス電圧を高周波信号線路のインピーダンスとは不整合な状態で供給するようになす。これによって、上述と同様に、フィルタリングされた高周波信号の信号/雑音比を向上することができ、また、複数の独立電源を必要としないので、電源に係わるコストを低減することができる。   In the above example, the present invention is applied to a ladder type filter or resonator in which a plurality of MEMS electrostatic drive beam type vibrators are electrically coupled. However, in addition, a plurality of MEMS beam type vibrators are mechanically coupled. It can be applied to the composite electrostatic drive vibrator type filter constituted by. In this case, the DC bias voltage to the vibrator or vibrator group constituting the composite vibrator type filter is supplied in a state inconsistent with the impedance of the high-frequency signal line. As a result, as described above, the signal / noise ratio of the filtered high-frequency signal can be improved, and since a plurality of independent power supplies are not required, the cost associated with the power supply can be reduced.

図12は、本発明に係る高周波素子を高周波共振器に適用した第4実施形態の静電駆動ビーム型振動子である。この静電駆動ビーム型振動子は、上記の複数のMEMSビーム型振動子を機械的な結合で構成した複合静電駆動振動子型フィルタに相当する。
本実施の形態に係る高周波共振器81は、図12Bに示す基板82上に出力となる下部電極83とこれに空間84を挟んで対向配置した入力となる上部電極、いわゆるビーム85とを有した構造のMEMSフィルタ86を、図12Aに示すように、ビーム85が並行になるように2つ配列する。この2つのMEMSフィルタは、その並行する2つのビーム85[85A,85B]を一部が連結部86を介して繋がるように形成し、それぞれの下部電極83[83A,83B]を独立に形成した構造となる。ビーム85A,85Bを繋げる位置は、振動の節(不動点)を選ぶ。このようにして構成した高周波共振器81は、一方の下部電極83Aが信号の入力となり、他方の下部電極83Bが出力となる。この場合、直流バイアス電圧は、ビーム85に印加される。
本実施の形態は、例えば、このような構成の複合振動子を複数個並列に設置し、高周波信号を並列的にフィルタリングするように構成することができる。
そして、本実施の形態に係る高周波共振器81においては、かかる複合振動子型フィルタを構成する振動子あるいは振動子群への直流バイアス電圧を、高周波信号線のインピーダンスとは不整合な状態で供給するなど、前述と同様に構成する。
本実施の形態に係る高周波共振器81においても、前述と同様の作用効果を奏する。
FIG. 12 shows an electrostatically driven beam type vibrator according to a fourth embodiment in which the high frequency device according to the present invention is applied to a high frequency resonator. This electrostatic drive beam type vibrator corresponds to a composite electrostatic drive vibrator type filter in which the plurality of MEMS beam type vibrators are mechanically coupled.
The high-frequency resonator 81 according to the present embodiment has a lower electrode 83 serving as an output on a substrate 82 shown in FIG. 12B and an upper electrode serving as an input disposed so as to face the space 84 with a space 84 therebetween, a so-called beam 85. Two MEMS filters 86 having a structure are arranged so that the beams 85 are parallel as shown in FIG. 12A. The two MEMS filters are formed such that a part of the two parallel beams 85 [85A, 85B] are connected via the connecting portion 86, and the lower electrodes 83 [83A, 83B] are independently formed. It becomes a structure. As a position where the beams 85A and 85B are connected, a vibration node (a fixed point) is selected. In the high-frequency resonator 81 configured as described above, one lower electrode 83A serves as a signal input, and the other lower electrode 83B serves as an output. In this case, a DC bias voltage is applied to the beam 85.
In the present embodiment, for example, a plurality of composite vibrators having such a configuration can be installed in parallel, and high-frequency signals can be filtered in parallel.
In the high frequency resonator 81 according to the present embodiment, the DC bias voltage to the vibrator or vibrator group constituting the composite vibrator type filter is supplied in a state inconsistent with the impedance of the high frequency signal line. The configuration is the same as described above.
The high frequency resonator 81 according to the present embodiment also has the same effects as described above.

上述のラダー型フィルタ、複合振動子型フィルタ等の複合的な振動子によるフィルタを構成する場合、隣り合う振動子(並列化された複数の振動子で構成された振動子(振動子群))間の配線の長さ、複数段のフィルタ間の配線の長さを、取り扱う高周波信号の波長に比較して十分に短くすることにより、高周波信号の遅延に起因する信号歪を抑制することができる。   When composing a filter composed of multiple vibrators such as the ladder type filter and the composite vibrator type filter described above, adjacent vibrators (vibrators composed of a plurality of parallel vibrators (vibrator group)) By sufficiently shortening the length of the wiring between the wirings and the length of the wiring between the filters of the plurality of stages as compared with the wavelength of the high frequency signal to be handled, it is possible to suppress signal distortion caused by the delay of the high frequency signal. .

上例においては、本発明を高周波フィルタ、高周波共振器に適用したが、その他、ビーム型MEMS素子を用いた高周波スイッチ、分配器等の受動素子、MEMS(微小機械システム)等に適用することができる。   In the above example, the present invention is applied to a high-frequency filter and a high-frequency resonator. However, the present invention can be applied to a high-frequency switch using a beam-type MEMS element, a passive element such as a distributor, a MEMS (micro mechanical system), and the like. it can.

上述した本発明の高周波素子は、これらを構成する高周波回路ブロックと、この高周波回路ブロックを動作されるための電源回路ブロックとを、同一のウェハチップ、すなわち1つの半導体チップ上に形成して構成することができる。または、本発明の高周波素子は、例えば高周波回路ブロックを形成した半導体チップと、上記電源回路ブロックを形成した半導体チップとを有して、両チップ間をワイヤーで接続して構成することができる。
また、インピーダンスを不整合にするための手段は、直流電源回路側に挿入してもよく、あるいは高周波信号素子側に挿入してよい。
The above-described high-frequency device of the present invention is configured by forming a high-frequency circuit block constituting these and a power supply circuit block for operating the high-frequency circuit block on the same wafer chip, that is, one semiconductor chip. can do. Alternatively, the high-frequency device of the present invention can be configured, for example, by including a semiconductor chip on which a high-frequency circuit block is formed and a semiconductor chip on which the power supply circuit block is formed, and connecting both chips with a wire.
The means for making the impedance mismatch may be inserted on the DC power supply circuit side or on the high frequency signal element side.

本発明に係る高周波素子を1段構成のラダー型フィルタに適用した第1実施の形態を示す等価回路図である。1 is an equivalent circuit diagram showing a first embodiment in which a high-frequency element according to the present invention is applied to a ladder filter having a one-stage configuration. A 本発明に適用されるMEMS静電駆動型ビーム振動子の概略平面図である。 B 本発明に適用されるMEMS静電駆動型ビーム型振動子の概略断面図である。A is a schematic plan view of a MEMS electrostatic drive type beam transducer applied to the present invention. B is a schematic cross-sectional view of a MEMS electrostatic drive type beam vibrator applied to the present invention. FIG. 本発明に係るMEMS静電駆動型ビーム型振動子を用いたときの直流電源回路及びインピーダンス不整合とするための手段を接続した概略構成図である。FIG. 3 is a schematic configuration diagram in which a DC power supply circuit and means for impedance mismatching are connected when the MEMS electrostatic drive beam type vibrator according to the present invention is used. 図1の1段構成のラダー型フィルタの透過特性値の周波数依存性を示すフィルタ特性図である。FIG. 2 is a filter characteristic diagram showing the frequency dependence of the transmission characteristic value of the one-stage ladder filter of FIG. 1. 図1の等価回路におけるシャント振動子群の中心周波数を92MHzとしたときの図4の要部の拡大図である。FIG. 5 is an enlarged view of the main part of FIG. 4 when the center frequency of the shunt transducer group in the equivalent circuit of FIG. 1 is 92 MHz. 図1の等価回路におけるシャント振動子群の中心周波数を95MHzとしたときの図4の要部の拡大図である。FIG. 5 is an enlarged view of the main part of FIG. 4 when the center frequency of the shunt transducer group in the equivalent circuit of FIG. 1 is 95 MHz. 図1の等価回路におけるシャント振動子群の中心周波数を96MHzとしたときの図4の要部の拡大図である。FIG. 5 is an enlarged view of the main part of FIG. 4 when the center frequency of the shunt transducer group in the equivalent circuit of FIG. 1 is 96 MHz. 本発明に係る高周波素子を2段構成のラダー型フィルタに適用した第2実施の形態を示す等価回路図である。FIG. 6 is an equivalent circuit diagram showing a second embodiment in which the high-frequency element according to the present invention is applied to a two-stage ladder filter. 図8の2段構成のラダー型フィルタの透過特性値の周波数依存性を示すフィルタ特性図である。FIG. 9 is a filter characteristic diagram illustrating the frequency dependence of the transmission characteristic value of the two-stage ladder filter of FIG. 8. 本発明に係る高周波素子を高周波共振器に適用した第3実施の形態を示す等価回路である。It is the equivalent circuit which shows 3rd Embodiment which applied the high frequency element which concerns on this invention to the high frequency resonator. 図10の高周波共振器の透過特性値の周波数依存性を示す特性図である。It is a characteristic view which shows the frequency dependence of the transmission characteristic value of the high frequency resonator of FIG. A,Bは、本発明に係る高周波素子を高周波共振器に適用した第4実施の形態を示す平面図及び断面図である。A and B are a plan view and a sectional view showing a fourth embodiment in which the high-frequency element according to the present invention is applied to a high-frequency resonator. 比較例に係る高周波共振器の等価回路図である。It is an equivalent circuit schematic of the high frequency resonator which concerns on a comparative example. 図12の高周波共振器の透過特性値の周波数依存性を示す特性図である。It is a characteristic view which shows the frequency dependence of the transmission characteristic value of the high frequency resonator of FIG. 図12の比較例に適用されるMEMS静電駆動ビーム型振動子の概略断面図である。It is a schematic sectional drawing of the MEMS electrostatic drive beam type vibrator applied to the comparative example of FIG.

31・・1段構成のラダー型フィルタ、32・・高周波信号線路、33・・信号線路、34・・グランド線路、35・・直列振動子、36・・シャント振動子、37・・直流電源回路、38・・直流給電線路、50・・MEMSビーム型振動子、41・・半導体基板、42、51・・絶縁膜、43・・入力電極、44・・出力電極、45・・空間、46・・ビーム、48・・配線層、19a,19b・・支持部、52・・グランド線路となる導電層、61・・2段構成のラダー型フィルタ、651、652・・直列振動子、661、662・・シャント振動子、R1 〜R6 ・・抵抗素子、71・・高周波共振器、72・・高周波信号線路、73・・信号線路、74・・グランド線路、77・・直流電源回路、78・・直流給電線路、79・・ローパスフィルタ、C1 ・・浮遊容量 31 .. One-stage ladder type filter, 32..High-frequency signal line, 33..Signal line, 34..Ground line, 35..Series vibrator, 36.Shunt vibrator, 37..DC power supply circuit , 38 .. DC feed line, 50 .. MEMS beam type vibrator, 41 .. Semiconductor substrate, 42, 51 .. Insulating film, 43 .. Input electrode, 44 .. Output electrode, 45. .. Beam, 48 .. Wiring layer, 19a, 19b .. Supporting part, 52 .. Conductive layer to be ground line, 61 .. Ladder type filter of two-stage configuration, 651, 652 .. Series vibrator, 661, 662 ..Shunt vibrators, R1 to R6 ..Resistance element, 71 ..High frequency resonator, 72 ..High frequency signal line, 73 ..Signal line, 74 ..Ground line, 77 ..DC power supply circuit, 78 DC feed line, 79 ... -Pass filter, C1

Claims (8)

複数のMEMSビーム型振動子を並列化した振動子群を有するフィルタと、
前記振動子群に直流給電配線を介して接続され、前記複数のMEMSビーム型振動子の各ビームに直流バイアス電圧を供給する1つの共通した直流電源回路と、
前記フィルタに接続された高周波信号線と、
前記直流給電配線と前記振動子群のビームとの間に介挿され、前記高周波信号線と前記直流給電配線との間をインピーダンス不整合とする素子と
を有する高周波素子。
A filter having a vibrator group in which a plurality of MEMS beam-type vibrators are arranged in parallel;
A common DC power supply circuit connected to the vibrator group via a DC power supply wiring and supplying a DC bias voltage to each beam of the plurality of MEMS beam type vibrators;
A high-frequency signal line connected to the filter;
A high-frequency element having an element that is interposed between the DC power supply wiring and the beam of the vibrator group and makes impedance mismatch between the high-frequency signal line and the DC power supply wiring.
複数のMEMSビーム型振動子を並列化した振動子群による直列振動子と、複数のMEMSビーム型振動子を並列化した振動子群によるシャント振動子とで構成されたラダー型フィルタと、
前記直列振動子及びシャント振動子に直流給電配線を介して接続され、前記直列振動子及び前記シャント振動子を構成する前記振動子群の複数のMEMSビーム型振動子の各ビームに直流バイアス電圧を供給する1つの共通した直流電源回路と、
前記ラダー型フィルタに接続された高周波信号線と、
前記直列振動子のビームと前記直流給電配線との間、及び前記シャント振動子のビームと前記直流給電配線との間にそれぞれ介挿され、前記高周波信号線と前記直流給電配線との間をインピーダンス不整合とする素子と
を有する高周波素子。
A ladder-type filter including a series vibrator by a vibrator group in which a plurality of MEMS beam-type vibrators are arranged in parallel, and a shunt vibrator by a vibrator group in which a plurality of MEMS beam-type vibrators are arranged in parallel;
A DC bias voltage is applied to each beam of the plurality of MEMS beam-type vibrators of the vibrator group that is connected to the series vibrator and the shunt vibrator via a DC power supply wiring and constitutes the series vibrator and the shunt vibrator. One common DC power supply circuit to supply;
A high-frequency signal line connected to the ladder filter;
An impedance is inserted between the beam of the series vibrator and the DC power supply wiring, and between the beam of the shunt vibrator and the DC power supply wiring, and between the high-frequency signal line and the DC power supply wiring. A high-frequency element having a mismatching element.
複数のMEMSビーム型振動子を並列化した振動子群を有する共振器と、
前記振動子群に直流給電配線を介して接続され、前記複数のMEMSビーム型振動子の各ビームに直流バイアス電圧を供給する1つの共通した直流電源回路と、
前記共振器に接続された高周波信号線と、
前記直流給電配線と前記振動子群のビームとの間に介挿され、前記高周波信号線と前記直流給電配線との間をインピーダンス不整合とする素子と
を有する高周波素子。
A resonator having a vibrator group in which a plurality of MEMS beam-type vibrators are arranged in parallel;
A common DC power supply circuit connected to the vibrator group via a DC power supply wiring and supplying a DC bias voltage to each beam of the plurality of MEMS beam type vibrators;
A high-frequency signal line connected to the resonator ;
A high-frequency element having an element that is interposed between the DC power supply wiring and the beam of the vibrator group and makes impedance mismatch between the high-frequency signal line and the DC power supply wiring.
複数のMEMSビーム型振動子のビームが連結された複合MEMSビーム型振動子を複数、並列化した振動子群を有する複合振動子型フィルタと、
前記振動子群に直流給電配線を介して接続され、前記複数のMEMSビーム型振動子の各ビームに直流バイアス電圧を供給する1つの共通した直流電源回路と、
前記複合振動子型フィルタに接続された高周波信号線と、
前記直流給電配線と前記振動子群のビームとの間に介挿され、前記高周波信号線と前記直流給電配線との間をインピーダンス不整合とする素子と
を有する高周波素子。
A composite vibrator type filter having a vibrator group in which a plurality of composite MEMS beam type vibrators connected with beams of a plurality of MEMS beam type vibrators are arranged in parallel;
A common DC power supply circuit connected to the vibrator group via a DC power supply wiring and supplying a DC bias voltage to each beam of the plurality of MEMS beam type vibrators;
A high-frequency signal line connected to the composite vibrator type filter;
A high-frequency element having an element that is interposed between the DC power supply wiring and the beam of the vibrator group and makes impedance mismatch between the high-frequency signal line and the DC power supply wiring.
前記フィルタと、前記直流電源回路及び前記直流給電配線を有する直流給電回路と、前記インピーダンス不整合とする素子とが同一のウェハチップ上に形成されている
請求項1記載の高周波素子。
The high-frequency device according to claim 1, wherein the filter, the DC power supply circuit having the DC power supply circuit and the DC power supply wiring, and the impedance mismatching element are formed on the same wafer chip.
前記ラダー型フィルタと、前記直流電源回路及び前記直流給電配線を有する直流給電回路と、前記インピーダンス不整合とする素子とが同一のウェハチップ上に形成されている
請求項2記載の高周波素子。
The high frequency device according to claim 2, wherein the ladder filter, the DC power supply circuit having the DC power supply circuit and the DC power supply wiring, and the impedance mismatching element are formed on the same wafer chip.
前記共振器と、前記直流電源回路及び前記直流給電配線を有する直流給電回路と、前記インピーダンス不整合とする素子とが同一のウェハチップ上に形成されている
請求項3記載の高周波素子。
The high-frequency device according to claim 3, wherein the resonator, the DC power supply circuit having the DC power supply circuit and the DC power supply wiring, and the impedance mismatching element are formed on the same wafer chip.
前記複合振動子型フィルタと、前記直流電源回路及び前記直流給電配線を有する直流給電回路と、前記インピーダンス不整合とする素子とが同一のウェハチップ上に形成されている
請求項4記載の高周波素子。
5. The high frequency device according to claim 4, wherein the composite vibrator type filter, the DC power supply circuit having the DC power supply circuit and the DC power supply wiring, and the impedance mismatching element are formed on the same wafer chip. .
JP2004105921A 2004-03-31 2004-03-31 High frequency element Expired - Fee Related JP4419651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105921A JP4419651B2 (en) 2004-03-31 2004-03-31 High frequency element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105921A JP4419651B2 (en) 2004-03-31 2004-03-31 High frequency element

Publications (2)

Publication Number Publication Date
JP2005295120A JP2005295120A (en) 2005-10-20
JP4419651B2 true JP4419651B2 (en) 2010-02-24

Family

ID=35327581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105921A Expired - Fee Related JP4419651B2 (en) 2004-03-31 2004-03-31 High frequency element

Country Status (1)

Country Link
JP (1) JP4419651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5034925B2 (en) * 2007-12-20 2012-09-26 株式会社デンソー Switch circuit

Also Published As

Publication number Publication date
JP2005295120A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
US8390398B2 (en) Digitally programmable RF MEMS filters with mechanically coupled resonators
CN1503451B (en) Filter element, and filter device having same, duplex and high-frequency circuit
US5942958A (en) Symmetrical piezoelectric resonator filter
JP4648911B2 (en) Device incorporating a tunable thin film bulk acoustic resonator for amplitude and phase modulation
US7623007B2 (en) Device including piezoelectric thin film and a support having a vertical cross-section with a curvature
US5872493A (en) Bulk acoustic wave (BAW) filter having a top portion that includes a protective acoustic mirror
US7940145B2 (en) Thin film piezoelectric vibrator, thin film piezoelectric bulk acoustic wave resonator, and radio-frequency filter using such resonator
EP1469599A2 (en) Air gap type FBAR, duplexer using the FBAR, and fabricating methods thereof
US20030009863A1 (en) Thin film bulk acoustic resonator ( FBAR) and inductor on a monolithic substrate and method of fabricating the same
KR100225815B1 (en) Thin film piezoelectric device and the manufacturing method thereof
CN1976222B (en) Acoustic surface wave element, acoustic surface wave device, and communication device with same
US7098757B2 (en) Electrically-coupled micro-electro-mechanical filter systems and methods
JP2007150736A (en) Micro electromechanical device
KR101180595B1 (en) High-frequency element, power supply element, and communication device
US7737805B2 (en) Electrical circuit and component with said circuit
US9190982B2 (en) RF mixer filter MEMS resonator array
CN100590969C (en) Device including piezoelectric thin film and method for producing the same
JP4419651B2 (en) High frequency element
US7042312B2 (en) Ladder-type bulk acoustic wave filter with common ground inductor
KR100301716B1 (en) Piezoelectric resonator, method for adjusting frequency of piezoelectric resonator and communication apparatus including piezoelectric resonator
WO2004066495A1 (en) Circuit arrangement providing impedance transformation
JP2930989B2 (en) Oscillator
JP3895397B2 (en) Substrate mounting method of SAW filter
JPH10200363A (en) Surface acoustic wave device and manufacture of the same
KR100314621B1 (en) Ceramic resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees