JP4416358B2 - Cogeneration system - Google Patents
Cogeneration system Download PDFInfo
- Publication number
- JP4416358B2 JP4416358B2 JP2001223976A JP2001223976A JP4416358B2 JP 4416358 B2 JP4416358 B2 JP 4416358B2 JP 2001223976 A JP2001223976 A JP 2001223976A JP 2001223976 A JP2001223976 A JP 2001223976A JP 4416358 B2 JP4416358 B2 JP 4416358B2
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- temperature
- tank
- circulation
- water supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 805
- 238000011084 recovery Methods 0.000 claims description 108
- 238000001514 detection method Methods 0.000 claims description 18
- 239000002918 waste heat Substances 0.000 claims description 11
- 239000007789 gas Substances 0.000 description 44
- 238000010438 heat treatment Methods 0.000 description 34
- 239000000498 cooling water Substances 0.000 description 26
- 238000011144 upstream manufacturing Methods 0.000 description 16
- 239000008399 tap water Substances 0.000 description 15
- 235000020679 tap water Nutrition 0.000 description 15
- 238000010586 diagram Methods 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 239000000446 fuel Substances 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 238000013517 stratification Methods 0.000 description 5
- 238000013021 overheating Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000008400 supply water Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000003809 water extraction Methods 0.000 description 2
- 235000006506 Brasenia schreberi Nutrition 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、地域又は集合住宅を電力供給対象として、発電機が設けられ、
その発電機からの排熱が供給される排熱回収用熱交換器と、貯湯槽と、その貯湯槽に給水する給水手段と、前記排熱回収用熱交換器と前記貯湯槽とにわたって湯水を循環させる排熱回収用循環手段と、前記貯湯槽と前記地域又は集合住宅に含まれる複数の住戸とにわたって湯水を循環させる給湯用循環手段が設けられたコージェネレーションシステムに関する。
【0002】
【従来の技術】
かかるコージェネレーションシステムは、地域又は集合住宅に含まれる複数の住戸(以下、供給対象住戸群と称する場合がある)に、発電機にて電力を供給し、並びに、排熱回収用循環手段にて、発電機の排熱が供給される排熱回収用熱交換器と貯湯槽とにわたって湯水を循環させて貯湯槽の湯水を加熱し、給湯用循環手段にて、貯湯槽と供給対象住戸群とにわたって湯水を循環させて、発電機の排熱を回収して加熱した湯水を供給対象住戸群に供給するように構成したものである。
【0003】
かかるコージェネレーションシステムにおいて、従来、図8に示すように、貯湯槽3として、湯水を満水状態で貯留する密閉式に構成したものがあった(特開平7−324809号公報参照)。
図8に示すように、密閉式の貯湯槽3を設けたものでは、給水手段Wbは、給水源としての水道からの水を貯湯槽3の底部に供給する給水路71にて構成し、給湯用循環手段Csは、貯湯槽3の上部から取り出した湯水を供給対象住戸群を経由して流して貯湯槽3に戻す循環経路を形成するように配管した給湯用流路72と、その給湯用流路72に設けた給湯用循環ポンプ73にて構成し、排熱回収用循環手段Ceは、貯湯槽3と排熱回収用熱交換器2とにわたる循環経路を形成する排熱回収用流路74と、その排熱回収用流路74に設けた排熱回収用循環ポンプ75にて構成していた。図8中において、Kは、給湯式循環手段Csにて供給される湯水を加熱すべく、各住戸に設けられた給湯器である。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のコージェネレーションシステムにおいて、密閉式の貯湯槽を設けたものでは、温度成層が形成される状態で湯水が貯留される貯湯槽の上部から湯水を取り出して、供給対象住戸群に供給するので、住戸に対する湯水の供給温度は安定するものの、貯湯槽が密閉式であることから、貯湯槽の点検や保守のための作業が複雑であるので、貯湯槽の保守管理が複雑であるという問題があった。
ちなみに、上述のような問題を解消するために、貯湯槽として、1槽の開放式に構成する場合が考えられる。しかしながら、1槽の開放式の貯湯槽を設けたものでは、貯湯槽が開放式であるので、貯湯槽の保守管理は簡単であるものの、住戸に対する湯水の供給温度が不安定であるという問題があった。説明を加えると、1槽の開放式の貯湯槽では、供給対象住戸群の湯水使用量により、貯湯槽の水位が変動するので、断水することなく供給対象住戸群に湯水を供給するためには、貯湯槽における給湯用循環手段の湯水取り出し位置としては、貯湯槽の底部側に設定せざるを得ず、そして、その場合は、貯湯槽の温度成層が乱れて、貯湯槽の底部から取り出される湯水の温度が不安定となるので、住戸に対する湯水の供給温度が不安定であるという問題があった。
【0005】
本発明は、かかる実情に鑑みてなされたものであり、その目的は、保守管理が簡単で、住戸に対する湯水の供給温度が安定するコージェネレーションシステムを提供することにある。
【0006】
【課題を解決するための手段】
〔請求項1記載の発明〕
請求項1に記載の特徴構成は、前記貯湯槽が、前記給水手段にて給水される低温槽と、その低温槽からオーバーフロー状態にて湯水が供給される高温槽とを備えた開放式に構成され、
前記排熱回収用循環手段が、前記低温槽から湯水を取り出して再び前記低温槽に戻す排熱回収用循環経路にて湯水を循環させるように構成され、
前記給湯用循環手段が、前記高温槽から湯水を取り出して前記低温槽に戻す給湯用循環経路にて湯水を循環させるように構成されていることにある。
請求項1に記載の特徴構成によれば、排熱回収用循環手段により、貯湯槽の湯水は、低温槽から取り出されて排熱回収用熱交換器を通って低温槽に戻る排熱回収用循環経路にて循環され、給湯用循環手段により、貯湯層の湯水は、高温槽から取り出されて供給対象住戸群を巡って低温槽に戻る給湯用循環経路にて循環される。そして、排熱回収用循環経路を循環する湯水は、排熱回収用熱交換器にて加熱されて低温層に戻されることにより、低温槽の湯水が加熱され、低温槽の上層の湯水がオーバーフローして高温槽に供給されて、高温槽に貯留され、その高温槽の湯水が供給対象住戸群にわたって循環して、各住戸で湯水が消費されることになる。
つまり、貯湯槽が低温槽と高温槽とに分けられていて、高温槽の湯水が供給対象住戸群に循環されるので、供給対象住戸群における湯水の使用量の変動が高温槽にて吸収されることから、低温槽には、温度成層が安定して形成される状態で湯水が貯留され、高温槽に対しては、そのように温度成層が安定して形成される状態で湯水が貯留される低温槽の上層の高温層から、オーバーフロー状態で湯水が供給されるので、高温槽には、深さ方向において温度偏差が無いあるいは小さくなる状態で湯水が貯留されることになる。そこで、高温層の底部から湯水を取り出して供給対象住戸群へ供給するにしても、高温槽には、深さ方向において温度偏差が無いあるいは小さくなる状態で湯水が貯留されているので、住戸に対する湯水の供給温度が安定する。
又、貯湯槽は開放式であるので、貯湯槽の点検や保守のための作業が簡単となり、貯湯槽の保守管理が簡単になる。
従って、保守管理が簡単で、住戸に対する湯水の供給温度が安定するコージェネレーションシステムを提供することができるようになった。
【0007】
〔請求項2記載の発明〕
請求項2に記載の特徴構成は、前記排熱回収用循環手段が、前記低温槽と前記高温槽から設定比率で湯水を取り出すように構成されていることにある。
請求項2に記載の特徴構成によれば、排熱回収用循環手段により、低温槽と高温槽から設定比率で湯水が取り出されて、それらが排熱回収用熱交換器を通って低温槽に戻る形態で、貯湯層の湯水が循環されるので、高温槽の湯水も排熱回収用循環経路にて循環されることとなって、放熱による高温槽の湯水の温度低下が抑制されて、高温槽の湯水の温度が一段と安定する。
従って、住戸に対する湯水の供給温度を一段と安定化させることができるようになった。
【0008】
〔請求項3記載の発明〕
請求項3に記載の特徴構成は、前記高温槽の水位を検出する水位検出手段と、その水位検出手段の検出水位に基づいて、前記高温槽の水位が設定水位になるように前記給水手段の給水作動を制御する制御手段とが設けられていることにある。
請求項3に記載の特徴構成によれば、制御手段は、水位検出手段の検出水位に基づいて、高温槽の水位が設定水位になるように給水手段の給水作動を制御するので、供給対象住戸群の湯水使用量の変動にかかわらず、高温槽には設定水位で湯水が貯留される。
従って、供給対象住戸群の湯水使用量の変動にかかわらず、各住戸に安定して湯水を供給できる。
【0009】
〔請求項4記載の発明〕
請求項4に記載の特徴構成は、前記低温槽の湯水の温度を検出する低温槽温度検出手段と、その低温槽温度検出手段の検出温度に基づいて、前記低温槽の湯水の温度が設定上限温度以上になると前記排熱回収用循環手段の湯水循環作動を停止させ且つ前記低温槽の湯水の温度が前記設定上限温度よりも低くなると前記排熱回収用循環手段を湯水循環作動させる制御手段とが設けられていることにある。
請求項4に記載の特徴構成によれば、制御手段は、低温槽温度検出手段の検出温度に基づいて、低温槽の湯水の温度が設定上限温度以上になると排熱回収用循環手段の湯水循環作動を停止させ、低温槽の湯水の温度が設定上限温度よりも低くなると排熱回収用循環手段を湯水循環作動させる。
つまり、供給対象住戸群における湯水使用量が少なくなって、低温層の温度が設定上限温度以上に高くなり、排熱として排熱回収用熱交換器に供給される発電機の冷却水が排熱回収用熱交換器において貯湯層の湯水に対して伝導させる熱量が大幅に抑制されて、発電機が過熱する虞があるような状態となると、排熱回収用熱交換器への貯湯層からの湯水供給が停止されて、前記のような発電機の過熱が防止されるので、供給対象住戸群における湯水使用量が少なくなっても、発電機は通常通り継続して運転することができて、発電機にて供給対象住戸群へ継続して電力を供給しながら、供給対象住戸群に湯水を供給することができる。ちなみに、この場合は、発電機の冷却水は排熱回収用熱交換器とは別の冷却装置にて冷却することになる。
一方、供給対象住戸群における湯水使用量が通常範囲内で、低温槽の湯水の温度が設定上限温度よりも低いときは、貯湯層から排熱回収用熱交換器へ湯水が供給されて、排熱回収用熱交換器において発電機の冷却水と貯湯層の湯水とが熱交換されるので、発電機の冷却水を冷却して発電機を通常通り運転しながら、低温層の湯水を加熱して、供給対象住戸群に湯水を供給することができる。
従って、供給対象住戸群の湯水使用量の変動にかかわらず、供給対象住戸群へ電力及び湯水を安定して供給することができる。
【0010】
〔請求項5記載の発明〕
請求項5に記載の特徴構成は、前記給湯用循環手段に、前記貯湯槽を迂回させて前記給湯用循環経路にて湯水を循環させるための貯湯槽迂回路が設けられ、
前記給湯用循環手段は、前記貯湯槽を通して前記給湯用循環経路にて湯水を循環させる通常循環状態と、前記貯湯槽迂回路を通して前記給湯用循環経路にて湯水を循環させ且つ前記給湯用循環経路に給水源から水が供給される給水循環状態とに切り換え自在なように構成され、
前記高温槽の湯水の温度を検出する高温槽温度検出手段と、その高温槽温度検出手段の検出情報に基づいて、前記高温槽の湯水の温度が設定下限温度よりも高いときは前記給湯用循環手段を前記通常循環状態に切り換え且つ前記高温槽の湯水の温度が前記設定下限温度以下のときは前記給湯用循環手段を前記給水循環状態に切り換える制御手段とが設けられていることにある。
請求項5に記載の特徴構成によれば、制御手段は、高温槽温度検出手段の検出情報に基づいて、高温槽の湯水の温度が設定下限温度よりも高いときは給湯用循環手段を通常循環状態に切り換え、高温槽の湯水の温度が設定下限温度以下のときは給湯用循環手段を給水循環状態に切り換える。
そして、給湯用循環手段が通常循環状態に切り換えられると、貯湯層の湯水が給湯用循環経路にて循環され、給水循環状態に切り換えられると、給湯用循環経路に給水源から水が供給されながら、貯湯槽迂回路を通して給湯用循環経路にて湯水が循環される。
つまり、低温(例えば、40°C以上、50°C以下)の湯は滞留すると水質を維持し難いので、高温槽の湯の温度が設定下限温度よりも高くて水質を維持できるときは、通常通り、高温槽の湯が供給対象住戸群にわたって循環され、例えば、供給対象住戸群での湯水使用量が多くなって、高温槽の湯の温度が設定下限温度以下となって高温槽の湯の水質を維持し難くなると、高温槽の湯の循環が停止されて、40°Cよりもかなり温度が低い水が給水源から給湯用循環経路に供給されながら、貯湯槽を迂回させる状態で給湯用循環経路にて水が循環されるので、供給対象住戸群には、40°Cよりもかなり温度が低くて水質を維持できる水が循環されて、各住戸ではその水が使用される。ちなみに、給水循環状態において給湯用循環経路に供給する水として、水道水を供給するようにすると、水道水には塩素が含まれているので、水質を一層維持し易くなって好ましい。
従って、供給対象住戸群に水質を維持する状態で湯水を供給することができる。
【0011】
〔請求項6記載の発明〕
請求項6に記載の特徴構成は、前記複数の住戸夫々に、前記給湯用循環手段を通じて供給される湯水を加熱して湯水需要部に供給する給湯器が設けられていることにある。
請求項6に記載の特徴構成によれば、各住戸に、給湯用循環手段を通じて供給される湯水を加熱して湯水需要部に供給する給湯器が設けられているので、発電機の起動時、発電機の停止時、供給対象住戸群における湯水使用量が多い時等、給湯用循環手段を通じて供給される湯水の温度が所望の給湯目標温度よりも低いときでも、各住戸では、給湯用循環手段を通じて供給される湯水が給湯器にて給湯目標温度になるように加熱されて湯水需要部に供給される。
従って、給湯用循環手段を通じて供給される湯水の温度が各住戸における所望の給湯目標温度よりも低くなるときでも、各住戸では、所望の給湯目標温度の湯水を得ることができる。
【0012】
【発明の実施の形態】
以下、図面に基づいて、本発明の実施の形態を説明する。
図1に示すように、コージェネレーションシステムは、集合住宅を電力供給対象として発電機1を設け、並びに、集合住宅を対象として、その発電機1からの排熱が供給される排熱回収用熱交換器2と、貯湯槽3と、その貯湯槽3に給水する槽用給水手段Wb(給水手段に相当する)と、排熱回収用熱交換器2と貯湯槽3とにわたって湯水を循環させる排熱回収用循環手段Ceと、貯湯槽3と集合住宅に含まれる複数の住戸Hとにわたって湯水を循環させる給湯用循環手段Csと、コージェネレーションシステムの各種制御を司る制御部5を設け、並びに、集合住宅に含まれる複数の住戸H夫々に、給湯用循環手段Csを通じて供給される湯水を加熱して住戸Hにおける各湯水需要部に供給する給湯器Kを設けて構成してある。
【0013】
更に、コージェネレーションシステムには、商用電源62からの電力を一括して受電する受変電設備61と、発電機1を商用電源62と系統連系させる連系装置63と、受変電設備61にて受電した交流電力及び発電機1からの交流電力を直流電力に変換する交直変換装置64と、その交直変換装置64にて変換された直流電力を蓄電する蓄電部65と、その蓄電部65の直流電力を交流電力に変換する直交変換装置66を設けてある。
そして、直交変換装置66から出力される交流電力を、集合住宅に含まれる各住戸H及び集合住宅における共用電力消費機器67に供給するように給電線68を配線してある。以下、集合住宅に含まれる複数の住戸Hにおける電力消費機器及び集合住宅における共用電力消費機器67をまとめて外部電力負荷と称する場合がある。
又、受変電設備61にて受電する電力を計測する一括受電電力計M6を設け、各住戸Hへの給電線68には、各住戸Hにて受電する電力を計測する住戸用電力計M7を設けてある。
【0014】
発電機1は、発電機用ガス供給路6を通じて供給される都市ガスを燃料とするガスエンジン(図示省略)を備えて、そのガスエンジンにて駆動する回転式に構成してある。図中のM1は、発電機用ガス供給路6に設けた共用部ガス流量計であり、発電機1におけるガス消費量が計測される。
そして、ガスエンジンを冷却するエンジン冷却水が、冷却水循環路7にてガスエンジンと排熱回収用熱交換器2とにわたって循環させるように構成してある。図中の8は、冷却水循環路7に設けた冷却水循環ポンプである。
【0015】
図2にも示すように、本発明においては、貯湯槽3は、槽用給水手段Wbにて給水される低温槽3Lと、その低温槽3Lからオーバーフロー状態にて湯水が供給される高温槽3Hとを備えた開放式に構成し、排熱回収用循環手段Ceは、低温槽3Lから湯水を取り出して再び低温槽3Lに戻す排熱回収用循環経路11にて湯水を循環させるように構成し、給湯用循環手段Csは、高温槽3Hから湯水を取り出して低温槽3Lに戻す給湯用循環経路14にて湯水を循環させるように構成してある。
【0016】
図2に基づいて、貯湯槽3について説明を加えると、上部が開口されると共にその開口部を開閉自在な蓋を備えた箱状の槽本体部3mの内部を、上縁部が槽本体部3mの上部よりも下方に位置する状態で設けた隔壁3wにて、2分して、2分した一方を低温槽3Lとし、他方を高温槽3Hとして、低温槽3Lの湯水が隔壁3wの上縁部を越えてオーバーフローして、高温槽3Hに供給されるように構成してある。
高温槽3Hには、高温槽3Hの水位を検出する水位検出手段としての水位センサ9を設けてある。
又、低温槽3Lの湯水の温度(以下、低温槽温度と称する場合がある)を検出する低温槽温度センサ(低温槽温度検出手段に相当する)10Lと、高温槽3Hの湯水の温度(以下、高温槽温度と称する場合がある)を検出する高温槽温度センサ(高温槽温度検出手段に相当する)10Hを設けてある。
【0017】
図1及び図2に基づいて、排熱回収用循環手段Ceについて説明を加える。
排熱回収用循環手段Ceは、低温槽3Lの底部から取り出した湯水を排熱回収用熱交換器2を経由して低温槽3Lの上部から戻すように流すべく配管した排熱回収用循環経路11と、その排熱回収用循環経路11にて低温槽3Lから取り出される湯水量に対して設定比率の量の湯水を高温槽3Hの底部から取り出して排熱回収用循環経路11に供給するように配管した高温槽湯水取り出し路12と、排熱回収用循環経路11に設けた排熱回収用循環ポンプ13を備えて構成してある。
低温槽3Lからの湯水取り出し量と高温槽3Hからの湯水取り出し量の比率は、低温槽3Lの湯水を昇温することができ、高温槽3Hの湯水は保温できるような比率に設定してあり、排熱回収用循環経路11を形成する管及び高温槽湯水取り出し路12を形成する管夫々の径を調整することにより、低温槽3Lからの湯水取り出し量と高温槽3Hからの湯水取り出し量が設定比率となるようにしてある。
【0018】
つまり、低温槽3L及び高温槽3H夫々の底部から設定比率で湯水を取り出して、排熱回収用熱交換器2で加熱した後、低温槽3Lに戻すことにより、低温槽3Lには温度成層が安定して形成される状態で湯水が貯留され、その低温槽3Lの上層の温度が安定した高温層の湯水をオーバーフローさせて高温槽3Hに供給することにより、高温槽3Hには、深さ方向において温度偏差が無い又は小さくなる状態で且つ所定の温度範囲内に保温される状態で、湯水が貯留されるように構成してある。ちなみに、詳細は後述するが、制御部5により、低温槽3Lの湯水の温度は例えば65°C以下になるように制御される。その場合、高温槽3Hの湯水の温度は、例えば、50〜60°Cの範囲に維持されるようになる。
【0019】
槽用給水手段Wbは、給水源としての水道と貯湯槽3の低温槽3Lとに接続した槽用給水路4と、その槽用給水路4に設けて低温槽3Lへの給水を断続する槽用給水路開閉弁V1とを備えて構成してある。
【0020】
図1及び図2に基づいて、給湯用循環手段Csについて説明を加える。
給湯用循環手段Csには、高温槽3Hの底部から取り出した湯水を複数の住戸Hを経由して低温槽3Lの上部に戻すように流すべく配管した給湯用循環経路14と、その給湯用循環経路14における住戸経由箇所よりも上流側に設けた給湯用循環ポンプ15を備え、給湯用循環経路14における給湯用循環ポンプ15の設置箇所よりも上流側に、上流側開閉弁V2を設け、給湯用循環経路14における住戸経由箇所よりも下流側に下流側開閉弁V3を設けてある。
【0021】
更に、貯湯槽迂回路16を、給湯用循環経路14における、上流側開閉弁V2の設置箇所及び給湯用循環ポンプ15の設置箇所の両者の間の箇所と、住戸経由箇所及び下流側開閉弁V3の設置箇所の両者の間の箇所とに接続して、その貯湯槽迂回路16を通して、貯湯槽3を迂回させる状態で給湯用循環経路14にて湯水を循環させることができるようにしてある。その貯湯槽迂回路16には、逆止弁17と貯湯槽迂回路開閉弁V4を設けてある。
更に、給水源としての水道に接続した循環用給水路18を、給湯用循環経路14における、上流側開閉弁V2の設置箇所と給湯用循環ポンプ15の設置箇所との間の箇所に接続して、水道水を給湯用循環経路14に供給するように構成し、その循環用給水路18には、循環用給水路開閉弁V5を設けてある。従って、循環用給水手段Wcは、循環用給水路18と循環用給水路開閉弁V5にて構成してある。尚、前述の槽用給水路4及び循環用給水路18夫々の通水量を合わせた通水量を計測する共用部水道水流量計M2を設けてある。
【0022】
つまり、給湯用循環ポンプ15を作動させ、上流側開閉弁V2及び下流側開閉弁V3を開弁し、貯湯槽迂回路開閉弁V4及び循環用給水路開閉弁V5を閉弁した状態では、図2に示すように、湯水は、高温槽3Hから取り出され、給湯用循環経路14を流れて低温槽3Lに戻る状態、つまり、貯湯槽3を通して給湯用循環経路14にて湯水を循環させる通常循環状態となる。
又、給湯用循環ポンプ15を作動させ、上流側開閉弁V2及び下流側開閉弁V3を閉弁し、貯湯槽迂回路開閉弁V4及び循環用給水路開閉弁V5を開弁した状態では、図4に示すように、湯水は給湯用循環経路14と貯湯槽迂回路16とを流れる状態となるので、貯湯槽迂回路16を通して給湯用循環経路14にて湯水を循環させ且つ給湯用循環経路14に循環用給水路18を通じて水道水が供給される給水循環状態となる。
つまり、給湯用循環手段Csは、通常循環状態と給水循環状態とに切り換え自在なように構成してある。
【0023】
図1に示すように、各住戸Hに対して、給湯用循環経路14を流れる湯水を供給する住戸用湯水供給路19、都市ガスを供給する住戸用ガス供給路20、水道水を供給する住戸用給水路21を設け、住戸用湯水供給路19には給湯用循環手段Csにて供給される湯水の流量を計測する湯水流量計M3を設け、住戸用ガス供給路20には住戸用ガス流量計M4を設け、住戸用給水路21には住戸用水道水流量計M5を設けてある。
住戸用湯水供給路19は、給湯器Kに接続し、住戸用給水路21は、給湯器K及び洗面所や台所の給水栓等の水消費部に接続し、住戸用ガス供給路20は、給湯器K及びガスコンロ等のガス消費部に接続してある。
【0024】
次に、制御部5の制御動作を説明する。
先ず、発電機1及び商用電源62により住戸H及び共用電力消費機器67に給電する給電制御について説明する。
【0025】
制御部5は、1日に対して予め定められた時間帯(例えば、電力需要の多い時間帯として定めた14時から24時までの10時間)で発電機1を運転し、その他の時間帯は発電機1を停止させるように、発電機1を毎日自動運転する。
【0026】
そして、発電機1の運転中は、外部電力負荷に対して発電機1及び蓄電部65から給電され、外部電力負荷に対して発電機1の出力が余るときは、その余剰電力が蓄電部65に蓄電される状態となり、制御部5は、そのように発電機1の運転中は、外部電力負荷に対して発電機1及び蓄電部65の出力が不足する場合には、その不足分が商用電源62にて補われるように連系装置63を制御する。
又、発電機1の停止中は、外部電力負荷に対して蓄電部65から給電される状態となり、制御部5は、そのように発電機1の停止中は、外部電力負荷に対して蓄電部65の出力が不足する場合には、その不足分が商用電源62にて補われるように連系装置63を制御する。
【0027】
更に、制御部5は、商用電源62からの供給電力が深夜電力となる時間帯においては、蓄電部65の蓄電容量を監視して、蓄電部65の蓄電容量が設定上限値となるように、蓄電部65への蓄電を制御する。ちなみに、蓄電部65の蓄電容量の監視は、蓄電部65の電圧等に基づいて、制御部5に内蔵の蓄電容量演算部にて蓄電部65の蓄電容量を演算して行うことになる。
つまり、蓄電部65には、発電機1における外部電力負荷に対する余剰電力、及び、商用電源62の深夜電力が蓄電されることになる。
【0028】
次に、貯湯槽3の湯水を複数の住戸Hに供給する給湯制御について、図2ないし図6に基づいて説明する。
制御部5には、水位センサ9、低温槽温度センサ10L及び高温槽温度センサ10H夫々の検出情報が入力され、冷却水循環ポンプ8、排熱回収用循環ポンプ13及び給湯用循環ポンプ15夫々の発停制御、槽用給水路開閉弁V1、上流側開閉弁V2、下流側開閉弁V3、貯湯槽迂回路開閉弁V4及び循環用給水路開閉弁V5夫々の開閉制御を行うように構成してある。
又、制御部5には、設定上限温度及び設定下限温度を予め設定して記憶させてある。ちなみに、設定上限温度としては、排熱回収用熱交換器2において貯湯槽3からの湯水にて発電機1のガスエンジンの冷却水を冷却できてガスエンジンの過熱を防止できるように、貯湯槽3の低温槽3Lに貯留される湯水の温度の上限値として設定するものであり、例えば65°Cに設定する。
又、湯は温度が低くなると水質を維持し難いので、設定下限温度としては、各住戸Hに供給される湯の水質を維持できるように、貯湯槽3の高温槽3Hに貯留される湯水の温度の下限値として設定するものであり、例えば50°Cに設定する。
【0029】
そして、制御部5は、低温槽温度センサ10Lにて検出される低温槽温度及び高温槽温度センサ10Hにて検出される高温槽温度に基づいて、低温槽温度が設定上限値よりも低く且つ高温槽温度が設定下限値よりも高いときは、排熱回収用循環ポンプ13を作動させて排熱回収用循環手段Ceを湯水循環作動させ且つ給湯用循環手段Csを通常循環状態にする通常運転制御を実行し、低温槽温度が設定上限値以上で且つ高温槽温度が設定下限値よりも高いときは、排熱回収用循環ポンプ13を停止させて排熱回収用循環手段Ceの湯水循環作動を停止させ且つ給湯用循環手段Csを通常循環状態にする排熱回収停止運転制御を実行し、低温槽温度が設定上限値よりも低く且つ高温槽温度が設定下限値以下のときは、排熱回収用循環手段Ceを湯水循環作動させ且つ給湯用循環手段Csを給水循環状態にする給水循環運転制御を実行する。
制御部5は、通常運転制御、排熱回収停止運転制御及び給水循環運転制御夫々の運転制御の実行中は、水位センサ9の検出水位に基づいて、高温槽3Hの水位が設定水位になるように、槽用給水路開閉弁V1を開閉制御する。
つまり、制御部5を用いて、制御手段を構成してある。
【0030】
又、制御部5は、発電機1の運転を停止させている時間帯においては、低温槽温度センサ10L及び高温槽温度センサ10Hの検出情報に関係なく、排熱回収用循環手段Ceの湯水循環作動を停止させ且つ給湯用循環手段Csを通常循環状態とする発電機停止時運転制御を実行する。
制御部5は、発電機停止時運転制御の実行中は、水位センサ9の検出水位に基づいて、高温槽3Hの水位が設定水位になるように、槽用給水路開閉弁V1を開閉制御する。
【0031】
又、制御部5は、操作部22から点検用運転制御の実行が指示されると、低温槽温度センサ10L及び高温槽温度センサ10Hの検出情報に関係なく、排熱回収用循環手段Ceの湯水循環作動を停止させ且つ給湯用循環手段Csを給水循環状態にする点検用運転制御を実行する。
【0032】
以下、図2ないし図6に基づいて、各運転制御おける制御部5の制御動作について説明を加える。尚、図2ないし図6では、上流側開閉弁V2、下流側開閉弁V3、貯湯槽迂回路開閉弁V4及び循環用給水路開閉弁V5夫々の開閉弁において、開弁状態を白抜き状態にて、閉弁状態を塗りつぶし状態にて示す。
【0033】
図2に示すように、通常運転制御においては、冷却水循環ポンプ8、排熱回収用循環ポンプ13及び給湯用循環ポンプ15を作動させ、上流側開閉弁V2及び下流側開閉弁V3を開弁し、貯湯槽迂回路開閉弁V4及び循環用給水路開閉弁V5を閉弁する。つまり、排熱回収用循環手段Ceは湯水循環作動され、給湯用循環手段Csは、貯湯槽3を通して給湯用循環経路14にて湯水を循環させる通常循環状態に切り換えられる。
すると、エンジン冷却水は排熱回収用熱交換器2を通って循環し、貯湯槽3の湯水は、排熱回収用循環経路11にて、低温槽3L及び高温槽3Hから設定比率で取り出されて排熱回収用熱交換器2を通って低温槽3Lの上部から戻るように循環し、給湯用循環経路14にて、高温槽3Hから取り出されて複数の住戸Hを巡って低温槽3Lの上部に戻るように循環する。
つまり、低温槽3L及び高温槽3Hから設定比率で取り出された湯水が排熱回収用熱交換器2におけるエンジン冷却水との熱交換作用にて加熱されて、低温槽3Lに戻されることにより、低温槽3Lの湯水が加熱され、その低温槽3Lの上層の温度が安定した高温層の湯水がオーバーフローして高温槽3Hに供給されるので、高温槽3Hには温度が安定する状態で湯水が貯留され、その高温槽3Hの温度が安定した湯水が複数の住戸Hにわたって循環して、そのように循環する湯水が各住戸Hで消費されることになる。
【0034】
図3に示すように、排熱回収停止運転制御においては、冷却水循環ポンプ8及び給湯用循環ポンプ15を作動させ、排熱回収用循環ポンプ13を停止させ、上流側開閉弁V2及び下流側開閉弁V3を開弁し、貯湯槽迂回路開閉弁V4及び循環用給水路開閉弁V5を閉弁する。つまり、排熱回収用循環手段Ceの湯水循環作動が停止され、給湯用循環手段Csは、貯湯槽3を通して給湯用循環経路14にて湯水を循環させる通常循環状態に切り換えられる。
すると、エンジン冷却水は排熱回収用熱交換器2を通って循環するが、排熱回収用循環ポンプ13が停止しているので、排熱回収用循環経路11を通じての排熱回収用熱交換器2を通る貯湯槽3の湯水の循環は停止され、貯湯槽3の湯水は、給湯用循環経路14にて、高温槽3Hから取り出されて複数の住戸Hを巡って低温槽3Lの上部に戻るように循環する。
従って、高温槽3Hの温度が安定した湯水が複数の住戸Hにわたって循環して、そのように循環する湯水が各住戸Hで消費されることになる。又、貯湯槽3の高温の湯が排熱回収用熱交換器2を流れることがないので、エンジン冷却水が過熱されて発電機1のガスエンジンが過熱するといった不具合を防止することができる。ちなみに、この場合は、エンジン冷却水は、排熱回収用熱交換器2とは別の冷却装置にて冷却されることになる。
高温槽3Hの湯水の量が少なくなるのに伴って、水位センサ9にて検出される高温槽3Hの水位が設定水位よりも低くなると、槽用給水路開閉弁V1が開かれて、槽用給水路4を通じて低温槽3Lに給水されるので、低温槽3Lの湯水の温度が低下することになる。そして、低温槽温度センサ10Lにて検出される低温槽温度が設定上限値よりも低くなることに基づいて、制御部5は通常運転制御を実行する。
【0035】
図4に示すように、給水循環運転制御においては、冷却水循環ポンプ8、排熱回収用循環ポンプ13及び給湯用循環ポンプ15を作動させ、上流側開閉弁V2及び下流側開閉弁V3を閉弁し、貯湯槽迂回路開閉弁V4及び循環用給水路開閉弁V5を開弁する。つまり、排熱回収用循環手段Ceは湯水循環作動され、給湯用循環手段Csは、貯湯槽迂回路16を通して給湯用循環経路14にて湯水を循環させ且つ給湯用循環経路14に水道水が供給される給水循環状態に切り換えられる。
すると、エンジン冷却水は排熱回収用熱交換器2を通って循環し、貯湯槽3の湯水は排熱回収用循環経路11及び高温槽湯水取り出し路12のみにて循環して、給湯用循環経路14を通じては循環せず、水道からの水道水が貯湯槽3を迂回して貯湯槽迂回路16を流れる状態で給湯用循環経路14にて循環する。
つまり、低温槽3L及び高温槽3Hから設定比率で取り出された湯水が排熱回収用熱交換器2におけるエンジン冷却水との熱交換作用にて加熱されて、低温槽3Lに戻されることにより、低温槽3Lの湯水が加熱され、その低温槽3Lの上層の温度が安定した高温槽3Hの湯水がオーバーフローして高温槽3Hに供給されるので、高温槽3Hの湯水が加熱されて昇温する。一方、水道水が複数の住戸Hにわたって循環して、そのように循環する水道水が各住戸Hで消費されることになる。
従って、高温槽3Hの湯水の温度が50°Cよりも高くて水質を維持できるときは、各住戸Hには50°Cよりも高くて水質を維持できる高温槽3Hの湯が供給され、高温槽3Hの湯水の温度が50°C以下になって水質を維持し難くなると、給水循環状態に切り換えられて、各住戸Hには水質を維持できる水道水が供給されることになる。
給水循環運転制御の実行中に、高温槽3Hの湯水の温度が上昇して、高温槽温度センサ10Hにて検出される高温槽温度が設定下限値よりも高くなることに基づいて、制御部5は通常運転制御を実行する。
【0036】
図5に示すように、発電機停止時運転制御においては、冷却水循環ポンプ8及び排熱回収用循環ポンプ13を停止させ、給湯用循環ポンプ15を作動させ、上流側開閉弁V2及び下流側開閉弁V3を開弁し、貯湯槽迂回路開閉弁V4及び循環用給水路開閉弁V5を閉弁する。つまり、排熱回収用循環手段Ceの湯水循環作動が停止され、給湯用循環手段Csは、貯湯槽3を通して給湯用循環経路14にて湯水を循環させる通常循環状態に切り換えられる。
すると、エンジン冷却水の循環は停止し、排熱回収用循環経路11を通じての貯湯槽3の湯水の循環は停止し、貯湯槽3の湯水は給湯用循環経路14にて循環する。
そして、高温槽3Hの湯水が複数の住戸Hにわたって循環して、そのように循環する湯水が各住戸Hで消費されることになる。
従って、発電機1の停止時も、継続して各住戸Hに湯水が供給される。
【0037】
図6に示すように、点検用運転制御においては、冷却水循環ポンプ8及び排熱回収用循環ポンプ13を停止させ、給湯用循環ポンプ15を作動させ、上流側開閉弁V2及び下流側開閉弁V3を閉弁し、貯湯槽迂回路開閉弁V4及び循環用給水路開閉弁V5を開弁する。つまり、排熱回収用循環手段Ceの湯水循環作動が停止され、給湯用循環手段Csは、貯湯槽迂回路16を通して給湯用循環経路14にて湯水を循環させ且つ給湯用循環経路14に水道水が供給される給水循環状態に切り換えられる。
すると、エンジン冷却水の循環は停止し、貯湯槽3の湯水の循環も停止し、水道からの水道水が貯湯槽3を迂回する状態で給湯用循環経路14にて循環する。
つまり、水道水が複数の住戸Hにわたって循環し、そのように循環する水道水が各住戸Hで消費されることになる。
従って、貯湯槽3を点検する間も、継続して各住戸Hに湯水が供給される。
【0038】
次に、図7に基づいて、各住戸Hに設ける給湯器Kについて説明する。
給湯器Kは、住戸用湯水供給路19から供給される湯水と住戸用給水路21から供給される水とを混合する混合部Kmと、その混合部Kmから湯水が加熱対象として供給される加熱部Khと、給湯目標温度を設定する給湯温度設定部等を備えたリモコン操作部31を備えて構成してある。
【0039】
加熱部Khは、混合部Kmから給水路32を通じて供給される湯水を加熱して、加熱後の湯水を給湯路33に供給する給湯用熱交換器34と、追焚用循環路35を通流する浴槽(図示省略)の湯水を加熱する追焚用熱交換器36と、それら給湯用熱交換器34及び追焚用熱交換器36を加熱するガスバーナ37と、加熱部Khの作動を制御する加熱制御部38等を備えて構成してある。
【0040】
ガスバーナ37には、住戸用ガス供給路20を接続し、その住戸用ガス供給路20には、ガス供給を断続するガス断続弁39、及び、ガス供給量を調整するガス比例弁40を設けてある。
【0041】
給水路32には、供給される湯水の温度を検出する給水温度センサ41、供給される湯水の流量を検出する給水量センサ42を設け、給水路32と給湯路33とを給水バイパス路43にて接続してある。
給湯路33には、上流側から順に、給湯用熱交換器34からの湯水と給水バイパス路43からの水との混合比を調整するミキシング弁45、湯水の量を調整する水比例弁50と、ミキシング弁45にて混合された湯水の温度を検出する給湯温度センサ44を設け、給湯路33の先端には、給湯栓49を接続してある。
給湯路33から分岐した湯張り路46を追焚用循環路35における往路部分に接続し、湯張り路46には湯張り用開閉弁47を設けてある。
又、追焚用循環路35における復路部分には、浴槽水を循環させる浴槽用循環ポンプ48を設けてある。
【0042】
混合部Kmは、住戸用湯水供給路19(即ち、給湯用循環手段Cs)から供給される湯水と住戸用給水路21から供給される水との混合比を調整するミキシング弁51と、住戸用湯水供給路19からミキシング弁51への湯水供給を断続する湯水供給路開閉弁52と、住戸用湯水供給路19からミキシング弁51へ供給される湯水の温度(以下、循環湯水温度と称する場合がある)を検出する循環湯水温度センサ53と、住戸用給水路21からミキシング弁51へ供給される水の温度(混合部給水温度と称する場合がある)を検出する給水温度センサ54と、ミキシング弁51から流出した湯水の温度(以下、混合湯水温度と称する場合がある)を検出する混合温度センサ55と、混合部Kmの作動を制御する混合制御部56等を備えて構成してある。
【0043】
次に、加熱制御部38及び混合制御部56の制御動作について説明する。
加熱制御部38は、リモコン操作部31及び混合制御部56夫々との間で各種の制御情報を通信するように構成してある。
リモコン操作部31の運転スイッチがオンされると、加熱制御部38及び混合制御部56夫々の制御が可能で、湯水供給路開閉弁52が開かれた運転状態となる。
そして、給湯栓49が開かれて、給水量センサ42の検出湯水流量が設定量以上になると、加熱制御部38は、混合制御部56に対して、リモコン操作部31にて設定された給湯目標温度を送信し、混合制御部56は、循環湯水温度センサ53にて検出された循環湯水温度と加熱制御部38から送られてきた給湯目標温度とを比較して、循環湯水温度が給湯目標温度以上のときはその旨を、循環湯水温度が給湯目標温度より低いときはその旨をそれぞれ加熱制御部38に送信する。
【0044】
又、混合制御部56には、予め、混合目標温度を設定して記憶させてある。ちなみに、混合目標温度としては低混合目標温度と高混合目標温度との2種類を設定してあり、低混合目標温度は、リモコン操作部31で設定される給湯目標温度が予め設定してある通常給湯目標温度範囲(例えば35〜48°C)のときに対応するものであり、例えば30°Cに設定し、高混合目標温度は、リモコン操作部31で設定される給湯目標温度が予め設定してある高温給湯目標温度(例えば60°C)のときに対応するものであり、例えば、45°Cに設定する。
【0045】
給湯栓49が開かれて給水量センサ42の検出湯水流量が設定量以上になることに基づいて、加熱制御部38から給湯目標温度が送信されてくると、混合制御部56は、循環湯水温度センサ53にて検出される循環湯水温度と給湯目標温度とを比較して、循環湯水温度が給湯目標温度以上のときは、循環湯水温度センサ53、給水温度センサ54及び混合温度センサ55夫々の検出温度に基づいて、混合温度センサ55にて検出される混合湯水温度が給湯目標温度になるようにミキシング弁51を調整して、住戸用湯水供給路19からの湯水と住戸用給水路21からの水を混合し、且つ、循環湯水温度が給湯目標温度以上である旨を加熱制御部38に送信する。
加熱制御部38は、循環湯水温度が給湯目標温度以上である旨が混合制御部56から送信されてくると、ガスバーナ37を燃焼停止状態とする。
従って、混合部Kmから加熱部Khに供給された湯水は加熱部Khにて加熱されずに給湯栓49から出湯することになり、給湯栓49からは給湯目標温度又は略給湯目標温度の湯水が出湯する。
【0046】
一方、循環湯水温度が給湯目標温度よりも低いときは、循環湯水温度センサ53、給水温度センサ54及び混合温度センサ55夫々の検出温度に基づいて、混合温度センサ55にて検出される混合湯水温度が、給湯目標温度が通常給湯目標温度範囲のときは低混合目標温度になるように、あるいは、給湯目標温度が高温給湯目標温度のときは高混合目標温度になるように、ミキシング弁51を調整して、住戸用湯水供給路19からの湯水と住戸用給水路21からの水を混合し、且つ、循環湯水温度が給湯目標温度よりも低い旨を加熱制御部38に送信する。
加熱制御部38は、混合制御部56から循環湯水温度が給湯目標温度よりも低い旨が送信されてくると、ガスバーナ37を燃焼させ、給湯目標温度、給水温度センサ41の検出温度及び給水量センサ42の検出給水量に基づいて、給湯用熱交換器34から流出する湯水の温度が給湯目標温度になるように、ガス比例弁40の開度及びミキシング弁45の開度を調節するフィードフォワード制御を実行し、且つ、給湯温度センサ44の検出温度と給湯目標温度との偏差に基づいてガス比例弁40の開度を微調整するフィードバック制御を実行する。
従って、給湯栓49からは給湯目標温度の湯水が出湯することになる。
【0047】
つまり、 加熱制御部38及び混合制御部56にて給湯器制御部を構成するとすると、給湯器Kは、給湯用循環手段Csからの湯水と給水源からの水とを混合すると共にその混合比率が調整自在な混合部Kmと、その混合部Kmから供給される湯水を加熱すると共にその加熱量が調整自在な加熱部Khと、給湯用循環手段Csから供給される湯水の温度を検出する循環湯水温度センサ53と、給水源からの水の温度を検出する給水温度センサ54と、それら循環湯水温度センサ53及び給水温度センサ54夫々の検出温度に基づいて、給湯用循環手段Csからの湯水の温度が給湯目標温度以上のときは、混合後の湯水の温度が給湯目標温度になるように混合部Kmにおける混合比率を調整し且つ加熱部Khの加熱作動を停止する給湯器制御部を備えて構成されている。
又、前記給湯器制御部は、給湯用循環手段Csからの湯水の温度が給湯目標温度よりも低いときは、混合後の湯水の温度が、加熱部Khの加熱作動による給湯目標温度への温度調節が安定して行えるような加熱対象の湯水の温度として予め設定した混合目標温度になるように混合部Kmにおける混合比率を調整し、且つ、給湯目標温度になるように加熱部Khの加熱量を調整するように構成されている。
【0048】
従って、給湯用循環手段Csからの湯水の温度が給湯目標温度以上のときは、混合部Kmにて、給湯目標温度になるように給湯用循環手段Csからの湯水と給水源からの水とが混合され、そのように混合された湯水が加熱部Khにて加熱されずに出湯されるので、給湯目標温度又は略給湯目標温度の湯水が得られる。
【0049】
又、給湯用循環手段Csからの湯水の温度が給湯目標温度よりも低いときは、給湯目標温度への温度調節が安定して行えるような混合目標温度になるように、給湯用循環手段Csからの湯水と給水源からの水とが混合されてから、加熱部Khにて給湯目標温度になるように加熱されるので、給湯用循環手段Csからの湯水の温度と給湯目標温度との差が小さいときでも、給湯目標温度又は略給湯目標温度の湯水が得られる。
つまり、ガスバーナ37の燃焼安定性を確保するために、ガスバーナ37の燃焼量は所定の最小燃焼量よりも小さくは絞れないようにしてある。従って、前述の如き湯水混合制御、即ち、給湯用循環手段Csからの湯水と給水源からの水とを混合目標温度になるように混合する制御を行わないときは、給湯用循環手段Csからの湯水の温度と給湯目標温度との差が小さくて、その差に基づいて求めた燃焼量が最小燃焼量よりも小さいときは、例えば、ガスバーナ37を最小燃焼量にて燃焼させるようになるので、出湯する湯水の温度を給湯目標温度に調整し難いといった不具合が生じることになる。そこで、前述の如き湯水混合制御を行うことにより、前述の如き不具合が解消されることになる。
【0050】
要するに、給湯用循環手段Csにて供給される湯水の温度は、供給対象住戸群における湯水使用量により変動するが、給湯用循環手段Csにて供給される湯水の温度が給湯目標温度以上のとき及び給湯目標温度よりも低いときのいずれにおいても、各住戸Hでは、給湯目標温度又は略給湯目標温度の湯水を得ることができる。
【0051】
上述のように構成したコージェネレーションシステムでは、各住戸Hにおける湯水流量計M3及び住戸用電力計M7の検針は、地域又は集合住宅に含まれる複数の住戸Hを管理する管理組合が検針して、各住戸Hに課金することになる。
【0052】
〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の実施形態においては、排熱回収用循環手段Ceを、低温槽3Lと高温槽3Hから設定比率で湯水を取り出すように構成する場合について例示したが、低温槽3Lのみから湯水を取り出すように構成しても良い。
【0053】
(ロ) 上記の実施形態においては、給湯器Kは、混合部Km及び加熱部Khの両方を備えて構成する場合について例示したが、混合部Kmを省略しても良い。
【0054】
(ハ) 槽用給水手段Wbの具体構成は、上記の実施形態において例示した構成に限定されるものではない。例えば、槽用給水路4を排熱回収用循環経路11における排熱回収用熱交換器2の設置箇所よりも上流側部分に接続して、排熱回収用循環経路11を通じて低温槽3Lに給水するように構成しても良い。この場合、槽用給水路4を排熱回収用循環経路11に直接接続して、常時、槽用給水路4が排熱回収用循環経路11に連通する状態としても良いし、あるいは、槽用給水路4を三方弁を介して排熱回収用循環経路11に接続して、三方弁により、槽用給水路4を排熱回収用循環経路11に対して連通させる状態と連通を断つ状態とに切り換えて、低温槽3Lへの給水を断続するように構成しても良い。
【0055】
(ニ) 低温槽3Lと高温槽3Hとの間の湯水の温度の関係は、供給対象住戸群における湯水使用量の変動、発電機1から供給される排熱量の変動等に伴い変化するものであり、低温槽3Lの湯水の温度が高温槽3Hの湯水の温度よりも低い場合が多いが、低温槽3Lの湯水の温度が高温槽3Hの湯水の温度以上になる場合もある。
【0056】
(ホ) 上記の実施形態のように、発電機1をガスエンジン等のエンジンにて駆動されるエンジン駆動の回転式にて構成する場合、排熱回収用熱交換器2に供給する発電機1の排熱としては、上記の実施形態において例示したエンジン冷却水以外に、エンジンの排ガスを供給したり、エンジン冷却水と排ガスの両方を供給したりするように構成しても良い。尚、発電機1をエンジン駆動の回転式にて構成する場合、エンジンとしては、上記の実施形態において例示した都市ガスを燃料とするもの以外に、LPガス、石油、ガソリン等種々の燃料を用いるものを使用することができる。
又、発電機1は、上記の実施形態において例示した如きエンジン駆動の回転式にて構成する以外に、ガスタービンにて駆動するガスタービン駆動の回転式にて構成しても良い。発電機1をガスタービン駆動の回転式にて構成する場合、排熱回収用熱交換器2には発電機1の排熱としてガスタービンの排ガスを供給するように構成する。
又、発電機1としては、上記の如き回転式に限定されるのではなく、例えば、各種の燃料電池にて構成することができる。発電機1を燃料電池にて構成する場合は、排熱回収用熱交換器2には発電機1の排熱として燃料電池の冷却水を供給するように構成する。
【0057】
(ヘ) 上記の実施形態においては、1台の貯湯槽3に対して発電機1を1台設ける場合について例示したが、1台の貯湯槽3に対して発電機1を複数台設けても良い。この場合、例えば、複数台の発電機1夫々に排熱回収用熱交換器2を1台ずつ設けて、それら複数の排熱回収用熱交換器2を並列状態にて貯湯槽3に接続する構成を採用することができる。
【図面の簡単な説明】
【図1】コージェネレーションシステムの全体構成を示すブロック図
【図2】コージェネレーションシステムにおける通常運転制御での湯水流動状態を示すブロック図
【図3】コージェネレーションシステムにおける排熱回収停止運転制御での湯水流動状態を示すブロック図
【図4】コージェネレーションシステムにおける給水循環運転制御での湯水流動状態を示すブロック図
【図5】コージェネレーションシステムにおける発電機停止時運転制御での湯水流動状態を示すブロック図
【図6】コージェネレーションシステムにおける点検用運転制御での湯水流動状態を示すブロック図
【図7】コージェネレーションシステムの給湯器の構成を示すブロック図
【図8】従来のコージェネレーションシステムのブロック図
【符号の説明】
1 発電機
2 排熱回収用熱交換器
3 貯湯槽
3H 高温槽
3L 低温槽
5 制御手段
9 水位検出手段
10H 高温槽温度検出手段
10L 低温槽温度検出手段
11 排熱回収用循環経路
14 給湯用循環経路
16 貯湯槽迂回路
Ce 排熱回収用循環手段
Cs 給湯用循環手段
H 住戸
K 給湯器
Wb 給水手段[0001]
BACKGROUND OF THE INVENTION
In the present invention, a power generator is provided for an area or an apartment house, and a generator is provided.
Exhaust heat recovery heat exchanger to which the exhaust heat from the generator is supplied, a hot water storage tank, water supply means for supplying water to the hot water storage tank, hot water recovery over the exhaust heat recovery heat exchanger and the hot water storage tank The present invention relates to a cogeneration system provided with circulation means for exhaust heat recovery to be circulated, and circulation means for hot water supply for circulating hot water over the hot water storage tank and a plurality of dwelling units included in the area or apartment house.
[0002]
[Prior art]
Such a cogeneration system supplies electric power to a plurality of dwelling units (hereinafter sometimes referred to as a supply target dwelling group) included in an area or an apartment house with a generator, and also uses exhaust heat recovery circulation means. The hot water is circulated between the heat exchanger for recovering exhaust heat supplied with the exhaust heat of the generator and the hot water tank to heat the hot water in the hot water tank, and the hot water circulating means for supplying hot water and the housing units to be supplied are The hot water is circulated over the entire area, the exhaust heat of the generator is recovered, and the heated hot water is supplied to the supply target dwelling units.
[0003]
In such a cogeneration system, conventionally, as shown in FIG. 8, there has been a hot
As shown in FIG. 8, in the case where the sealed hot
[0004]
[Problems to be solved by the invention]
However, in a conventional cogeneration system with a sealed hot water storage tank, hot water is taken out from the upper part of the hot water storage tank where hot water is stored in a state where temperature stratification is formed and supplied to the supply target housing units. Therefore, although the hot water supply temperature to the dwelling unit is stable, the hot water tank is hermetically sealed, so the work for checking and maintaining the hot water tank is complicated, so the maintenance management of the hot water tank is complicated. was there.
Incidentally, in order to solve the above-described problems, a case where the hot water storage tank is configured to be an open type of one tank is conceivable. However, in the case where one open-type hot water storage tank is provided, since the hot water storage tank is an open type, maintenance management of the hot water tank is simple, but the supply temperature of hot water to the dwelling unit is unstable. there were. In addition, in one open-type hot water storage tank, the water level of the hot water storage tank fluctuates depending on the amount of hot water used by the supply target dwelling group. The hot water extraction position of the hot water circulation means in the hot water tank must be set on the bottom side of the hot water tank, and in this case, the temperature stratification of the hot water tank is disturbed and the hot water is extracted from the bottom of the hot water tank. Since the temperature of the hot water is unstable, there is a problem that the supply temperature of the hot water to the dwelling unit is unstable.
[0005]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a cogeneration system in which maintenance management is simple and the supply temperature of hot water to a dwelling unit is stable.
[0006]
[Means for Solving the Problems]
[Invention of Claim 1]
The characteristic configuration according to claim 1 is an open type in which the hot water storage tank includes a low temperature tank supplied with the water supply means and a high temperature tank supplied with hot water in an overflow state from the low temperature tank. And
The exhaust heat recovery circulation means is configured to circulate hot water in a waste heat recovery circulation path that takes hot water from the low temperature bath and returns it to the low temperature bath again,
The hot water circulation means is configured to circulate hot water in a hot water circulation path that takes hot water from the high temperature bath and returns it to the low temperature bath.
According to the characteristic configuration of the first aspect, the hot water in the hot water storage tank is taken out from the low temperature tank and returned to the low temperature tank through the exhaust heat recovery heat exchanger by the exhaust heat recovery circulation means. The hot water in the hot water storage layer is circulated in the circulation path, and is circulated in the hot water circulation path that is taken out from the high temperature tank and returns to the low temperature tank around the supply target dwelling units. The hot water circulating in the exhaust heat recovery circulation path is heated by the exhaust heat recovery heat exchanger and returned to the low temperature layer, whereby the hot water in the low temperature bath is heated and the hot water in the upper layer of the low temperature bath overflows. Then, the hot water is supplied to the high-temperature tank and stored in the high-temperature tank, and the hot water in the high-temperature tank circulates over the supply target dwelling units, and hot water is consumed in each dwelling unit.
In other words, the hot water storage tank is divided into a low temperature tank and a high temperature tank, and the hot water in the high temperature tank is circulated to the supply target dwelling group. Therefore, hot water is stored in the low temperature bath in a state where the temperature stratification is stably formed, and hot water is stored in the state where the temperature stratification is stably formed in the high temperature bath. Since hot water is supplied in an overflow state from the upper high temperature layer of the low temperature bath, the hot water is stored in the high temperature bath with no or small temperature deviation in the depth direction. Therefore, even if hot water is taken out from the bottom of the high temperature layer and supplied to the supply target dwelling units, since the hot water is stored in the high temperature tank with no or small temperature deviation in the depth direction, The supply temperature of hot water is stabilized.
Moreover, since the hot water tank is an open type, the work for inspection and maintenance of the hot water tank is simplified, and the maintenance management of the hot water tank is simplified.
Therefore, it has become possible to provide a cogeneration system that is easy to maintain and stabilizes the supply temperature of hot water to the dwelling unit.
[0007]
[Invention of Claim 2]
The characteristic configuration described in
According to the characteristic configuration of the second aspect, hot water is taken out from the low temperature tank and the high temperature tank at a set ratio by the exhaust heat recovery circulation means, and passes through the heat exchanger for exhaust heat recovery into the low temperature tank. Since the hot water in the hot water storage layer is circulated in the returning form, the hot water in the high temperature bath is also circulated in the exhaust heat recovery circulation path, so that the temperature drop of the hot water in the high temperature bath due to heat dissipation is suppressed and the high temperature is increased. The temperature of the hot water in the tank is more stable.
Therefore, the supply temperature of hot water to the dwelling unit can be further stabilized.
[0008]
[Invention of Claim 3]
According to a third aspect of the present invention, the water level detecting means for detecting the water level of the high temperature tank and the water supply means so that the water level of the high temperature tank becomes a set water level based on the detected water level of the water level detecting means. And a control means for controlling the water supply operation.
According to the characteristic configuration of the third aspect, the control means controls the water supply operation of the water supply means based on the detected water level of the water level detection means so that the water level of the high-temperature tank becomes the set water level. Regardless of fluctuations in the amount of hot water used in the group, hot water is stored in the high temperature tank at the set water level.
Therefore, it is possible to stably supply hot water to each dwelling unit regardless of fluctuations in the amount of hot water used in the supply target dwelling group.
[0009]
[Invention of Claim 4]
The characteristic configuration according to
According to the characteristic configuration of the fourth aspect, the control means is configured to circulate the hot water in the exhaust heat recovery circulation means when the temperature of the hot water in the low temperature tank exceeds the set upper limit temperature based on the temperature detected by the low temperature tank temperature detection means. When the operation is stopped and the temperature of the hot water in the low temperature tank becomes lower than the set upper limit temperature, the circulating means for recovering the exhaust heat is operated to circulate the hot water.
In other words, the amount of hot water used in the supply units to be supplied is reduced, the temperature of the low temperature layer becomes higher than the set upper limit temperature, and the generator cooling water supplied to the heat exchanger for exhaust heat recovery as exhaust heat is exhausted. When the amount of heat conducted to the hot water in the hot water storage layer in the heat exchanger for recovery is greatly suppressed and the generator may overheat, the heat from the hot water layer to the exhaust heat recovery heat exchanger Since the hot water supply is stopped and the generator is prevented from overheating as described above, the generator can continue to operate normally even if the amount of hot water used in the supply target dwelling group is reduced, Hot water can be supplied to the supply target dwelling group while power is continuously supplied to the supply target dwelling group by the generator. Incidentally, in this case, the cooling water of the generator is cooled by a cooling device different from the heat exchanger for exhaust heat recovery.
On the other hand, when the amount of hot water used in the supply target housing group is within the normal range and the temperature of the hot water in the low-temperature tank is lower than the set upper limit temperature, hot water is supplied from the hot water storage layer to the heat exchanger for exhaust heat recovery and discharged. In the heat exchanger for heat recovery, heat is exchanged between the cooling water of the generator and the hot water of the hot water storage layer, so the cooling water of the generator is cooled and the hot water of the low temperature layer is heated while operating the generator normally. Thus, hot water can be supplied to the supply target dwelling units.
Therefore, it is possible to stably supply power and hot water to the supply target dwelling group regardless of fluctuations in the amount of hot water used in the supply target dwelling group.
[0010]
[Invention of Claim 5]
The characteristic configuration according to
The hot water circulation means includes a normal circulation state in which hot water is circulated in the hot water circulation path through the hot water storage tank, and hot water is circulated in the hot water circulation path through the hot water tank bypass and the hot water circulation path. It is configured to be switchable to a water supply circulation state in which water is supplied from a water supply source to
Based on the detection information of the high temperature bath temperature detection means for detecting the temperature of the hot water in the high temperature bath, and when the temperature of the hot water in the high temperature bath is higher than a set lower limit temperature, the circulation for hot water supply There is provided control means for switching the means to the normal circulation state and switching the hot water supply circulation means to the water supply circulation state when the temperature of the hot water in the high-temperature tank is equal to or lower than the set lower limit temperature.
According to the characteristic configuration of the fifth aspect, the control means normally circulates the hot water supply circulation means when the temperature of the hot water in the high temperature tank is higher than the set lower limit temperature based on the detection information of the high temperature tank temperature detection means. When the temperature of the hot water in the high-temperature tank is lower than the set lower limit temperature, the hot water supply circulation means is switched to the water supply circulation state.
When the hot water supply circulation means is switched to the normal circulation state, hot water in the hot water storage layer is circulated in the hot water supply circulation path, and when switched to the water supply circulation state, water is supplied from the water supply source to the hot water supply circulation path. The hot water is circulated through the hot water supply circulation path through the hot water tank detour.
That is, when hot water of low temperature (for example, 40 ° C. or more and 50 ° C. or less) stays, it is difficult to maintain the water quality. Therefore, when the temperature of the hot water in the hot bath is higher than the set lower limit temperature, As a result, hot water in the high-temperature tank is circulated across the supply target unit group, for example, the amount of hot water used in the supply target unit group is increased, and the temperature of the hot water in the high-temperature tank is below the set lower limit temperature. When it becomes difficult to maintain the water quality, the hot water circulation in the high-temperature tank is stopped, and water with a temperature much lower than 40 ° C is supplied from the water supply source to the hot water supply circulation path while diverting the hot water tank. Since water is circulated through the circulation path, water that can maintain the water quality at a temperature considerably lower than 40 ° C. is circulated in the supply target dwelling group, and the water is used in each dwelling unit. Incidentally, it is preferable to supply tap water as the water to be supplied to the hot water supply circulation path in the water supply circulation state because the tap water contains chlorine, so that the water quality can be more easily maintained.
Therefore, hot water can be supplied to the supply target dwelling unit in a state of maintaining the water quality.
[0011]
[Invention of Claim 6]
A characteristic configuration according to claim 6 is that each of the plurality of dwelling units is provided with a water heater that heats hot water supplied through the hot water supply circulation means and supplies the hot water to the hot water demand section.
According to the characteristic configuration of claim 6, each dwelling unit is provided with a water heater that heats the hot water supplied through the hot water supply circulation means and supplies it to the hot water demand section. Even when the temperature of hot water supplied through the hot water supply circulation means is lower than the desired hot water supply temperature, such as when the generator is stopped or when there is a large amount of hot water in the supply target housing group, The hot water supplied through the hot water supply is heated by the hot water heater so as to reach the hot water supply target temperature and supplied to the hot water demand section.
Therefore, even when the temperature of the hot water supplied through the hot water supply circulation means becomes lower than the desired hot water supply target temperature in each dwelling unit, the hot water at the desired hot water supply target temperature can be obtained in each dwelling unit.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the cogeneration system is provided with a generator 1 for supplying power to an apartment house, and heat for exhaust heat recovery to which exhaust heat from the generator 1 is supplied to the apartment house. An
[0013]
Further, the cogeneration system includes a power receiving / transforming
And the electric
In addition, a collective power receiving wattmeter M6 for measuring the power received by the power receiving / transforming
[0014]
The generator 1 includes a gas engine (not shown) that uses city gas supplied through the generator gas supply path 6 as fuel, and is configured to be driven by the gas engine. M1 in the figure is a common part gas flow meter provided in the generator gas supply path 6, and the gas consumption in the generator 1 is measured.
And the engine cooling water which cools a gas engine is comprised so that it may circulate over the gas engine and the
[0015]
As shown in FIG. 2, in the present invention, the hot
[0016]
Based on FIG. 2, the hot
The
Further, 10 L of a low-temperature tank temperature sensor (corresponding to a low-temperature tank temperature detection means) for detecting the temperature of hot water in the low-
[0017]
Based on FIG.1 and FIG.2, description is added about the circulation means Ce for waste heat recovery.
The waste heat recovery circulation means Ce is a waste heat recovery circulation path piped so as to flow the hot water taken out from the bottom of the
The ratio of the amount of hot water taken out from the
[0018]
That is, hot water is taken out from the bottom of each of the
[0019]
The tank water supply means Wb includes a tank
[0020]
Based on FIGS. 1 and 2, the hot water supply circulation means Cs will be described.
The hot water supply circulation means Cs includes a hot water
[0021]
Further, the hot water
Further, the circulation
[0022]
That is, when the hot water
In the state where the hot water
That is, the hot water supply circulation means Cs is configured to be switchable between a normal circulation state and a water supply circulation state.
[0023]
As shown in FIG. 1, for each dwelling unit H, a dwelling
The hot
[0024]
Next, the control operation of the
First, power supply control for supplying power to the dwelling unit H and the shared
[0025]
The
[0026]
During operation of the generator 1, power is supplied from the generator 1 and the
Further, when the generator 1 is stopped, power is supplied from the
[0027]
Further, the
That is, the
[0028]
Next, hot water supply control for supplying hot water in the hot
Detection information of each of the
The
Moreover, since the quality of hot water is difficult to maintain when the temperature is lowered, the set lower limit temperature is that of hot water stored in the
[0029]
Then, the
During the execution of each of the normal operation control, the exhaust heat recovery stop operation control, and the feed water circulation operation control, the
That is, the control means is configured using the
[0030]
In addition, the
During the execution of the generator stop operation control, the
[0031]
In addition, when the
[0032]
Hereinafter, based on FIG. 2 thru | or FIG. 6, description is added about the control action of the
[0033]
As shown in FIG. 2, in the normal operation control, the cooling water circulation pump 8, the exhaust heat
Then, the engine cooling water circulates through the
That is, hot water taken out from the
[0034]
As shown in FIG. 3, in the exhaust heat recovery stop operation control, the cooling water circulation pump 8 and the hot water
Then, the engine coolant circulates through the
Accordingly, the hot water having a stable temperature in the
When the water level of the
[0035]
As shown in FIG. 4, in the feed water circulation operation control, the cooling water circulation pump 8, the exhaust heat
Then, the engine cooling water circulates through the exhaust heat
That is, hot water taken out from the
Therefore, when the temperature of the hot water in the high-
During the execution of the feed water circulation operation control, the temperature of the hot water in the
[0036]
As shown in FIG. 5, in the generator stop operation control, the cooling water circulation pump 8 and the exhaust heat
Then, the circulation of the engine cooling water stops, the circulation of hot water in the hot
And the hot water of the
Accordingly, hot water is continuously supplied to each dwelling unit H even when the generator 1 is stopped.
[0037]
As shown in FIG. 6, in the inspection operation control, the cooling water circulation pump 8 and the exhaust heat
Then, the circulation of the engine cooling water is stopped, the circulation of the hot water in the
That is, the tap water circulates over the plurality of dwelling units H, and the tap water that circulates in this way is consumed in each dwelling unit H.
Therefore, hot water is continuously supplied to each dwelling unit H while checking the
[0038]
Next, the water heater K provided in each dwelling unit H will be described based on FIG.
The water heater K is a mixing unit Km that mixes hot water supplied from the dwelling
[0039]
The heating unit Kh heats the hot water supplied from the mixing unit Km through the
[0040]
The
[0041]
The
In the hot
A hot
In addition, a
[0042]
The mixing unit Km includes a mixing valve 51 that adjusts a mixing ratio of hot water supplied from the dwelling water supply channel 19 (that is, the hot water supply circulation means Cs) and water supplied from the dwelling
[0043]
Next, control operations of the
The
When the operation switch of the remote
When the hot-
[0044]
Further, the mixing
[0045]
If the hot water supply target temperature is transmitted from the
The
Accordingly, the hot water supplied from the mixing unit Km to the heating unit Kh is discharged from the
[0046]
On the other hand, when the circulating hot water temperature is lower than the target hot water temperature, the mixed hot water temperature detected by the mixed temperature sensor 55 based on the detected temperatures of the circulating hot
When the mixing
Accordingly, hot water at the hot water supply target temperature is discharged from the
[0047]
That is, if the
In addition, when the temperature of the hot water from the hot water supply circulation means Cs is lower than the target hot water temperature, the hot water supply controller controls the temperature of the hot water after mixing to the target hot water temperature by the heating operation of the heating unit Kh. The mixing ratio in the mixing unit Km is adjusted so as to be a preset mixing target temperature as the temperature of the hot water to be heated so that the adjustment can be stably performed, and the heating amount of the heating unit Kh is set so as to become the hot water supply target temperature. Configured to adjust.
[0048]
Accordingly, when the temperature of the hot water from the hot water supply circulation means Cs is equal to or higher than the hot water supply target temperature, the mixing water Km and the hot water from the hot water supply circulation means Cs and the water from the water supply source are reduced to the target hot water supply temperature. Since the hot water is mixed and discharged without being heated by the heating unit Kh, hot water having a hot water supply target temperature or a hot water supply target temperature is obtained.
[0049]
Further, when the temperature of the hot water from the hot water supply circulation means Cs is lower than the hot water supply target temperature, the hot water supply circulation means Cs is set so that the mixed target temperature can be stably adjusted to the hot water supply target temperature. Since the hot water and the water from the water supply source are mixed and then heated to the hot water supply target temperature by the heating unit Kh, the difference between the hot water temperature from the hot water circulation means Cs and the hot water supply target temperature is Even when the temperature is small, hot water at the hot water supply target temperature or approximately the hot water supply target temperature is obtained.
That is, in order to ensure the combustion stability of the
[0050]
In short, the temperature of the hot water supplied by the hot water supply circulation means Cs varies depending on the amount of hot water used in the supply target dwelling units, but the temperature of the hot water supplied by the hot water supply circulation means Cs is equal to or higher than the target hot water temperature. In each case where the temperature is lower than the hot water supply target temperature, each dwelling unit H can obtain hot water at a hot water supply target temperature or a hot water supply target temperature.
[0051]
In the cogeneration system configured as described above, the meter readings of the hot water flow meter M3 and the dwelling unit power meter M7 in each dwelling unit H are metered by a management association that manages a plurality of dwelling units H included in the area or apartment house, Each dwelling unit H will be charged.
[0052]
[Another embodiment]
Next, another embodiment will be described.
(B) In the above embodiment, the exhaust heat recovery circulation means Ce is illustrated as being configured to take hot water from the
[0053]
(B) In the above embodiment, the hot water heater K is illustrated as being configured to include both the mixing unit Km and the heating unit Kh, but the mixing unit Km may be omitted.
[0054]
(C) The specific configuration of the tank water supply means Wb is not limited to the configuration exemplified in the above embodiment. For example, the tank
[0055]
(D) The relationship between the temperature of the hot water between the
[0056]
(E) When the generator 1 is configured as an engine-driven rotary type driven by an engine such as a gas engine as in the above embodiment, the generator 1 supplied to the
Further, the generator 1 may be constituted by a gas turbine driven rotary type driven by a gas turbine in addition to the engine driven rotary type exemplified in the above embodiment. When the generator 1 is configured as a gas turbine driven rotary type, the exhaust heat
Further, the generator 1 is not limited to the rotary type as described above, and can be constituted by various fuel cells, for example. When the generator 1 is configured by a fuel cell, the exhaust heat
[0057]
(F) In the above embodiment, the case where one generator 1 is provided for one
[Brief description of the drawings]
FIG. 1 is a block diagram showing the overall configuration of a cogeneration system
FIG. 2 is a block diagram showing a hot water flow state in normal operation control in a cogeneration system.
FIG. 3 is a block diagram showing a hot water flow state in exhaust heat recovery stop operation control in a cogeneration system.
FIG. 4 is a block diagram showing a hot water flow state in feed water circulation operation control in a cogeneration system.
FIG. 5 is a block diagram showing a hot water flow state in operation control when the generator is stopped in the cogeneration system.
FIG. 6 is a block diagram showing a hot water flow state in inspection operation control in a cogeneration system.
FIG. 7 is a block diagram showing the configuration of a water heater of a cogeneration system
FIG. 8 is a block diagram of a conventional cogeneration system.
[Explanation of symbols]
1 generator
2 Heat exchanger for exhaust heat recovery
3 Hot water tank
3H high temperature bath
3L low temperature tank
5 Control means
9 Water level detection means
10H High temperature bath temperature detection means
10L Low temperature bath temperature detection means
11 Waste heat recovery circulation path
14 Circulation route for hot water supply
16 Hot water tank detour
Ce Waste heat recovery circulation means
Circulation means for Cs hot water supply
H dwelling unit
K water heater
Wb water supply means
Claims (6)
その発電機からの排熱が供給される排熱回収用熱交換器と、貯湯槽と、その貯湯槽に給水する給水手段と、前記排熱回収用熱交換器と前記貯湯槽とにわたって湯水を循環させる排熱回収用循環手段と、前記貯湯槽と前記地域又は集合住宅に含まれる複数の住戸とにわたって湯水を循環させる給湯用循環手段が設けられたコージェネレーションシステムであって、
前記貯湯槽が、前記給水手段にて給水される低温槽と、その低温槽からオーバーフロー状態にて湯水が供給される高温槽とを備えた開放式に構成され、
前記排熱回収用循環手段が、前記低温槽から湯水を取り出して再び前記低温槽に戻す排熱回収用循環経路にて湯水を循環させるように構成され、
前記給湯用循環手段が、前記高温槽から湯水を取り出して前記低温槽に戻す給湯用循環経路にて湯水を循環させるように構成されているコージェネレーションシステム。A generator is provided for the area or housing complex for power supply,
Exhaust heat recovery heat exchanger to which the exhaust heat from the generator is supplied, a hot water storage tank, water supply means for supplying water to the hot water storage tank, hot water recovery over the exhaust heat recovery heat exchanger and the hot water storage tank A cogeneration system provided with circulating means for exhaust heat recovery to be circulated, and circulating means for hot water supply for circulating hot water over the hot water storage tank and a plurality of dwelling units included in the area or apartment house,
The hot water storage tank is configured as an open type provided with a low temperature tank supplied with the water supply means, and a high temperature tank supplied with hot water in an overflow state from the low temperature tank,
The exhaust heat recovery circulation means is configured to circulate hot water in a waste heat recovery circulation path that takes hot water from the low temperature bath and returns it to the low temperature bath again,
A cogeneration system in which the hot water circulation means is configured to circulate hot water in a hot water circulation path that takes hot water from the high temperature bath and returns it to the low temperature bath.
前記給湯用循環手段は、前記貯湯槽を通して前記給湯用循環経路にて湯水を循環させる通常循環状態と、前記貯湯槽迂回路を通して前記給湯用循環経路にて湯水を循環させ且つ前記給湯用循環経路に給水源から水が供給される給水循環状態とに切り換え自在なように構成され、
前記高温槽の湯水の温度を検出する高温槽温度検出手段と、その高温槽温度検出手段の検出情報に基づいて、前記高温槽の湯水の温度が設定下限温度よりも高いときは前記給湯用循環手段を前記通常循環状態に切り換え且つ前記高温槽の湯水の温度が前記設定下限温度以下のときは前記給湯用循環手段を前記給水循環状態に切り換える制御手段とが設けられている請求項1〜4のいずれか1項に記載のコージェネレーションシステム。The hot water supply circulation means is provided with a hot water tank bypass circuit for bypassing the hot water storage tank and circulating hot water in the hot water supply circulation path,
The hot water circulation means includes a normal circulation state in which hot water is circulated in the hot water circulation path through the hot water storage tank, and hot water is circulated in the hot water circulation path through the hot water tank bypass and the hot water circulation path. It is configured to be switchable to a water supply circulation state in which water is supplied from a water supply source to
Based on the detection information of the high temperature bath temperature detection means for detecting the temperature of the hot water in the high temperature bath, and when the temperature of the hot water in the high temperature bath is higher than a set lower limit temperature, the circulation for hot water supply Control means is provided for switching the means to the normal circulation state and switching the hot water supply circulation means to the water supply circulation state when the temperature of the hot water in the high-temperature tank is equal to or lower than the set lower limit temperature. The cogeneration system according to any one of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001223976A JP4416358B2 (en) | 2001-07-25 | 2001-07-25 | Cogeneration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001223976A JP4416358B2 (en) | 2001-07-25 | 2001-07-25 | Cogeneration system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003042545A JP2003042545A (en) | 2003-02-13 |
JP4416358B2 true JP4416358B2 (en) | 2010-02-17 |
Family
ID=19057223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001223976A Expired - Fee Related JP4416358B2 (en) | 2001-07-25 | 2001-07-25 | Cogeneration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4416358B2 (en) |
-
2001
- 2001-07-25 JP JP2001223976A patent/JP4416358B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003042545A (en) | 2003-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008275182A (en) | Exhaust heat recovering system and auxiliary heat storage tank | |
KR101799859B1 (en) | Electric power saving type hot-water supplying for economization of water | |
JP2015050826A (en) | Demand response system | |
JP3888917B2 (en) | Cogeneration system | |
JP4454190B2 (en) | Cogeneration system | |
JP4416358B2 (en) | Cogeneration system | |
JP2007127373A (en) | Exhaust heat recovery equipment | |
JP3901554B2 (en) | Cogeneration system | |
JP6551062B2 (en) | Cogeneration system | |
JP2004069217A (en) | Heat medium feeding apparatus | |
JP6223136B2 (en) | Cogeneration system | |
JP2003047155A (en) | Power feeding method | |
JP2007064518A (en) | Cogeneration system | |
JP4154363B2 (en) | Hot water supply system | |
JP2004257276A (en) | Cogeneration system | |
JP5745911B2 (en) | Heat supply system | |
JP5060206B2 (en) | Heat consumption calculation system | |
JP3966790B2 (en) | Cogeneration system | |
JP4118707B2 (en) | Water heater | |
JP4148819B2 (en) | Water supply equipment | |
JP4471544B2 (en) | Cogeneration system | |
JP6120752B2 (en) | Cogeneration system | |
JP4727680B2 (en) | Water heater | |
JP4267277B2 (en) | Cogeneration system | |
WO2023027111A1 (en) | Electricity generating system, and information processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091029 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091112 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091124 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121204 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |