JP4418600B2 - Method for producing electrophotographic photosensitive member - Google Patents

Method for producing electrophotographic photosensitive member Download PDF

Info

Publication number
JP4418600B2
JP4418600B2 JP2001023870A JP2001023870A JP4418600B2 JP 4418600 B2 JP4418600 B2 JP 4418600B2 JP 2001023870 A JP2001023870 A JP 2001023870A JP 2001023870 A JP2001023870 A JP 2001023870A JP 4418600 B2 JP4418600 B2 JP 4418600B2
Authority
JP
Japan
Prior art keywords
fine particles
charge transport
transport layer
resin
photosensitive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001023870A
Other languages
Japanese (ja)
Other versions
JP2002229225A (en
JP2002229225A5 (en
Inventor
晴信 大垣
晃 ▲吉▼田
秀樹 穴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001023870A priority Critical patent/JP4418600B2/en
Publication of JP2002229225A publication Critical patent/JP2002229225A/en
Publication of JP2002229225A5 publication Critical patent/JP2002229225A5/ja
Application granted granted Critical
Publication of JP4418600B2 publication Critical patent/JP4418600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真感光体の製造方法に関し、詳しくは、耐摩耗性等の耐久性に優れ、かつ、初期の画質における高い品質を有し、更に長期にわたる繰り返し使用時においても高い画像均一性を有する電子写真感光体の製造方法に関する。
【0002】
【従来の技術】
像保持部材の代表的なものの一つとして、電子写真感光体が挙げられる。電子写真技術は、即時性、高品質の画像が得られること等から、近年では複写機の分野にとどまらず、各種プリンターの分野でも広く使われ応用されてきている。その中核となる電子写真感光体については、セレン、硫化カドミウム及び酸化亜鉛等に代表される無機系材料があるが、近年では無公害性、高生産性、材料設計の容易性及び将来性等の点から有機系材料の開発が盛んに行われている。
【0003】
有機系電子写真感光体においては、有機光導電物質をバインダー樹脂に溶解又は分散して、塗膜を形成して用いるのが通常である。その塗膜は、有機光導電物質とバインダー樹脂を溶媒に溶解又は分散後、塗布乾燥して形成される。バインダー樹脂としては、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体及びその共重合体、ポリカーボネート、ポリエステル、ポリアリレート、ポリスルフォン、フェノキシ樹脂、エポキシ樹脂、シリコーン樹脂等の材料が用いられている。
【0004】
これらの電子写真感光体には、当然ながら適用される電子写真プロセスに応じた電気的、機械的更には光学的特性等の様々な特性が要求される。特に、繰り返し使用される電子写真感光体にあたっては、帯電、露光、現像、転写、クリーニングといった電気的、機械的な力が直接的又は間接的に繰り返し加えられるため、それらに対する耐久性が要求される。有機電子写真感光体は、多くの面で無機電子写真感光体と比較して優位点があるが、機械的強度といった面で不十分であったためこれらの課題に対して、種々の検討がなされてきた。
【0005】
有機電子写真感光体の耐久性を向上させる一つの試みとして、電子写真感光体の最上層に使用する樹脂の機械的強度の向上が行われている。樹脂強度を向上させる手法としては、
(1)樹脂の性質として高い機械的強度を有する樹脂を使用する、
(2)高い機械的強度を有する組成を使用する樹脂に組み入れる、
(3)同組成の樹脂の分子量を上げ、高い分子量を有する樹脂を使用する、
等が行われていた。
【0006】
また、耐摩耗性を向上させる別の手法として、微粒子を電子写真感光体の電荷輸送層に添加する試みがなされ、電子写真感光体の耐久性の向上が図られていた。用いられている微粒子としては、シリカ、アルミナ及びチャートといった無機系微粒子や、フッ素系樹脂微粒子及びポリスチレン微粒子といった有機樹脂系微粒子である。
【0007】
しかしながら、微粒子を添加する弊害として、一般に微粒子は樹脂溶液中において凝集傾向が強く、均一な分散が困難であるといったことがあった。従来用いられていた電子写真感光体材料や方法では、微粒子のバインダー樹脂中での分散性や凝集性、透明度に問題があり、電荷輸送層の不均一性やムラ等による画像劣化が起こり易かった。また、電子写真感光体を作製するために微粒子を分散させた分散液を静置した場合、分散工程直後に一時的に分散しても時間経過に伴い二次凝集や沈降が起こるため、微粒子の均一分散状態を保持することができず、大量生産時に安定に均一な塗膜を形成することが困難であった。
【0008】
更に、分散性・分散安定性を高めるために界面活性剤といった分散助剤を添加する手法が用いられてきたが、分散助剤を添加することは電子写真特性(画質や電位の安定性等)を悪化させる要因になり、分散時に使用する分散助剤を使用しない、あるいは極力その使用量を抑えることが必要となる。従って、良好な電子写真特性を持ち、微粒子の分散性・分散安定性を有する技術の開発が求められていた。
【0009】
このように電子写真感光体の高耐久化を図るためには、分散助剤の使用を極力避けつつ微粒子を電子写真感光体に添加し、微粒子が樹脂中に均一に分散され、かつ分散状態を保持し、二次凝集や沈降を起こすことを防ぐ技術の開発が求められていた。
【0010】
【発明が解決しようとする課題】
本発明の目的は、電子写真感光体に高い機械的強度と高品質な画像を持たせることで長期にわたる繰り返し使用を可能にし、かつ長期使用においても、画質を損なうことなく安定した特性を有する電子写真感光体の製造方法を提供することにある。
【0011】
本発明の別の目的は、生産時に微粒子の二次凝集を抑制することで生産安定性が向上した電子写真感光体の製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明に従って、導電支持体及び該導電支持体上に形成された感光層を有、該感光層が電荷発生層及び電荷輸送層を有する積層型の感光層であり、該電荷輸送層が電子写真感光体の最外層である電子写真感光体を製造する方法において、
クロロベンゼン
フッ素系樹脂微粒子、
フッ素系樹脂微粒子の分散助剤、並びに、
構成単位としては下記一般式()で示される構成単位を有し、かつ重量平均分子量(Mw)が150000〜200000であり、かつインヘレント粘度(ηinh.:溶媒としてテトラクロロエタンを用い、樹脂の濃度を1.0g/dlとし、25℃で測定)が1.1〜1.4であるポリアリレート樹脂
を含有する電荷輸送層用塗布液を用いて該電荷輸送層の形成を行い、
該電荷輸送層用塗布液における該分散助剤の量が該フッ素系樹脂微粒子の3質量%であり、
該電荷輸送層用塗布液における該フッ素系樹脂微粒子の量が該電荷輸送層用塗布液の固形分量の10質量%以上である
ことを特徴とする電子写真感光体の製造方法が提供される。
【0013】
【化2】
【0017】
【発明の実施の形態】
以下に、本発明の実施の形態を詳細に説明する。
【0018】
本発明は、電子写真感光体の最外層を構成する電荷輸送層に
フッ素系樹脂微粒子、並びに、
下記一般式(1)
化6
{一般式(1)中、Xは−CR −(R 及びR は同一又は異なって水素原子、トリフルオロメチル基、炭素数1〜3のアルキル基又はフェニル基である。)、シクロアルキリデン基、単結合、エーテル結合、チオエーテル結合又はスルホニル結合である。また、R 〜R は同一又は異なって水素原子、ハロゲン原子、置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を示す。}
で示される構成単位を有し、かつ重量平均分子量(Mw)が10万以上であり、かつインヘレント粘度(ηinh.:溶媒としてテトラクロロエタンを用い、樹脂の濃度を1.0g/dlとし、25℃で測定)が0.8以上であるポリアリレート樹脂
含有させることで、高い機械的強度を達成し、かつ樹脂微粒子を均一に樹脂中分散させることにより高品位な画像を提供し、繰り返し使用時にも安定した特性を得るものである。
【0019】
以下、「重量平均分子量(Mw)が10万以上のポリアリレート樹脂」とは、「重量平均分子量(Mw)が10万以上であり、かつインヘレント粘度(ηinh.:溶媒としてテトラクロロエタンを用い、樹脂の濃度を1.0g/dlとし、25℃で測定)が0.8以上のポリアリレート樹脂」を指すものとする。
【0020】
一般式(1)の構造の中でも、一般式(2)、一般式(3)あるいは一般式(4)で示される構造単位を有する重量平均分子量(Mw)が10万以上のポリアリレート樹脂を使用することで、機械的強度の向上のみならず、樹脂の溶解性を向上させることによる電子写真感光体作製時の生産性向上を図ることが可能である。
【0021】
【化
【0022】
また、一般式(2)、一般式(3)あるいは一般式(4)で示される構成単位を共重合させた重量平均分子量(Mw)が10万以上のポリアリレート樹脂を使用する場合でも、同様の機械的強度の向上と溶解性の向上を達成することが可能である。
【0023】
更に、電子写真感光体の耐久性を高める手法である微粒子の添加、つまり本発明におけるフッ素系樹脂微粒子を感光層中に添加することにより、更なる高耐久化が可能になる。
【0024】
本発明の検討で、電荷輸送層中にフッ素系樹脂微粒子と重量平均分子量(Mw)が10万以上のポリアリレート樹脂{一般式(1)}を有することにより、電子写真感光体の機械的強度の向上が達成された。更に、フッ素系樹脂微粒子を用いた電子写真感光体の画像不良は、フッ素系樹脂微粒子の電荷輸送層中で分散状態の不均一性やムラ等によることが多く、これらの分散不良の原因には、電子写真感光体を作製するために微粒子を分散させた分散液を静置した場合の樹脂微粒子の二次凝集あるいは沈降、また、塗工時に液を流動させた場合に、液にシェアがかかることによる分散状態の変化あるいは二次凝集が起こることに一因がある場合があった。その結果、微粒子の均一分散状態を保持することができず、安定に均一な塗膜を形成することが困難であったが、本発明で用いた重量平均分子量(Mw)が10万以上のポリアリレート樹脂と共に使用した場合には、画像不良の抑制が見られた。
【0025】
更に、低分子量ポリアリレート樹脂を用い、フッ素樹脂微粒子の含有比率を高くした場合、樹脂微粒子の分散不良、あるいは再凝集といったものに起因する画像不良が発生する傾向にあり、また、分散不良や再凝集を防ぐため、界面活性剤といった分散助剤を多く添加すると繰り返し使用時に画像濃度が低下する弊害が発生する傾向にある。しかしながら、重量平均分子量(Mw)が10万以上のポリアリレート樹脂を用い、フッ素系樹脂微粒子の含有比率を高くした場合では、分散助剤の添加量を低く抑えたにもかかわらず、分散性の低下や分散安定性の低下(二次的な凝集の発生)による画像不良は見られず、分散助剤の添加量を抑えたため、繰り返し使用時の画像濃度低下といった弊害は見られなかった。
【0026】
電子写真感光体の電荷輸送層をポリアリレート樹脂とフッ素系樹脂微粒子より構成し、電子写真感光体の高耐久化を図る試みは、特開平9−319129号公報でも行われている。この公報における実施例では、重量平均分子量(Mw)が約3万程度のポリアリレート樹脂を用い、フッ素系樹脂微粒子を電荷輸送層用塗工液の固形分量の10質量%〜30質量%添加した例が示してある。この時の分散助剤は、フッ素系樹脂微粒子の4質量%添加され、分散性良好で良好な初期画像を提供できることが示してある。しかしながら、繰り返し使用時の濃度低下を起こさず更に良好な画質を確保するために分散助剤の微粒子に対する質量比を低くすることを試みたところ、特開平9−319129号公報の実施例で使用している重量平均分子量(Mw)が約3万程度のポリアリレート樹脂を用い、分散助剤の質量比を3%にし、かつフッ素系樹脂微粒子を電荷輸送層用塗工液の固形分量の10質量%以上にした場合では、分散不良による初期画像の悪化が確認された。
【0027】
このことは重量平均分子量が約3万程度のポリアリレート樹脂では、フッ素系樹脂微粒子を10質量%以上電荷輸送層に含有させることでの電子写真感光体の耐久性向上と良好な画像を両立させることが困難であることを示している。同目的で重量平均分子量(Mw)が約10万程度のポリアリレート樹脂を用い、分散助剤の質量比を3%にし、かつフッ素系樹脂微粒子を電荷輸送層用塗工液の固形分量の10質量%以上にした場合では、分散不良による初期画像の悪化は見られず、繰り返し使用時の濃度低下も低く抑えることができた。このことは、重量平均分子量(Mw)が約10万程度のポリアリレート樹脂を用いた場合には、電子写真感光体の耐久性向上と良好な画像の両立が可能であることを示している。
【0028】
この重量平均分子量(Mw)が10万以上のポリアリレート樹脂による分散性、分散安定性の向上効果の具体的なメカニズムについては十分には解明されていないが、重量平均分子量(Mw)が10万以上であるポリアリレート樹脂を使用した場合、樹脂を溶剤に溶解させた電子写真感光体塗布液の粘度が、同条件で従来のポリアリレート樹脂を使用した場合と比較すると高い値となり、塗布液が適度に高粘度になることで、フッ素系樹脂微粒子の分散状態が安定化し、更に分散状態の保持能力が向上することで、これら分散不良による画像欠陥が抑制されていることも一因であると考えられる。
【0029】
重量平均分子量の比較的小さい(重量平均分子量が10万より小さい)ポリアリレート樹脂を使用し、塗工液の粘度を高くすることで分散性安定性の向上を図るとすると、必然として塗工液の固形分量を上げることになるが、この場合、感光層の適正膜厚を塗工する生産段階で、より低速での塗工となるため大量生産に不向きとなる。重量平均分子量(Mw)が10万以上の大きいポリアリレート樹脂を使用することで、生産性を維持して分散安定性を高めることが可能になる。
【0030】
フッ素系樹脂微粒子の粒径に関する検討では、フッ素系樹脂微粒子の粒径が0.5μmより大きな微粒子を用いた場合には、微粒子分散後の塗工液の液保存性が悪くなり、静置時の微粒子の沈降が起こり、分散ムラや二次的な凝集によると思われる画像不良が見られてくる。0.5μmより大きな粒径のフッ素系樹脂微粒子であっても、重量平均分子量(Mw)が10万以上の大きいポリアリレート樹脂や分散助剤を用いれば、沈降や二次的凝集は抑制されたが、良質な画像としての全ての条件を必ずしも満たすわけではなかった。しかしながら、粒径が0.3μm以下のフッ素系樹脂微粒子を用い、重量平均分子量(Mw)が10万以上のポリアリレート樹脂と分散助剤との組み合わせで用いた場合には、微粒子を分散させた塗工液の静置時における微粒子の沈降や二次的な凝集は発生せず、良好な初期画像が得られた。これも重量平均分子量10万以上の大きいポリアリレート樹脂を用いた場合の、塗布液が適度に高粘度になることで、フッ素系樹脂微粒子の分散状態が安定化し、更に分散状態の保持能力が向上することの効果が作用していることが一因であると考えられる。
【0031】
以下に、本発明に用いられる一般式(1)で示される構成単位を有するポリアリレート樹脂の構成単位の好ましい例を以下に示すが、これらに限定されるものではない。
【0032】
【表1】
【0033】
【表2】
【0034】
特に、構成単位例(1)、構成単位例(2)又は構成単位例(3)で示されるポリアリレート樹脂が、機械的強度、溶剤に対する溶解性といった点から好ましい。
【0035】
また、強度や溶解性等の他特性を付加するために他構造のビスフェノールとの共重合体とすることも可能である。例えば、一般式(2)で示されるポリアリレート樹脂に対し、一般式(3)で示されるポリアリレート樹脂を共重合させた場合、重合比率は5/95〜95/5までのいずれにおいても各々の特性を引き出すことが可能である。
【0036】
更に、生産性の向上等のために他構造のポリアリレートやポリカーボネートとブレンドすることも可能である。例えば、一般式(2)で示されるポリアリレート樹脂に対し、一般式(3)で示されるポリアリレート樹脂をブレンドした場合、混合比率(質量比)は式(2)/式(3)=5/95〜95/5で可能であり、本発明の効果を効率よく発現させるためには、20/80〜80/20が好ましい。
【0037】
樹脂の分子量は、機械的強度や、フッ素系樹脂微粒子の分散安定性、分散保持性といった観点から、重量平均分子量(Mw)が10万以上で、その効果が十分に発揮される。しかしながら、重量平均分子量があまりに大きいと塗布液の粘度が高くなりすぎ、生産性が低下するため、重量平均分子量(Mw)10万〜25万であるポリアリレート樹脂が好ましい。
【0038】
フッ素系樹脂微粒子は、その組成が、テトラフルオロエチレン樹脂、クロロトリフルオロエチレン樹脂、ヘキサフルオロエチレンプロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、ジクロロジフルオロエチレン樹脂及びこれら共重合体から選ばれる少なくとも1種類の樹脂よりなる微粒子が好ましい。
【0039】
良好な画質を確保するためには、前述の事項から樹脂微粒子の平均粒径が0.3μm以下が好ましく、特には平均粒径0.1μm以下であることが好ましい。
【0040】
以下、本発明の電子写真感光体の構成について説明する。
【0041】
本発明の電子写真感光体は、電荷輸送材料を含有する電荷輸送層と電荷発生材料を含有する電荷発生層とを有する積層型の場合に適用される。
【0042】
本発明における電荷発生材料としては、通常知られているものが使用可能であり、例えば、セレン−テルル、ピリリウム系染料、チオピリリウム系染料、金属フタロシアニン系顔料、無金属フタロシアニン系顔料、アントアントロン系顔料、ジベンズピレンキノン系顔料、ピラントロン系顔料、トリスアゾ系顔料、ジスアゾ系顔料、アゾ系顔料、インジゴ系顔料、キナクリドン系顔料及びシアニン系顔料等が挙げられる。これらの顔料は、0.3〜4倍の質量のバインダー樹脂及び溶剤と共にホモジナイザー、超音波分散、ボールミル、振動ミル、サンドミルアトライター、ロールミル又は液衝突型高速分散機等を使用して、十分に分散した分散液とする。積層型の電子写真感光体の場合、この液を塗布し、乾燥することによって電荷発生層が得られる。膜厚は5μm以下であることが好ましく、特には0.1〜2μmであることが好ましい。
【0043】
電荷輸送材料は、電子輸送材料と正孔輸送材料に大別され、電子輸送性化合物としては、2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロフルオレノン、クロラニル、テトラシアノキノジメタン及びアルキル置換ジフェノキノン等の電子受容性化合物やこれらの電子受容性化合物を高分子化したものが挙げられる。正孔輸送性化合物としては、ピレン及びアントラセン等の多環芳香族化合物、カルバゾール、インドール、オキサゾール、チアゾール、オキサチアゾール、ピラゾール、ピラゾリン、チアジアゾール及びトリアゾール等の複素環化合物、p−ジエチルアミノベンズアルデヒド−N,N−ジフェニルヒドラゾン及びN,N−ジフェニルヒドラジノ−3−メチリデン−9−エチルカルバゾール等のヒドラゾン系化合物、α−フェニル−4’−N,N−ジフェニルアミノスチルベン及び5−(4−(ジ−p−トリルアミノ)ベンジリデン)−5H−ジベンゾ(a,d)シクロヘプテン等のスチリル系化合物、ベンジジン系化合物及びトリアリールアミン系化合物あるいはこれらの化合物からなる基を主鎖又は側鎖に有する高分子化合物(ポリ−N−ビニルカルバゾールやポリビニルアントラセン等)が挙げられる。これらの化合物は、バインダー樹脂と共に溶剤に溶解し溶液とする。積層型の電子写真感光体の場合、この液を塗布し、乾燥することによって電荷輸送層が得られる。膜厚は5〜40μmであることが好ましく、特には15〜30μmであることが好ましい。
【0044】
電荷輸送層に用いられる電荷輸送材料は、電荷輸送層の固形分に対して20〜70質量%が好ましい。20質量%未満では十分な電荷移動能が得られにくいために残留電位の増加等が生じ易い。70質量%を超えると電荷輸送層の機械的強度が低下し易いために十分な耐久性が得られにくい。
【0045】
電荷輸送層に用いられるバインダー樹脂は、電荷輸送層の固形分に対して20〜80質量%が好ましい。80質量%を超えると十分な電荷移動能が得られにくいために残留電位の増加及び電気的耐久性低下、低表面エネルギー化の効果低減等が生じ易い。20質量%未満では電荷輸送層の機械的強度が低下し易いために十分な耐久性が得られにくい。
【0046】
上述したフッ素系樹脂微粒子を、重量平均分子量10万以上のポリアリレート樹脂中に分散させる場合に、分散助剤を用いてもよい。分散助剤としては、フッ素系界面活性剤が好ましい。具体的には、フッ素系界面活性剤として、
X−SONRCHCOOH、
X−SONRCHCHO(CHCHO)H (n=5、10、15)、
X−SON(CHCHCHOH)
X−RO(CHCHO) (n=5、10、15)、
X−(RO) (n=5〜20)、
X−(RO)R (n=5〜20)、
X−COOH、X−CHCHCOOH、X−ORCOOH、X−ORCHCOOH、
X−SOH、X−ORSOH、X−CHCHOH、
【0047】
【化
X−を側鎖に有するグラフトポリマー型界面活性剤、X−CH−を側鎖に有するグラフトポリマー型界面活性剤、X−CHCH−を側鎖に有するグラフトポリマー型界面活性剤、X−CHCHOCO−を側鎖に有するグラフトポリマー型界面活性剤等が挙げられる。但し、式中のRはアルキル基、アリル基又はアラルキル基を示し、Xは−CF、−C又は−C17等のフッ化カーボン基を示す。
【0048】
フッ素系樹脂微粒子の分散方法としては、ホモジナイザー、ボールミル、サンドミル、ロールミル及び超音波等といった方法が挙げられるが、一次粒径の粒径まで分散可能であれば特に限定されるものではない。
【0049】
また、本発明においては、導電支持体と感光層、あるいは導電層と感光層の間に必要に応じて接着機能及び電荷バリアー機能を有する中間層を設けることができる。中間層の材料としては、カゼイン、ポリビニルアルコール、ポリビニルブチラール、ニトロセルロース、エチルセルロース、エチレン−アクリル酸コポリマー、ポリエチレンオキシド、フェノール樹脂、ポリアミド、ポリウレタン、ポリエーテルウレタン及びゼラチン等が挙げられる。これらは、溶剤に溶解して塗布し乾燥される。中間層の膜厚は0.05〜5μmであることが好ましく、特には0.2〜1μmであることが好ましい。
【0050】
感光層には、前記化合物以外にも機械的特性の改良や耐久性向上のために添加剤を用いることができる。このような添加剤としては、酸化防止剤、紫外線吸収剤、安定化剤、架橋剤、潤滑剤及び導電性制御剤等が挙げられる。
【0051】
これらの電子写真感光体の塗布方法としての限定はなく、浸漬塗布法、スプレー塗布法及びバーコート法等の通常知られている手段が使用できる。
【0052】
図1に本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成を示す。
【0053】
図1において、1はドラム状の本発明の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。電子写真感光体1は、回転過程において、帯電手段3によりその周面に正又は負の所定電位の均一帯電を受け、次いで、スリット露光やレーザービーム走査露光等の露光手段(不図示)から出力される目的の画像情報の時系列電気デジタル画像信号に対応して強調変調された露光光4を受ける。こうして電子写真感光体1の周面に対し、目的の画像情報に対応した静電潜像が順次形成されていく。
【0054】
形成された静電潜像は、次いで現像手段5によりトナー現像され、不図示の給紙部から電子写真感光体1と転写手段6との間に電子写真感光体1の回転と同期して取り出されて給送された転写材7に、電子写真感光体1の表面に形成担持されているトナー画像が転写手段6により順次転写されていく。
【0055】
トナー画像の転写を受けた転写材7は、電子写真感光体面から分離されて像定着手段8へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。
【0056】
トナー画転写した後の電子写真感光体1の表面は、クリーニング手段9によって転写残りトナーの除去を受けて清浄面化され、更に前露光手段(不図示)からの前露光光10により除電処理された後、繰り返し画像形成に使用される。なお、帯電手段3が帯電ローラー等を用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。
【0057】
本発明においては、上述の電子写真感光体1、帯電手段3、現像手段5及びクリーニング手段9等の構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、帯電手段3、現像手段5及びクリーニング手段9の少なくとも一つを電子写真感光体1と共に一体に支持してカートリッジ化して、装置本体のレール等の案内手段12を用いて電子写真装置本体に着脱自在なプロセスカートリッジ11とすることができる。
【0058】
また、露光光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいは、センサーで原稿を読取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動又は液晶シャッターアレイの駆動等により照射される光である。
【0059】
本発明の電子写真感光体は、電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、FAX、液晶プリンター及びレーザー製版等の電子写真応用分野にも幅広く適用し得るものである。
【0060】
【実施例】
以下、具体的な実施例を挙げて本発明をより詳細に説明する。なお、実施例中の「部」は質量部を示す。
【0061】
参考例1)
30φ×357mmのアルミニウムシリンダー上に、以下の材料より構成される塗工液を浸漬塗布法にて塗布し、140℃で30分間熱硬化することにより、膜厚が15μmの導電層を形成した。
【0062】
導電性顔料:SnOコート処理硫酸バリウム 10部
抵抗調整用顔料:酸化チタン 2部
バインダー樹脂:フェノール樹脂 6部
レベリング材:シリコーンオイル 0.001部
溶剤:メタノール/メトキシプロパノール=2/8(質量比) 20部
【0063】
次に、この導電層上に、N−メトキシメチル化ナイロン3部及び共重合ナイロン3部をメタノール65部/n−ブタノール30部の混合溶剤に溶解した溶液を浸漬塗布法で塗布し、乾燥することによって、膜厚が0.5μmの中間層を形成した。
【0064】
次に、下記構造式で示されるアゾ顔料を4部、
【0065】
【化
【0066】
ポリビニルブチラール(商品名:エスレックBLS、積水化学製)2部及びシクロヘキサノン35部を1mmφガラスビーズを用いたサンドミル装置で12時間分散し、その後にメチルエチルケトン60部を加えて電荷発生層用分散液を調製した。この分散液を中間層上に浸漬塗布法で塗布し、乾燥することによって、膜厚が0.3μmの電荷発生層を形成した。
【0067】
次いで、平均一次粒径0.3μmのポリテトラフロロエチレン粒子4部と分散助剤としてフッ素系界面活性剤(商品名:アロンGF300、東亜合成化学製)0.16部(フッ素系樹脂微粒子に対して4質量%)、重量平均分子量(Mw)15万で、インヘレント粘度が1.1である構成単位例(1)の構造よりなるポリアリレート樹脂8部にクロロベンゼン80部を加え、フッ素樹脂微粒子分散液を調合した。この分散液に電荷輸送材料として下記構造式のアミン化合物7部、
【0068】
【化10
【0069】
下記構造式のアミン化合物1部、
【0070】
【化11
【0071】
を加え、電荷輸送層用の塗布液を得た。この塗布液を浸漬塗布法で塗布し、120℃にて1時間乾燥し、膜厚が27μmの電荷輸送層を形成した。作製条件を表1に示す。
【0072】
次に、評価について説明する。評価は、キヤノン(株)製複写機GP40(電子写真感光体に接触配置された帯電部材から交流電圧を重畳した直流電圧を印加して電子写真感光体を帯電させるAC/DC帯電方式)を用いた。暗部電位Vd=−700Vとして、明部電位Vl=−200Vとした。A4サイズの普通紙を1枚複写ごとに1度停止する間欠モードにて10000枚の複写を行い、その後、電子写真感光体膜厚の摩耗量を測定した。また、初期の分散不良による画像欠陥の有無を観察した。評価方法は、電子写真感光体を用いて画像出力したA3用紙全面の分散不良による画像欠陥の個数を目視により測定し、画像欠陥がない場合:○、欠陥が1〜2個の場合:△、3個以上の場合:×として評価した。更に、電荷輸送層用塗布液を室温で暗所に1ヶ月放置後の微粒子の凝集についても観察した。評価法は、静置前の平均粒径(粒度分布計:堀場製作所、CAPA700で測定)と1ヶ月静置後の平均粒径の差を評価し、粒径差が0.2μm未満に場合:凝集なし、平均粒径差が0.2〜0.5μm未満の場合:わずかに凝集、平均粒径差が0.5μm以上の場合:凝集ありと評価した。結果を表2に示す。
【0073】
(実施例2〜5及び参考例6〜14)
表1に示す条件で電子写真感光体を作製し(表1に示す条件を変更した以外は参考例1と同様)、評価した。結果を表2に示す。
【0074】
(比較例1〜4)
電荷輸送層を構成する樹脂として、重量平均分子量(Mw)が4万でインヘレント粘度が0.5である構成単位例(1)よりなるポリアリレート樹脂を用い、表1に示す条件で電子写真感光体を作製し(表1に示す条件を変更した以外は参考例1と同様)、評価した。結果を表2に示す。
【0075】
(比較例5〜7)
電荷輸送層を構成する樹脂として、重量平均分子量(Mw)が4万である一般式(5)の構成単位よりなるポリカーボネート樹脂を用い、表1に示す条件で電子写真感光体を作製し(表1の条件を変更した以外は参考例1と同様)、評価した。結果を表2に示す。
【0076】
【化12
【0077】
【表1】
【0078】
【表2】
【0079】
(実施例15)
電荷輸送層に用いるフッ素系樹脂微粒子として平均一次粒径0.1μmのポリテトラフロロエチレン粒子4部と分散助剤としてフッ素系界面活性剤(商品名:アロンGF300、東亜合成化学製)0.12部(フッ素系樹脂微粒子に対して3質量%)を用いた以外は、実施例2と同様にして電荷輸送層用塗工液及び電子写真感光体を作製した。
【0080】
次に、評価について説明する。評価は、キヤノン(株)製複写機GP40(電子写真感光体に接触配置された帯電部材から交流電圧を重畳した直流電圧を印加して電子写真感光体を帯電させるAC/DC帯電方式)を用いた。暗部電位Vd=−700Vとして、明部電位Vl=−200Vとした。初期の分散不良による画像欠陥の有無を観察した。評価方法は、電子写真感光体を用いて画像出力したA3用紙全面の分散不良による画像欠陥の個数を目視で測定し、画像欠陥がない場合:○、欠陥が1〜2個の場合:△、3個以上の場合:×として評価した。更に、電荷輸送層用塗布液を室温で暗所に1ヶ月放置後の微粒子の凝集についても観察した。評価法は静置前の平均粒径(粒度分布計:堀場製作所、CAPA700で測定)と1ヶ月静置後の平均粒径の差を評価し、粒径差が0.2μm未満に場合:凝集なし、平均粒径差が0.2〜0.5μm未満の場合:わずかに凝集、平均粒径差が0.5μm以上の場合:凝集ありと評価した。結果を表3に示す。
【0081】
参考例16)
電荷輸送層を構成する樹脂として、重量平均分子量(Mw)が20万である構成単位例(1)及び(2)の共重合{重合比(1)/(2)=7/3}よりなるポリアリレート樹脂とフッ素系樹脂微粒子として平均一次粒径0.1μmのポリテトラフロロエチレン粒子4部、分散助剤としてフッ素系界面活性剤(商品名:アロンGF300、東亜合成化学製)0.12部(フッ素系樹脂微粒子に対して3質量%)を用いた以外は、実施例2と同様にして電荷輸送層用塗工液及び電子写真感光体を作製し、実施例15と同様に評価した。結果を表3に示す。
【0082】
参考例17)
電荷輸送層を構成する樹脂として、重量平均分子量(Mw)が15万である構成単位例(1)及び(3)の共重合(重合比(1)/(3)=7/3)の構造よりなるポリアリレート樹脂とフッ素系樹脂微粒子として平均一次粒径0.1μmのポリテトラフロロエチレン粒子4部、分散助剤としてフッ素系界面活性剤(商品名:アロンGF300、東亜合成化学製)0.12部(フッ素系樹脂微粒子に対して3質量%)を用いた以外は、実施例2と同様にして電荷輸送層用塗工液及び電子写真感光体を作製し、実施例15と同様に評価した。結果を表3に示す。
【0083】
(比較例8及び9)
表3に示す条件で電子写真感光体を作製し(表3の条件を変更した以外は実施例2と同様)、実施例15と同様に評価した。結果を表3に示す。
【0084】
【表3】
【0085】
表2より、重量平均分子量(Mw)が10万以上のポリアリレート樹脂とフッ素系樹脂微粒子を電荷輸送層中に含有する本発明の電子写真感光体を用いることによって、繰り返し使用時の電子写真感光体の耐久性が向上、及び従来の分散不良による電子写真感光体の使用初期に画質劣化することなく、長期にわたり均一な画像を提供できることが示された。特に、フッ素系樹脂微粒子を電荷輸送層中の固形分量の10質量%以上用いて高耐久化を図った場合、重量平均分子量(Mw)が10万以上のポリアリレート樹脂を使用した効果が顕著に現れ、低分子量ポリアリレートでは困難であった耐久性向上と高画質の維持を両立することが可能になった。更に、電荷輸送層用塗布液の長期保存時においても、フッ素系樹脂微粒子の二次的な凝集を、高い分子量を有するポリアリレート樹脂を用いることで抑制し、分散液が変化しないことで電子写真感光体の生産安定性も向上した。
【0086】
また表2および表3より、重量平均分子量(Mw)が10万以上のポリアリレート樹脂を使用することによりフッ素系樹脂微粒子の一次粒径が0.3μm以下であれば、フッ素系樹脂微粒子の固形分量が10質量%を超える場合であっても、低分子量ポリアリレート樹脂では困難であった電荷輸送層用塗布液の長期保存時においても、フッ素系樹脂微粒子の二次的な凝集を抑制することができ、良好な画像を提供できることが明らかになった。
【0087】
よって本発明の電荷輸送層中に重量平均分子量(Mw)が10万以上かつインヘレント粘度が0.8以上のポリアリレート樹脂とフッ素系樹脂微粒子を含有する電子写真感光体、その電子写真感光体を有するプロセスカートリッジ及び電子写真装置の優位性が示された。
【0088】
【発明の効果】
本発明によれば、電荷輸送層に重量平均分子量(Mw)が10万以上、かつインヘレント粘度が0.8以上であるポリアリレート樹脂とフッ素系樹脂微粒子を含有させることにより、電子写真感光体の耐摩耗性が著しく向上し、繰り返し使用時における耐久性が向上し、かつ高分子量の樹脂を使用することで、フッ素系樹脂微粒子が膜中に均一に分散し、分散不良や二次的な凝集等によるムラの発生を抑制し、良好な画像を提供できる電子写真感光体、その電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することが可能となった。
【図面の簡単な説明】
【図1】 本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の例を示す図である。
【符号の説明】
1 電子写真感光体
2 軸
3 帯電手段
4 露光光
5 現像手段
6 転写手段
7 転写材
8 定着手段
9 クリーニング手段
10 前露光光
11 プロセスカートリッジ
12 案内手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to an electrophotographic photoreceptor.Manufacturing methodSpecifically, the electrophotographic photosensitive member is excellent in durability such as wear resistance, has high quality in initial image quality, and has high image uniformity even during repeated use over a long period of time.Manufacturing methodAbout.
[0002]
[Prior art]
  One representative image holding member is an electrophotographic photosensitive member. In recent years, electrophotographic technology has been widely used and applied not only in the field of copying machines but also in the field of various printers because of its immediacy and high-quality images. The core electrophotographic photoreceptors include inorganic materials such as selenium, cadmium sulfide, and zinc oxide. In recent years, however, there are no pollution, high productivity, ease of material design, and future prospects. From this point, organic materials have been actively developed.
[0003]
  In organic electrophotographic photoreceptors, it is usual to use an organic photoconductive substance dissolved or dispersed in a binder resin to form a coating film. The coating film is formed by dissolving or dispersing the organic photoconductive substance and the binder resin in a solvent and then applying and drying. As the binder resin, materials such as vinyl polymers such as polymethyl methacrylate, polystyrene, and polyvinyl chloride and copolymers thereof, polycarbonate, polyester, polyarylate, polysulfone, phenoxy resin, epoxy resin, silicone resin, and the like are used. Yes.
[0004]
  These electrophotographic photoreceptors are naturally required to have various characteristics such as electrical, mechanical and optical characteristics according to the applied electrophotographic process. In particular, in electrophotographic photoreceptors that are repeatedly used, electrical and mechanical forces such as charging, exposure, development, transfer, and cleaning are repeatedly applied directly or indirectly, and thus durability against them is required. . The organic electrophotographic photosensitive member has many advantages over the inorganic electrophotographic photosensitive member in many aspects, but because of insufficient mechanical strength, various studies have been made on these issues. It was.
[0005]
  As one attempt to improve the durability of the organic electrophotographic photosensitive member, the mechanical strength of the resin used for the uppermost layer of the electrophotographic photosensitive member has been improved. As a technique to improve the resin strength,
(1) Use a resin having high mechanical strength as a property of the resin.
(2) Incorporate into the resin using a composition having high mechanical strength,
(3) Increasing the molecular weight of the resin having the same composition and using a resin having a high molecular weight.
Etc. were done.
[0006]
  Further, as another method for improving the wear resistance, attempts have been made to add fine particles to the charge transport layer of the electrophotographic photosensitive member, thereby improving the durability of the electrophotographic photosensitive member. The fine particles used are inorganic fine particles such as silica, alumina and chart, and organic resin fine particles such as fluorine resin fine particles and polystyrene fine particles.
[0007]
  However, as a harmful effect of adding fine particles, the fine particles generally have a strong tendency to agglomerate in the resin solution, and uniform dispersion is difficult. Conventionally used electrophotographic photoreceptor materials and methods have problems with the dispersibility, agglomeration, and transparency of fine particles in the binder resin, and image degradation is likely to occur due to non-uniformity and unevenness of the charge transport layer. . In addition, when a dispersion liquid in which fine particles are dispersed to stand for producing an electrophotographic photosensitive member is allowed to stand, secondary aggregation or sedimentation occurs with time even if temporarily dispersed immediately after the dispersion step. A uniformly dispersed state could not be maintained, and it was difficult to stably form a uniform coating film during mass production.
[0008]
  Furthermore, in order to improve dispersibility and dispersion stability, a method of adding a dispersion aid such as a surfactant has been used. However, the addition of a dispersion aid is an electrophotographic property (image quality, potential stability, etc.). Therefore, it is necessary not to use a dispersion aid used at the time of dispersion or to suppress the amount of use as much as possible. Accordingly, there has been a demand for the development of a technique having good electrophotographic characteristics and having fine particle dispersibility and dispersion stability.
[0009]
  Thus, in order to achieve high durability of the electrophotographic photosensitive member, the fine particles are added to the electrophotographic photosensitive member while avoiding the use of a dispersion aid as much as possible, and the fine particles are uniformly dispersed in the resin. There has been a demand for the development of a technique for holding and preventing secondary aggregation and sedimentation.
[0010]
[Problems to be solved by the invention]
  An object of the present invention is to provide an electrophotographic photosensitive member having a high mechanical strength and a high-quality image so that it can be used repeatedly over a long period of time, and has stable characteristics without impairing image quality even in long-term use. PhotoconductorManufacturing methodIs to provide.
[0011]
  Another object of the present invention is to provide an electrophotographic photoreceptor having improved production stability by suppressing secondary aggregation of fine particles during production.Manufacturing methodIs to provide.
[0012]
[Means for Solving the Problems]
  According to the present invention, a conductive support and a photosensitive layer formed on the conductive support are provided.ShiThe photosensitive layer is a laminated type photosensitive layer having a charge generation layer and a charge transport layer, and the charge transport layerIs electricAn electrophotographic photosensitive member which is the outermost layer of the child photographic photosensitive memberHow to manufactureIn
  Chlorobenzene,
  Fluorine resin fine particles,
  Dispersing aid for fluorine resin fine particles,And
  As a structural unitThe following general formula (2) And the weight average molecular weight (Mw) is150,000-200000Inherent viscosity (ηinh .: measured using tetrachloroethane as a solvent and a resin concentration of 1.0 g / dl at 25 ° C.)1.1-1.4Polyarylate resin
ContainsThe charge transport layer is formed using the charge transport layer coating solution,
  The amount of the dispersion aid in the charge transport layer coating solution is 3% by mass of the fluororesin fine particles,
  The amount of the fluororesin fine particles in the charge transport layer coating solution is 10% by mass or more of the solid content of the charge transport layer coating solution.
An electrophotographic photosensitive memberManufacturing methodIs provided.
[0013]
[Chemical 2]
[0017]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described in detail.
[0018]
  The present invention provides a charge transport layer constituting the outermost layer of an electrophotographic photoreceptor.
  Fluorine resin fine particlesAs well as
  The following general formula (1)
[6]
{In General Formula (1), X is -CR 5 R 6 -(R 5 And R 6 Are the same or different and are a hydrogen atom, a trifluoromethyl group, an alkyl group having 1 to 3 carbon atoms, or a phenyl group. ), A cycloalkylidene group, a single bond, an ether bond, a thioether bond or a sulfonyl bond. R 1 ~ R 4 Are the same or different and each represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. }
And a structural unit represented byWeight average molecular weight(Mw) is100,000 or moreAnd the inherent viscosity (ηinh .: tetrachloroethane as the solvent, the resin concentration is 1.0 g / dl, measured at 25 ° C.) is 0.8 or more.Polyarylate resin
TheContainThus, high mechanical strength is achieved, and resin fine particles are uniformly dispersed in the resin to provide a high-quality image and to obtain stable characteristics even during repeated use.
[0019]
  Hereinafter, “a polyarylate resin having a weight average molecular weight (Mw) of 100,000 or more” means “a weight average molecular weight (Mw) of 100,000 or more and an inherent viscosity (ηinh .: tetrachloroethane as a solvent)., TreeA polyarylate resin having a fat concentration of 1.0 g / dl and measured at 25 ° C. of 0.8 or more is used.
[0020]
  Among the structures of the general formula (1), the structural unit represented by the general formula (2), the general formula (3), or the general formula (4)HaveBy using a polyarylate resin having a weight average molecular weight (Mw) of 100,000 or more, not only the mechanical strength is improved, but also the productivity of the electrophotographic photosensitive member is improved by improving the solubility of the resin. It is possible.
[0021]
[Chemical7]
[0022]
  Further, even when a polyarylate resin having a weight average molecular weight (Mw) of 100,000 or more obtained by copolymerizing the structural units represented by the general formula (2), the general formula (3) or the general formula (4) is used, the same applies. It is possible to achieve improved mechanical strength and improved solubility.
[0023]
  Further, by adding fine particles, which is a technique for enhancing the durability of the electrophotographic photosensitive member, that is, by adding the fluororesin fine particles in the present invention to the photosensitive layer, it is possible to further enhance the durability.
[0024]
  In the examination of the present invention, the mechanical strength of the electrophotographic photosensitive member is obtained by having the fluororesin fine particles and the polyarylate resin {general formula (1)} having a weight average molecular weight (Mw) of 100,000 or more in the charge transport layer. Improvement was achieved. Furthermore, image defects of electrophotographic photosensitive members using fluororesin fine particles are often caused by non-uniformity or unevenness of the dispersion state in the charge transport layer of fluororesin fine particles. When the dispersion liquid in which fine particles are dispersed is allowed to stand to produce an electrophotographic photoreceptor, secondary aggregation or sedimentation of the resin fine particles, and when the liquid is flowed during coating, the liquid takes a share. This may be due to the change in dispersion state or secondary aggregation. As a result, the uniform dispersion state of the fine particles could not be maintained, and it was difficult to form a stable uniform coating film. However, the weight average molecular weight (Mw) used in the present invention was 100,000 or more. When used together with an arylate resin, suppression of image defects was observed.
[0025]
  Furthermore, using low molecular weight polyarylate resin, fluorinesystemWhen the content ratio of the resin fine particles is increased, image defects due to poor dispersion or re-aggregation of the resin fine particles tend to occur, and a dispersion aid such as a surfactant is used to prevent poor dispersion and re-aggregation. When a large amount of the agent is added, there is a tendency that an image density is lowered during repeated use. However, when a polyarylate resin having a weight average molecular weight (Mw) of 100,000 or more is used and the content ratio of the fluororesin fine particles is increased, the dispersibility of the dispersion aid is kept low even though the addition amount of the dispersion aid is kept low. There was no image defect due to reduction or dispersion stability (secondary agglomeration), and since the amount of dispersion aid added was suppressed, no adverse effects such as image density reduction during repeated use were observed.
[0026]
  An attempt to increase the durability of the electrophotographic photosensitive member by forming the charge transport layer of the electrophotographic photosensitive member from polyarylate resin and fluororesin fine particles is also made in Japanese Patent Application Laid-Open No. 9-319129. In the examples in this publication, a polyarylate resin having a weight average molecular weight (Mw) of about 30,000 is used, and fluorine resin fine particles are added in an amount of 10% by mass to 30% by mass of the solid content of the charge transport layer coating solution. An example is shown. The dispersion aid at this time is added by 4% by mass of the fluororesin fine particles, and it is shown that a good initial image can be provided with good dispersibility. However, an attempt was made to lower the mass ratio of the dispersion aid to the fine particles in order to ensure better image quality without causing a decrease in density during repeated use. As a result, it was used in the examples of JP-A-9-319129. The polyarylate resin having a weight average molecular weight (Mw) of about 30,000 is used, the mass ratio of the dispersion aid is 3%, and the fluororesin fine particles are 10 mass of the solid content of the charge transport layer coating solution. In the case where the ratio was not less than%, initial image deterioration due to poor dispersion was confirmed.
[0027]
  This means that in the case of a polyarylate resin having a weight average molecular weight of about 30,000, both the durability improvement of the electrophotographic photosensitive member and a good image can be achieved by including 10 mass% or more of fluorine-based resin fine particles in the charge transport layer. It is difficult to do. For this purpose, a polyarylate resin having a weight average molecular weight (Mw) of about 100,000 is used, the mass ratio of the dispersion aid is 3%, and the fluororesin fine particles are 10% of the solid content of the charge transport layer coating solution. In the case of the mass% or more, the initial image was not deteriorated due to poor dispersion, and the density reduction during repeated use could be suppressed to a low level. This indicates that when a polyarylate resin having a weight average molecular weight (Mw) of about 100,000 is used, it is possible to achieve both improved durability of the electrophotographic photosensitive member and good images.
[0028]
  Although the specific mechanism of the effect of improving the dispersibility and dispersion stability of the polyarylate resin having a weight average molecular weight (Mw) of 100,000 or more has not been sufficiently elucidated, the weight average molecular weight (Mw) is 100,000. When the polyarylate resin as described above is used, the viscosity of the electrophotographic photoreceptor coating solution in which the resin is dissolved in a solvent is higher than that when a conventional polyarylate resin is used under the same conditions, and the coating solution is The reason is that, due to the reasonably high viscosity, the dispersion state of the fluororesin fine particles is stabilized, and further the retention ability of the dispersion state is improved. Conceivable.
[0029]
  When a polyarylate resin having a relatively small weight average molecular weight (weight average molecular weight smaller than 100,000) is used and the viscosity of the coating liquid is increased to improve the dispersion stability, the coating liquid is inevitably produced. However, in this case, since the coating is performed at a lower speed in the production stage in which an appropriate film thickness of the photosensitive layer is applied, it is not suitable for mass production. By using a large polyarylate resin having a weight average molecular weight (Mw) of 100,000 or more, it is possible to maintain the productivity and increase the dispersion stability.
[0030]
  In the study on the particle size of the fluororesin fine particles, when the fine particle of the fluororesin fine particles is larger than 0.5 μm, the liquid storage stability of the coating liquid after the fine particle dispersion becomes worse, This causes fine particles to settle, resulting in image defects that appear to be due to uneven dispersion or secondary aggregation. Even with fluororesin fine particles having a particle diameter larger than 0.5 μm, precipitation and secondary aggregation were suppressed by using a polyarylate resin having a weight average molecular weight (Mw) of 100,000 or more and a dispersion aid. However, it did not necessarily satisfy all the conditions for a good image. However, when fluorine-based resin fine particles having a particle size of 0.3 μm or less are used and a combination of a polyarylate resin having a weight average molecular weight (Mw) of 100,000 or more and a dispersion aid is used, the fine particles are dispersed. No fine particles settled or secondary aggregation occurred when the coating solution was allowed to stand, and a good initial image was obtained. In this case, when a polyarylate resin having a large weight average molecular weight of 100,000 or more is used, the dispersion state of the fluororesin fine particles is stabilized and the dispersion state retention ability is improved by appropriately increasing the viscosity of the coating liquid. It is considered that one of the reasons is that the effect of doing is acting.
[0031]
  Although the preferable example of the structural unit of the polyarylate resin which has a structural unit shown by General formula (1) used for this invention below is shown below, it is not limited to these.
[0032]
[Table 1]
[0033]
[Table 2]
[0034]
  In particular, the polyarylate resin represented by the structural unit example (1), the structural unit example (2), or the structural unit example (3) is preferable in terms of mechanical strength and solubility in a solvent.
[0035]
  Moreover, in order to add other characteristics, such as intensity | strength and solubility, it is also possible to set it as the copolymer with bisphenol of another structure. For example, when the polyarylate resin represented by the general formula (3) is copolymerized with the polyarylate resin represented by the general formula (2), the polymerization ratio is 5/95 to 95/5, respectively. It is possible to extract the characteristics of
[0036]
  Furthermore, it is also possible to blend with polyarylate or polycarbonate of other structure in order to improve productivity. For example, when the polyarylate resin represented by the general formula (3) is blended with the polyarylate resin represented by the general formula (2), the mixing ratio (mass ratio) is the formula (2) / formula (3) = 5. 20/80 to 80/20 is preferable in order to achieve the effect of the present invention efficiently.
[0037]
  The molecular weight of the resin has a weight average molecular weight (Mw) of 100,000 or more from the viewpoints of mechanical strength, dispersion stability of fluororesin fine particles, and dispersion retention. However, if the weight average molecular weight is too large, the viscosity of the coating solution becomes too high and the productivity is lowered. Therefore, a polyarylate resin having a weight average molecular weight (Mw) of 100,000 to 250,000 is preferable.
[0038]
  The fluororesin fine particles have at least a composition selected from tetrafluoroethylene resin, chlorotrifluoroethylene resin, hexafluoroethylenepropylene resin, vinyl fluoride resin, vinylidene fluoride resin, dichlorodifluoroethylene resin, and copolymers thereof. Fine particles made of one kind of resin are preferable.
[0039]
  In order to ensure a good image quality, the average particle size of the resin fine particles is preferably 0.3 μm or less, and particularly preferably the average particle size is 0.1 μm or less, from the above-mentioned matters.
[0040]
  Hereinafter, the configuration of the electrophotographic photosensitive member of the present invention will be described.
[0041]
  The electrophotographic photosensitive member of the present invention is applied to a laminated type having a charge transport layer containing a charge transport material and a charge generation layer containing a charge generation material.
[0042]
  As the charge generation material in the present invention, commonly known materials can be used, for example, selenium-tellurium, pyrylium dyes, thiopyrylium dyes, metal phthalocyanine pigments, metal-free phthalocyanine pigments, anthanthrone pigments. And dibenzpyrenequinone pigments, pyranthrone pigments, trisazo pigments, disazo pigments, azo pigments, indigo pigments, quinacridone pigments, and cyanine pigments. These pigments can be sufficiently used by using a homogenizer, ultrasonic dispersion, ball mill, vibration mill, sand mill attritor, roll mill or liquid collision type high-speed disperser together with a binder resin and a solvent having a mass of 0.3 to 4 times. A dispersed dispersion is obtained. In the case of a laminated electrophotographic photoreceptor, a charge generation layer is obtained by applying this solution and drying. The film thickness is preferably 5 μm or less, and particularly preferably 0.1 to 2 μm.
[0043]
  Charge transport materials are broadly classified into electron transport materials and hole transport materials. Examples of electron transport compounds include 2,4,7-trinitrofluorenone, 2,4,5,7-tetranitrofluorenone, chloranil, tetra Examples thereof include electron accepting compounds such as cyanoquinodimethane and alkyl-substituted diphenoquinone, and those obtained by polymerizing these electron accepting compounds. Examples of the hole transporting compound include polycyclic aromatic compounds such as pyrene and anthracene, heterocyclic compounds such as carbazole, indole, oxazole, thiazole, oxathiazole, pyrazole, pyrazoline, thiadiazole and triazole, p-diethylaminobenzaldehyde-N, Hydrazone compounds such as N-diphenylhydrazone and N, N-diphenylhydrazino-3-methylidene-9-ethylcarbazole, α-phenyl-4′-N, N-diphenylaminostilbene and 5- (4- (di- p-tolylamino) benzylidene) -5H-dibenzo (a, d) styryl compounds such as cycloheptene, benzidine compounds and triarylamine compounds, or polymer compounds having groups of these compounds in the main chain or side chain ( Poly-N- Alkenyl carbazole and polyvinyl anthracene and the like). These compounds are dissolved in a solvent together with a binder resin to form a solution. In the case of a multilayer electrophotographic photoreceptor, a charge transport layer is obtained by applying this solution and drying. The film thickness is preferably 5 to 40 μm, and particularly preferably 15 to 30 μm.
[0044]
  The charge transport material used for the charge transport layer is preferably 20 to 70% by mass with respect to the solid content of the charge transport layer. If it is less than 20% by mass, it is difficult to obtain a sufficient charge transfer capability, and therefore an increase in residual potential is likely to occur. If it exceeds 70% by mass, the mechanical strength of the charge transport layer tends to be low, so that sufficient durability is difficult to obtain.
[0045]
  The binder resin used in the charge transport layer is preferably 20 to 80% by mass with respect to the solid content of the charge transport layer. If it exceeds 80% by mass, it is difficult to obtain a sufficient charge transfer capability, so that an increase in residual potential, a decrease in electrical durability, a reduction in the effect of reducing the surface energy, and the like are likely to occur. If it is less than 20% by mass, the mechanical strength of the charge transport layer tends to be lowered, so that sufficient durability is difficult to obtain.
[0046]
  A dispersion aid may be used when the above-described fluororesin fine particles are dispersed in a polyarylate resin having a weight average molecular weight of 100,000 or more. As the dispersion aid, a fluorine-based surfactant is preferable. Specifically, as a fluorine-based surfactant,
X-SO2NRCH2COOH,
X-SO2NRCH2CH2O (CH2CH2O)nH (n = 5, 10, 15),
X-SO2N (CH2CH2CH2OH)2,
X-RO (CH2CH2O)n  (N = 5, 10, 15),
X- (RO)n  (N = 5-20),
X- (RO)nR (n = 5-20),
X-COOH, X-CH2CH2COOH, X-ORCOOH, X-ORCH2COOH,
X-SO3H, X-ORSO3H, X-CH2CH2OH,
[0047]
[Chemical8]
X-CH, a graft polymer surfactant having X- in the side chain2X-CH, a graft polymer type surfactant having-in the side chain2CH2X-CH, a graft polymer type surfactant having-in the side chain2CH2Examples thereof include a graft polymer type surfactant having OCO- in the side chain. However, R in a formula shows an alkyl group, an allyl group, or an aralkyl group, X is -CF3, -C4F9Or -C8F17Fluorocarbon group such as
[0048]
  Examples of the dispersion method of the fluororesin fine particles include a homogenizer, a ball mill, a sand mill, a roll mill, and an ultrasonic wave. However, the dispersion method is not particularly limited as long as it can be dispersed to a primary particle size.
[0049]
  In the present invention,ConductiveIf necessary, an intermediate layer having an adhesion function and a charge barrier function can be provided between the support and the photosensitive layer, or between the conductive layer and the photosensitive layer. Examples of the material for the intermediate layer include casein, polyvinyl alcohol, polyvinyl butyral, nitrocellulose, ethyl cellulose, ethylene-acrylic acid copolymer, polyethylene oxide, phenol resin, polyamide, polyurethane, polyether urethane, and gelatin. These are dissolved in a solvent, applied and dried. The thickness of the intermediate layer is preferably 0.05 to 5 μm, and particularly preferably 0.2 to 1 μm.
[0050]
  In addition to the above compounds, additives can be used for the photosensitive layer in order to improve mechanical properties and durability. Examples of such additives include antioxidants, ultraviolet absorbers, stabilizers, crosslinking agents, lubricants, and conductivity control agents.
[0051]
  There is no limitation on the application method of these electrophotographic photosensitive members, and generally known means such as a dip coating method, a spray coating method, and a bar coating method can be used.
[0052]
  FIG. 1 shows a schematic configuration of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.
[0053]
  In FIG. 1, reference numeral 1 denotes a drum-shaped electrophotographic photosensitive member of the present invention, which is rotationally driven around a shaft 2 in the direction of an arrow at a predetermined peripheral speed. In the rotating process, the electrophotographic photosensitive member 1,bandTime series electric digital of the target image information output from exposure means (not shown) such as slit exposure and laser beam scanning exposure, etc. Exposure light 4 that is enhanced and modulated in response to an image signal is received. In this way, electrostatic latent images corresponding to the target image information are sequentially formed on the peripheral surface of the electrophotographic photoreceptor 1.
[0054]
  The formed electrostatic latent image is then developed with toner by the developing means 5 and is taken out from a paper feeding unit (not shown) between the electrophotographic photoreceptor 1 and the transfer means 6 in synchronism with the rotation of the electrophotographic photoreceptor 1. The toner images formed and supported on the surface of the electrophotographic photosensitive member 1 are sequentially transferred by the transfer means 6 onto the transferred transfer material 7.
[0055]
  The transfer material 7 that has received the transfer of the toner image is separated from the surface of the electrophotographic photosensitive member, introduced into the image fixing means 8, and subjected to image fixing to be printed out as an image formed product (print, copy). .
[0056]
  Toner imageimageTheTranscriptiondidThe surface of the subsequent electrophotographic photosensitive member 1 is cleaned by removing the transfer residual toner by the cleaning unit 9, and after being subjected to the charge removal process by the pre-exposure light 10 from the pre-exposure unit (not shown), the surface is repeated. Used for image formation. In addition,bandWhen the electric means 3 is a contact charging means using a charging roller or the like, pre-exposure is not necessarily required.
[0057]
  In the present invention, the above-described electrophotographic photoreceptor 1,bandAmong the constituent elements such as the electric means 3, the developing means 5 and the cleaning means 9, a plurality of components are housed in a container and integrally combined as a process cartridge. The process cartridge is an electronic device such as a copying machine or a laser beam printer. You may comprise so that attachment or detachment with respect to the photographic apparatus main body is possible. For example,bandAt least one of the electric means 3, the developing means 5, and the cleaning means 9 is integrally supported together with the electrophotographic photosensitive member 1 to form a cartridge, and the guide means 12 such as a rail of the apparatus main body is used.Electronic photographyThe process cartridge 11 can be detachably attached to the apparatus main body.
[0058]
  Further, when the electrophotographic apparatus is a copying machine or a printer, the exposure light 4 is reflected or transmitted light from the original, or the original is read by a sensor and converted into a signal, and a laser beam scanning performed according to this signal is performed. The light emitted by driving the LED array or the liquid crystal shutter array.
[0059]
  The electrophotographic photosensitive member of the present invention can be used not only for electrophotographic copying machines but also widely applicable to electrophotographic application fields such as laser beam printers, CRT printers, LED printers, FAX, liquid crystal printers, and laser plate making. It is.
[0060]
【Example】
  Hereinafter, the present invention will be described in more detail with reference to specific examples. In addition, "part" in an Example shows a mass part.
[0061]
  (referenceExample 1)
  On a 30φ × 357 mm aluminum cylinder, a coating liquid composed of the following materials was applied by a dip coating method and thermally cured at 140 ° C. for 30 minutes to form a conductive layer having a thickness of 15 μm.
[0062]
  Conductive pigment: SnO2Coated barium sulfate 10 parts
  Resistance adjustment pigment: Titanium oxide 2 parts
  Binder resin: 6 parts of phenol resin
  Leveling material: 0.001 part of silicone oil
  Solvent: methanol / methoxypropanol = 2/8 (mass ratio) 20 parts
[0063]
  Next, a solution obtained by dissolving 3 parts of N-methoxymethylated nylon and 3 parts of copolymer nylon in a mixed solvent of 65 parts of methanol / 30 parts of n-butanol is applied onto this conductive layer by a dip coating method and dried. As a result, an intermediate layer having a thickness of 0.5 μm was formed.
[0064]
  Next, 4 parts of an azo pigment represented by the following structural formula:
[0065]
[Chemical9]
[0066]
Disperse 2 parts of polyvinyl butyral (trade name: ESREC BLS, manufactured by Sekisui Chemical Co., Ltd.) and 35 parts of cyclohexanone for 12 hours in a sand mill using 1 mmφ glass beads, and then add 60 parts of methyl ethyl ketone to prepare a dispersion for a charge generation layer. did. This dispersion was applied onto the intermediate layer by a dip coating method and dried to form a charge generation layer having a thickness of 0.3 μm.
[0067]
  Next, 4 parts of polytetrafluoroethylene particles having an average primary particle size of 0.3 μm and 0.16 part of a fluorosurfactant (trade name: Aron GF300, manufactured by Toagosei Co., Ltd.) as a dispersion aid (based on fluororesin fine particles) 4 mass%), a weight average molecular weight (Mw) of 150,000 and an inherent viscosity of 1.1, 80 parts of chlorobenzene are added to 8 parts of the polyarylate resin having the structure of the structural unit example (1), and fluorinesystemA resin fine particle dispersion was prepared. In this dispersion, 7 parts of an amine compound having the following structural formula as a charge transport material,
[0068]
[Chemical10]
[0069]
  1 part of an amine compound of the structural formula
[0070]
[Chemical11]
[0071]
Was added to obtain a coating solution for the charge transport layer. This coating solution was applied by a dip coating method and dried at 120 ° C. for 1 hour to form a charge transport layer having a thickness of 27 μm. The production conditions are shown in Table 1.
[0072]
  Next, evaluation will be described. For evaluation, Canon Co., Ltd., copy machine GP40 (AC / DC charging system in which a DC voltage superimposed with an AC voltage is applied from a charging member placed in contact with the electrophotographic photosensitive member to charge the electrophotographic photosensitive member) is used. It was. The dark part potential Vd = −700V and the bright part potential Vl = −200V. 10,000 sheets were copied in an intermittent mode in which A4 size plain paper was stopped once for each copy, and then the wear amount of the electrophotographic photosensitive member film thickness was measured. Also, the presence or absence of image defects due to initial dispersion failure was observed. The evaluation method is to visually measure the number of image defects due to poor dispersion on the entire surface of A3 paper that has been output using an electrophotographic photosensitive member. When there is no image defect: ○, when there are 1 to 2 defects: Δ, In the case of 3 or more: evaluated as x. Further, the aggregation of the fine particles after the charge transport layer coating solution was allowed to stand in a dark place at room temperature for 1 month was also observed. The evaluation method is to evaluate the difference between the average particle size before standing (particle size distribution meter: measured by Horiba, CAPA700) and the average particle size after standing for 1 month, and when the particle size difference is less than 0.2 μm: When there was no aggregation and the average particle size difference was less than 0.2 to 0.5 μm: slightly aggregated, when the average particle size difference was 0.5 μm or more: it was evaluated that there was aggregation. The results are shown in Table 2.
[0073]
  (Example 25 and Reference Example 6-14)
  An electrophotographic photosensitive member was produced under the conditions shown in Table 1 (except that the conditions shown in Table 1 were changed).referenceThe same as in Example 1) was evaluated. The results are shown in Table 2.
[0074]
  (Comparative Examples 1-4)
  As a resin constituting the charge transport layer, a polyarylate resin comprising the structural unit example (1) having a weight average molecular weight (Mw) of 40,000 and an inherent viscosity of 0.5 is used. Body (except for changing the conditions shown in Table 1)referenceThe same as in Example 1) was evaluated. The results are shown in Table 2.
[0075]
  (Comparative Examples 5-7)
  As a resin constituting the charge transport layer, an electrophotographic photosensitive member was produced under the conditions shown in Table 1 using a polycarbonate resin composed of a structural unit of the general formula (5) having a weight average molecular weight (Mw) of 40,000 (Table 1). Except for changing the condition of 1referenceThe same as in Example 1) was evaluated. The results are shown in Table 2.
[0076]
[Chemical12]
[0077]
[Table 1]
[0078]
[Table 2]
[0079]
  (Example 15)
  4 parts of polytetrafluoroethylene particles having an average primary particle size of 0.1 μm as fluororesin fine particles used in the charge transport layer and a fluorosurfactant (trade name: Aron GF300, manufactured by Toagosei Co., Ltd.) 0.12 as a dispersion aid A charge transport layer coating solution and an electrophotographic photosensitive member were prepared in the same manner as in Example 2 except that 3 parts by weight (3% by mass with respect to the fluororesin fine particles) was used.
[0080]
  Next, evaluation will be described. For evaluation, Canon Co., Ltd., copy machine GP40 (AC / DC charging system in which a DC voltage superimposed with an AC voltage is applied from a charging member placed in contact with the electrophotographic photosensitive member to charge the electrophotographic photosensitive member) is used. It was. The dark part potential Vd = −700V and the bright part potential Vl = −200V. The presence or absence of image defects due to initial dispersion failure was observed. The evaluation method is to visually measure the number of image defects due to poor dispersion on the entire surface of the A3 paper that has been output using an electrophotographic photosensitive member. When there is no image defect: ○, when there are 1 to 2 defects: Δ, In the case of 3 or more: evaluated as x. Further, the aggregation of the fine particles after the charge transport layer coating solution was allowed to stand in a dark place at room temperature for 1 month was also observed. The evaluation method evaluates the difference between the average particle size before standing (particle size distribution meter: measured by Horiba, CAPA700) and the average particle size after standing for one month, and when the particle size difference is less than 0.2 μm: aggregation None, when the average particle size difference was 0.2 to less than 0.5 μm: slightly aggregated, when the average particle size difference was 0.5 μm or more: evaluated as aggregated. The results are shown in Table 3.
[0081]
  (referenceExample 16)
  The resin constituting the charge transport layer is composed of copolymer {polymerization ratio (1) / (2) = 7/3} of structural unit examples (1) and (2) having a weight average molecular weight (Mw) of 200,000. 4 parts of polytetrafluoroethylene particles having an average primary particle size of 0.1 μm as polyarylate resin and fluororesin fine particles, and 0.12 part of fluorosurfactant (trade name: Aron GF300, manufactured by Toagosei Co., Ltd.) as a dispersion aid A charge transport layer coating solution and an electrophotographic photosensitive member were produced in the same manner as in Example 2 except that (3% by mass with respect to the fluororesin fine particles) was used, and evaluated in the same manner as in Example 15. The results are shown in Table 3.
[0082]
  (referenceExample 17)
  Structure of copolymer (polymerization ratio (1) / (3) = 7/3) of structural unit examples (1) and (3) having a weight average molecular weight (Mw) of 150,000 as the resin constituting the charge transport layer 4 parts of polytetrafluoroethylene particles having an average primary particle size of 0.1 μm as a fluorine-containing resin fine particle and a fluorine-containing surfactant (trade name: Aron GF300, manufactured by Toagosei Co., Ltd.) as a dispersion aid A charge transport layer coating solution and an electrophotographic photosensitive member were prepared in the same manner as in Example 2 except that 12 parts (3% by mass with respect to the fluororesin fine particles) were used, and evaluated in the same manner as in Example 15. did. The results are shown in Table 3.
[0083]
  (Comparative Examples 8 and 9)
  An electrophotographic photoreceptor was prepared under the conditions shown in Table 3 (same as Example 2 except that the conditions of Table 3 were changed), and evaluated in the same manner as Example 15. The results are shown in Table 3.
[0084]
[Table 3]
[0085]
  From Table 2, by using the electrophotographic photosensitive member of the present invention containing a polyarylate resin having a weight average molecular weight (Mw) of 100,000 or more and fluororesin fine particles in the charge transport layer, electrophotographic photosensitivity during repeated use is used. It has been shown that the durability of the body is improved and that a uniform image can be provided over a long period of time without deterioration of image quality in the initial use of the electrophotographic photosensitive member due to the poor dispersion. In particular, when high durability is achieved by using fluorine resin fine particles of 10% by mass or more of the solid content in the charge transport layer, the effect of using a polyarylate resin having a weight average molecular weight (Mw) of 100,000 or more is remarkable. As a result, it has become possible to achieve both improvement in durability and maintenance of high image quality, which were difficult with low molecular weight polyarylate. Further, even during long-term storage of the charge transport layer coating solution, secondary aggregation of the fluororesin fine particles is suppressed by using a polyarylate resin having a high molecular weight, and the dispersion does not change so that the electrophotography The production stability of the photoreceptor has also improved.
[0086]
  From Table 2 and Table 3, if the primary particle size of the fluororesin fine particles is 0.3 μm or less by using a polyarylate resin having a weight average molecular weight (Mw) of 100,000 or more, the solids of the fluororesin fine particles Even when the amount exceeds 10% by mass, secondary aggregation of the fluororesin fine particles is suppressed even during long-term storage of the coating solution for the charge transport layer, which was difficult with the low molecular weight polyarylate resin. It was revealed that a good image can be provided.
[0087]
  Therefore, an electrophotographic photoreceptor comprising a polyarylate resin having a weight average molecular weight (Mw) of 100,000 or more and an inherent viscosity of 0.8 or more and fluororesin fine particles in the charge transport layer of the present invention, and the electrophotographic photoreceptor. The superiority of the process cartridge and the electrophotographic apparatus having the same was shown.
[0088]
【The invention's effect】
  According to the present invention, the charge transport layer contains a polyarylate resin having a weight average molecular weight (Mw) of 100,000 or more and an inherent viscosity of 0.8 or more and fluororesin fine particles. Abrasion resistance is remarkably improved, durability during repeated use is improved, and high molecular weight resin is used to uniformly disperse fluororesin fine particles in the film, resulting in poor dispersion and secondary aggregation. It has become possible to provide an electrophotographic photosensitive member that can suppress the occurrence of unevenness due to the above and the like and provide a good image, a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a schematic configuration of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.
[Explanation of symbols]
1 Electrophotographic photoreceptor
2 axis
3 Charging means
4 exposure light
5 Development means
6 Transfer means
7 Transfer material
8 Fixing means
9 Cleaning means
10 Pre-exposure light
11 Process cartridge
12 Guide means

Claims (3)

導電支持体及び該導電支持体上に形成された感光層を有、該感光層が電荷発生層及び電荷輸送層を有する積層型の感光層であり、該電荷輸送層が電子写真感光体の最外層である電子写真感光体を製造する方法において、
クロロベンゼン
フッ素系樹脂微粒子、
フッ素系樹脂微粒子の分散助剤、並びに、
構成単位としては下記一般式(
示される構成単位のみを有し、かつ重量平均分子量(Mw)が150000〜200000であり、かつインヘレント粘度(ηinh.:溶媒としてテトラクロロエタンを用い、樹脂の濃度を1.0g/dlとし、25℃で測定)が1.1〜1.4であるポリアリレート樹脂
を含有する電荷輸送層用塗布液を用いて該電荷輸送層の形成を行い、
該電荷輸送層用塗布液における該分散助剤の量が該フッ素系樹脂微粒子の3質量%であり、
該電荷輸送層用塗布液における該フッ素系樹脂微粒子の量が該電荷輸送層用塗布液の固形分量の10質量%以上である
ことを特徴とする電子写真感光体の製造方法
Have a conductive support and a photosensitive layer formed on the conductive support member, a photosensitive layer of the laminate type photosensitive layer has a charge generating layer and a charge transport layer, charge transport layer is electron photoreceptor In the method for producing an electrophotographic photoreceptor which is the outermost layer of
Chlorobenzene ,
Fluorine resin fine particles,
Dispersing aid for fluorine resin fine particles , and
As a structural unit, the following general formula ( 2 )
In having only the structural units represented, and the weight average molecular weight (Mw) of 150,000 to 200,000, and using tetrachloroethane as inherent viscosity (.eta.inh .: solvent, the concentration of the resin and 1.0 g / dl, 25 The charge transport layer is formed using a coating solution for a charge transport layer containing a polyarylate resin having a 1.1 to 1.4 ( measured at ° C.)
The amount of the dispersion aid in the charge transport layer coating solution is 3% by mass of the fluororesin fine particles,
The method for producing an electrophotographic photosensitive member , wherein the amount of the fluororesin fine particles in the charge transport layer coating solution is 10% by mass or more of the solid content of the charge transport layer coating solution .
前記フッ素系樹脂微粒子が、ポリテトラフルオロエチレン粒子である請求項1に記載の電子写真感光体の製造方法The fluorine resin particles, method for producing an electrophotographic photosensitive member according to claim 1 is polytetrafluoroethylene particles. 前記フッ素系樹脂微粒子の平均一次粒径が0.3μm以下である請求項1又は2に記載の電子写真感光体の製造方法 The method for producing an electrophotographic photosensitive member according to claim 1 or 2 having an average primary particle diameter of the fluorine resin particles is 0.3μm or less.
JP2001023870A 2001-01-31 2001-01-31 Method for producing electrophotographic photosensitive member Expired - Fee Related JP4418600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001023870A JP4418600B2 (en) 2001-01-31 2001-01-31 Method for producing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001023870A JP4418600B2 (en) 2001-01-31 2001-01-31 Method for producing electrophotographic photosensitive member

Publications (3)

Publication Number Publication Date
JP2002229225A JP2002229225A (en) 2002-08-14
JP2002229225A5 JP2002229225A5 (en) 2008-03-06
JP4418600B2 true JP4418600B2 (en) 2010-02-17

Family

ID=18889096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001023870A Expired - Fee Related JP4418600B2 (en) 2001-01-31 2001-01-31 Method for producing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP4418600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181838B2 (en) 2017-03-16 2021-11-23 Mitsubishi Chemical Corporation Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3944028B2 (en) * 2002-08-30 2007-07-11 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP3913147B2 (en) * 2002-08-30 2007-05-09 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US7378212B2 (en) 2005-07-01 2008-05-27 Konica Minolta Business Technologies, Inc. Image forming method, photoreceptor
US8007972B2 (en) 2005-09-15 2011-08-30 Ricoh Company, Ltd. Electrophotographic photoconductor, and image forming apparatus, process cartridge and image forming method using the same
JP4566876B2 (en) * 2005-10-11 2010-10-20 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4847305B2 (en) * 2005-12-20 2011-12-28 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181838B2 (en) 2017-03-16 2021-11-23 Mitsubishi Chemical Corporation Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming apparatus

Also Published As

Publication number Publication date
JP2002229225A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JPH0540360A (en) Electrophotographic sensitive body
JP4418600B2 (en) Method for producing electrophotographic photosensitive member
JP4463961B2 (en) Method for producing electrophotographic photosensitive member
JP3990878B2 (en) Surface layer forming coating solution, method for producing electrophotographic photosensitive member, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP3740310B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JPH1020534A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JPH06332217A (en) Electrophotographic sensitive body and electrophotographic device using the body
JP5663831B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP4402276B2 (en) Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus
JP3150227B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus and apparatus unit having the electrophotographic photoreceptor
JP4250275B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4266647B2 (en) Method for producing electrophotographic photosensitive member
JP5356875B2 (en) Electrophotographic photosensitive member and image forming apparatus
JPH09319129A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JPH0540358A (en) Electrophotographic sensitive body
JP3745312B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP3423538B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP3789055B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4455097B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4018529B2 (en) Electrophotographic photoreceptor
JP2004347854A (en) Electrophotographic photoreceptor, processing cartridge and image forming apparatus
JP3228177B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus
JP2005121933A (en) Electrophotographic photoreceptor, method for manufacturing same, process cartridge, and electrophotographic apparatus
JP3740309B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4402275B2 (en) Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees