JP4415707B2 - Radiation detection device and radiation distribution monitoring device - Google Patents

Radiation detection device and radiation distribution monitoring device Download PDF

Info

Publication number
JP4415707B2
JP4415707B2 JP2004064950A JP2004064950A JP4415707B2 JP 4415707 B2 JP4415707 B2 JP 4415707B2 JP 2004064950 A JP2004064950 A JP 2004064950A JP 2004064950 A JP2004064950 A JP 2004064950A JP 4415707 B2 JP4415707 B2 JP 4415707B2
Authority
JP
Japan
Prior art keywords
radiation
information
radiation detection
dose
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004064950A
Other languages
Japanese (ja)
Other versions
JP2005257277A (en
Inventor
博司 北口
裕一 森本
一磨 横井
明久 海原
徹 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004064950A priority Critical patent/JP4415707B2/en
Publication of JP2005257277A publication Critical patent/JP2005257277A/en
Application granted granted Critical
Publication of JP4415707B2 publication Critical patent/JP4415707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は、放射線検出装置及び放射線分布監視装置に係り、特に、RI(放射性薬剤)を投与した被検診者(被検者,被検体)が放出する放射線による、核医学検診施設内での放射線分布を表示するのに好適な放射線検出装置及び放射線分布監視装置に関する。 The present invention relates to a radiation detection apparatus and a radiation distribution monitoring apparatus , and in particular, radiation in a nuclear medicine examination facility by radiation emitted by a examinee (subject, subject) who has been administered RI (radiopharmaceutical). The present invention relates to a radiation detection apparatus and a radiation distribution monitoring apparatus suitable for displaying a distribution .

核医学検診施設における放射線被曝管理の従来技術には、電子式個人被曝線量計(アラームメータ)を用いるもの、個人用のフィルムバッジ,TLD(熱ルミネッセンス線量計)を用いるものがある(非特許文献1)。また、原子力発電所等で実施している個人被曝線量計を用いた被曝管理システムには、放射線作業中の作業員に対する綿密な被曝警報管理及び詳細な被曝トレンド情報を収集する技術例(特許文献1)もある。   Conventional techniques for radiation exposure management in nuclear medicine screening facilities include those that use electronic personal dose dosimeters (alarm meters) and those that use personal film badges and TLDs (thermoluminescence dosimeters) (non-patent literature). 1). In addition, the exposure management system using personal dose dosimeters implemented at nuclear power plants, etc. has a technical example that collects detailed exposure trend information and detailed exposure trend management for workers during radiation work (Patent Literature) There is also 1).

これら従来技術の多くは、線量計自体に被曝管理値を設定し、作業員の被曝量がその管理値を超えた場合、あるいは、超える恐れがある場合にアラーム(ブザー)を発して作業員にその状況を知らせ、綿密な被曝管理を行う構成となっている。また、フィルムバッジ,TLD等に関しては放射線作業が終了してから、その被曝量を確認するものであり、事後処理となる。当然、上記した被曝量を制限するアラーム機能は無い。   Many of these conventional technologies set an exposure control value on the dosimeter itself, and when the exposure dose of the worker exceeds or exceeds the control value, an alarm (buzzer) is issued to the worker. The situation is informed and detailed exposure management is performed. Further, regarding the film badge, TLD, etc., the radiation dose is confirmed after the radiation work is completed, and post-processing is performed. Naturally, there is no alarm function for limiting the above-mentioned exposure dose.

また、核医学検診施設においては、各診断室内に個別にエリアモニタをそれぞれ設置し、それらの診断室に対し部屋単位の放射線強度(線量率)を監視している。   Also, in the nuclear medicine examination facility, area monitors are individually installed in each diagnosis room, and the radiation intensity (dose rate) for each room is monitored in each diagnosis room.

特開平1−261802号公報JP-A-1-261802 放射線健康管理学、東京大学出版会、98頁(1984)Radiation Health Management, The University of Tokyo Press, page 98 (1984)

核医学検診施設内における放射線源は、RIを投与した被検診者である。外見でRIを含む放射性薬剤を投与した被検診者と一般患者を識別することは困難である。また、RIを投与した被検診者が明らかな場合でも、被検診者へのRI投与量及びその投与時刻を元に、診断従事者(医者,技師,看護士等)が、被検診者から放出される放射線強度を推測して診断作業を行う。診断にかかわる作業には被検診者をベットへセッティングする作業、再三行われる被検診者からの採血,血圧,心電図データ採取機器等のセッティングなどがある。多くの場合、これらの作業は被検診者が放出する最大の放射線強度を推定して行う。従って、正確な線量率がつかめないという心理的要因もあり、過剰な放射線防護環境で行うことになる。このため、診断作業が円滑あるいは効率的に行えない問題があった。   The radiation source in the nuclear medicine screening facility is a subject to whom RI has been administered. It is difficult to distinguish between examinees who have been administered radiopharmaceuticals including RI by appearance and general patients. In addition, even if the examinee who received the RI is clear, the diagnostic staff (doctor, technician, nurse, etc.) released from the examinee based on the RI dose to the examinee and the time of administration. Diagnosis work is performed by estimating the radiation intensity. The work related to the diagnosis includes the setting of the examinee to the bed, the setting of blood collection, blood pressure, electrocardiogram data collection equipment, etc. In many cases, these operations are performed by estimating the maximum radiation intensity emitted by the examinee. Therefore, there is also a psychological factor that an accurate dose rate cannot be grasped, and it is performed in an excessive radiation protection environment. For this reason, there has been a problem that the diagnosis work cannot be performed smoothly or efficiently.

また、核医学検診施設では、エリアモニタが診断室の壁に設置されているケースが多い。エリアモニタの計測値はエリアモニタ設置場所の線量値となる。ところが、診断従事者が最も知りたい情報は診断従事者が接近する被検診者近辺の線量率である。このため、診断従事者はその計測値から被検診者近辺の線量率を推測して診断作業を行うことになる。この場合でも、円滑あるいは効率的な診断作業を行えない問題があった。   In nuclear medicine screening facilities, area monitors are often installed on the walls of diagnostic rooms. The measurement value of the area monitor is the dose value at the area monitor installation location. However, the information that the diagnostic worker wants to know most is the dose rate in the vicinity of the examinee to whom the diagnostic worker approaches. For this reason, the diagnostic worker performs the diagnostic work by estimating the dose rate near the examinee from the measured value. Even in this case, there is a problem that smooth or efficient diagnosis work cannot be performed.

特に、核医学で用いるRIの放出放射線エネルギーは511keV以下と小さく、エリアモニタの設置場所からの距離で急峻な線量率勾配となる。また、同様に核医学で用いるRIの半減期は数分から数時間であり、核医学診断に要する時間(30〜40分)の間でも、被検診者近辺における線量率の時間変化は急峻となる。このことからも、診断従事者が行う被検診者近辺における線量率の正確な推定はきわめて困難になる。   Particularly, the radiation energy of RI used in nuclear medicine is as small as 511 keV or less, and the dose rate gradient is steep with the distance from the area monitor installation location. Similarly, the half-life of RI used in nuclear medicine is several minutes to several hours, and the time change of the dose rate in the vicinity of the examinee becomes steep even during the time required for nuclear medicine diagnosis (30 to 40 minutes). . This also makes it very difficult to accurately estimate the dose rate in the vicinity of the examinee performed by a diagnostic worker.

これらの状況は、上述の円滑かつ効率的な診断作業を適切に行うことがより困難になることを示す。さらに、被検診者近辺の正確な線量率を認識できない状況下では、放射線被曝管理の観点からでは過剰に被曝を受ける状況にもつながり、安全上の問題も発生する欠点があった。   These situations indicate that it is more difficult to properly perform the smooth and efficient diagnostic work described above. Furthermore, in the situation where an accurate dose rate in the vicinity of the examinee cannot be recognized, there is a disadvantage that it leads to a situation where the patient is excessively exposed from the viewpoint of radiation exposure management, and a safety problem occurs.

本発明の目的は、放射線管理区域内の線量分布をより正確に短時間に確認できる放射線分布監視装置,放射線検出装置及び被曝管理装置を提供することにある。   An object of the present invention is to provide a radiation distribution monitoring device, a radiation detection device, and an exposure management device capable of confirming a dose distribution in a radiation management area more accurately in a short time.

上記した目的を達成する第1発明の特徴は、複数の放射線検出器及びこれらの放射線検出器の計測範囲を制限するコリメータを有する複数の放射線検出装置を、お互いの放射線検出器の各計測範囲が交差するように建屋内の放射線管理区域内に配置することにある。   A feature of the first invention that achieves the above-described object is that a plurality of radiation detectors having a plurality of radiation detectors and a collimator for limiting the measurement ranges of these radiation detectors are arranged so that each measurement range of each radiation detector is It is to be placed in the radiation control area in the building so that it intersects.

このような複数の放射線検出装置の配置によって、それぞれの放射線検出装置の各放射線検出器からの放射線検出信号を基に得られる情報を用いて放射線管理区域内における線量分布をより正確に短時間に求めることができる。その線量分布の図形情報が表示装置に表示されるため、放射線管理室内のより正確な線量分布を短時間に確認できる。   By arranging such a plurality of radiation detection devices, the dose distribution in the radiation control area can be more accurately and quickly obtained using information obtained based on the radiation detection signals from the radiation detectors of the respective radiation detection devices. Can be sought. Since the graphic information of the dose distribution is displayed on the display device, a more accurate dose distribution in the radiation control room can be confirmed in a short time.

例えば、核医学検診施設に適用した場合には、核医学検診施設の放射線管理区域内における、放射性薬剤を投与した被検体を容易に識別できると共に、この被検体周囲の線量分布を正確に把握できる。   For example, when applied to a nuclear medicine screening facility, it is possible to easily identify a subject who has been administered a radiopharmaceutical within the radiation control area of the nuclear medicine screening facility, and to accurately grasp the dose distribution around the subject. .

上記した目的を達成する第2発明の特徴は、建屋内の放射線管理区域内において複数の放射線検出装置を上記したようにお互いの放射線検出器の各計測範囲が交差するよう配置し、それぞれの放射線検出装置の各放射線検出器からの放射線検出信号を基に得られる情報を用いて放射線管理区域内における線量分布の情報を作成し、放射線管理区域内を移動する被放射線管理者が携帯する第1通信装置から発信される被放射線管理者の識別情報を受信する、放射線管理区域内に設置された第2通信装置の位置情報を用いて、放射線管理区域内における被放射線管理者の位置情報を算出し、その位置における線量分布情報を用いて被放射線管理者の被曝線量を算出することにある。   The feature of the second invention that achieves the above-described object is that a plurality of radiation detectors are arranged in the radiation control area in the building so that the measurement ranges of the radiation detectors cross each other as described above, and each radiation The first information carried by a radiation manager who travels in the radiation management area is created by using the information obtained based on the radiation detection signal from each radiation detector of the detection apparatus to create dose distribution information in the radiation management area. The position information of the radiation manager in the radiation management area is calculated using the position information of the second communication apparatus installed in the radiation management area that receives the identification information of the radiation manager transmitted from the communication device. The radiation dose of the radiation manager is calculated using the dose distribution information at the position.

このような第2発明は、被放射線管理者が個人被曝線量計を保持しなくてもその被放射線管理者の被曝線量を管理することができる。   Such a second invention can manage the radiation dose of the radiation manager even if the radiation manager does not hold the personal dose meter.

本発明によれば、放射線管理区域内の線量分布をより正確に短時間に確認できる。   ADVANTAGE OF THE INVENTION According to this invention, the dose distribution in a radiation control area can be confirmed more correctly in a short time.

本発明の好適な実施例である放射線分布監視装置を、図1〜図4を用いて説明する。   A radiation distribution monitoring apparatus which is a preferred embodiment of the present invention will be described with reference to FIGS.

まず、本実施例の放射線分布監視装置1(図2)を構成するマッピングモニタである放射線検出装置2を、図3により説明する。放射線検出装置2は、板状の支持部材7に、複数の放射線検出器3,複数のコリメータ4及び計測回路(計測装置)6を有している。ここでは、一例として、6個の放射線検出器3、すなわち放射線検出器3a〜3f及び4個のコリメータ4を有する放射線検出装置2について説明する。各放射線検出器3は、半導体素子にアノード電極及びカソード電極を対峙して取り付けた半導体放射線検出器である。計測回路6が支持部材7に設置される。横断面が半円の保持部材8が計測回路6を取り囲んで支持部材7に取り付けられる。複数のコリメータ4が保持部材8に180°を等分割するように放射状に設置される。各コリメータ4は、保持部材8の半径方向において、保持部材8の取り付け部での厚みが厚く、先端に行くほど厚みが減少している。保持部材8の周囲で、各コリメータ4の相互間に形成されるそれぞれの4つの空間9、及びコリメータ4と支持部材7との間に形成される2つの空間10に、それぞれ放射線検出器3が配置される。これらの放射線検出器3は、保持部材8に設置されて放射状に配置される。カバー11が、各コリメータ4の先端を取り囲んで保持部材8と同心状に支持部材7に設置される。カバー11は、コリメータ4の上端及び下端(図3において、コリメータ4の手前側の端面及び向こう側の端面)も覆っている。   First, a radiation detection apparatus 2 that is a mapping monitor constituting the radiation distribution monitoring apparatus 1 (FIG. 2) of the present embodiment will be described with reference to FIG. The radiation detection device 2 includes a plurality of radiation detectors 3, a plurality of collimators 4, and a measurement circuit (measurement device) 6 on a plate-like support member 7. Here, as an example, a radiation detector 2 having six radiation detectors 3, that is, radiation detectors 3a to 3f and four collimators 4 will be described. Each radiation detector 3 is a semiconductor radiation detector in which an anode electrode and a cathode electrode are opposed to a semiconductor element. A measurement circuit 6 is installed on the support member 7. A holding member 8 having a semicircular cross section surrounds the measurement circuit 6 and is attached to the support member 7. A plurality of collimators 4 are radially arranged on the holding member 8 so as to equally divide 180 °. Each collimator 4 is thicker at the mounting portion of the holding member 8 in the radial direction of the holding member 8, and the thickness decreases toward the tip. Around the holding member 8, the radiation detectors 3 are respectively provided in four spaces 9 formed between the collimators 4 and two spaces 10 formed between the collimator 4 and the support member 7. Be placed. These radiation detectors 3 are installed on the holding member 8 and arranged radially. A cover 11 is placed on the support member 7 so as to surround the tip of each collimator 4 and concentrically with the holding member 8. The cover 11 also covers the upper end and the lower end of the collimator 4 (in FIG. 3, the front end surface and the other end surface of the collimator 4).

計測回路6の詳細構成を、図4を用いて説明する。計測回路6は、複数の信号処理装置13を有する。これらの信号処理装置13は放射線検出器3a〜3f毎に設けられている。すなわち、信号処理装置13aが放射線検出器3aに接続され、信号処理装置13bが放射線検出器3bに接続され、信号処理装置13fが放射線検出器3fに接続される。図4において図示されていないが、信号処理装置13c,13d,13eが該当する放射線検出器3c,3d,3eに接続される。各信号処理装置13は、それぞれ、前置増幅器
14,線形増幅器15,ディスクリミネータ16及びカウンター(計数装置)17を有し、放射線検出器3ごとに設けられる。前置増幅器14,線形増幅器15,ディスクリミネータ16及びカウンター17は、この順に接続され、放射線検出器3には前置増幅器14が接続される。それぞれの信号処理装置13のカウンター17がデータ送信装置18に接続される。直流高圧電源12が各放射線検出器3の電極間に直流高圧電圧を印加する。
A detailed configuration of the measurement circuit 6 will be described with reference to FIG. The measurement circuit 6 includes a plurality of signal processing devices 13. These signal processing devices 13 are provided for each of the radiation detectors 3a to 3f. That is, the signal processing device 13a is connected to the radiation detector 3a, the signal processing device 13b is connected to the radiation detector 3b, and the signal processing device 13f is connected to the radiation detector 3f. Although not shown in FIG. 4, the signal processing devices 13c, 13d, and 13e are connected to the corresponding radiation detectors 3c, 3d, and 3e. Each signal processing device 13 includes a preamplifier 14, a linear amplifier 15, a discriminator 16, and a counter (counter) 17, and is provided for each radiation detector 3. The preamplifier 14, the linear amplifier 15, the discriminator 16, and the counter 17 are connected in this order, and the preamplifier 14 is connected to the radiation detector 3. The counter 17 of each signal processing device 13 is connected to the data transmission device 18. A DC high voltage power source 12 applies a DC high voltage between the electrodes of each radiation detector 3.

放射線検出装置2は、核医学施設、例えば核医学検診施設における検査室22の側壁表面に支持部材7を取り付けることによって、図1に示すように、検査室22内でその側壁に固定される。放射線検出装置2が側壁に取り付けられた状態では、各コリメータ4が水平方向において放射線状に配置される。1つの検査室22では、2つの放射線検出装置2、すなわち放射線検出装置2a,2bが直交して隣り合った2つの側壁のそれぞれの表面に設置される。検査室22内には、陽電子放出型断層撮影(Positron Emission
Tomography)装置(以下、PET装置という)23が設置されている。PET装置23は、被検診者を載せるベッド25が挿入され、多数の放射線検出器(図示せず)を設置した撮像装置24を備える。
The radiation detection apparatus 2 is fixed to the side wall in the examination room 22 as shown in FIG. 1 by attaching the support member 7 to the surface of the side wall of the examination room 22 in a nuclear medicine facility, for example, a nuclear medicine examination facility. In a state where the radiation detection device 2 is attached to the side wall, the collimators 4 are arranged in a radial pattern in the horizontal direction. In one examination room 22, two radiation detection devices 2, that is, radiation detection devices 2 a and 2 b are installed on the surfaces of two side walls that are orthogonally adjacent to each other. In the examination room 22, positron emission tomography (Positron Emission)
Tomography) apparatus (hereinafter referred to as PET apparatus) 23 is installed. The PET device 23 includes an imaging device 24 in which a bed 25 on which a patient is placed is inserted and a large number of radiation detectors (not shown) are installed.

放射線分布監視装置1は、図2に示すように、放射線検出装置2a〜2f,計測回路
6a〜6f,データ収集装置19,データ処理装置20及び表示装置21を備える。これら6つの計測回路6は、個々の放射線検出装置2に別々に接続される。放射線検出装置
2c〜2fは、2つずつペアとなって他の検査室内で図1に示すように側壁表面に固定される。放射線検出装置2の個数は、検査室数の増大、及び通路,被検診者の待合室等への設置により、適宜、増大させることができる。放射線検出装置2c〜2fに接続された計測回路6a〜6fのそれぞれのデータ送信装置18は、データ処理装置20に接続されたデータ収集装置19に接続される。表示装置21はデータ処理装置20に接続される。
As shown in FIG. 2, the radiation distribution monitoring device 1 includes radiation detection devices 2 a to 2 f, measurement circuits 6 a to 6 f, a data collection device 19, a data processing device 20, and a display device 21. These six measurement circuits 6 are separately connected to the individual radiation detection apparatuses 2. The radiation detection devices 2c to 2f are paired in pairs and are fixed to the side wall surface in another examination room as shown in FIG. The number of radiation detection devices 2 can be increased as appropriate by increasing the number of examination rooms and installing them in passages, waiting rooms for examinees, and the like. Each data transmission device 18 of the measurement circuits 6a to 6f connected to the radiation detection devices 2c to 2f is connected to a data collection device 19 connected to the data processing device 20. The display device 21 is connected to the data processing device 20.

放射線検出装置2の各コリメータ4は、所定の独立した見込み角度を放射状に設定する。放射線検出装置2の放射線検出器3a〜3fは、上記の独立した見込み角度の範囲を計測範囲として放射線を計測する。この指向性を持った各放射線検出器3の各計測範囲を図1で説明する。放射線検出装置2aの放射線検出器3a〜3fに対する計測範囲は、複数の境界線26で確定される各計測範囲27となる。すなわち、放射線検出装置2aにおいて、放射線検出器3aに対しては計測範囲27a、放射線検出器3bに対しては計測範囲27b、放射線検出器3cに対しては計測範囲27c、放射線検出器3dに対しては計測範囲27d、放射線検出器3eに対しては計測範囲27e、及び放射線検出器3fに対しては計測範囲27fとなる。また、放射線検出装置2bの放射線検出器3a〜3fに対する計測範囲は、複数の境界線28で確定される各計測範囲29となる。すなわち、放射線検出装置2aにおいて、放射線検出器3aに対しては計測範囲29a、放射線検出器3bに対しては計測範囲29b、放射線検出器3cに対しては計測範囲29c、放射線検出器3dに対しては計測範囲29d、放射線検出器3eに対しては計測範囲29e、及び放射線検出器3fに対しては計測範囲29fとなる。なお、計測範囲27a〜27fのそれぞれと計測範囲29a〜29fのそれぞれの交点の領域30を交点領域という。例えば、計測領域29cと計測領域27a〜27fのそれぞれとの交点領域30は、交点領域C1,C2,C3,C5,C6となる。   Each collimator 4 of the radiation detection apparatus 2 sets a predetermined independent prospective angle radially. The radiation detectors 3a to 3f of the radiation detection apparatus 2 measure the radiation with the range of the above-described independent prospective angle as a measurement range. Each measurement range of each radiation detector 3 having this directivity will be described with reference to FIG. The measurement ranges for the radiation detectors 3 a to 3 f of the radiation detection apparatus 2 a are the measurement ranges 27 determined by the plurality of boundary lines 26. That is, in the radiation detector 2a, the measurement range 27a for the radiation detector 3a, the measurement range 27b for the radiation detector 3b, the measurement range 27c for the radiation detector 3c, and the radiation detector 3d. The measurement range is 27d, the measurement range is 27e for the radiation detector 3e, and the measurement range is 27f for the radiation detector 3f. Further, the measurement ranges for the radiation detectors 3 a to 3 f of the radiation detection apparatus 2 b are the measurement ranges 29 determined by the plurality of boundary lines 28. That is, in the radiation detector 2a, the measurement range 29a for the radiation detector 3a, the measurement range 29b for the radiation detector 3b, the measurement range 29c for the radiation detector 3c, and the radiation detector 3d. The measurement range 29d is the measurement range 29e for the radiation detector 3e, and the measurement range 29f for the radiation detector 3f. The region 30 of the intersection of each of the measurement ranges 27a to 27f and each of the measurement ranges 29a to 29f is referred to as an intersection region. For example, the intersection area 30 between the measurement area 29c and each of the measurement areas 27a to 27f is the intersection areas C1, C2, C3, C5, and C6.

放射線分布監視装置1は、図2に示すように、検査室(第1検査室)22内に設置された放射線検出装置2a,2b、図示されていない他の検査室(第2検査室)内に設置された放射線検出装置2c,2d、及び図示されていない検査室(第3検査室)内に設置された放射線検出装置2e,2f,データ収集装置19,データ処理装置(表示情報作成装置)20及び表示装置21を備える。データ収集装置19は、各放射線検出装置2のデータ送信装置18にそれぞれ接続される。データ処理装置20は、データ収集装置19及び表示装置21に接続される。それらの検査室は核医学検診施設の建屋内における放射線管理区域である。   As shown in FIG. 2, the radiation distribution monitoring apparatus 1 includes radiation detection apparatuses 2a and 2b installed in an examination room (first examination room) 22, and other examination rooms (second examination room) not shown. Radiation detection devices 2c and 2d installed in a radiation detector, radiation detection devices 2e and 2f installed in an examination room (third examination room) (not shown), a data collection device 19, and a data processing device (display information creation device) 20 and a display device 21. The data collection device 19 is connected to the data transmission device 18 of each radiation detection device 2. The data processing device 20 is connected to the data collection device 19 and the display device 21. These laboratories are radiation control areas in the building of the nuclear medicine screening facility.

データ処理装置20は、記憶装置(図示せず)を有している。それぞれの検査室、例えば検査室内22内のある1つの交点領域30に、放射性薬剤を投与された被検診者(放射線源)がいる場合、放射線強度が最も高いその交点領域30を基準とし、検査室2内の全交点領域に対する、該当する放射線検出器3の感度の情報がデータ処理装置20の記憶装置に記憶されている。これらの放射線検出器3の感度の情報は、検査室22内の全ての交点領域30のそれぞれに放射線源が位置する場合に対して、それぞれ予め求めておく。これらの感度情報(感度の応答関数)は、放射性物質である例えばセシウム137を内蔵した標準線源を各交点領域30に位置させて、各放射線検出器3で標準線源から放出される放射線を検出することによって得ることができる。   The data processing device 20 has a storage device (not shown). If there is an examinee (radiation source) to which a radiopharmaceutical is administered in one intersection area 30 in each examination room, for example, the examination room 22, the examination is performed based on the intersection area 30 having the highest radiation intensity. Information on the sensitivity of the corresponding radiation detector 3 for all intersection areas in the chamber 2 is stored in the storage device of the data processing device 20. Information on the sensitivity of these radiation detectors 3 is obtained in advance for each case where the radiation source is located in each of the intersection areas 30 in the examination room 22. Such sensitivity information (sensitivity response function) is obtained by positioning a standard radiation source containing a radioactive substance, for example, cesium 137, in each intersection region 30, and by using the radiation detector 3 to emit radiation emitted from the standard radiation source. It can be obtained by detecting.

本実施例における放射線分布監視装置1の動作について説明する。放射性薬剤が投与された被検診者が検査室22内に入ってベッド25に横たわっていることを想定する。放射線検出装置2a,2bのそれぞれの放射線検出器3は、被検診者から放出される放射線
(例えば、γ線)を検出し、放射線検出信号を出力する。この放射線検出信号の処理を、放射線検出装置2aの放射線検出器2aから出力された放射線検出信号を例にとって説明する。この放射線検出信号は、前置増幅器14及び線形増幅器15で増幅されてディスクリミネータ16に入力される。ディスクリミネータ16は、ノイズを除去するため設定レベル以上の放射線検出信号を抽出する。カウンター17はディスクリミネータ16から出力された放射線検出信号をカウントする。カウンター17での設定時間(例えば単位時間)当りの放射線検出信号のカウント数(放射線強度)の情報は、データ送信装置18からデータ収集装置19に送られる。データ送信装置18は、放射線強度の情報を送信する際に該当する放射線検出器3のアドレス情報も併せて送信する。データ収集装置19は、各放射線検出装置2のデータ送信装置18から入力された、対になった放射線強度情報及び検出器のアドレス情報をデータ処理装置20に出力する。
The operation of the radiation distribution monitoring apparatus 1 in this embodiment will be described. Assume that a subject to whom a radiopharmaceutical is administered enters the examination room 22 and lies on the bed 25. Each of the radiation detectors 3 of the radiation detection devices 2a and 2b detects radiation (for example, γ rays) emitted from the examinee and outputs a radiation detection signal. The processing of the radiation detection signal will be described by taking the radiation detection signal output from the radiation detector 2a of the radiation detection apparatus 2a as an example. The radiation detection signal is amplified by the preamplifier 14 and the linear amplifier 15 and input to the discriminator 16. The discriminator 16 extracts a radiation detection signal at a set level or higher in order to remove noise. The counter 17 counts the radiation detection signal output from the discriminator 16. Information on the count number (radiation intensity) of the radiation detection signal per set time (for example, unit time) in the counter 17 is sent from the data transmission device 18 to the data collection device 19. The data transmission device 18 also transmits the address information of the corresponding radiation detector 3 when transmitting the radiation intensity information. The data collection device 19 outputs the paired radiation intensity information and the detector address information input from the data transmission device 18 of each radiation detection device 2 to the data processing device 20.

データ処理装置20で実行される処理を以下に説明する。ある検査室、例えば検査室
22において、放射線検出装置2aで最も高い放射線強度を検出する放射線検出器3と,放射線検出装置2bで最も高い放射線強度を検出する放射線検出器3とを、入力した放射線強度情報及び検出器のアドレス情報を基に特定する。これらの放射線検出器3の特定により、最も放射線強度が高くなる交点領域30が認識される。認識された交点領域30を基に他の全ての交点領域30に対する、放射線検出装置2a,2bのそれぞれの放射線検出器3の感度情報が記憶装置を検索して取り出される。最も放射線強度が高くなる交点領域30における放射線強度情報、及び検索で得られた、それぞれの放射線検出器3の、該当する交点領域30に対する感度情報を用いて、応答行列計算により、各交点領域30の放射線強度を算出する。算出されたそれぞれの放射線強度を用いて、検査室22内の線量分布を求める。算出された線量分布を表示するための図形情報(後述の等高線強度分布
31の図形情報)を作成する。この図形情報は、データ処理装置20から表示装置21に出力され、表示装置21に表示される。算出された線量分布の情報を用いて、この線量分布を表示するための線量分布(等高線放射線強度分布31)の図形情報を作成する。等高線放射線強度分布(等高線強度分布という)31の図形情報は被検診者に対応して作成されたものである。この等高線強度分布31の図形情報は、検査室22内に配置された機器(陽電子放出型断層撮影装置23)の図形情報、及び建屋である検査室22の横断面の図形情報と共にデータ処理装置20から表示装置21に出力され、表示装置21に表示される。陽電子放出型断層撮影装置23の図形情報及び検査室22の横断面の図形情報は、データ処理装置20の記憶装置に記憶されている。上記した応答行列計算に、加法的逐次再構成法及びML−EM法[期待値最大化法]等のうちの1つを適用することも可能である。原理的には、検査室に設けられた2つの放射線検出装置2のそれぞれの放射線検出器3の個数の積に相当する交点領域30の数の放射線強度が演算できる。
Processing executed by the data processing device 20 will be described below. In a certain examination room, for example, examination room 22, radiation detector 3 that detects the highest radiation intensity with radiation detector 2a and radiation detector 3 that detects the highest radiation intensity with radiation detector 2b are input radiation. It is specified based on the intensity information and the detector address information. By specifying these radiation detectors 3, the intersection region 30 having the highest radiation intensity is recognized. Based on the recognized intersection area 30, the sensitivity information of each of the radiation detectors 3 of the radiation detection apparatuses 2a and 2b for all the other intersection areas 30 is retrieved by searching the storage device. Each intersection region 30 is obtained by response matrix calculation using the radiation intensity information in the intersection region 30 where the radiation intensity is highest and the sensitivity information for the corresponding intersection region 30 of each radiation detector 3 obtained by the search. The radiation intensity is calculated. The dose distribution in the examination room 22 is obtained using each calculated radiation intensity. Graphic information (graphic information of contour line intensity distribution 31 described later) for displaying the calculated dose distribution is created. This graphic information is output from the data processing device 20 to the display device 21 and displayed on the display device 21. Using the calculated dose distribution information, graphic information of the dose distribution (contour radiation intensity distribution 31) for displaying this dose distribution is created. The graphic information of the contour radiation intensity distribution (referred to as contour line intensity distribution) 31 is created corresponding to the examinee. The graphic information of the contour line intensity distribution 31 includes the graphic information of the equipment (positron emission tomography apparatus 23) arranged in the examination room 22 and the graphic information of the cross section of the examination room 22 which is a building. Is output to the display device 21 and displayed on the display device 21. The graphic information of the positron emission tomography apparatus 23 and the graphic information of the cross section of the examination room 22 are stored in the storage device of the data processing apparatus 20. It is also possible to apply one of an additive sequential reconstruction method, an ML-EM method [expected value maximization method], and the like to the above-described response matrix calculation. In principle, the radiation intensity of the number of intersection regions 30 corresponding to the product of the number of radiation detectors 3 of the two radiation detection devices 2 provided in the examination room can be calculated.

図2における表示装置21は、交点領域C3,C4で最も高い放射線強度が検出された場合の線量分布の一例を表示している。線量分布の表示は色分けした等高線強度分布31の図形情報で表示される。また、表示装置21には、図5(a)に示す各検査室のそれぞれの平均線量率及びアラーム情報を、図5(b)に示すベッド25周りの拡大した詳細な線量分布を、図5(c)に示す核医学検診施設内の線量分布を表示することも可能である。表示装置21以外に、図5(a)及び図5(c)に示す情報をそれぞれ専用に表示する表示装置を別途設けることも可能である。これら専用の表示装置もデータ処理装置20に接続される。   The display device 21 in FIG. 2 displays an example of a dose distribution when the highest radiation intensity is detected in the intersection areas C3 and C4. The display of the dose distribution is displayed as graphic information of the contour line intensity distribution 31 that is color-coded. Further, the display device 21 shows the average dose rate and alarm information of each laboratory shown in FIG. 5A, and the enlarged detailed dose distribution around the bed 25 shown in FIG. 5B. It is also possible to display the dose distribution in the nuclear medicine screening facility shown in (c). In addition to the display device 21, it is also possible to separately provide a display device that displays the information shown in FIGS. 5A and 5C exclusively. These dedicated display devices are also connected to the data processing device 20.

図2の表示装置21に表示された、ベット25周りの線量分布、及び図5(b)に示すベッド25周りの拡大した線量分布は、放射性薬剤を投与した被検診者近辺の正確なリアルタイムの線量分布である。このため、核医学検診施設の従事者(放射線技師,医者及び看護士等)は、過去の自分自身の積算被曝量を考慮して適切な検診行為を行うことができる。従来は、検査室内の放射線分布を各被検診者ごとに推測して検診作業を行っていたため、過剰な放射線防護環境を想定し、被検診者への従事者のアプローチに必要以上に時間がかかっていた。しかしながら、本実施例によれば、常に被検診者近辺の正確な線量分布を把握できるため、従事者は円滑あるいは効率的な検診作業を行うことができる。これは、被曝線量に換算すれば従事者の被曝線量の1/2の低減をもたらし、検診作業効率でも2倍以上にアップする。なによりも、従事者が持つ検診作業そのものに対する心理的負担の軽減、及び安全性確保を大幅に向上できる。   The dose distribution around the bed 25 and the enlarged dose distribution around the bed 25 shown in FIG. 5B displayed on the display device 21 in FIG. 2 are accurate real-time in the vicinity of the examinee who has administered the radiopharmaceutical. Dose distribution. For this reason, workers (radiologists, doctors, nurses, etc.) of a nuclear medicine screening facility can perform an appropriate screening action in consideration of past accumulated exposure doses. Conventionally, the radiation distribution in the examination room was estimated for each examinee and the examination work was performed, so it was assumed that an excessive radiation protection environment was assumed, and it took more time than necessary for the workers to approach the examinee. It was. However, according to the present embodiment, since an accurate dose distribution in the vicinity of the examinee can always be grasped, the worker can perform a smooth or efficient examination operation. This translates into a reduction of 1/2 of the worker's exposure dose in terms of exposure dose, and the screening work efficiency is more than doubled. Above all, it is possible to significantly reduce the psychological burden on the examination work itself of the worker and to ensure safety.

図5(c)に示す核医学検診施設内の線量分布の表示は、核医学検診施設内の放射線管理室(中央管理室)で、核医学検診施設内における全被検診者の位置及び行動を明確に把握できる。従事者が検診作業を行う前にその状態を把握できるため、検診作業に関わる安全な作業手順を容易に組むことができる。   The display of the dose distribution in the nuclear medicine screening facility shown in Fig. 5 (c) is the radiation control room (central management room) in the nuclear medicine screening facility, and the positions and actions of all examinees in the nuclear medicine screening facility are displayed. Clearly understand. Since the worker can grasp the state before performing the examination work, a safe work procedure related to the examination work can be easily assembled.

放射線検出装置2を、廊下、及び検査室以外の他の部屋に設置することによって、検査室,廊下及び検査室以外の他の部屋における線量分布をデータ処理装置20において求めることができる。放射線管理区域である検査室,廊下及び検査室以外の他の部屋(例えば、待合室)におけるそれぞれの線量分布、すなわち得られた等高線強度分布31の図形情報を表示する(図6参照)ことによって、核医学診断施設内において放射性薬剤を投与した被検診者の移動状態を把握できる。ある被検診者が移動すると、これに伴って、その被検診者に対応して作成された等高線強度分布31の図形情報も移動する。データ処理装置20は、その被検診者に対応する等高線強度分布31の図形情報の移動軌跡を求め、その移動軌跡の図形情報を作成する。データ処理装置20は、検査室を含む核医学検診施設の横断面の図形情報、及び陽電子放出型断層撮影装置23等の核医学検診施設内にある機器の図形情報と共に、等高線強度分布31の図形情報及び移動軌跡の図形情報を、表示装置21に出力する。表示装置21には、核医学検診施設の建屋の横断面の図形情報、及び陽電子放出型断層撮影装置23等の核医学検診施設内にある機器の図形情報と共に、等高線強度分布31の図形情報及び移動軌跡の図形情報が表示される(図6参照)。このため、放射性薬剤を投与した被検診者の、核医学検診施設内での移動状態及び移動場所を把握することができる。被検診者が許可されない場所に移動した場合でもその移動を把握することができる。   By installing the radiation detection apparatus 2 in a room other than the hallway and the examination room, the dose distribution in the room other than the examination room, the hallway, and the examination room can be obtained in the data processing apparatus 20. By displaying the respective dose distributions in other rooms (for example, waiting rooms) other than the examination room, corridor, and examination room that are radiation control areas, that is, by displaying graphic information of the obtained contour line intensity distribution 31 (see FIG. 6), It is possible to grasp the movement state of the examinee who administered the radiopharmaceutical in the nuclear medicine diagnosis facility. When a certain examinee moves, the graphic information of the contour line intensity distribution 31 created corresponding to the examinee is also moved. The data processing device 20 obtains the movement trajectory of the graphic information of the contour line intensity distribution 31 corresponding to the examinee, and creates the graphic information of the movement trajectory. The data processing device 20 includes the graphic information of the contour line intensity distribution 31 together with the graphic information of the cross section of the nuclear medicine examination facility including the examination room and the graphic information of the equipment in the nuclear medicine examination facility such as the positron emission tomography apparatus 23. The information and the graphic information of the movement locus are output to the display device 21. The display device 21 includes the graphic information of the cross section of the building of the nuclear medicine examination facility and the graphic information of the contour line intensity distribution 31 together with the graphic information of the equipment in the nuclear medicine examination facility such as the positron emission tomography apparatus 23. The graphic information of the movement locus is displayed (see FIG. 6). For this reason, the movement state and movement place in the nuclear medicine examination facility of the examinee who administered the radiopharmaceutical can be grasped. Even if the examinee moves to a place where it is not permitted, the movement can be grasped.

放射線検出装置2は、複数の放射線検出器3が放射状に1つの支持部材7に設置されているため、少ない放射線検出器3で検査室22内の広い範囲を放射線検出領域としてカバーすることができる。また、複数の放射線検出器3が放射状に1つの支持部材7に設置されるため、各放射線検出器3と直流高圧電源12を接続する配線を短くすることができる。放射線検出装置2は、放射線検出器の出力信号である微弱な放射線検出信号を増幅する増幅器を備えた信号処理装置13が支持部材7に設置しているため、放射線検出信号が外部のノイズの影響を受けにくくなる。このため、得られる放射線強度の精度が向上する。また、放射線検出装置2が各信号処理装置13の出力であるデータ送信装置18を備えているため、放射線検出装置2とデータ収集装置19とを接続する信号伝送線の本数が減少し、核医学検診施設における信号伝送線の配線工事に要する時間を短縮できる。各放射線検出器3及びコリメータ4が計測回路6の周りに配置されているため、支持部材7が小さくなり、放射線検出器3がコンパクトになる。また、支持部材7が小さいため、放射線検出装置2は狭い設置スペースで側壁等に取り付けることができる。   In the radiation detection apparatus 2, since a plurality of radiation detectors 3 are radially installed on one support member 7, a small range of radiation detectors 3 can cover a wide range in the examination room 22 as a radiation detection region. . Further, since the plurality of radiation detectors 3 are radially installed on one support member 7, the wiring connecting each radiation detector 3 and the DC high-voltage power supply 12 can be shortened. In the radiation detection apparatus 2, since the signal processing apparatus 13 including an amplifier that amplifies a weak radiation detection signal that is an output signal of the radiation detector is installed on the support member 7, the radiation detection signal is influenced by external noise. It becomes difficult to receive. For this reason, the accuracy of the obtained radiation intensity is improved. Further, since the radiation detection device 2 includes the data transmission device 18 that is the output of each signal processing device 13, the number of signal transmission lines connecting the radiation detection device 2 and the data collection device 19 decreases, and nuclear medicine. The time required for the wiring work of the signal transmission line in the examination facility can be shortened. Since each radiation detector 3 and the collimator 4 are arranged around the measurement circuit 6, the support member 7 becomes small and the radiation detector 3 becomes compact. Moreover, since the support member 7 is small, the radiation detection apparatus 2 can be attached to a side wall etc. in a narrow installation space.

検査室の1つの側面に放射線検出装置2(例えば、放射線検出装置22a)を設置し、この側面と交差する他の1つの側面に他の放射線検出装置2(例えば、放射線検出装置
2b)を設置しているため、前者の放射線検出装置2のそれぞれの放射線検出器3に対する各計測領域と、後者の放射線検出装置2のそれぞれの放射線検出器3に対する各計測領域とが交差することによって得られる複数の交点領域30を形成することができる。したがって、両者の放射線検出装置2のそれぞれの放射線検出器3から出力される各放射線検出信号を用いて、各交点領域の検査室内の線量分布をより正確にかつ短時間に求めることができる。核医学検診施設内の線量分布を示す図形情報をリアルタイムに表示装置21に表示することができ、従事者は、この図形情報を見ることによって、検査室,廊下及び待合室等の核医学検診施設内の線量分布をリアルタイムに把握することができる。特に、従事者は被検診者近辺の正確な線量率分布をリアルタイムで認識でき、検診行為そのものが円滑で効率的に行うことができるようになる。すなわち、強い線源がどの位置にある(被検診者がどの位置にいる)かを把握できるため、検診行為がスムーズに行える。また、従事者(医者等)の被曝量が大きくなると検診行為そのものができなくなることもありうる。従って、従事者の被曝を最小限に抑えることができる検診行為が効率的に実現できる。
The radiation detection device 2 (for example, the radiation detection device 22a) is installed on one side of the examination room, and the other radiation detection device 2 (for example, the radiation detection device 2b) is installed on the other side that intersects with this side. Therefore, a plurality of measurement areas obtained for the respective radiation detectors 3 of the former radiation detection apparatus 2 and a plurality of measurement areas obtained for the respective radiation detectors 3 of the latter radiation detection apparatus 2 intersect each other. The intersection region 30 can be formed. Therefore, using each radiation detection signal output from each radiation detector 3 of both radiation detection apparatuses 2, the dose distribution in the examination room of each intersection area can be obtained more accurately and in a short time. The graphic information indicating the dose distribution in the nuclear medicine examination facility can be displayed on the display device 21 in real time, and the worker can view the graphic information in the nuclear medicine examination facility such as an examination room, a corridor and a waiting room. The dose distribution can be grasped in real time. In particular, the worker can recognize the accurate dose rate distribution in the vicinity of the examinee in real time, and the examination act itself can be performed smoothly and efficiently. That is, since the position where the strong radiation source is located (the position where the examinee is located) can be grasped, the examination action can be performed smoothly. In addition, if the dose of a worker (such as a doctor) increases, the screening act itself may not be possible. Therefore, a screening act that can minimize the exposure of the worker can be efficiently realized.

本発明の他の実施例である被曝管理システムを、図7及び図8を用いて説明する。本実施例の被曝管理システムは、前述した実施例の放射線分布監視装置1を含んでおり、放射線分布監視装置1のデータ処理装置20に被曝管理機能も追加したものである。核医学検診施設の従事者35は、図7に示すように、マイクロチップで構成された携帯通信装置
(第1通信装置)36を携帯している。携帯通信装置36は、被曝線量を管理される従事者(被放射線管理者)35の個人管理番号(個人ID)を記憶している。核医学検診施設において、通信装置(第2通信装置)38が、検査室,廊下及び待合室等にそれぞれ設置されている。放射線検出装置2も、検査室,廊下及び待合室等にそれぞれ設置されている。
The exposure management system which is another Example of this invention is demonstrated using FIG.7 and FIG.8. The exposure management system of the present embodiment includes the radiation distribution monitoring apparatus 1 of the above-described embodiment, and an exposure management function is added to the data processing apparatus 20 of the radiation distribution monitoring apparatus 1. As shown in FIG. 7, the worker 35 of the nuclear medicine examination facility carries a portable communication device (first communication device) 36 composed of a microchip. The portable communication device 36 stores the personal management number (personal ID) of the worker (radiation manager) 35 who manages the exposure dose. In a nuclear medicine examination facility, a communication device (second communication device) 38 is installed in each of an examination room, a hallway, a waiting room, and the like. The radiation detection apparatus 2 is also installed in each of an examination room, a hallway, a waiting room, and the like.

データ処理装置20は、前述の実施例と同様に、各放射線検出装置2の各放射線検出器3から出力されたそれぞれの放射線検出信号を入力し、核医学検診施設内の各領域での線量分布を求める。データ処理装置20は、さらに、得られた線量分布を基に表示情報である等高線強度分布31の画像情報を作成し、この情報を表示装置21に表示させる。ある従事者35が図8に示すように検査室及び廊下等を移動したとする。この従事者35の携帯通信装置36から送信された管理番号等の情報37は、最寄の通信装置38で受信されてデータ処理装置20(図2参照)に伝えられる。携帯通信装置36及び通信装置38はそれぞれ無線装置(図示せず)を有しており、携帯通信装置36と通信装置38の間での情報のやり取りは無線にて行われる。データ処理装置20は、従事者35の移動に伴って該当する各通信装置38から伝えられてくる管理番号情報、及び管理番号情報を出力した通信装置38の位置情報を用いて、その従事者35の移動経路39の情報(移動している従事者35の、連続した位置情報)を求める。データ処理装置20は、作成した等高線強度分布31の図形情報及び移動経路39の図形情報を表示装置21に出力する。図8に示す図形情報が、等高線強度分布31及び移動経路39の各図形情報、及び核医学検診施設の検査室のあるフロアにおける核医学検診施設の建屋の横断面の図形情報を併せて表示措置21に表示された図形情報である。   Similarly to the above-described embodiment, the data processing device 20 inputs the respective radiation detection signals output from the respective radiation detectors 3 of the respective radiation detection devices 2, and dose distributions in the respective regions within the nuclear medicine examination facility. Ask for. The data processing device 20 further creates image information of the contour line intensity distribution 31 that is display information based on the obtained dose distribution, and causes the display device 21 to display this information. Assume that a worker 35 moves in an examination room, a hallway, and the like as shown in FIG. Information 37 such as a management number transmitted from the portable communication device 36 of the worker 35 is received by the nearest communication device 38 and transmitted to the data processing device 20 (see FIG. 2). Each of the mobile communication device 36 and the communication device 38 has a wireless device (not shown), and information is exchanged between the mobile communication device 36 and the communication device 38 wirelessly. The data processing device 20 uses the management number information transmitted from each communication device 38 corresponding to the movement of the worker 35 and the position information of the communication device 38 that has output the management number information. Information of the movement route 39 (continuous position information of the moving worker 35) is obtained. The data processing device 20 outputs the created graphic information of the contour line intensity distribution 31 and the graphic information of the movement path 39 to the display device 21. The graphic information shown in FIG. 8 is displayed together with the graphic information of the contour line intensity distribution 31 and the movement path 39 and the graphic information of the cross section of the building of the nuclear medicine examination facility on the floor where the examination room of the nuclear medicine examination facility is located. FIG.

データ処理装置20は、放射線検出装置2の放射線検出器3からの放射線検出信号に基に得られた情報(放射線強度)を用いて算出した線量分布(等高線強度分布31)の情報、及び上記した移動経路39の情報を用いて、移動経路39における従事者35の被曝量を時々刻々算出し、それまでの積算被曝量(表1参照)に積算する。この積算被曝量はデータ処理装置20の記憶装置に記憶されている。表1は、核医学検診施設に勤務する各従事者の個人IDと各人の積算被曝量を示している。   The data processing device 20 includes information on the dose distribution (contour intensity distribution 31) calculated using information (radiation intensity) obtained based on the radiation detection signal from the radiation detector 3 of the radiation detection device 2, and the above-described information. Using the information of the movement route 39, the exposure amount of the worker 35 on the movement route 39 is calculated every moment, and is integrated with the accumulated exposure amount (see Table 1). This integrated exposure dose is stored in the storage device of the data processing device 20. Table 1 shows the individual ID of each worker who works at the nuclear medicine screening facility and the accumulated exposure dose of each person.

Figure 0004415707
Figure 0004415707

各従事者の個人ID及び積算被曝量はデータ処理装置20の記憶装置に記憶されている。移動経路39の情報によって従事者35が存在している時々刻々の位置を把握でき、それらの位置における被曝量を、線量分布の情報を用いて算出できる。算出した被曝量をこの算出前までの積算被曝量に積算して新たな積算被曝量を求める。このような演算がデータ処理装置20で行われる。本実施例における演算がデータ処理装置20は、線量分布情報作成装置であり、被曝線量算出装置である。記憶装置に記憶された従事者35の積算被曝量は新たに得られた積算被曝量で時々刻々更新される。更新された積算被ばく線量によって、従事者35の被曝管理を容易に行うことができる。記憶装置に記憶された積算被曝量の情報を活用することによって、ある従事者が目標被曝線量率を超えそうな場合は、データ処理装置20は警報信号を表示装置21及び携帯通信装置36に出力する。目標被曝線量率はデータ処理装置20によって求められる。警報信号の携帯通信装置36への伝送は最寄りの通信装置38を介して行われる。携帯通信装置36は、警報信号を入力したとき携帯通信装置36に備えられた音声発生器(図示せず)から音声を発生させると共に警報信号を携帯通信装置36の表示装置(図示せず)に表示させる。これにより、従事者35は、目標被曝線量率に達することを知ることができ、被曝しない区域に対比することができる。このため、事前に過剰被曝を防止することが可能になる。 The personal ID and the accumulated exposure dose of each worker are stored in the storage device of the data processing device 20. The position of the worker 35 can be grasped from time to time based on the information on the movement path 39, and the exposure dose at these positions can be calculated using the information of the dose distribution. The calculated exposure dose is added to the integrated exposure dose before the calculation to obtain a new integrated exposure dose. Such a calculation is performed by the data processing device 20. In the present embodiment, the data processing device 20 is a dose distribution information creation device, and is an exposure dose calculation device. The accumulated exposure dose of the worker 35 stored in the storage device is updated from time to time with the newly obtained accumulated exposure dose. The exposure management of the worker 35 can be easily performed by the updated accumulated exposure dose. When a certain worker is likely to exceed the target dose rate by utilizing the accumulated dose information stored in the storage device, the data processing device 20 outputs an alarm signal to the display device 21 and the portable communication device 36. To do. The target exposure dose rate is obtained by the data processing device 20. The alarm signal is transmitted to the portable communication device 36 via the nearest communication device 38. When the mobile communication device 36 receives an alarm signal, the mobile communication device 36 generates a sound from an audio generator (not shown) provided in the mobile communication device 36 and sends the alarm signal to a display device (not shown) of the mobile communication device 36. Display. Thereby, the worker 35 can know that the target exposure dose rate is reached, and can compare with the area not exposed. For this reason, it becomes possible to prevent excessive exposure in advance.

本実施例においても、前述の実施例で生じる効果を得ることができる。さらに、従事者は個人線量計を保持する必要がない。本実施例は、従事者が個人線量計を保持しなくても従事者の被曝管理を行うことができる。   Also in this embodiment, the effects produced in the above-described embodiment can be obtained. In addition, workers do not need to hold personal dosimeters. In this embodiment, it is possible to perform the exposure management of the worker without the worker holding the personal dosimeter.

データ処理装置20から出力した線量分布の情報、すなわち等高線強度分布31の情報を、通信装置38を介して携帯通信装置36に伝えて携帯送信装置36の表示装置に表示させることによって、従事者は実際に自分のいる場所での線量をリアルタイムで把握することができる。   The information on the dose distribution output from the data processing device 20, that is, the information on the contour line intensity distribution 31 is transmitted to the portable communication device 36 via the communication device 38 and displayed on the display device of the portable transmission device 36. It is possible to grasp the dose at the place where you are actually in real time.

データ処理装置20を2つのデータ処理装置とし、一方のデータ処理装置を線量分布情報作成装置とし、他方のデータ処理装置を被曝線量算出装置としてもよい。   The data processing device 20 may be two data processing devices, one data processing device may be a dose distribution information creation device, and the other data processing device may be an exposure dose calculation device.

以上に述べた各実施例は、核医学施設に適用した例であるが、原子力発電所,核燃料再処理施設,一般の放射線取り扱い施設等に適用することも可能である。この場合には、原子力発電所,核燃料再処理施設,一般の放射線取り扱い施設の躯体である建屋の横断面の図形情報、及びその建屋内の機器の図形情報と併せて、等高線強度分布の図形情報を、表示装置に表示すると良い。   Each embodiment described above is an example applied to a nuclear medicine facility, but can also be applied to a nuclear power plant, a nuclear fuel reprocessing facility, a general radiation handling facility, and the like. In this case, the graphic information of the contour line intensity distribution is combined with the graphic information of the cross section of the building, which is the body of the nuclear power plant, nuclear fuel reprocessing facility, and general radiation handling facility, and the graphic information of the equipment in the building. May be displayed on a display device.

放射線検出装置2は、1つの部屋(例えば、検査室)内に3個以上設置することもできる。一部屋内に設置する放射線検出装置2の個数が多いほど、鮮明な線量分布の情報を得ることができる。また、1つの放射線検出装置2内に設置する放射線検出器3の個数も、6台に限定されるものではなく、2台以上であれば何台でも良い。1つの放射線検出装置2内に設置する放射線検出器3の個数が多いほど、より鮮明な線量分布の情報が得られる。   Three or more radiation detection apparatuses 2 can be installed in one room (for example, an examination room). As the number of radiation detection devices 2 partially installed indoors increases, clearer dose distribution information can be obtained. Further, the number of radiation detectors 3 installed in one radiation detection apparatus 2 is not limited to six, and may be any number as long as it is two or more. As the number of radiation detectors 3 installed in one radiation detection apparatus 2 increases, clearer information on the dose distribution can be obtained.

前述の各実施例は複数の放射線検出装置2を側壁に設置した例で説明されているが,1つの放射線検出装置2の天井に設置し、他の1つ放射線検出装置2を側壁に設置しても良い。   Each of the above-described embodiments has been described as an example in which a plurality of radiation detection devices 2 are installed on the side wall. However, one radiation detection device 2 is installed on the side wall and the other radiation detection device 2 is installed on the side wall. May be.

以上のごとく、各実施例の核医学放射線分布監視装置を採用することによって、検診患者近辺の正確な線量率分布をリアルタイムで診断従事者が認識でき、診断行為そのものが円滑で効率的に行うことができるようになる。   As described above, by adopting the nuclear medicine radiation distribution monitoring device of each embodiment, the diagnostic worker can recognize the accurate dose rate distribution in the vicinity of the screening patient in real time, and the diagnostic action itself should be performed smoothly and efficiently. Will be able to.

図3に示す2つの放射線検出装置を検査室内に配置した状態、及び各放射線検出装置の計測範囲を示す説明図である。It is explanatory drawing which shows the state which has arrange | positioned two radiation detection apparatuses shown in FIG. 3 in a test room, and the measurement range of each radiation detection apparatus. 本発明の好適な一実施例である放射線分布監視装置の構成図である。It is a block diagram of the radiation distribution monitoring apparatus which is one preferable Example of this invention. 図2に示す放射線検出装置の詳細構成図である。It is a detailed block diagram of the radiation detection apparatus shown in FIG. 図2に示す計測回路の詳細構成図である。It is a detailed block diagram of the measurement circuit shown in FIG. 表示装置に表示される表示情報の例を示す説明図である。It is explanatory drawing which shows the example of the display information displayed on a display apparatus. 核医学検診施設内の被検診者の移動状態の表示例を示す説明図である。It is explanatory drawing which shows the example of a display of the movement state of the examinee in a nuclear medicine medical examination facility. 従事者に取り付けられた携帯通信装置と核医学検診施設に取り付けられた通信装置の間での情報の通信状態を示す説明図である。It is explanatory drawing which shows the communication state of the information between the portable communication apparatus attached to the worker, and the communication apparatus attached to the nuclear medicine examination facility. 個人被曝線量計を所持しない従事者の被曝管理の原理を示す説明図である。It is explanatory drawing which shows the principle of the exposure management of the worker who does not have a personal dosimeter.

符号の説明Explanation of symbols

1…放射線分布監視装置、2,2a〜2f…放射線検出装置、3,3a〜3f…放射線検出器、4…コリメータ、6,6a〜6f…計測回路、7…支持部材、8…保持部材、
11…カバー、13,13a,13b,13f…信号処理装置、17…カウンター、18…データ送信装置、19…データ収集装置、20…データ処理装置、23…陽電子放出型断層撮影装置、26,28…境界線、27,27a〜27f,29,29a〜29f…計測領域、30,C1〜C6…交点領域、36…携帯通信装置、38…通信装置、39…移動経路。
DESCRIPTION OF SYMBOLS 1 ... Radiation distribution monitoring apparatus, 2, 2a-2f ... Radiation detection apparatus, 3, 3a-3f ... Radiation detector, 4 ... Collimator, 6, 6a-6f ... Measurement circuit, 7 ... Support member, 8 ... Holding member,
DESCRIPTION OF SYMBOLS 11 ... Cover, 13, 13a, 13b, 13f ... Signal processing device, 17 ... Counter, 18 ... Data transmission device, 19 ... Data collection device, 20 ... Data processing device, 23 ... Positron emission tomography device, 26, 28 ... boundary lines 27, 27a to 27f, 29, 29a to 29f ... measurement area, 30, C1 to C6 ... intersection area, 36 ... portable communication device, 38 ... communication device, 39 ... movement path.

Claims (7)

お互いの計測範囲が交差し、交点領域を有するように建屋内の放射線管理区域内に複数配置し、
支持部材と、前記支持部材に取り付けられた横断面が半円の保持部材に設置された複数の放射線検出器と、前記支持部材に形成された前記保持部材に放射状に設置され、前記複数の放射線検出器の計測範囲を制限するコリメータと、を備え、
前記複数の放射線検出器が放射状に配置されていると共に、前記コリメータは、前記保持部材の半径方向に対して、保持部材の取り付け部における厚みが大きく、先端に行くほど厚みが減少していることを特徴とする放射線検出装置。
A plurality of measurement ranges intersect each other, and a plurality of them are placed in the radiation control area in the building so as to have an intersection area.
A support member, said support member a plurality of radiation detectors cross section mounted is installed in the holding member of the semicircle, are placed radially to the holding member formed in the support member, said plurality of radiation A collimator for limiting the measurement range of the detector,
The plurality of radiation detectors are arranged radially, and the collimator has a larger thickness at the mounting portion of the holding member with respect to the radial direction of the holding member, and the thickness decreases toward the tip. A radiation detection apparatus characterized by the above.
前記放射線検出器から出力される放射線検出信号を基に得られる情報である放射線強度情報を発生し、前記複数の放射線検出器に別々に接続された複数の信号処理装置と、
それぞれの信号処理装置から出力された各放射線強度情報を送信する情報送信装置と、を備え、
前記複数の信号処理装置及び前記情報送信装置が前記支持部材に設置されている請求項1記載の放射線検出装置。
A plurality of signal processing devices that generate radiation intensity information, which is information obtained based on radiation detection signals output from the radiation detector, and are separately connected to the plurality of radiation detectors;
An information transmission device that transmits each radiation intensity information output from each signal processing device,
The radiation detection apparatus according to claim 1, wherein the plurality of signal processing apparatuses and the information transmission apparatus are installed on the support member.
前記複数の放射線検出器及び前記コリメータが、前記複数の信号処理装置の周囲に配置されている請求項2記載の放射線検出装置。   The radiation detection apparatus according to claim 2, wherein the plurality of radiation detectors and the collimator are arranged around the plurality of signal processing apparatuses. 前記保持部材が前記複数の信号処理装置及び前記情報送信装置の周囲に配置され、前記複数の放射線検出器及び前記コリメータが、前記保持部材に設置される請求項2記載の放射線検出装置。   The radiation detection apparatus according to claim 2, wherein the holding member is disposed around the plurality of signal processing apparatuses and the information transmission apparatus, and the plurality of radiation detectors and the collimator are installed on the holding member. 請求項1に記載の放射線検出装置を複数配置し、お互いの前記放射線検出装置の計測範囲が交差し、交点領域を有するように建屋内の放射線管理区域内に前記放射線検出装置が配置され、
それぞれの放射線検出装置の各放射線検出器から出力される放射線検出信号を基に得られる情報を用いて、前記放射線管理区域内における線量分布の図形情報を作成する表示情報作成装置と、
前記線量分布の図形情報を表示する表示装置と、を備えたことを特徴とする放射線分布監視装置。
A plurality of radiation detection devices according to claim 1 are arranged, the measurement ranges of the radiation detection devices of each other intersect, and the radiation detection devices are arranged in a radiation management area in the building so as to have an intersection area,
Using information obtained based on the radiation detection signal output from each radiation detector of each radiation detection device, a display information creation device that creates graphic information of a dose distribution in the radiation management area,
A radiation distribution monitoring device comprising: a display device that displays graphic information of the dose distribution.
前記表示情報作成装置は、前記建屋の図形情報を前記表示装置に出力する請求項5記載の放射線分布監視装置。   The radiation distribution monitoring device according to claim 5, wherein the display information creation device outputs graphic information of the building to the display device. 請求項1に記載の放射線検出装置を複数配置し、お互いの前記放射線検出装置の計測範囲が交差し、交点領域を有するように建屋内の放射線管理区域内に前記放射線検出装置が配置され、
それぞれの放射線検出装置の各放射線検出器から出力される放射線検出信号を基に得られる情報を用いて、前記放射線管理区域内における、放射性薬剤が投与された被検体に起因する線量分布の第1図形情報を作成し、この第1図形情報の動きに基づいて前記第1図形の移動軌跡の第2図形情報を作成する表示情報作成装置と、
前記第1及び第2図形情報を表示する表示装置と、を備えたことを特徴とする放射線分布監視装置。
A plurality of radiation detection devices according to claim 1 are arranged, the measurement ranges of the radiation detection devices of each other intersect, and the radiation detection devices are arranged in a radiation management area in the building so as to have an intersection area,
Using the information obtained based on the radiation detection signal output from each radiation detector of each radiation detection device, the first dose distribution caused by the subject to which the radiopharmaceutical is administered in the radiation management area. A display information creating device that creates figure information and creates second figure information of a movement locus of the first figure based on the movement of the first figure information;
A radiation distribution monitoring apparatus comprising: a display device that displays the first and second graphic information.
JP2004064950A 2004-03-09 2004-03-09 Radiation detection device and radiation distribution monitoring device Expired - Fee Related JP4415707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064950A JP4415707B2 (en) 2004-03-09 2004-03-09 Radiation detection device and radiation distribution monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064950A JP4415707B2 (en) 2004-03-09 2004-03-09 Radiation detection device and radiation distribution monitoring device

Publications (2)

Publication Number Publication Date
JP2005257277A JP2005257277A (en) 2005-09-22
JP4415707B2 true JP4415707B2 (en) 2010-02-17

Family

ID=35083164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064950A Expired - Fee Related JP4415707B2 (en) 2004-03-09 2004-03-09 Radiation detection device and radiation distribution monitoring device

Country Status (1)

Country Link
JP (1) JP4415707B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358887B2 (en) * 2007-02-22 2013-12-04 富士通株式会社 Information terminal device, control method, and control program
JP2011163966A (en) * 2010-02-10 2011-08-25 Toshiba Corp Medical imagery diagnostic apparatus and control program for radiation dose calculation
JP5661299B2 (en) * 2010-03-03 2015-01-28 中国電力株式会社 Radiation dose measurement system in space
JP2015040815A (en) * 2013-08-23 2015-03-02 紀明 岡崎 Radioactive material moving path estimation method and decontamination method
JP2015040814A (en) * 2013-08-23 2015-03-02 紀明 岡崎 Radioactive material moving path estimation method and decontamination method
JP2015197377A (en) * 2014-04-01 2015-11-09 株式会社東芝 Radiation monitoring system, method, and program
CN108318913B (en) * 2018-01-04 2021-06-25 中国核电工程有限公司 Shielding device for directionally measuring complex dose field of nuclear power plant
JP2020134316A (en) * 2019-02-20 2020-08-31 国立研究開発法人日本原子力研究開発機構 Air dose calculation method using flying body
CN112666591A (en) * 2020-12-02 2021-04-16 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Radiation monitoring management system and method suitable for marine nuclear power platform

Also Published As

Publication number Publication date
JP2005257277A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
Chiriotti et al. Performance of several active personal dosemeters in interventional radiology and cardiology
JP5072662B2 (en) Absorbed dose management device
US20230218244A1 (en) Medical devices for diagnostic imaging
JP4415707B2 (en) Radiation detection device and radiation distribution monitoring device
EP3107443B1 (en) A device for measuring a plurality of parameters in patient subject to a treatment with radiopharmaceuticals
US10962656B2 (en) Method for measuring and representing the level of local irradiation doses
EP3048978B1 (en) System for controlling an x-ray detector
Bor et al. Assessment of radiation doses to cardiologists during interventional examinations
CN116490131A (en) Remote and automated intensive care unit
JP2010243395A (en) X ray-gamma ray imaging device
US4081682A (en) Locating and identifying a radioactive uranium and/or transuranium isotope deposited in a wound
JP2003194944A (en) System and method for control of radiation
US20220163681A1 (en) System and method for monitoring radiation exposure in a hospital environment for an operator
Farah et al. Patient dosimetry in interventional radiology: uncertainties associated to skin dose measurement and exposure correlation to online dose indicators
Danaei et al. Assessment of whole body, skin and eye lens doses of the interventional radiologists at selected hospitals in iran
Fujibuchi et al. Development of a wireless multisensor active personal dosimeter–tablet system
CN204903772U (en) Blood vessel outline digit radiography art person position radiation does detector
Kabir et al. An integrated radiation estimation system in health facilities to identify potential health risks
JP4440904B2 (en) Wheelchair with exposure prevention function and medical consultation facility system using the same
CN109414594B (en) Real-time dosimetry for ultrasound imaging probes
Munier et al. A new scintillating fiber dosimeter for real-time measurement in radiology and radiotherapy
Umer et al. Audit to assess local practice of wearing film badges during fluoroscopic procedures.
Carpentier et al. Development of a predictive model to reduce the patient radiation dose risk in interventional cardiology
Hornbeck et al. A new indicator for the evaluation of dosimetric practices in interventional radiology
Younis et al. Radiation protection evaluation from radio diagnostic departments in Erbil hospitals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 4415707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees