JP4419115B2 - Air spring for bolsterless bogie of railway vehicle - Google Patents

Air spring for bolsterless bogie of railway vehicle Download PDF

Info

Publication number
JP4419115B2
JP4419115B2 JP2000388371A JP2000388371A JP4419115B2 JP 4419115 B2 JP4419115 B2 JP 4419115B2 JP 2000388371 A JP2000388371 A JP 2000388371A JP 2000388371 A JP2000388371 A JP 2000388371A JP 4419115 B2 JP4419115 B2 JP 4419115B2
Authority
JP
Japan
Prior art keywords
diaphragm
rubber
rubber member
air spring
contact surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000388371A
Other languages
Japanese (ja)
Other versions
JP2002187548A (en
Inventor
広一郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000388371A priority Critical patent/JP4419115B2/en
Publication of JP2002187548A publication Critical patent/JP2002187548A/en
Application granted granted Critical
Publication of JP4419115B2 publication Critical patent/JP4419115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道車両のボルスタレル台車用空気ばねに関し、特に、空気ばねを構成するゴム製部材の変形や、磨耗を低減し、ひいては長寿命化を図り得る空気ばねに関する。
【0002】
【従来の技術】
従来より、鉄道車両用の空気ばねは、振動絶縁性の良さや、ばね係数の柔らかさに起因して、乗り心地が良く、また、レべリングバルブの高さ調整機構により、車両の高さを大きく変化させないで、柔らかいばね係数を得ることができるという利点を有するため、広く活用されている。
【0003】
ここで、鉄道車両に使用されるボルスタレス台車は、曲線を通過する際の所謂ボギー時において、車体に対して、台車中心の鉛直軸周りに回転する。この際、台車の左右両端にある空気ばねの位置では、左右空気ばねのスパンと回転角に比例した前後変位と、前記鉛直軸周りの回転変位とを受けることになる。
【0004】
前記空気ばねは、振動を吸収し、振動の上流側(台車枠側)から下流側(車体側)への伝達を抑制するべく、空気を可変変位の下で密封できるゴム製部品(ダイヤフラム)を備えた構造を有し、変形によって、前記ゴム製部品が他の部品と接触現象を生じることになる。
【0005】
例えば、曲線を通過する際に台車がボギーしたとき、ボルスタレス台車用の空気ばねは、上部(車体側)と下部(台車枠側)が水平方向に約150mm変位する。斯かる変位は、空気ばねを構成するダイヤフラムの撓みで吸収することになるが、ダイヤフラムは、上記台車のボギー時に、前後変位のみならず回転変位に基づき変形することになる。
【0006】
前記ダイヤフラムは、前述のようにゴム材料から形成されており、内圧で膨張した状態において、空気ばねを構成する外筒や内筒のゴム座との間でゴム同士の接触をしている。したがって、前後方向に約150mm程度変形し、さらにボギー角分、鉛直軸周りにねじられると、ダイヤフラムに皺が発生したり、接触部分の接触圧が大きくなるという問題がある。
【0007】
特に、ボルスタレス台車においては、台車がボギーする時の水平方向の大変位とボギー角(台車の回転角)の回転を空気ばねにおいて許容しないといけないため、前記ダイヤフラムの大変形が生じ、これにより、ダイヤフラムが空気ばねを構成する外筒や内筒に過度に接触し、磨耗が生じることがある。
【0008】
また、このような摩擦力が生じる状態での仕事により、磨耗抵抗が減少したり、或いはゴムが溶融しゴムの磨耗を加速することになる。これらは、ダイヤフラムやゴム製部材の寿命を縮める要因となっている。
【0009】
【発明が解決しようとする課題】
本発明は、斯かる従来技術の問題点を解決するべくなされたもので、鉄道車両のボルスタレス台車用空気ばねを構成するダイヤフラムと外筒や内筒のゴム製部材との接触条件を緩和し、ゴムの磨耗量を減少させ、ひいてはダイヤフラムやゴム製部材の磨耗寿命を長くし得る空気ばねを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的を達成するべく鋭意研究し、ダイヤフラムと、内筒又は外筒のゴム製部材との接触部分について詳細な検討を施すことにより、本発明を案出したものである。
【0011】
すなわち、本発明は、ダイヤフラムと、該ダイヤフラムに接触し該ダイヤフラムを支持するゴム座とを備える鉄道車両のボルスタレス台車用空気ばねにおいて、前記ゴム座は、前記ダイヤフラムに接触するゴム製部材と、該ゴム製部材を支持する裏当て金とを備え、前記ゴム製部材は、前記ダイヤフラムに接触する部分の肉厚が略一定に形成され、前記裏当て金は、前記ゴム製部材の前記ダイヤフラムとの接触面の垂線に対して、前記ゴム製部材を支持する支持面が略垂直になるように形成され、前記ゴム座は、前記ダイヤフラムに接触するコーナ部を有し、該コーナ部の縦断面において、前記ゴム製部材の前記ダイヤフラムとの接触部の曲率半径が、前記ダイヤフラムの肉厚の2倍以上に形成されていることを特徴とする鉄道車両のボルスタレス台車用空気ばねを提供するものである。
【0014】
【発明の実施の形態】
以下、添付図面を参照しつつ、本発明の一実施形態について説明する。
図1は、本発明の一実施形態に係る空気ばねの概略構成を示す縦断面図である。図1に示すように、本実施形態に係る空気ばね1は、ダイヤフラム2と、ダイヤフラム2を支持する内筒3及び外筒4とを備えている。ここで、内筒3は、シアーパック5と、ダイヤフラム2に接触し該ダイヤフラム2を支持するゴム座6とを備えている。ゴム座6は、ダイヤフラム2に接触するゴム製部材7と、ゴム製部材7を支持する裏当て金8とを備えている。また、ダイヤフラム2に接触する外筒4の内側にもゴム製部材7が備えられおり、前記ゴム座6と同様の機能を奏するように構成されている。
【0015】
斯かる構成を有する空気ばね1は、図8に示すように、使用に際し、車体10と台車11の間に装着され、高さ調整機構9によりダイヤフラム2が膨張した状態で車体10を支持する。
【0016】
以下、本実施形態に係る空気ばね1の特徴であるゴム座6の形状について詳細に説明する。
【0017】
一般にゴム材料は非圧縮材料に近い性質を示し、ポアソン比も0.5に近く、圧縮、引っ張りの荷重が負荷されたとき、体積の変化がない変形の仕方をすることが知られている。
【0018】
すなわち、x、y、z軸の各方向の歪をεx、εy、εzとすると、ゴムの非圧縮性は、
εx+εy+εz=0 ・・・(1)
と表すことができる。これは、接触の荷重がかかる方向には圧縮され縮むが、荷重方向と垂直な方向には伸びが生じることを意味する。
【0019】
例えば、x方向に圧縮されると、すなわち
εx<0 ・・・(2)
であると、上記(1)式を満足するためには、必然的に
εy+εz>0 ・・・(3)
となり、y、z方向に伸びることになる。
【0020】
ここで、仮に垂直方向の伸びが拘束され自由に伸びない状態になると、すなわち、
εy+εz=0 ・・・(4)
であるとすれば、上記(1)式を満足するためには
εx=0 ・・・(5)
となり、これは、圧縮が容易ではなく、荷重方向に極めて堅い物性を示すことを意味する。
【0021】
このようなことがゴム同士の接触面内で生じると、面内の領域における接触圧の分布に集中化を招き、接触面圧の最大値の増加を誘発し易いといえる。
【0022】
本実施形態に係るゴム座6の形状は、以上に述べた考え方に基づき案出されたものであり、裏当て金8が、圧縮方向の荷重を支持しつつ、当該荷重方向と垂直な方向のゴム製部材7の伸びを拘束しないような形状とされている。
【0023】
すなわち、ゴム製部材7のダイヤフラム2との接触面μの垂線Φと、裏当て金8のゴム製部材7を支持する支持面γとのなす角αが垂直になるような形状とされている。
【0024】
換言すれば、まず、垂線Φを下記(6)式のように定義し、
ゴム製部材7の接触面μ⊥(垂直)垂線Φ ・・・(6)
次に、接触面μと垂線Φとのなす角αが前記支持面γ上で常に垂直であるように、すなわち、
α=90° ・・・(7)
の関係式を常に満足するように裏当て金8の支持面γの形状が決定されている。
【0025】
ここで、本実施形態に係るゴム座6は、ゴム製部材7のダイヤフラム2と接触する部分の肉厚が略一定に形成されている。これは、ゴム製部材7の肉厚に変化があると、ゴム製部材7の変形に一様性がなくなり、歪集中や、変形拘束が生じ易くなるため、これを回避するためである。このように、本実施形態に係る裏当て金8の支持面γの形状は、ゴム製部材7の肉厚が一定である付帯条件のもとに決定されている。
【0026】
例えば、図2に示すように、ゴム製部材7の接触面μが円弧状に形成されている部分では、裏当て金8の支持面γは、前記円弧と同心であり、且つ、ゴム製部材7の肉厚分だけ小さい曲率半径の形状が決定されることになる。また、ゴム製部材の接触面μが直線上に形成されている部分では、裏当て金8の支持面γも前記接触面μに平行な直線とし、全体としてゴム製部材7の拘束を最小限化する形状とされている。
【0027】
ここで、前述した図1に示すように、ダイヤフラム2は、内筒3又は外筒4と接触しており、車両の走行状態(直線、曲線)や、振動(ローリング、左右動等)に応じて、接触の範囲や接触の圧力の大きさや分布は変化している。斯かる接触は、上下変位の復元力や左右振動の復元力を生じさせ、正常に車体の姿勢を支持するための重要な要素であるが、過大な接触面圧は、ダイヤフラム2、内筒3又は外筒4を構成するゴムの磨耗を促進するので、接触面圧は低い方が好ましい。
【0028】
そこで、本実施形態に係る空気ばね1では、ダイヤフラム2と接触するゴム座の縦断面に着目し、空気ばね1の内圧及びボギー時の変位を摸擬し得るコンピュータによる数値解析法である有限要素法(FEM)による解析手法を開発して、ゴム座のコーナ部の曲率半径Rを変化させるパラメトリック解析を実施し、接触面圧を低下させ得る良好な条件を算出した。なお、斯かる解析の際には、前述したように、ゴム製部材7のダイヤフラム2との接触面μの垂線Φと、裏当て金8のゴム製部材7を支持する支持面γとのなす角αが垂直であることを条件とした。また、斯かる解析においては、ダイヤフラム2の内部の空気圧の影響と、車両が曲線を曲がるときに生じるボギー変位(空気ばね1の上部の車体側と、下部の台車枠側が水平方向にずれる変位)による、接触面圧の変化も把握した。
【0029】
上記解析結果の一例として、ダイヤフラム2とゴム座とのコーナ部に沿った接触面圧分布を解析した例を図3に示す。図3において(a)は内圧負荷時、(b)はボギー変位負荷時(前記(a)の内圧負荷に更にボギー変位による負荷を考慮)の解析結果例をそれぞれ示す。また、コーナ部の曲率半径Rをパラメトリックに変化させたときの接触面圧の最大値をプロットしたものを図4に示す。
【0030】
図4に示すように、曲率半径Rを大きくすることによって、最大接触面圧は低減する。特に、曲率半径Rをダイヤフラム2の肉厚tの2倍以上にすることにより、最大接触面圧の絶対値が低くなり、ゴムの磨耗耐久性能を保持でき、長寿命化が期待できるということが分かった。
【0031】
以上のように、ゴム座の接触面形状の形状パラメータを限定することにより、接触面圧が平均化され、最大接触面圧を小さくできることが分かった。接触面圧が低い方が、接触面圧と垂直方向、すなわちダイヤフラム2の表面に沿って生じる摩擦力も小さく、ダイヤフラム2及びゴム座の磨耗の減少を図る上で有効である。
【0032】
また、図5に示す本実施形態に係るゴム座6(図5の(a)はR/t=4、(b)はR/t=2)と、図6に示す比較品とについて、最大接触面圧を比較した結果を図7に示す。ここで、図6に示す比較品は、ゴム製部材7のダイヤフラム2との接触面12の垂線13に対して、ゴム製部材7を支持する裏当て金8の支持面14が垂直でないものを含む(約45°〜90°)ように形成されている(なお、R/t=3.3)。図7に示すように、本実施形態に係るゴム座6の方が接触面圧の分布が均等化して、最大値が小さくなり、磨耗の点で、比較品よりも好ましいことが分かった。
【0033】
なお、本実施形態では、主として内筒3のゴム座6について説明したが、本発明はこれに限られるものではなく、外筒4及びその内側に設けられたゴム製部材についても同様にして適用可能である。また、ゴム製部材7のダイヤフラム2との接触面12の垂線に対して、ゴム製部材7を支持する裏当て金8の支持面が垂直であるとして説明したが、本発明は、必ずしも完全に垂直である必要はなく、設計誤差の範囲内で垂直とみなせるものも包含する。
【0034】
【発明の効果】
以上に説明したように、本発明に係る鉄道車両のボルスタレス台車用空気ばねによれば、空気ばねを構成するダイヤフラムと外筒や内筒のゴム製部材との接触条件を緩和し、ゴムの磨耗量を減少させ、ひいてはダイヤフラムやゴム製部材の磨耗寿命を長くし得るという優れた効果を奏するものである。
【図面の簡単な説明】
【図1】 図1は、本発明の一実施形態に係る空気ばねの概略構成を示す縦断面図である。
【図2】 図2は、図1に示すゴム座を拡大して表す縦断面図である。
【図3】 図3は、図1に示すダイヤフラムとゴム座とのコーナ部に沿った接触面圧分布の解析結果例であり、(a)は内圧負荷時、(b)はボギー変位負荷時の解析結果例をそれぞれ示す。
【図4】 図4は、図1に示すゴム座のコーナ部の曲率半径Rを変化させたときの接触面圧の最大値を示す。
【図5】 図5は、本発明に係るゴム座の設計例を示す縦断面図である。
【図6】 図6は、比較例のゴム座の設計例を示す縦断面図である。
【図7】 図7は、本発明に係るゴム座と比較例のゴム座の最大接触面圧を比較した結果である。
【図8】 図8は、本発明に係る空気ばねを車両に装着した状態を示す概略構成図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air spring for a bolsterrel carriage of a railway vehicle, and more particularly to an air spring that can reduce deformation and wear of a rubber member that constitutes the air spring, thereby extending the service life.
[0002]
[Prior art]
Conventionally, air springs for railway vehicles have good ride comfort due to good vibration insulation and soft spring coefficient, and the height adjustment mechanism of the leveling valve allows the height of the vehicle to be increased. Since it has an advantage that a soft spring coefficient can be obtained without greatly changing the value, it is widely used.
[0003]
Here, the bolsterless bogie used for the railway vehicle rotates around the vertical axis of the bogie center with respect to the vehicle body during so-called bogies when passing through a curve. At this time, at the positions of the air springs at the left and right ends of the carriage, the front and rear displacement proportional to the span and rotation angle of the left and right air springs and the rotational displacement around the vertical axis are received.
[0004]
The air spring absorbs vibrations, and suppresses transmission of vibrations from the upstream side (trolley frame side) to the downstream side (vehicle body side). A rubber part (diaphragm) that can seal air under a variable displacement is provided. Due to the deformation, the rubber part causes a contact phenomenon with other parts.
[0005]
For example, when the bogie is bogie while passing through a curve, the air spring for the bolsterless bogie is displaced by about 150 mm in the horizontal direction at the upper portion (vehicle body side) and the lower portion (bogie frame side). Such displacement is absorbed by the deflection of the diaphragm constituting the air spring, but the diaphragm is deformed not only based on the longitudinal displacement but also based on the rotational displacement when the bogie is bogie.
[0006]
As described above, the diaphragm is made of a rubber material, and in an expanded state with an internal pressure, the diaphragm is in contact with the outer cylinder constituting the air spring and the rubber seat of the inner cylinder. Therefore, if the body is deformed by about 150 mm in the front-rear direction and is further twisted around the vertical axis by the bogie angle, there is a problem that wrinkles are generated in the diaphragm or the contact pressure at the contact portion increases.
[0007]
In particular, in a bolsterless bogie, since the air spring must allow large horizontal displacement and bogie angle (bogie rotation angle) when the bogie bogies, large deformation of the diaphragm occurs, The diaphragm may excessively contact the outer cylinder or the inner cylinder constituting the air spring, and wear may occur.
[0008]
Further, the work in a state in which such a frictional force is generated reduces the wear resistance, or the rubber melts and accelerates the wear of the rubber. These are factors that shorten the life of diaphragms and rubber members.
[0009]
[Problems to be solved by the invention]
The present invention was made to solve the problems of the prior art, and relaxed the contact conditions between the diaphragm constituting the air spring for a bolsterless bogie of a railway vehicle and the rubber member of the outer cylinder and the inner cylinder, An object of the present invention is to provide an air spring that can reduce the amount of wear of rubber and thereby extend the wear life of a diaphragm or a rubber member.
[0010]
[Means for Solving the Problems]
The inventors have intensively studied to achieve the above object, and devised the present invention by conducting a detailed study on the contact portion between the diaphragm and the rubber member of the inner cylinder or the outer cylinder. .
[0011]
That is, the present invention provides an air spring for a bolsterless bogie of a railway vehicle comprising a diaphragm and a rubber seat that contacts the diaphragm and supports the diaphragm, wherein the rubber seat includes a rubber member that contacts the diaphragm, A backing metal that supports a rubber member, and the rubber member is formed with a substantially constant thickness at a portion that contacts the diaphragm, and the backing metal is formed with the diaphragm of the rubber member. A support surface that supports the rubber member is formed so as to be substantially perpendicular to a perpendicular to the contact surface, and the rubber seat has a corner portion that contacts the diaphragm, and in a longitudinal section of the corner portion , bolus railcar radius of curvature of the contact portion between the diaphragm of the rubber member, characterized in that it is formed at least twice the thickness of the diaphragm It is to provide an air spring-less carriage.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view showing a schematic configuration of an air spring according to an embodiment of the present invention. As shown in FIG. 1, the air spring 1 according to the present embodiment includes a diaphragm 2, and an inner cylinder 3 and an outer cylinder 4 that support the diaphragm 2. Here, the inner cylinder 3 includes a shear pack 5 and a rubber seat 6 that contacts the diaphragm 2 and supports the diaphragm 2. The rubber seat 6 includes a rubber member 7 that contacts the diaphragm 2 and a backing metal 8 that supports the rubber member 7. Further, a rubber member 7 is also provided inside the outer cylinder 4 that contacts the diaphragm 2, and is configured to perform the same function as the rubber seat 6.
[0015]
As shown in FIG. 8, the air spring 1 having such a configuration is mounted between the vehicle body 10 and the carriage 11 in use, and supports the vehicle body 10 in a state where the diaphragm 2 is expanded by the height adjusting mechanism 9.
[0016]
Hereinafter, the shape of the rubber seat 6 which is a feature of the air spring 1 according to the present embodiment will be described in detail.
[0017]
In general, rubber materials exhibit properties close to those of non-compressed materials, and the Poisson's ratio is also close to 0.5. It is known that when a compression or tension load is applied, the rubber material does not change in volume.
[0018]
That is, assuming that the strains in the x, y, and z axis directions are ε x , ε y , and ε z ,
ε x + ε y + ε z = 0 (1)
It can be expressed as. This means that the contact load is compressed and contracted in the direction in which the load is applied, but the elongation occurs in the direction perpendicular to the load direction.
[0019]
For example, when compressed in the x direction, that is, ε x <0 (2)
In order to satisfy the above equation (1), ε y + ε z > 0 (3) inevitably.
And extend in the y and z directions.
[0020]
Here, if the extension in the vertical direction is constrained and does not extend freely,
ε y + ε z = 0 (4)
If it is, above to satisfy the equation (1) ε x = 0 ··· (5)
This means that the compression is not easy and exhibits extremely hard physical properties in the load direction.
[0021]
If such a phenomenon occurs in the contact surface between the rubbers, it can be said that the contact pressure distribution in the region within the surface is concentrated and an increase in the maximum value of the contact surface pressure is easily induced.
[0022]
The shape of the rubber seat 6 according to the present embodiment has been devised based on the above-described concept, and the backing metal 8 supports a load in the compression direction and has a direction perpendicular to the load direction. The shape is such that the elongation of the rubber member 7 is not restricted.
[0023]
That is, the angle α formed by the perpendicular Φ of the contact surface μ of the rubber member 7 with the diaphragm 2 and the support surface γ supporting the rubber member 7 of the backing metal 8 is vertical. .
[0024]
In other words, first, define the perpendicular Φ as in the following equation (6),
Contact surface μ⊥ (vertical) perpendicular Φ of rubber member 7 (6)
Next, the angle α formed by the contact surface μ and the perpendicular Φ is always perpendicular on the support surface γ, that is,
α = 90 ° (7)
The shape of the support surface γ of the backing metal 8 is determined so as to always satisfy the relational expression.
[0025]
Here, as for the rubber seat 6 which concerns on this embodiment, the thickness of the part which contacts the diaphragm 2 of the rubber members 7 is formed substantially constant. This is because if the thickness of the rubber member 7 is changed, the deformation of the rubber member 7 is not uniform, and strain concentration and deformation restraint are likely to occur, which is avoided. As described above, the shape of the support surface γ of the backing metal 8 according to the present embodiment is determined under the incidental condition that the thickness of the rubber member 7 is constant.
[0026]
For example, as shown in FIG. 2, in the portion where the contact surface μ of the rubber member 7 is formed in an arc shape, the support surface γ of the backing metal 8 is concentric with the arc and the rubber member A shape having a radius of curvature smaller by the thickness of 7 is determined. Further, in the portion where the contact surface μ of the rubber member is formed on a straight line, the support surface γ of the backing metal 8 is also a straight line parallel to the contact surface μ, and the restriction of the rubber member 7 is minimized as a whole. It is supposed to be a shape that becomes
[0027]
Here, as shown in FIG. 1 described above, the diaphragm 2 is in contact with the inner cylinder 3 or the outer cylinder 4 and depends on the running state of the vehicle (straight line, curve) and vibration (rolling, left-right movement, etc.). Thus, the range of contact and the size and distribution of contact pressure are changing. Such contact is an important element for generating a restoring force for vertical displacement and a restoring force for left and right vibrations and for normally supporting the posture of the vehicle body. However, excessive contact surface pressure is caused by the diaphragm 2 and the inner cylinder 3. Or since the abrasion of the rubber | gum which comprises the outer cylinder 4 is accelerated | stimulated, the one where a contact surface pressure is lower is preferable.
[0028]
Therefore, in the air spring 1 according to the present embodiment, focusing on the longitudinal section of the rubber seat 6 that contacts the diaphragm 2, a numerical analysis method by a computer that can simulate the internal pressure of the air spring 1 and the displacement during bogies is a finite method. An analysis method based on the element method (FEM) was developed, and parametric analysis was performed to change the radius of curvature R of the corner portion of the rubber seat 6 , and favorable conditions that can reduce the contact surface pressure were calculated. In this analysis, as described above, the perpendicular Φ of the contact surface μ of the rubber member 7 with the diaphragm 2 and the support surface γ supporting the rubber member 7 of the backing metal 8 are formed. The condition was that the angle α was vertical. Further, in such analysis, the influence of the air pressure inside the diaphragm 2 and the bogie displacement that occurs when the vehicle bends the curve (displacement in which the upper body side of the air spring 1 and the lower carriage frame side shift in the horizontal direction). The change in contact surface pressure was also grasped.
[0029]
As an example of the analysis result, an example in which the contact surface pressure distribution along the corner portion of the diaphragm 2 and the rubber seat 6 is analyzed is shown in FIG. In FIG. 3, (a) shows an example of an analysis result at the time of internal pressure load, and (b) shows an example of an analysis result at the time of bogie displacement load (in addition to the internal pressure load of (a), a load due to bogie displacement). FIG. 4 shows a plot of the maximum contact surface pressure when the radius of curvature R of the corner portion is changed parametrically.
[0030]
As shown in FIG. 4, by increasing the radius of curvature R, the maximum contact surface pressure is reduced. In particular, by making the radius of curvature R more than twice the wall thickness t of the diaphragm 2, the absolute value of the maximum contact surface pressure can be lowered, the wear resistance performance of rubber can be maintained, and a longer life can be expected. I understood.
[0031]
As described above, it has been found that by limiting the shape parameters of the contact surface shape of the rubber seat 6 , the contact surface pressure is averaged and the maximum contact surface pressure can be reduced. The lower the contact surface pressure, the smaller the frictional force generated in the direction perpendicular to the contact surface pressure, that is, along the surface of the diaphragm 2, which is effective in reducing wear of the diaphragm 2 and the rubber seat 6 .
[0032]
Further, the rubber seat 6 according to the present embodiment shown in FIG. 5 (R / t = 4 in FIG. 5A, R / t = 2 in FIG. 5B) and the comparative product shown in FIG. The result of comparing the contact surface pressure is shown in FIG. Here, the comparative product shown in FIG. 6 is such that the support surface 14 of the backing metal 8 that supports the rubber member 7 is not perpendicular to the perpendicular 13 of the contact surface 12 of the rubber member 7 with the diaphragm 2. It is formed so as to include (about 45 ° to 90 °) (R / t = 3.3). As shown in FIG. 7, it was found that the rubber seat 6 according to the present embodiment is more uniform than the comparative product in terms of wear because the contact surface pressure distribution is equalized and the maximum value is reduced.
[0033]
In the present embodiment, the rubber seat 6 of the inner cylinder 3 has been mainly described. However, the present invention is not limited to this, and the same applies to the outer cylinder 4 and a rubber member provided inside thereof. Is possible. In addition, although the description has been made assuming that the support surface of the backing metal 8 that supports the rubber member 7 is perpendicular to the perpendicular of the contact surface 12 of the rubber member 7 with the diaphragm 2, the present invention is not necessarily completely It does not need to be vertical, and includes what can be regarded as vertical within the range of design error.
[0034]
【The invention's effect】
As described above, according to the air spring for a bolsterless bogie of a railway vehicle according to the present invention, the contact condition between the diaphragm constituting the air spring and the rubber member of the outer cylinder or the inner cylinder is alleviated, and the rubber wear This has an excellent effect of reducing the amount and extending the wear life of the diaphragm and the rubber member.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a schematic configuration of an air spring according to an embodiment of the present invention.
FIG. 2 is an enlarged longitudinal sectional view showing a rubber seat shown in FIG.
FIGS. 3A and 3B are examples of analysis results of contact surface pressure distribution along the corners of the diaphragm and the rubber seat shown in FIG. 1, wherein FIG. 3A is an internal pressure load, and FIG. 3B is a bogie displacement load. Examples of analysis results are shown below.
4 shows the maximum value of the contact surface pressure when the radius of curvature R of the corner portion of the rubber seat shown in FIG. 1 is changed.
FIG. 5 is a longitudinal sectional view showing a design example of a rubber seat according to the present invention.
FIG. 6 is a longitudinal sectional view showing a design example of a rubber seat of a comparative example.
FIG. 7 is a result of comparing the maximum contact surface pressure of the rubber seat according to the present invention and the rubber seat of the comparative example.
FIG. 8 is a schematic configuration diagram showing a state in which an air spring according to the present invention is mounted on a vehicle.

Claims (1)

ダイヤフラムと、該ダイヤフラムに接触し該ダイヤフラムを支持するゴム座とを備える鉄道車両のボルスタレス台車用空気ばねにおいて、
前記ゴム座は、前記ダイヤフラムに接触するゴム製部材と、該ゴム製部材を支持する裏当て金とを備え、
前記ゴム製部材は、前記ダイヤフラムに接触する部分の肉厚が略一定に形成され、
前記裏当て金は、前記ゴム製部材の前記ダイヤフラムとの接触面の垂線に対して、前記ゴム製部材を支持する支持面が略垂直になるように形成され
前記ゴム座は、前記ダイヤフラムに接触するコーナ部を有し、該コーナ部の縦断面において、前記ゴム製部材の前記ダイヤフラムとの接触部の曲率半径が、前記ダイヤフラムの肉厚の2倍以上に形成されていることを特徴とする鉄道車両のボルスタレス台車用空気ばね。
In an air spring for a bolsterless carriage of a railway vehicle comprising a diaphragm and a rubber seat that contacts the diaphragm and supports the diaphragm,
The rubber seat includes a rubber member that contacts the diaphragm, and a backing metal that supports the rubber member,
The rubber member is formed so that the thickness of the portion in contact with the diaphragm is substantially constant,
The backing metal is formed such that a support surface for supporting the rubber member is substantially perpendicular to a perpendicular to a contact surface of the rubber member with the diaphragm ,
The rubber seat has a corner portion that comes into contact with the diaphragm, and in the longitudinal section of the corner portion, the radius of curvature of the contact portion of the rubber member with the diaphragm is more than twice the wall thickness of the diaphragm. bolsterless air spring bogie, characterized in that it is formed.
JP2000388371A 2000-12-21 2000-12-21 Air spring for bolsterless bogie of railway vehicle Expired - Fee Related JP4419115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000388371A JP4419115B2 (en) 2000-12-21 2000-12-21 Air spring for bolsterless bogie of railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000388371A JP4419115B2 (en) 2000-12-21 2000-12-21 Air spring for bolsterless bogie of railway vehicle

Publications (2)

Publication Number Publication Date
JP2002187548A JP2002187548A (en) 2002-07-02
JP4419115B2 true JP4419115B2 (en) 2010-02-24

Family

ID=18855117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000388371A Expired - Fee Related JP4419115B2 (en) 2000-12-21 2000-12-21 Air spring for bolsterless bogie of railway vehicle

Country Status (1)

Country Link
JP (1) JP4419115B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926487B2 (en) * 2006-02-15 2012-05-09 株式会社ブリヂストン Air spring
JP6041702B2 (en) * 2013-02-22 2016-12-14 東洋ゴム工業株式会社 Air spring
JP2018109434A (en) 2017-01-05 2018-07-12 東洋ゴム工業株式会社 Air spring
CN112460187B (en) * 2020-11-13 2022-07-29 株洲时代新材料科技股份有限公司 Method for improving wear resistance of lower seam allowance of large-curved-bag air bag
CN113983115B (en) * 2021-10-26 2023-05-30 株洲时代瑞唯减振装备有限公司 Method for assembling air spring with large transverse-vertical ratio

Also Published As

Publication number Publication date
JP2002187548A (en) 2002-07-02

Similar Documents

Publication Publication Date Title
JP5654294B2 (en) Air spring
TW479028B (en) Caster
US20110278425A1 (en) Vibration isolation system with a unique low vibration frequency
JP3268454B2 (en) Wheel suspension method and suspension device
US20120086255A1 (en) Vehicular seat
JP4419115B2 (en) Air spring for bolsterless bogie of railway vehicle
JP2018526285A (en) Bicycle-type vehicle suspension with an elastic element that makes it possible to obtain an optimal static compression curve, and an optimized elastic element for such a suspension
JP2578163B2 (en) Cushion body for seat
JP2008275009A (en) Shaft spring device
JP3400551B2 (en) Air spring
JP2009001085A (en) Rubber cushion stopper for railway vehicle
JPH08253065A (en) Seat device
JP2588784Y2 (en) Vehicle suspension mounting rubber
WO2013094136A1 (en) Air spring
KR102204855B1 (en) Pneumatic tire with bead filler applied with multiple rubber layer
JP3142131B2 (en) Air spring for vehicles
US11021087B2 (en) Vehicle seat
JP2000175761A (en) Seat cushion for vehicle
JP3968083B2 (en) Tire and rim assembly for motorcycle and shock absorber used therefor
JP5509871B2 (en) Seat
JP2009068514A (en) Vehicular axial spring
WO2021205678A1 (en) Laminated leaf spring clip and laminated leaf spring
JP5829511B2 (en) Air spring
JP5480267B2 (en) Vehicle comprising at least two cab suspension units and the same cab suspension unit
JPH06123328A (en) Upper support for suspension

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4419115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees