JP4419479B2 - 画像処理装置および画像処理プログラム - Google Patents
画像処理装置および画像処理プログラム Download PDFInfo
- Publication number
- JP4419479B2 JP4419479B2 JP2003307358A JP2003307358A JP4419479B2 JP 4419479 B2 JP4419479 B2 JP 4419479B2 JP 2003307358 A JP2003307358 A JP 2003307358A JP 2003307358 A JP2003307358 A JP 2003307358A JP 4419479 B2 JP4419479 B2 JP 4419479B2
- Authority
- JP
- Japan
- Prior art keywords
- pixel
- dust
- image
- edge
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012545 processing Methods 0.000 title claims description 106
- 238000012937 correction Methods 0.000 claims description 58
- 230000003287 optical effect Effects 0.000 claims description 42
- 230000007547 defect Effects 0.000 claims description 27
- 238000003708 edge detection Methods 0.000 claims description 24
- 230000006870 function Effects 0.000 claims description 9
- 239000000428 dust Substances 0.000 description 142
- 238000002834 transmittance Methods 0.000 description 57
- 238000000034 method Methods 0.000 description 56
- 230000008569 process Effects 0.000 description 41
- 210000001747 pupil Anatomy 0.000 description 39
- 238000000605 extraction Methods 0.000 description 37
- 238000006243 chemical reaction Methods 0.000 description 25
- 238000003384 imaging method Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 16
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 15
- 239000010813 municipal solid waste Substances 0.000 description 14
- 238000010606 normalization Methods 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 9
- 230000000875 corresponding effect Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 238000007619 statistical method Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000006837 decompression Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 206010040925 Skin striae Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Landscapes
- Picture Signal Circuits (AREA)
- Facsimile Image Signal Circuits (AREA)
- Image Processing (AREA)
Description
(電子カメラおよびパーソナルコンピュータの構成)
図1は、交換レンズ方式の一眼レフ電子スチルカメラ(以下、電子カメラと言う)の構成を示す図である。電子カメラ1は、カメラ本体2とマウント式交換レンズからなる可変光学系3を有する。可変光学系3は、内部にレンズ4と絞り5を有する。レンズ4は複数の光学レンズ群から構成されるが、図では代表して1枚のレンズで表し、そのレンズ4の位置を主瞳位置と言う(以下、単に瞳位置と言う)。可変光学系3は、ズームレンズであってもよい。瞳位置は、レンズ種やズームレンズのズーム位置によって決まる値である。焦点距離によって変わることもある。
(1)絞り値によってゴミ影の大きさと光の透過率が変わる。
(2)レンズの瞳位置によってゴミ位置がずれる。
この2つの実験事実から固定位置に付着したゴミであっても、レンズの撮影条件(絞り値と瞳位置)が変化する度にゴミの写り込み方が変化していることがわかる。このような可変な光学系に対して、ゴミの影響を除去する手法を以下に示す。
次に、撮影した各画像データにおいて、ゴミの影響を除去する処理について説明する。電子カメラの光路途中に含まれるゴミは一般にぼけており、通常のエッジ検出フィルタに掛からない程度のシミが多数含まれる。ゴミは大きなゴミから小さなゴミまで種々あり、F値依存性が大きい。小さなゴミは絞り込んだ状態でもこのような状況にあり、開放側では消滅している。一方、大きなごみは開放側でこのような状況にある。この性質を利用して第1の実施形態では、一様照明の参照画像なしに、補正対象画像自身の中からゴミを自己抽出し、自己補正する方式を採用する。
図3は、第1の実施の形態における、電子カメラ1側の撮影手順について説明する図である。1)瞳位置P1、絞り値A1で通常撮影101を行い、補正対象画像データ1を出力する。2)瞳位置P2、絞り値A2で通常撮影102を行い、補正対象画像データ2を出力する。3)瞳位置P3、絞り値A3で通常撮影103を行い、補正対象画像データ3を出力する。4)瞳位置P4、絞り値A4で通常撮影104を行い、補正対象画像データ4を出力する。第1の実施の形態では一様面撮影を行わない。
<補正対象画像に対する処理>
図4は、画像処理装置であるPC31で行う処理のフローチャートを示す図である。ステップS11では、輝度面の生成処理を行う。ステップS12では、エッジ検出処理を行う。ステップS13では、エッジ領域の拡大処理をする。ステップS14では、平坦部の分類処理を行う。ステップS15では、自己ゲイン抽出処理を行う。ステップS16では、自己ゲイン補正処理を行う。以下、各ステップの詳細について説明する。
図4のステップS11では、輝度面の生成を行う。補正対象画像データの各画素[i,j]について、次の式(1)を使用して、RGB信号から輝度信号Yを生成する。[i,j]は画素の位置を示す。
Y[i,j]=(R[i,j]+2*G[i,j]+B[i,j])/4 ...(1)
RGB各面で個別に解析することも可能であるが、基本的にゴミ影の影響は信号の減衰を生じるのみで、色成分に関係ない。従って、ここでは全ての情報を有効に使いつつ、ランダムノイズの影響を低減させることが可能な輝度成分への変換を行っている。また、そうすることにより、RGB3面から輝度成分単面だけの解析で済み、高速化が図れる。輝度成分生成比率は上記に限らず、R:G:B=0.3:0.6:0.1等であってもよい。
エッジ抽出フィルタを輝度面に掛けて、補正対象画像内の平坦部とエッジ部の分離を行う。光路途中に含まれるゴミの画像内への写り込みは非常にコントラストの低いゴミ影となって現れるため、従来技術のようなエッジ抽出フィルタで検出されない場合が多い。この事実を逆に利用すると、エッジ抽出フィルタで抽出されるエッジ部は、ゴミではなく基本的に画像内のエッジであると多くの箇所で仮定できる。この画像内のエッジとゴミとの区別を更によくするために初めに輝度面に対する階調補正処理を行う。
補正対象画像が線形階調のまま入力されて、上述の輝度面が生成されているものとする。このとき、入力信号をY(0≦Y≦Ymax)、出力信号をY'(0≦Y'≦Y'max)とし、例えば次式(2)のような階調変換を施す。なお、γ=0.4,0.5,0.6等である。
次に、ガンマ補正のなされた輝度面に対して、図5および以下の式(3)〜(6)に示すような複数のフィルタサイズからなる微分フィルタを用いてエッジ検出(抽出)を行う。図5は、式(3)〜(6)の複数の微分フィルタの方位をまとめて表した図である。50x50画素程度にまで広がったゴミも扱えるように後述するカーネルを最大80x80程度にとる。それに合わせて、ここでは約2倍の最大160x160の微分フィルタを容易する。更に大きなゴミのサイズを扱うには、この類推で大きなサイズの微分フィルタを増やせばよい。また、これより小さいサイズのごみしか想定しないのであれば、広域型のフィルタから順次削っていけばよい。広域型のフィルタは全て、青空のようなグラデーション部をエッジ認定しないように2次微分型とした。gradはグラジエント(1次微分)、lapはラプラシアン(2次微分)を意味する。
gradK1=(|Y'[i-K1,j-K1]-Y'[i,j]|+|Y'[i+K1,j+K1]-Y'[i,j]|
+|Y'[i-K1,j+K1]-Y'[i,j]|+|Y'[i+K1,j-K1]-Y'[i,j]|
+|Y'[i-K1,j]-Y'[i,j]|+|Y'[i+K1,j]-Y'[i,j]|
+|Y'[i,j-K1]-Y'[i,j]|+|Y'[i,j+K1]-Y'[i,j]|)/8 ...(3)
b)±K2x±K2範囲のエッジ検出フィルタ
lapK2=|8*Y'[i,j]
-Y'[i-K2,j]-Y'[i+K2,j]-Y'[i,j-K2]-Y'[i,j+K2]
-Y'[i-K2,j-K2]-Y'[i+K2,j+K2]-Y'[i-K2,j+K2]-Y'[i+K2,j-K2]|/8 ...(4)
c)±K3x±K3範囲のエッジ検出フィルタ
lapK3=|8*Y'[i,j]
-Y'[i-K3,j]-Y'[i+K3,j]-Y'[i,j-K3]-Y'[i,j+K3]
-Y'[i-K3,j-K3]-Y'[i+K3,j+K3]-Y'[i-K3,j+K3]-Y'[i+K3,j-K3]|/8 ...(5)
d)±K4x±K4範囲のエッジ検出フィルタ
lapK4=|8*Y'[i,j]
-Y'[i-K4,j]-Y'[i+K4,j]-Y'[i,j-K4]-Y'[i,j+K4]
-Y'[i-K4,j-K4]-Y'[i+K4,j+K4]-Y'[i-K4,j+K4]-Y'[i+K4,j-K4]|/8 ...(6)
ここで、K1<K2<K3<K4であり、K1=1〜10、K4は80程度の値をとるものとする。すなわち、演算対象の画素範囲のサイズが順次大きくなっている。例えば±K1x±K1とは、着目画素を中心として±K1の範囲を意味し、K1=10とすると21x21画素範囲のフィルタとなる。
平坦性を保証する範囲をK1xK1,K2xK2,K3xK3,K4xK4の4段階に分けて、次の式等(7)〜(18)を使用してエッジ分類を行う。それぞれに対応するエッジマップをEdgePK1,EdgePK2,EdgePK3,EdgePK4とする。
sumK1=gradK1 ...(7)
sumK2=(gradK1+lapK2)/2 ...(8)
sumK3=(gradK1+lapK2+lapK3)/3 ...(9)
sumK4=(gradK1+lapK2+lapK3+lapK4)/4 ...(10)
else EdgePK1[i,j]=1 ...(12)
if sumK2=<Th_edge EdgePK2[i,j]=0 ...(13)
else EdgePK2[i,j]=1 ...(14)
if sumK3=<Th_edge EdgePK3[i,j]=0 ...(15)
else EdgePK3[i,j]=1 ...(16)
if sumK4=<Th_edge EdgePK4[i,j]=0 ...(17)
else EdgePK4[i,j]=1 ...(18)
本実施の形態では、エッジフィルタで平坦性を保証するサイズは後述するカーネルサイズと同じサイズあるいは広いサイズになっているので、基本的にはエッジ領域の拡大は不要である。しかし、エッジマップに若干の連続性を与えるため、エッジマップの拡大処理を行う。これはエッジマップの画素単位の急激な変化を抑える働きがあり、また、エッジ検出を間引きフィルタによって行っていることにも対応するものである。EdgePK1,EdgePK2,EdgePK3,EdgePK4の全てに10x10程度の拡大を行う。以下にEdgePK1の7x7拡大処理の例について示す。他のエッジマップも同様である。
横方向±3画素拡大処理
slpf = EdgePK1[i,j]+EdgePK1[i,j-1]+EdgePK1[i,j-2]+EdgePK1[i,j-3]
+EdgePK1[i,j+1]+EdgePK1[i,j+2]+EdgePK1[i,j+3]
if slpf=0 tmp[i,j]=0
else tmp[i,j]=1
縦方向±3画素拡大処理
slpf = tmp[i,j]+tmp[i-1,j]+tmp[i-2,j]+tmp[i-3,j]
+tmp[i+1,j]+tmp[i+2,j]+tmp[i+3,j]
if slpf=0 EdgePK1[i,j]=0
else EdgePK1[i,j]=1
以上のようにして求めた4種類のエッジマップから平坦部マップを作成する。平坦部マップはエッジ部からの距離情報を表しているともいえる。以下の処理の例では、EdgePK4から処理をしているので、広域型のエッジフィルタでも狭域型のエッジフィルタの複数で平坦性が保証されている場合は、後述するゴミ抽出能力が高い広域型のカーネルができるだけ採用されるように広域の平坦性に分類する。すなわち、複数のエッジフィルタで平坦性が保障されている領域においては、対応する後述するカーネルのうち最も大きなサイズのカーネルを使用して後述するゲイン(ゴミの透過率信号)が抽出されるようになっている。
if EdgePK4[i,j]=0 flatP[i,j]=4 (K4xK4画素範囲で平坦)
else{
if EdgePK3[i,j]=0 flatP[i,j]=3 (K3xK3画素範囲で平坦)
else{
if EdgePK2[i,j]=0 flatP[i,j]=2 (K2xK2画素範囲で平坦)
else{
if EdgePK1[i,j]=0 flatP[i,j]=1 (K1xK1画素範囲で平坦)
else flatP[i,j]=0 (エッジ上)
}
}
}
5−1)複数カーネルによるゲイン抽出
平坦性が保証された領域に、輝度の局所平均と着目画素との比(ゲイン、相対比)をとる演算を行えば、ゴミの透過率情報が抽出できる。この演算子をカーネルと呼ぶ。局所平均をとる範囲の定義の仕方により異なるカーネルサイズが定義できるが、ゴミの透過率情報を得るには局所平均値がゴミの影響を含まない程度に十分大きい必要があるため、一般に大サイズのカーネルほどゴミ抽出能力は高い。しかし、広域で平坦性が保証されている必要があるため、エッジ近傍では採用することができない。そこで、エッジ近傍では多少能力が落ちても、エッジのぎりぎり近くまで滑らかにゴミが除去されるように、エッジに近づくほど小さいサイズのカーネルを使いながらゴミの透過率情報を収集する。ここではK4xK4カーネル、K3xK3カーネル、K2xK2カーネル、K1xK1カーネルの4種を用意し、それぞれに対応したサイズで平坦性が保証されている場合に利用可能とする。上記カーネルのK1,K2,K3,K4は、エッジ検出フィルタのK1,K2,K3,K4と一致する。ただし、完全に一致していなくてもよく、実質的に一致していればよい。
gmap_self[i,j]=1 すべての画素[i,j]に対して
if flatP[i,j]=1 {
ave=Σ{Y[i+m,j+n]}/(K1*K1)
m=0,±1,±2,...,±(K1)/2
n=0,±1,±2,...,±(K1)/2
gmap_self[i,j]=Y[i,j]/ave
}
if flatP[i,j]=2 {
ave=Σ{Y[i+m,j+n]}/(K2*K2)
m=0,±1,±2,...,±K2/2
n=0,±1,±2,...,±K2/2
gmap_self[i,j]=Y[i,j]/ave
}
if flatP[i,j]=3 {
ave=Σ{Y[i+m,j+n]}/(K3*K3)
m=0,±1,±2,...,±K3/2
n=0,±1,±2,...,±K3/2
gmap_self[i,j]=Y[i,j]/ave
}
if flatP[i,j]=4 {
ave=Σ{Y[i+m,j+n]}/(K4*K4)
m=0,±1,±2,...,±K4/2
n=0,±1,±2,...,±K4/2
gmap_self[i,j]=Y[i,j]/ave
}
抽出された平坦部の透過率信号には、輝度信号のランダムノイズ成分が含まれているため、これとゴミによる異常な透過率の低下とを区別するため、得られたゲインマップ(透過率マップ)内で統計解析を行い、3σ判定を行って区別する。図7における符号45部分を拡大した符号46は、この細かいランダムノイズがある様子を示している。得られたゲインマップの全面について、平均値Mを次式(19)により求め、標準偏差σを次式(20)により求める。図8は、ゲインマップ(透過率マップ)のヒストグラムを示す図である。
if |gmap_self[i,j]-M|≦3σ gmap_self[i,j]=1
else if gmap_self[i,j]>1 gmap_self[i,j]=1
else gmap_self[i,j]=gmap_self[i,j]
なお、判定に使う平均値Mは常に1に近い値をとるため、1に置き換えてもよい。
次の自己ゲイン補正で、補正領域のランダム性が失われてしまわないように、次の式(21)で表される若干のローパスフィルタを掛けておく。
gmap_self[i,j]={4*gmap_self[i,j]
+2*(gmap_self[i-1,j]+gmap_self[i+1,j]+gmap_self[i,j-1]+gmap_self[i,j+1])
+1*(gmap_self[i-1,j-1]+gmap_self[i-1,j+1]+gmap_self[i+1,j-1]
+gmap_self[i+1,j+1])}/16 ...(21)
次に、次式(22)〜(24)に示すように、補正対象画像のR,G,B値各々に対してゲイン(透過率)の逆数を掛け算して、ゲイン補正を行う。
R[i,j]=R[i.j]/gmap_self[i,j] ...(22)
G[i,j]=G[i.j]/gmap_self[i,j] ...(23)
B[i,j]=B[i.j]/gmap_self[i,j] ...(24)
第2の実施形態では、第1の実施形態での自己抽出法に加え、若干ユーザーの負荷はかかるが、ゴミ参照用に一日から一月に一回程度一様な基準画像を撮影した画像を利用して、ゴミ除去性能を更に上げる方式である。第1の実施の形態では、エッジマップ抽出において大きなゴミはエッジとして抽出されてしまい、補正がなされない場合がある。第2の実施の形態では、このような問題を改善するものである。なお、基準画像は、完全に一様な白基準データではなく、青空、一様に近い壁面、グレーチャート、無地の紙面などを撮影して代用するものとする。この場合の基準画像は、レンズの周辺減光や被写体のグラデーション、撮像素子のシェーディングなどが含まれていてもよい。基準画像は、実際に身近な場所で容易に撮影できる状況で取得できる場合を想定しており、厳密な一様性は要求せず、画像処理側のアルゴリズムで一様なものに変換する。基準画像と補正対象画像の光学的条件(瞳位置とF値)の違いは画像処理側で対処する。
図9は、第2の実施の形態における、電子カメラ1側の撮影手順について説明する図である。1)瞳位置P0、絞り値A0で一様面撮影201を行い、基準画像データ0を出力する。2)瞳位置P1、絞り値A1で通常撮影202を行い、補正対象画像データ1を出力する。3)瞳位置P2、絞り値A2で通常撮影203を行い、補正対象画像データ2を出力する。4)瞳位置P3、絞り値A3で通常撮影204を行い、補正対象画像データ3を出力する。すなわち、まず、電子カメラ1を空や壁面に向けて一様な面の撮影を行い(一様面撮影)、その後、電子カメラ1を撮影したい被写体に向けて随時撮影する(通常撮影)。
第2の実施の形態において、画像処理装置であるPC31に入力される基準画像データと補正対象画像データには、瞳位置と絞り値が識別できるデータが埋め込まれているものとする。瞳位置データは、撮影データに埋め込まれたレンズの種類、ズーム位置、焦点位置の記録データから換算テーブルを使って算出してもよい。図10は、PC31で行う処理の流れを示すフローチャートである。
1)輝度面生成(S21)
ステップS21の輝度面生成は、第1の実施の形態と同様に行う。
ステップS22では、以下の処理からなる透過率マップの生成(ゲインマップ抽出)を行う。
2−1)局所的規格化処理(ゲイン抽出処理)
基準画像データは、上述したように必ずしも完全に一様なものでない。従って、生成した輝度面も完全に一様ではない。このような輝度面に対して、局所的な画素値の規格化(正規化)処理を行って、各画素の透過率信号T[i,j]を、次式(25)を使用して算出する。すなわち、着目画素[i,j]の値とこの画素を含む局所範囲の画素平均値との相対比を各々の画素についてとる。これにより一様面データに含まれるグラデーション、シェーディング等の不均一性はアルゴリズム的に問題なく排除され、肝心のゴミ影による透過率の低下のみを抽出することができる。このようにして求めた画像全面の透過率を透過率マップ(ゲインマップ)と言う。透過率マップは、基準画像の欠陥情報を示すものである。なお、画素値とは、各画素における色成分の色信号(色情報)や輝度信号(輝度情報)の値である。例えば、1バイトで表される場合、0〜255の値を取る。
前述の局所的規格化処理により得られた透過率マップの画像全面について、第1の実施の形態の平坦部と同様に、平均値Mを次式(26)により求め、標準偏差σを次式(27)により求める統計解析を行う。なお、Nx,Nyは、x方向、y方向の総画素数を表す。
基本的に透過率マップに占めるゴミ信号の面積的な割合は非常に小さく、2−3)で統計解析した結果は、透過率信号の量子論的揺らぎに伴うランダムノイズ(ショットノイズ)を評価していることになる。透過率マップのヒストグラムをとると、平均値M(Mはほぼ1に近い値)を中心に標準偏差σの正規分布した形となる。第1の実施の形態の図8を参照。この揺らぎの範囲はゴミ影による透過率の変化を受けていないと考えられるため、強制的に透過率を1に設定してよい。すなわち、次の処理(28)(29)により閾値判定を行う。
if |T[i,j]-M|≦3σ then T[i,j]=1 ...(28)
else T[i,j]=T[i,j] ...(29)
if |T[i,j]-M|≦3σ then T[i,j]=1 ...(30)
else if T[i,j]>1 T[i,j]=1 ...(31)
else T[i,j]=T[i,j] ...(32)
判定に使う平均値Mは常に1に近い値をとるため、1に置き換えてもよい。
ステップS23では、透過率マップの瞳位置変換を行う。基準画像と補正対処画像の瞳位置が相互に異なっているとき、基準画像のゴミ位置を、補正対象画像の瞳位置から見たときに出現すると予測されるゴミ位置に瞳位置変換する。図11は、瞳位置が変化するとゴミ影の位置が変化する様子を示す図である。図11(a)は、瞳位置とゴミと撮像素子8の撮像面との関係を示す図である。図11(b)は、瞳位置の変化に伴い撮像面上でゴミ影が移動している様子を示す図である。
ステップS24では、透過率マップのF値変換を行う。基準画像と補正対処画像の絞り値が相互に異なっているとき、基準画像のゴミ径と透過率を、補正対象画像のより開放側絞り値でのゴミ径と透過率にF値変換する。図12は、絞り値であるF値が変化するとゴミ影の大きさが変化する様子を示す図である。図12(a)は、F値が大きい場合、図12(b)は、F値が小さい場合を示す。図12から明らかなように、F値の定義式(F=焦点距離/レンズの有効口径)を、相似関係にある撮像面からゴミ付着位置までの距離lとゴミ広がりΓに当てはめると次式(35)が成立する。
ステップS25では、次に示す処理により、透過率信号の大きさからゴミを分別して、大きいゴミは後述のエッジマップの修正に反映させる。分類結果をゴミマップdmapに代入する。
if T[i,j]=1 dmap[i,j]=0(ゴミなし)
else if T[i,j]>0.94 dmap[i,j]=1(小さいゴミ)
else dmap[i,j]=2(大きなゴミ)
dmap=2についてはエッジマップの修正時に漏れがないように7x7程度の若干の領域拡大処理を加えておく。
ステップS26では、瞳位置変換で想定される誤差分だけゴミマップを拡大しておくことで、許容誤差内の領域にはゴミが含まれるようなゴミマップにする。ここでは、例えば±3画素の誤差を見込む。
if dmap[i,j]=1 dmap[i±m,j±n]=1
if dmap[i,j]=2 dmap[i±m,j±n]=2
m=1,2,3、n=1,2,3
1)輝度面の生成(S31)
ステップS31の輝度面の生成は、第1の実施の形態と同様である。
2)エッジ検出(S32)
ステップS32のエッジ検出は、第1の実施の形態と同様である。
ゴミ影の多くはコントラストが低いためエッジ抽出されないが、中には大きなゴミでコントラストの高いものがあり、エッジ抽出されてしまうことがある。特に絞り込んで撮影された補正対象画像内で幾つかのゴミ影に発生する。これらのゴミ影がエッジ領域としてゲイン抽出領域の指定から外れることを防ぐため、次に示す処理により、基準画像を使用して生成したゴミマップ情報を利用してゴミ位置は強制的にエッジ部から除外する処理を行う。ここで、あまり大きくエッジ領域を削ることを防ぐため、前述の瞳位置変換誤差分のゴミマップの拡大処理を行う前のゴミマップを利用することにする。
if dmap[i,j]=2 {EdgePK1[i,j]=0, EdgePK2[i,j]=0,
EdgePK3[i,j]=0, EdgePK4[i,j]=0}
模式的にこの操作を「EdgePxx'=EdgePxx-Dust(dmap=2)」と記述すると分かりやすい。
エッジマップがいびつにゴミ部のみくりぬかれた(除外された)状態は不自然なので、エッジマップ内での周辺同化処理を行う。例えば、背景が青空のような一様な画像であれば、ステップS25のゴミマップ情報を使用して、エッジマップから大きなゴミによるエッジ部をくりぬいてもなんら問題が生じない。むしろ、くりぬく必要がある。しかし、背景が模様や構造のある画像である場合に、ステップS25のゴミマップ情報によりゴミがあるとしてその部分をエッジマップからくりぬくと、周辺の実際の模様や構造との関係から不自然な補正処理を行うことになる。従って、エッジ部でないと判断された画素が、その周辺の画素にエッジ画素が多数あると判断される場合は、その画素を再度エッジ部とするようにする。
データコピー
tmp[i,j]=EdgePK1[i,j] すべての画素[i,j]に対して
周辺同化処理
if tmp[i,j]=0{
sum = tmp[i-8,j]+tmp[i+8,j]+tmp[i,j-8]+tmp[i,j+8]
+tmp[i-8,j-8]+tmp[i+8,j+8]+tmp[i-8,j+8]+tmp[i+8,j-8]
if sum>4 EdgePK1[i,j]=1
}
ステップS35のエッジ領域の拡大は、第1の実施の形態のステップS13と同様に行う。
6)平坦部分類(S36)
ステップS36の平坦部分類は、第1の実施の形態のステップS14と同様に行う。
平坦部でかつゴミ領域と特定されている領域に限定して、ゴミ除去を行うのが補正対象画像の誤った補正を防ぐ観点から最も合理的である。したがって、この両条件を満たす領域情報を、次の処理により平坦マップに代入する。すなわち、ゴミ領域でないと判断された領域は平坦部でないというようにして、次の処理に進む。dmap[i,j]は、ステップS26のゴミ領域拡大処理を経た後の結果を使用する。ステップS26の処理によって瞳位置変換精度の誤差分だけゴミ周辺にゲイン抽出領域を広げることにより、平坦部において漏れなくゴミ抽出することが可能となる。
if dmap[i,j]=0 flatP[i,j]=0
ステップS38の自己ゲイン抽出は、第1の実施の形態のステップS15のうち、複数カーネルによるゲイン抽出処理(局所的規格化処理)(5−1)とゲインマップのローパス(LPF)処理(5−3)のみを第1の実施の形態と同様に行う。3σ判定処理(5−2)は、ステップS37の処理により既にゴミ近傍に限定されているので不要である。
ステップS39の自己ゲイン補正は、第1の実施の形態のステップS16と同様に行う。
2 カメラ本体
3 可変光学系
4 レンズ
5 絞り
6 シャッター
7 光学部品
8 撮像素子
9 マウント部
12 アナログ信号処理部
13 A/D変換部
14 タイミング制御部
15 画像処理部
16 操作部
17 制御部
18 メモリ
19 圧縮/伸長部
20 表示画像生成部
21、32 モニタ
22 メモリカード用インタフェース部
23 外部インタフェース部
24 バス
30 メモリカード
31 PC(パーソナルコンピュータ)
33 プリンタ
34 CD−ROM
Claims (4)
- 光学系を通して撮像素子により撮像された画像を取得する画像取得手段と、
前記取得した画像内において、着目画素の値と該着目画素を含む所定範囲内の複数の画素の値の平均値とに基づいて、前記画像内に生じた光路途中の欠陥の投影像に関する欠陥情報を作成する欠陥情報作成手段とを備え、
前記欠陥情報作成手段は、複数の異なる画素範囲に対するエッジ検出フィルタを用いて複数の異なる画素範囲の中から各々の画素に対して平坦性が保証される最大の画素範囲を求め、前記平坦性が保証された最大の画素範囲に含まれる画素の値を用いて前記所定範囲内の複数の画素の値の平均値を算出し、前記欠陥情報を作成することを特徴とする画像処理装置。 - 請求項1に記載の画像処理装置において、
前記欠陥情報作成手段は、前記着目画素の値と該着目画素を含む所定範囲内の複数の画素の値の平均値との相対比を算出し、
前記欠陥情報作成手段で作成した相対比の逆数値を、対応する画素の値に掛け算して欠陥を補正する欠陥補正部をさらに備えることを特徴とする画像処理装置。 - 請求項1に記載の画像処理装置において、
前記欠陥情報作成手段は、前記着目画素において前記複数の異なる画素範囲に対するエッジ検出フィルタによりエッジ検出を行い、前記着目画素をエッジとして検出しなかったエッジ検出フィルタのうち最も大きな画素範囲に対するエッジ検出フィルタの該画素範囲に対応する画素範囲を前記平坦性が保証される最大の画素範囲とすることを特徴とする画像処理装置。 - 請求項1〜3のいずれかに記載の画像処理装置の機能をコンピュータに実行させるための画像処理プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003307358A JP4419479B2 (ja) | 2003-08-29 | 2003-08-29 | 画像処理装置および画像処理プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003307358A JP4419479B2 (ja) | 2003-08-29 | 2003-08-29 | 画像処理装置および画像処理プログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005079856A JP2005079856A (ja) | 2005-03-24 |
JP4419479B2 true JP4419479B2 (ja) | 2010-02-24 |
Family
ID=34410163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003307358A Expired - Lifetime JP4419479B2 (ja) | 2003-08-29 | 2003-08-29 | 画像処理装置および画像処理プログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4419479B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9706110B2 (en) | 2013-02-18 | 2017-07-11 | Panasonic Intellectual Property Management Co., Ltd. | Foreign body information detection device and foreign body information detection method of imaging apparatus |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4736121B2 (ja) * | 2005-11-21 | 2011-07-27 | 富士ゼロックス株式会社 | 画像解析装置、画像処理装置、画像解析方法、画像解析プログラム及びこれを記録した記録媒体 |
JP4867564B2 (ja) * | 2006-10-13 | 2012-02-01 | 富士ゼロックス株式会社 | 画像読取装置 |
WO2009139790A1 (en) | 2008-05-14 | 2009-11-19 | Nikon Corporation | Device and method for detecting dust on an image sensor |
US8666189B2 (en) | 2008-08-05 | 2014-03-04 | Aptina Imaging Corporation | Methods and apparatus for flat region image filtering |
JP5402131B2 (ja) * | 2009-03-19 | 2014-01-29 | 株式会社ニコン | 画像処理装置および撮像装置 |
JP4947105B2 (ja) * | 2009-07-21 | 2012-06-06 | 株式会社ニコン | 画像処理装置、画像処理プログラムおよび撮像装置 |
JP5083574B2 (ja) * | 2010-02-26 | 2012-11-28 | 株式会社ニコン | 画像処理装置およびプログラム |
CN101964873B (zh) | 2009-07-21 | 2014-08-20 | 株式会社尼康 | 图像处理装置、图像处理程序及摄像装置 |
JP5256236B2 (ja) * | 2010-03-25 | 2013-08-07 | 富士フイルム株式会社 | 画像処理装置および方法,ならびに画像処理プログラム |
GB201020530D0 (en) * | 2010-12-03 | 2011-01-19 | Optos Plc | Method of identifying anomalies in images |
JP5821790B2 (ja) * | 2012-06-27 | 2015-11-24 | 株式会社島津製作所 | X線診断装置 |
WO2023175870A1 (ja) | 2022-03-17 | 2023-09-21 | ファナック株式会社 | 機械学習装置、特徴抽出装置、及び制御装置 |
-
2003
- 2003-08-29 JP JP2003307358A patent/JP4419479B2/ja not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9706110B2 (en) | 2013-02-18 | 2017-07-11 | Panasonic Intellectual Property Management Co., Ltd. | Foreign body information detection device and foreign body information detection method of imaging apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2005079856A (ja) | 2005-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4186699B2 (ja) | 撮像装置および画像処理装置 | |
JP4466015B2 (ja) | 画像処理装置および画像処理プログラム | |
EP1583356B1 (en) | Image processing device and image processing program | |
EP1528797A2 (en) | Image processing apparatus, image-taking system and image processing method | |
JP2013106149A (ja) | 撮像装置、その制御方法、及びプログラム | |
EP2608527A2 (en) | Image pickup apparatus, control method for image pickup apparatus, and storage medium | |
JP4419479B2 (ja) | 画像処理装置および画像処理プログラム | |
JP2009260620A (ja) | 画像処理装置及び画像処理方法 | |
JP4196124B2 (ja) | 撮像系診断装置、撮像系診断プログラム、撮像系診断プログラム製品、および撮像装置 | |
JP5464982B2 (ja) | 撮像装置および画像処理方法 | |
JP4523629B2 (ja) | 撮像装置 | |
JP6185249B2 (ja) | イメージ処理装置及びイメージ処理方法 | |
JP4438363B2 (ja) | 画像処理装置および画像処理プログラム | |
JP2004282686A (ja) | 撮像装置 | |
JP4466017B2 (ja) | 画像処理装置および画像処理プログラム | |
JP4466016B2 (ja) | 画像処理装置および画像処理プログラム | |
JP6556033B2 (ja) | 画像処理装置、画像処理方法、及びプログラム | |
KR101946946B1 (ko) | 이미지 처리 장치 및 이의 이미지 처리 방법 | |
JP5526984B2 (ja) | 画像処理装置、画像処理方法及び画像処理用コンピュータプログラムならびに撮像装置 | |
JP2011135379A (ja) | 撮像装置、撮像方法及びプログラム | |
JP2007288245A (ja) | 撮像装置、画像処理方法及び画像処理プログラム | |
JP2010239493A (ja) | 撮像装置および映像信号の補正処理方法 | |
JP6590585B2 (ja) | 撮像装置及び露出制御方法 | |
JP2005260573A (ja) | 電子カメラ、カメラシステムおよび電子カメラの黒点補正方法 | |
JP4687475B2 (ja) | 撮像装置、撮像システムおよび撮像方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090403 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091123 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121211 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4419479 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121211 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151211 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151211 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |