JP4415372B2 - Method for manufacturing power supply device - Google Patents

Method for manufacturing power supply device Download PDF

Info

Publication number
JP4415372B2
JP4415372B2 JP2003311912A JP2003311912A JP4415372B2 JP 4415372 B2 JP4415372 B2 JP 4415372B2 JP 2003311912 A JP2003311912 A JP 2003311912A JP 2003311912 A JP2003311912 A JP 2003311912A JP 4415372 B2 JP4415372 B2 JP 4415372B2
Authority
JP
Japan
Prior art keywords
heat
lead frame
power conversion
circuit board
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003311912A
Other languages
Japanese (ja)
Other versions
JP2005079552A (en
Inventor
康夫 長澤
周一 杉元
Original Assignee
Tdkラムダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdkラムダ株式会社 filed Critical Tdkラムダ株式会社
Priority to JP2003311912A priority Critical patent/JP4415372B2/en
Publication of JP2005079552A publication Critical patent/JP2005079552A/en
Application granted granted Critical
Publication of JP4415372B2 publication Critical patent/JP4415372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize size reduction of a circuit board, to control the temperature rise of an power conversion section and to allow a large current to flow in the power conversion section. <P>SOLUTION: The circuit pattern 43 of a lead frame 41 is used as the conductive path of the power conversion section 31, thereby enabling to allow a bigger current to flow in the power conversion section 31. In addition, since a radiation section 48 which radiates heat outside is integrally formed on the circuit pattern 43 of the lead frame 41, the temperature rise of the power conversion section 31 can be suppressed by using the radiation section 48. In addition, the conductive path of the power conversion 31 and the radiation section 48 can be manufactured simultaneously by the common lead frame 41. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、DC/DCコンバータ,スイッチング電源装置,インバータ,無停電電源装置(UPS)などの、大電流が流れる電力変換部と小電流が流れる制御部とを備えた電源装置の製造方法に関する。 The present invention relates to a method of manufacturing a power supply device including a power conversion unit through which a large current flows and a control unit through which a small current flows, such as a DC / DC converter, a switching power supply device, an inverter, and an uninterruptible power supply (UPS).

一般に、この種の電源装置は、任意の入力電圧から所望の出力電圧を取り出す電力変換部と、この電力変換部を制御する制御部とにより構成されるが、主に電力変換部に設けられるパワーラインと、そこに接続する発熱部品は、小電流で動作する制御部よりも大きな電流が流れるため、特に電力変換部では大電流の通電に適した実装構造が求められる。しかし、絶縁基板上に銅箔からなる配線パターンをエッチング形成し、この配線パターンを導電路として電気回路の配線を行なう従来のプリント基板では、銅箔の厚みが一般的には35ミクロンで、大電流対応のものでも75ミクロン〜105ミクロン程度に制限される。その理由は、回路基板の形成上の問題に起因するもので、エッチングによる加工方法では、銅箔の厚みをそれ以上の寸法にするのが困難であるからである。そのため、近年は回路基板において、大電流に対応した多層基板や、銅箔の厚みを増やしたものも開発されてはいるが、電力変換部の導電路として回路基板の配線パターンを利用した場合は、配線パターンからの放熱能力が、配線パターン自身の幅と厚みで決定されてしまい、殆ど放熱効果が期待できない。しかも、配線パターンそのものは幅や厚みが規定されていて熱伝導性が悪く、特に発熱部品を搭載した配線パターンは、その近傍領域が局部的な高温部となる。そのため、こうしたヒートスポットが回路基板の定格温度を超えないように設計を配慮する必要があった。   In general, this type of power supply device includes a power conversion unit that extracts a desired output voltage from an arbitrary input voltage and a control unit that controls the power conversion unit. Since a larger current flows through the line and the heat generating component connected to the line than a control unit operating with a small current, a mounting structure suitable for energizing a large current is particularly required in the power conversion unit. However, a conventional printed circuit board in which a wiring pattern made of copper foil is etched on an insulating substrate, and an electric circuit is wired using this wiring pattern as a conductive path, the thickness of the copper foil is generally 35 microns. Even those that support current are limited to about 75 to 105 microns. The reason is that it is caused by a problem in forming the circuit board, and it is difficult to make the thickness of the copper foil larger than that in the processing method by etching. For this reason, in recent years, multi-layer boards that support large currents and those with increased copper foil thickness have been developed. However, when the circuit board wiring pattern is used as the conductive path of the power converter. The heat dissipation capability from the wiring pattern is determined by the width and thickness of the wiring pattern itself, and almost no heat dissipation effect can be expected. In addition, the width and thickness of the wiring pattern itself are regulated, and the thermal conductivity is poor. In particular, in the wiring pattern on which the heat generating component is mounted, the vicinity region thereof becomes a local high temperature portion. Therefore, it was necessary to consider the design so that these heat spots do not exceed the rated temperature of the circuit board.

また、電子機器の小型化および大容量化(大電流化)に伴ない、回路基板の小型化も要求されているが、回路基板の配線パターンで電力変換部の導電路を形成すると、回路基板として大電流対応と発熱部品のヒートスポットとを同時に解決する必要がある。   In addition, along with the downsizing and large capacity (large current) of electronic equipment, there is also a demand for downsizing of circuit boards. However, if the conductive path of the power conversion unit is formed by the circuit board wiring pattern, It is necessary to solve the problem of large current and heat spots of heat-generating parts at the same time.

そこで、電力変換部の配線パターンに接続する発熱部品からの熱を効果的に放散するために、例えば特許文献1には、発熱部品であるパワートランジスタと、このパワートランジスタで発生した熱を放熱する放熱板とを、ねじを用いて密着状態に組み付け、パワートランジスタのリードとねじを回路基板に半田付け接続したものが開示されている。   Therefore, in order to effectively dissipate heat from the heat-generating component connected to the wiring pattern of the power conversion unit, for example, in Patent Document 1, a power transistor that is a heat-generating component and heat generated by the power transistor are radiated. There is disclosed a structure in which a heat radiating plate is assembled in close contact with a screw, and a power transistor lead and a screw are soldered to a circuit board.

また、別の特許文献2には、回路基板の配線パターン上で大電流を流すことを考慮して、絶縁基板上に小電流用の回路導体としての銅箔によるエッチングパターンを形成する一方で、大電流を通電する回路導体として銅または銅合金よりなる導電性金属バーを半田付けで固着したパワー回路配線用プリント基板が開示されている。
特開平7−135384号公報 特開平5−167207号公報
Further, in another patent document 2, in consideration of flowing a large current on the wiring pattern of the circuit board, while forming an etching pattern with a copper foil as a circuit conductor for small current on the insulating substrate, There has been disclosed a printed circuit board for power circuit wiring in which a conductive metal bar made of copper or a copper alloy is fixed by soldering as a circuit conductor for passing a large current.
Japanese Unexamined Patent Publication No. 7-135384 JP-A-5-167207

上記従来技術において、特許文献1にあるような固有の放熱板を各発熱部品毎に用意するのは、上述した配線パターンのヒートスポットを押さえるにはある程度の効果があるが、装置の小型化を図りつつ製造性を高めるには個々の放熱板が著しい妨げとなる。また、電力変換部として流せる電流量は、放熱板の形状に拘らず回路基板の配線パターンにより制限されてしまうので、大電流に対応した電源装置を提供することはできない。   In the above prior art, preparing a unique heat sink for each heat generating component as in Patent Document 1 has a certain effect in suppressing the heat spot of the wiring pattern described above. In order to increase the productivity while being planned, the individual heat sinks significantly hinder. In addition, since the amount of current that can be passed as the power conversion unit is limited by the wiring pattern of the circuit board regardless of the shape of the heat sink, it is not possible to provide a power supply device that can handle a large current.

また引用文献2では、回路基板の配線パターン上で大電流を流すために、回路基板の表面に金属バスバーを直接半田付け接続しているが、大電流が流れるパワーラインに対応して金属バスバーを個々に設置する必要があり、これも装置の小型化および製造性の向上を図るのに妨げとなる。さらに、金属バスバーは配線パターンに半田付け接続される関係で、発熱部品およびその周辺のヒートスポットを効果的に抑えるには、やはり引用文献1のような放熱器が必要になり、この場合は金属バスバーと放熱器が混在して、装置の小型化および製造性の向上を図るのが一層困難になる。   In Cited Document 2, a metal bus bar is directly soldered and connected to the surface of the circuit board in order to flow a large current on the wiring pattern of the circuit board. It is necessary to install them individually, which also hinders downsizing of the apparatus and improvement of manufacturability. Furthermore, since the metal bus bar is connected to the wiring pattern by soldering, a heat radiator as in the cited document 1 is also necessary to effectively suppress the heat generating component and the surrounding heat spot. It is more difficult to reduce the size of the device and improve the manufacturability because the bus bar and the radiator are mixed.

そこで本発明は上記問題点に鑑み、回路基板の小型化を図りつつも、製造的な困難さを伴うことなく、電力変換部における温度上昇を抑えることができ、電力変換部に大電流を流すことができる電源装置の製造方法を提供することをその目的とする。 Therefore, in view of the above problems, the present invention can suppress a temperature rise in the power conversion unit without causing manufacturing difficulties while reducing the size of the circuit board, and allows a large current to flow through the power conversion unit. It is an object of the present invention to provide a method for manufacturing a power supply device.

また、本発明の第2の目的は、発熱部品およびその周辺のヒートスポットを効果的に抑制できる電源装置の製造方法を提供することにある。 A second object of the present invention is to provide a method of manufacturing a power supply device that can effectively suppress heat-generating components and the surrounding heat spots.

本発明の電源装置の製造方法は、大電流が流れる電力変換部と、小電流が流れる制御部とを備えた電源装置の製造方法において、前記制御部の導電路となる小電流パターンを絶縁基板上に配設して回路基板を組立てる工程と、前記電力変換部の導電路となる回路パターン周囲部に繋がれ、且つこのリードフレームの回路パターンに、前記回路基板との導通を図るのに接続される基板接続部と外部に熱を輻射する放熱部とを形成するように、リードフレームを形成する工程と、前記周囲部の全てを前記回路パターンから切り離すか、あるいは前記放熱部だけでは放熱容量が不十分な場合に、前記周囲部の一部または全体を残し、この残した周囲部を外部に熱を放射する放熱部にする工程と、を行なうものである。 According to another aspect of the present invention, there is provided a method of manufacturing a power supply device, comprising: a power conversion unit including a power conversion unit through which a large current flows; and a control unit through which a small current flows. a step of assembling a circuitry substrate disposed above tethered scree around part circuit pattern serving as conductive paths of the power conversion unit, and the circuit pattern of the lead frame, ensure electrical connections between the circuit board so as to form a heat radiating portion for radiating heat to the board connecting portion and the outside to be connected to, or disconnected and forming a lead frame, all pre-Symbol peripheral portion from the circuit pattern, or the heat radiating portion If the heat dissipation capacity is insufficient only, leaving a part or the whole of the peripheral portion, a step of the perimeter leaving the heat radiation portion for radiating heat to the outside, Ru der performs.

この場合、電力変換部の導電路としてリードフレームの回路パターンを利用するが、リードフレームの回路パターンは回路基板上に形成した配線パターンのような制約を受けず、配線パターンの数倍の厚さに形成することができるので、回路基板を大型化させることなく、より大きな電流を電力変換部に流すことが可能になる。また、回路パターンの基板接続部を回路基板に接続した後に、必要に応じてリードフレームの周辺部を切り離すことで、島状に独立した複数の回路パターンを電力変換部の導電路として簡単に形成できる。しかも、このリードフレームの回路パターンには、外部に熱を輻射する放熱部が一体的に形成されているので、この放熱部を利用して電力変換部の温度上昇を抑えることができると共に、電力変換部の導電路と放熱部を共通のリードフレームにより同時に製造することができ、製造性を高めることが可能になる。   In this case, the circuit pattern of the lead frame is used as the conductive path of the power conversion unit. However, the circuit pattern of the lead frame is not limited by the wiring pattern formed on the circuit board and is several times thicker than the wiring pattern. Therefore, a larger current can be passed through the power conversion unit without increasing the size of the circuit board. In addition, after connecting the circuit pattern board connection part to the circuit board, if necessary, the peripheral part of the lead frame is separated to easily form multiple independent circuit patterns as conductive paths for the power converter. it can. In addition, the lead frame circuit pattern is integrally formed with a heat radiating part that radiates heat to the outside. The conductive path and the heat radiating part of the conversion part can be simultaneously manufactured by a common lead frame, and the manufacturability can be improved.

また、周囲部は本来リードフレームの不要部分として回路パターンから切り離されるが、回路パターンに形成した放熱部だけでは電力変換部としての放熱容量が不足する場合は、この周囲部を切り離さずに残して放熱部とすれば、わざわざ別部材で放熱器などを取付けなくても、必要な放熱容量を確保できる。   In addition, the peripheral part is originally separated from the circuit pattern as an unnecessary part of the lead frame, but if the heat dissipation capacity as the power conversion part is insufficient only by the heat dissipation part formed in the circuit pattern, leave this peripheral part without separation. If the heat dissipating part is used, the necessary heat dissipating capacity can be ensured without having to install a heat dissipating member with a separate member.

また本発明の電源装置の製造方法は、前記リードフレームを形成する工程で、前記電力変換部の発熱部品を接続する部品接続部を、前記リードフレームの回路パターンに形成してもよい。 In the method of manufacturing the power supply device of the present invention, in the step of forming the lead frame, a component connecting portion for connecting a heat generating component of the power conversion portion may be formed in the circuit pattern of the lead frame.

この場合、リードフレームの回路パターンに形成した部品接続部に電力変換部の発熱部品を接続することができるので、発熱部品からの熱が同じリードフレームの部品接続部から放熱部に直接伝わり、発熱部品とその周辺におけるヒートスポットを効果的に抑制できる。   In this case, since the heat generating component of the power conversion unit can be connected to the component connecting part formed in the circuit pattern of the lead frame, the heat from the heat generating component is directly transmitted from the component connecting part of the same lead frame to the heat radiating unit, and heat is generated. It is possible to effectively suppress heat spots in the component and its surroundings.

また本発明の電源装置の製造方法は、前記リードフレームと前記回路基板との間に隙間を形成して、前記制御部と前記電力変換部を接続してもよい。 Moreover, the manufacturing method of the power supply device of this invention may form the clearance gap between the said lead frame and the said circuit board, and may connect the said control part and the said power conversion part .

このようにすると、回路基板に対向していない放熱部の一側面は勿論、回路基板に対向する放熱部の他側面でも、空気との間で熱交換が促進され、リードフレームの放熱部からの放熱性を高めることができる。また、リードフレームから回路基板への熱影響を回避でき、電源装置として安定した動作を実現できる。   In this way, heat exchange with air is promoted not only on one side of the heat radiating part not facing the circuit board but also on the other side of the heat radiating part facing the circuit board. Heat dissipation can be improved. Further, the influence of heat from the lead frame to the circuit board can be avoided, and a stable operation as a power supply device can be realized.

また本発明の電源装置の製造方法は、前記放熱部の表面に放熱性の高い膜層を設ける工程をさらに行ってもよい。 The manufacturing method of the power supply apparatus of the present invention may further perform step Ru provided with high heat dissipation film layer on the surface of the heat radiating portion.

ここでいう放熱性の高い膜層とは、リードフレームの材料が例えばアルミニウムであれば白色や黒色のアルマイトでもよく、また輻射放熱用塗料などを使用しても良い。このようにすると、放熱部から膜層を介してより効果的に熱を放散できると共に、膜層がリードフレームの酸化防止の役割を果たし、装置としての信頼性を向上することができる。   The film layer having high heat dissipation herein may be white or black alumite if the material of the lead frame is aluminum, for example, or may use a paint for radiation heat dissipation. If it does in this way, while being able to dissipate heat more effectively from a thermal radiation part via a film layer, a film layer plays the role of oxidation prevention of a lead frame, and it can improve the reliability as a device.

本発明の請求項1における電源装置の製造方法では、回路基板の小型化を図りつつも、製造的な困難さを伴うことなく、電力変換部における温度上昇を抑えることができ、電力変換部に大電流を流すことができる。 In the method for manufacturing a power supply device according to the first aspect of the present invention, it is possible to suppress a temperature rise in the power conversion unit without manufacturing difficulty while reducing the size of the circuit board. A large current can flow.

また、前記放熱部だけでは放射容量が不十分な場合に前記周囲部の一部または全体を残し、この残した前記周囲部を放熱部として利用することで、電力変換部としての必要な放熱容量を確保できる。   In addition, when the radiation capacity is insufficient with only the heat radiating part, the part or the whole of the peripheral part is left, and by using the remaining peripheral part as a heat radiating part, a necessary heat radiating capacity as a power conversion part Can be secured.

本発明の請求項2における電源装置の製造方法では、発熱部品からの熱が同じリードフレームの部品接続部から放熱部に直接伝わり、発熱部品とその周辺におけるヒートスポットを効果的に抑制できる。 In the power supply device manufacturing method according to the second aspect of the present invention, heat from the heat generating component is directly transmitted from the component connecting portion of the same lead frame to the heat radiating portion, and heat spots in the heat generating component and its surroundings can be effectively suppressed.

本発明の請求項3における電源装置の製造方法では、回路基板に対向する放熱部の他側面からも、空気との間で熱交換が促進され、放熱部からの放熱性を高めることができると共に、放熱部から回路基板への熱影響を回避できる。 In the method for manufacturing a power supply device according to claim 3 of the present invention, heat exchange with air is promoted from the other side of the heat dissipating part facing the circuit board, and heat dissipation from the heat dissipating part can be enhanced. The heat influence from the heat radiation part to the circuit board can be avoided.

本発明の請求項4における電源装置の製造方法では、放熱部から膜層を介してより効果的に熱を放散できると共に、膜層によりリードフレームの酸化を防止することができる。 In the power supply device manufacturing method according to the fourth aspect of the present invention, heat can be more effectively dissipated from the heat radiating portion through the film layer, and lead film oxidation can be prevented by the film layer.

以下、本発明における大電流対応電子機器としての電源装置の好ましい実施例について、添付図面である図1〜図7を参照して詳細に説明する。   Hereinafter, a preferred embodiment of a power supply device as a high-current electronic device according to the present invention will be described in detail with reference to FIGS.

先ず、完成した電源装置の構成を図1および図2に基づき説明する。11は回路基板であり、これはエポキシ樹脂やガラス繊維等の板材からなる絶縁基板1の一側表面に、小電流を通電する小電流パターン3が配設される。この小電流パターン3は周知のように、銅箔などの金属箔をエッチング加工することで、所望の形状に形成される。また本実施例では、単独の絶縁基板1とその表面に形成される配線パターン(小電流パターン3)だけで回路基板11を構成しているが、配線密度を高めるために、配線パターン付きの絶縁基板を多層に積層した回路基板11を使用してもよい。また、絶縁基板1の他側表面に、大電流を流すためのパワーパターンを配線パターンの一部として設けてもよい。   First, the configuration of the completed power supply device will be described with reference to FIGS. Reference numeral 11 denotes a circuit board, which is provided with a small current pattern 3 for passing a small current on one side surface of an insulating substrate 1 made of a plate material such as epoxy resin or glass fiber. As is well known, the small current pattern 3 is formed into a desired shape by etching a metal foil such as a copper foil. In this embodiment, the circuit board 11 is composed of only a single insulating substrate 1 and a wiring pattern (small current pattern 3) formed on the surface thereof. However, in order to increase the wiring density, insulation with a wiring pattern is used. A circuit board 11 in which substrates are laminated in multiple layers may be used. Further, a power pattern for flowing a large current may be provided on the other surface of the insulating substrate 1 as a part of the wiring pattern.

前記小電流パターン3を配設した回路基板11の一側には、この小電流パターン3と共に制御系の小電流が流れる制御部21を構成する電子部品22が実装される。電源装置の制御部22は、後述する電力変換部32の各部を制御するために設けられ、具体的には電力変換部32の各部を監視する監視部(出力電圧検出回路,負荷電流検出回路など)や、この監視部からの監視結果を受けて電力変換部32の制御素子(スイッチング素子など)に適切な制御信号を与える制御信号生成部(PWM制御回路,駆動回路など)などにより構成される。そのため制御部21の電子部品22は、制御用IC,シャントレギュレータ,フォトカプラなどの比較的小信号を扱う回路素子により構成される。   On one side of the circuit board 11 on which the small current pattern 3 is disposed, an electronic component 22 constituting the control unit 21 through which a small current of the control system flows together with the small current pattern 3 is mounted. The control unit 22 of the power supply device is provided to control each unit of the power conversion unit 32 described later, specifically, a monitoring unit (an output voltage detection circuit, a load current detection circuit, etc.) that monitors each unit of the power conversion unit 32 ), And a control signal generation unit (such as a PWM control circuit and a drive circuit) that provides an appropriate control signal to a control element (such as a switching element) of the power conversion unit 32 in response to a monitoring result from the monitoring unit . Therefore, the electronic component 22 of the control unit 21 includes circuit elements that handle relatively small signals such as a control IC, a shunt regulator, and a photocoupler.

一方、配線パターンが設けられていない回路基板11の他側には、後述するリードフレーム41の回路パターン43と共に、電力系の大電流が流れる電力変換部31が設けられる。この電力変換部31は、主として電源装置に供給される任意の入力電圧から所望の出力電圧を取り出すためのもので、電力変換部31の回路素子として実装される電子部品32としては、例えばトランス,スイッチング素子,整流素子,転流素子,チョークコイル,平滑コンデンサなどの大電流が流れる発熱部品を必然的に多く含んでいる。   On the other hand, on the other side of the circuit board 11 where the wiring pattern is not provided, a power conversion unit 31 through which a large current of the power system flows is provided together with a circuit pattern 43 of the lead frame 41 described later. The power conversion unit 31 is mainly for extracting a desired output voltage from an arbitrary input voltage supplied to the power supply device. As the electronic component 32 mounted as a circuit element of the power conversion unit 31, for example, a transformer, There are inevitably many heat-generating components through which a large current flows, such as switching elements, rectifier elements, commutation elements, choke coils, and smoothing capacitors.

また、回路基板11の小電流パターン3を配置した箇所には、後述するリードフレーム41の基板接続部47を挿通および半田付け接続するリードフレーム接続用孔としてのスルーホール6が複数設けられる。   A plurality of through-holes 6 serving as lead frame connection holes for inserting and soldering a substrate connection portion 47 of a lead frame 41 described later are provided at locations where the small current pattern 3 of the circuit board 11 is disposed.

一方、41はリードフレームで、これは0.1mmから1.0mm程度の厚みを有する金属板42をレーザ加工,プレス加工またはエッチング加工して形成されるもので、その形状は必要な電流容量と機械的強度とから設計される。リードフレーム41の母材となる良導電性の金属板42は、リードフレーム41単体で後述する微細な回路パターン43を高密度で配線できるように、例えば0.25mmの厚みを有する一様な圧延板からなる。また金属板42は、熱伝導性を考慮して、例えば銅,鉄,アルミニウム,ニッケルから選ばれた少なくとも1種を主成分とする金属から構成するのが好ましい。金属板42には、その両面に施された周知のエッチング処理またはプレス加工により、複数の分離溝44(図5参照)が形成される。各分離溝44は、いずれも金属板42の上面から下面を貫通して開口形成されており、この分離溝44によって複数の回路パターン43と、これに連なる外部接続用の端子片45が金属板42の平面方向に分離される。   On the other hand, 41 is a lead frame, which is formed by laser processing, pressing or etching a metal plate 42 having a thickness of about 0.1 mm to 1.0 mm, and its shape is a required current capacity and mechanical. Designed with strength. The highly conductive metal plate 42 used as the base material of the lead frame 41 is a uniform rolled plate having a thickness of, for example, 0.25 mm so that a fine circuit pattern 43 (to be described later) can be wired at a high density with the lead frame 41 alone. Consists of. In consideration of thermal conductivity, the metal plate 42 is preferably made of a metal whose main component is at least one selected from, for example, copper, iron, aluminum, and nickel. A plurality of separation grooves 44 (see FIG. 5) are formed in the metal plate 42 by a well-known etching process or press process applied to both surfaces thereof. Each separation groove 44 has an opening formed through the lower surface from the upper surface of the metal plate 42, and the separation groove 44 allows a plurality of circuit patterns 43 and external connection terminal pieces 45 to be connected to the metal plate 42. Separated in 42 plane directions.

前記リードフレーム41の回路パターン43は、電子部品32の端子電極33が載置および半田付け接続される位置に部品接続部46が形成されると共に、回路基板11の一側面に向けて切起された基板接続部47が一乃至複数突出形成される。基板接続部47は、回路基板11に設けられたスルーホール6に対向して、このスルーホール6に挿通可能に設けられ、回路基板11の小電流パターン3に半田付け接続される。また、これらの部品接続部46や基板接続部47を除く回路パターン43の部分で、放熱性に富む放熱部48が一体的に形成される。この放熱部48は、リードフレーム41の母材である金属板42を、例えばアルミニウムなどの放熱性に優れた材料で形成することでも実現できるが、図3に示すように、好ましくは白色や黒色のアルマイト皮膜や、さもなければ輻射放熱性に優れた塗料からなる放熱性の高い膜層50が、放熱部48の表面に表面処理または塗布形成される。なお、こうした膜層50は、放熱部48の表面にだけ設け、他のリードフレーム41の部位には設けないようにする。そうすれば、端子片45,部品接続部46および基板接続部47の部分で、膜層50により半田付け接続ができなくなる製造上の欠点を回避できる。また、膜層50は回路基板11に対向しない放熱部48の片面にだけ設けてもよいし、図3に示すように放熱部48の両面に設けてもよい。   The circuit pattern 43 of the lead frame 41 is formed with a component connection portion 46 at a position where the terminal electrode 33 of the electronic component 32 is placed and soldered, and is raised toward one side of the circuit board 11. One or more substrate connecting portions 47 are formed to protrude. The board connecting portion 47 is provided so as to be able to be inserted into the through hole 6 so as to face the through hole 6 provided in the circuit board 11, and is connected to the small current pattern 3 of the circuit board 11 by soldering. In addition, a heat radiating portion 48 having high heat radiating properties is integrally formed at a portion of the circuit pattern 43 excluding the component connecting portion 46 and the board connecting portion 47. The heat radiating portion 48 can also be realized by forming the metal plate 42, which is a base material of the lead frame 41, with a material having excellent heat radiating properties such as aluminum, for example, but preferably white or black as shown in FIG. A surface layer or a coating is formed on the surface of the heat radiating portion 48 with a high heat dissipation film layer 50 made of alumite film or a paint having excellent radiation heat dissipation. Note that such a film layer 50 is provided only on the surface of the heat radiating portion 48 and is not provided in other parts of the lead frame 41. In this case, it is possible to avoid a manufacturing defect that makes it impossible to perform soldering connection by the film layer 50 at the terminal piece 45, the component connection part 46, and the board connection part 47. Further, the film layer 50 may be provided only on one side of the heat radiating part 48 not facing the circuit board 11 or may be provided on both surfaces of the heat radiating part 48 as shown in FIG.

51は、最終的に島状に孤立する各回路パターン43とそれに連なる端子片45を平面方向に保持するための絶縁樹脂で、絶縁樹脂51は前記分離溝44に隙間なく埋設される。この絶縁樹脂51とリードフレーム41とにより、例えば回路基板11と略同形をなす矩形状のリードフレーム基板52が構成される。各端子片45はリードフレーム基板52および回路基板11の各一側周縁よりも外方に突出して設けられる。端子片45の代わりに別部材の端子ピンなどを回路パターン43に取付けても良いが、回路パターン43と端子片45を一体に形成したほうが、作業性向上の点からも好ましい。また、完成した電源装置を例えばプリント基板(図示せず)などの被取付部に取付ける際に、端子片45の先端部はプリント基板に設けたスルーホールに挿入するようになっており、これにより端子片45とプリント基板のスルーホールとを半田付け接続することが可能になる。さらに53は、前記回路基板11の他側面とリードフレーム基板52の一側面との間に形成される隙間で、この隙間53により回路基板11とリードフレーム52は非接触の状態で配設される。   51 is an insulating resin for holding each circuit pattern 43 finally isolated in an island shape and the terminal piece 45 connected to the circuit pattern in the plane direction, and the insulating resin 51 is embedded in the separation groove 44 without a gap. The insulating resin 51 and the lead frame 41 constitute, for example, a rectangular lead frame substrate 52 that is substantially the same shape as the circuit substrate 11. Each terminal piece 45 is provided so as to protrude outward from the peripheral edges on one side of the lead frame substrate 52 and the circuit board 11. Instead of the terminal piece 45, a separate terminal pin or the like may be attached to the circuit pattern 43, but it is preferable to form the circuit pattern 43 and the terminal piece 45 integrally from the viewpoint of improving workability. In addition, when attaching the completed power supply device to a mounted portion such as a printed circuit board (not shown), the tip of the terminal piece 45 is inserted into a through hole provided in the printed circuit board. The terminal piece 45 and the through hole of the printed board can be connected by soldering. Further, 53 is a gap formed between the other side surface of the circuit board 11 and one side surface of the lead frame substrate 52, and the circuit board 11 and the lead frame 52 are arranged in a non-contact state by the gap 53. .

次に、本発明による電源装置の製造方法を、図4〜図に基づき各工程にしたがって説明する。先ず図4では、回路基板11の組立工程が行なわれる。これは絶縁基板1の一側面および他側面に銅箔をそれぞれ形成し、スルーホール5となる箇所にドリルなどで孔あけ加工を行なった後、そこにメッキ処理を施してスルーホール5を配設する。その後、所要のレジストを印刷し、エッチングにより不要な銅箔を取り除いた後、該レジストを剥離して、絶縁基板1の一側面に所望の形状の小電流パターン3を形成する。 Next, a manufacturing method of a power supply device according to the present invention will be described in accordance with the steps on the basis of FIGS. 4-7. First, in FIG. 4, the assembly process of the circuit board 11 is performed. In this method, copper foils are formed on one side and the other side of the insulating substrate 1, and a hole is drilled with a drill or the like at a location where the through hole 5 is to be formed. To do. Thereafter, a necessary resist is printed and unnecessary copper foil is removed by etching, and then the resist is peeled off to form a small current pattern 3 having a desired shape on one side surface of the insulating substrate 1.

この回路基板11の組立工程に続いて、電子部品22の実装工程が行なわれる。これは図4に示すように、予め半田ペーストを小電流パターン3の接着するべき位置に印刷しておき、小電流パターン3上に電子部品22を搭載・接着した後、高温の温度槽に通して半田付けすることで行われ、全ての電子部品22を小電流パターン3に固着した段階で、制御部21としての組立が完了する。   Subsequent to the assembly process of the circuit board 11, a mounting process of the electronic component 22 is performed. As shown in FIG. 4, the solder paste is printed in advance on the position where the small current pattern 3 is to be bonded, and after the electronic component 22 is mounted and bonded on the small current pattern 3, it is passed through a high temperature bath. Assembling as the control unit 21 is completed when all the electronic components 22 are fixed to the small current pattern 3.

一方、上記制御部21の組立とは別に、金属板42から所望の形状のリードフレーム41を得るリードフレーム製造工程が独立して行なわれる。これは図5に示すように、リードフレーム41は、銅箔やリン青銅のような熱伝導性と電気伝導性が良好な材料からなる金属板42から形成され、電力変換部31の大電流が流れる部分と外部へのリード取り出し部分に対応したパターン形状を有している。この実施例では、外部へのリード取り出し部分がリードフレーム41の一側に端子片45として並設されていて、これらの端子片45の一端はリードフレーム41の周囲に形成された枠状部54に繋がれていると共に、端子片45の他端は、前記パワーパターン2に対応した形状を有する回路パターン43に繋がれている。また、端子片45を備えていない単独の回路パターン43も、全てリードフレーム41の周囲にある枠状部49に繋がれている。こうして回路パターン43と端子片45は、回路基板11に重ね合わせる前のリードフレーム41の初期状態において全て枠状部54に支持されている。   On the other hand, apart from the assembly of the control unit 21, a lead frame manufacturing process for obtaining a lead frame 41 having a desired shape from the metal plate 42 is performed independently. As shown in FIG. 5, the lead frame 41 is formed of a metal plate 42 made of a material having good thermal conductivity and electrical conductivity such as copper foil or phosphor bronze, and a large current of the power conversion unit 31 is generated. It has a pattern shape corresponding to the flowing portion and the lead extraction portion to the outside. In this embodiment, the lead-out portion to the outside is arranged side by side as a terminal piece 45 on one side of the lead frame 41, and one end of these terminal pieces 45 is a frame-like portion 54 formed around the lead frame 41. The other end of the terminal piece 45 is connected to a circuit pattern 43 having a shape corresponding to the power pattern 2. Further, the single circuit pattern 43 that does not include the terminal piece 45 is also all connected to the frame-like portion 49 around the lead frame 41. Thus, the circuit pattern 43 and the terminal piece 45 are all supported by the frame-like portion 54 in the initial state of the lead frame 41 before being superimposed on the circuit board 11.

その後、回路パターン43の特に放熱部48の放熱性を高めるために、必要に応じてリードフレーム41の表面処理または塗装工程が行なわれる。例えば金属板42がアルミニウムである場合は、回路パターン43の放熱部48に位置して、その表面に黒色または白色のアルマイトを皮膜形成する。股、金属板42がアルミニウム以外の材料であっても、例えば輻射放熱性に優れた塗料を放熱部48の表面に塗布すればよい。   Thereafter, in order to enhance the heat radiation performance of the circuit pattern 43, particularly the heat radiation portion 48, the surface treatment or coating process of the lead frame 41 is performed as necessary. For example, when the metal plate 42 is aluminum, it is located in the heat radiation part 48 of the circuit pattern 43, and a black or white alumite film is formed on the surface thereof. Even if the crotch and the metal plate 42 are made of a material other than aluminum, for example, a coating material excellent in radiation heat radiation may be applied to the surface of the heat radiation portion 48.

このリードフレーム製造工程が終了すると、リードフレーム基板52の製造工程に移行する。ここでは、予め回路パターン43の適所に形成された基板接続部47が垂直方向に折り曲げられる。次に、電子部品32が搭載される箇所に位置して、各回路パターン43間に開口形成される分離溝44に、絶縁樹脂51が隙間なく埋設される。この絶縁樹脂51は、その後のリードフレーム41の外周部切断工程において、独立した島状の回路パターン43が離脱するのを防止すると共に、各回路パターン43がぐらつくのを防止するためにある。   When the lead frame manufacturing process is completed, the process proceeds to the manufacturing process of the lead frame substrate 52. Here, the board connecting portion 47 formed in advance at the appropriate position of the circuit pattern 43 is bent in the vertical direction. Next, the insulating resin 51 is embedded in the separation groove 44 that is located at a place where the electronic component 32 is mounted and is opened between the circuit patterns 43 without any gaps. This insulating resin 51 is used to prevent the independent island-like circuit patterns 43 from being detached and the circuit patterns 43 from wobbling in the subsequent cutting process of the outer periphery of the lead frame 41.

なお本実施例では、各回路パターン43の表面が外部に露出するように、絶縁樹脂51の一側面および他側面が、リードフレーム41の一側面および他側面と面一になるようにリードフレーム基板52が形成される。このように、回路パターン43の表面を絶縁樹脂51で覆わないようにすることで、放熱部48から空気中への熱の放散を効率よく行なうことができる。   In this embodiment, the lead frame substrate is such that one side and the other side of the insulating resin 51 are flush with one side and the other side of the lead frame 41 so that the surface of each circuit pattern 43 is exposed to the outside. 52 is formed. Thus, by not covering the surface of the circuit pattern 43 with the insulating resin 51, it is possible to efficiently dissipate heat from the heat radiation part 48 into the air.

この絶縁樹脂51の埋め込み工程では、図示しない樹脂注入機の上型と下型間に、リードフレーム41の一側面と他側面が接する状態にして、最終的に電子部品32が搭載される領域(部品搭載部)に位置する分離溝44に未硬化状態の絶縁樹脂51を注入する。特に部品搭載部内の分離溝44は、全ての回路パターン43の一側だけがリードフレーム41の周縁にある枠状部54に繋がれている関係で、島状に点在するのではなく、一つの連続した穴で形成されるので、分離溝44の適所に絶縁樹脂51を注入すると、分離溝44全体に絶縁樹脂51を隙間なく埋め込むことができる。絶縁樹脂51はその後熱などにより硬化され、各回路パターン43を離脱しないように保持する。この段階で、枠状部54を繋げた状態のリードフレーム基板52が完成する。   In the step of embedding the insulating resin 51, the one side surface and the other side surface of the lead frame 41 are in contact with each other between the upper die and the lower die of a resin injection machine (not shown), and the region where the electronic component 32 is finally mounted ( An uncured insulating resin 51 is injected into the separation groove 44 located in the component mounting portion. In particular, the separation grooves 44 in the component mounting portion are not scattered in an island shape because only one side of all the circuit patterns 43 is connected to the frame-like portion 54 on the periphery of the lead frame 41. Since it is formed by two continuous holes, when the insulating resin 51 is injected into an appropriate position of the separation groove 44, the insulation resin 51 can be embedded in the entire separation groove 44 without a gap. The insulating resin 51 is then cured by heat or the like, and holds each circuit pattern 43 so as not to leave. At this stage, the lead frame substrate 52 in a state where the frame-like portions 54 are connected is completed.

リードフレーム基板52の製造工程が終了すると、電力変換部31の回路素子となる電子部品32の実装工程が行なわれる。この電子部品32の実装工程は、予め半田ペーストを回路パターン43の接着するべき位置、すなわち部品接続部46に印刷しておき、リードフレーム基板52上に電子部品32を搭載・接着した後、高温の温度槽に通して半田付けすることで行われる。図6は、電子部品32の実装工程が終了した段階の状態を示しており、ここで電力変換部31としての組立が完了する。   When the manufacturing process of the lead frame substrate 52 is completed, the mounting process of the electronic component 32 that becomes the circuit element of the power conversion unit 31 is performed. In the mounting process of the electronic component 32, the solder paste is printed in advance on the position to be bonded to the circuit pattern 43, that is, on the component connecting portion 46, and the electronic component 32 is mounted and bonded on the lead frame substrate 52. This is done by soldering through a temperature bath. FIG. 6 shows a state at a stage where the mounting process of the electronic component 32 is completed, and the assembly as the power conversion unit 31 is completed here.

こうして、別々に製造された制御部21と電力変換部31は、次の接合工程にて一体に接続される。これは図7に示すように、リードフレーム基板52に一側面より突出した基板接続部47を、回路基板11の他側面よりスルーホール6に挿通し、回路基板11とリードフレーム基板52との間に隙間53を形成した状態で、基板接続部47の先端とスルーホール6とを半田57(図2参照)で固着することで行われる。そして、端子片45を残した状態で、リードフレーム基板52の周縁に沿ってリードフレーム41の枠状部54を切り離すと、図1や図2に示すような電源基板が完成する。なお、枠状部54を切り離すのは必須ではなく、回路パターン43の放熱部48だけでは放熱容量が不十分であれば、この枠状部54の一部または全体を残して、その部分を同様の放熱部としてもよい。   Thus, the separately manufactured control unit 21 and power conversion unit 31 are integrally connected in the next joining step. As shown in FIG. 7, the board connecting portion 47 protruding from one side of the lead frame board 52 is inserted into the through hole 6 from the other side of the circuit board 11, and between the circuit board 11 and the lead frame board 52. This is done by fixing the tip of the substrate connecting portion 47 and the through hole 6 with solder 57 (see FIG. 2) in a state where the gap 53 is formed. Then, when the frame-like portion 54 of the lead frame 41 is cut along the periphery of the lead frame substrate 52 with the terminal pieces 45 left, a power supply substrate as shown in FIGS. 1 and 2 is completed. Note that it is not essential to separate the frame-shaped portion 54. If the heat radiation capacity of the circuit pattern 43 alone is not sufficient, leave the frame-shaped portion 54 partially or entirely, and the same It is good also as a heat dissipation part.

上記一連の製造工程では、回路基板11とリードフレーム基板52とを連結した後で、電子部品22,32の搭載・接着および半田付け接続を行なってもよく、回路基板11とリードフレーム基板52とを連結する前に、電子部品22,32の搭載・接着だけを行ない、回路基板11とリードフレーム基板52とを連結するのと同時に、これらの電子部品22,32も半田付け接続してもよい。すなわち、電子部品22,32の搭載・接着および半田付け接続の各作業は、製造性などを考慮してどの段階で行なってもよい。   In the above-described series of manufacturing steps, after the circuit board 11 and the lead frame board 52 are coupled, the electronic components 22 and 32 may be mounted, bonded, and soldered. The circuit board 11 and the lead frame board 52 Before connecting the electronic components 22, 32, only mounting and bonding the electronic components 22, 32, and simultaneously connecting the circuit board 11 and the lead frame substrate 52, these electronic components 22, 32 may be connected by soldering. . That is, the operations of mounting / bonding and soldering the electronic components 22 and 32 may be performed at any stage in consideration of manufacturability and the like.

完成した電源装置は、特定の端子片45間に入力電圧を供給すると、制御部21および電力変換部31が動作して、別の端子片45から出力電圧が取り出される。このとき、電力変換部31からの出力電圧や出力電流は制御部21により常時監視され、制御部21はその監視結果をもとに、出力電圧の安定化を図るための制御信号を電力変換部31に送出する。こうした出力電圧や出力電流の監視信号や、電力変換部31への制御信号は、回路基板11のスルーホール6に接続されるリードフレーム基板52の基板接続部47を通して伝送される。   In the completed power supply device, when an input voltage is supplied between specific terminal pieces 45, the control unit 21 and the power conversion unit 31 operate, and an output voltage is taken out from another terminal piece 45. At this time, the output voltage and output current from the power conversion unit 31 are constantly monitored by the control unit 21, and the control unit 21 outputs a control signal for stabilizing the output voltage based on the monitoring result. Send to 31. Such monitoring signals for the output voltage and output current and the control signal for the power converter 31 are transmitted through the board connecting part 47 of the lead frame board 52 connected to the through hole 6 of the circuit board 11.

また、電力変換部31の導電路である回路パターン43に大電流が流れるのに伴ない、電力変換部31を構成する電子部品32のなかで、とりわけスイッチング素子や整流素子などの発熱部品から熱が発生する。しかし、この発熱部品の熱は、熱伝導性のよい金属板42からなるリードフレーム41の回路パターン43に速やかに伝達され、回路パターン43の適所に形成した放熱部48の表面から空気中に速やかに放散されるため、発熱部品とその周辺の熱集中を抑えてヒートスポットを緩和でき、リードフレーム基板52全体があたかも放熱器として作用する。とりわけ本実施例では、放熱部48の表面に放熱性の高い膜層50が設けられているので、放熱部48から膜層50を通しての熱放散が一層促進され、電力変換部31における局部的な温度上昇を効果的に低減できる。   In addition, as a large current flows through the circuit pattern 43 that is a conductive path of the power conversion unit 31, among the electronic components 32 constituting the power conversion unit 31, heat is generated from heat-generating components such as switching elements and rectification elements. Will occur. However, the heat of this heat-generating component is quickly transmitted to the circuit pattern 43 of the lead frame 41 made of the metal plate 42 having good thermal conductivity, and promptly enters the air from the surface of the heat radiating part 48 formed at a proper position of the circuit pattern 43. Therefore, the heat spot can be reduced by suppressing the heat concentration in the heat generating component and its surroundings, and the entire lead frame substrate 52 acts as a radiator. In particular, in the present embodiment, since the film layer 50 having a high heat dissipation property is provided on the surface of the heat radiating part 48, heat dissipation from the heat radiating part 48 through the film layer 50 is further promoted, and the locality in the power conversion part 31 is increased. Temperature rise can be effectively reduced.

また、リードフレーム41と回路基板11との間には隙間53が設けられているので、回路パターン43の放熱部48に達した熱は、回路基板11に対向していないリードフレーム41の他側面だけでなく、回路基板11に対向するリードフレーム41の一側面からも空気中に放散される。そのため、放熱部48の表面に膜層50を設けたことと相俟って、放熱部48と外部との間の熱交換を放熱部48の両面で効率よく行なえる。しかも、リードフレーム41からの熱が回路基板11に直接伝わらなくなるので、回路基板11に実装される電子部品22への悪影響を緩和することができる。   Further, since a gap 53 is provided between the lead frame 41 and the circuit board 11, the heat reaching the heat radiating portion 48 of the circuit pattern 43 is caused by the other side of the lead frame 41 not facing the circuit board 11. In addition, it is dissipated into the air from one side surface of the lead frame 41 facing the circuit board 11. Therefore, coupled with the provision of the film layer 50 on the surface of the heat radiating portion 48, heat exchange between the heat radiating portion 48 and the outside can be efficiently performed on both surfaces of the heat radiating portion 48. In addition, since heat from the lead frame 41 is not directly transferred to the circuit board 11, adverse effects on the electronic components 22 mounted on the circuit board 11 can be reduced.

以上のように本実施例では、大電流が流れる電力変換部31と、小電流が流れる制御部21とを備えた電源装置の製造方法において、制御部21の導電路となる小電流パターン3を絶縁基板1上に配設して回路基板11を組立てる工程と、電力変換部31の導電路となる回路パターン43周囲部である枠状部54に繋がれ、且つこの回路パターン43に、回路基板11との導通を図るのに接続される基板接続部47と、外部に熱を輻射する放熱部48とを形成するように、リードフレーム41を形成する工程と、枠状部54の全てを回路パターン43から切り離すか、あるいは前記放熱部48だけでは放熱容量が不十分な場合に、枠状部54の一部または全体を残し、この残した周囲部枠状部54を外部に熱を放射する放熱部にする工程と、を行なうようにしている。 As described above, in the present embodiment, in the method of manufacturing a power supply device including the power conversion unit 31 through which a large current flows and the control unit 21 through which a small current flows, the small current pattern 3 serving as a conductive path of the control unit 21 is obtained. a step of assembling the circuitry substrate 11 disposed on the insulating substrate 1, the circuit pattern 43 as a conductive path of the power conversion unit 31 Tsunagare the frame portion 54 is a peripheral part, and to the circuit pattern 43, The step of forming the lead frame 41 so as to form a board connecting portion 47 connected to achieve electrical connection with the circuit board 11 and a heat radiating portion 48 that radiates heat to the outside, and all of the frame-like portion 54 Is removed from the circuit pattern 43, or when the heat dissipation capacity is not sufficient with only the heat radiating portion 48, a part or the whole of the frame-shaped portion 54 is left, and the remaining peripheral frame-shaped portion 54 is heated to the outside. And a step of forming a radiating heat dissipation portion .

この場合、電力変換部31の導電路としてリードフレーム41の回路パターン43を利用するが、リードフレーム41の回路パターン43は回路基板11上に形成した配線パターンのような制約を受けず、配線パターンの数倍の厚さに形成することができるので、回路基板11を大型化させることなく、より大きな電流を電力変換部31に流すことが可能になる。また、回路パターン43の基板接続部47を回路基板11に接続した後に、必要に応じてリードフレーム41の周辺部である枠状部54を切り離すことで、島状に独立した複数の回路パターン43を電力変換部31の導電路として簡単に形成できる。しかも、このリードフレーム41の回路パターン43には、外部に熱を輻射する放熱部48が一体的に形成されているので、この放熱部48を利用して電力変換部31の温度上昇を抑えることができると共に、電力変換部31の導電路と放熱部48を共通のリードフレーム41により同時に製造することができ、製造性を高めることが可能になる。   In this case, the circuit pattern 43 of the lead frame 41 is used as the conductive path of the power conversion unit 31. However, the circuit pattern 43 of the lead frame 41 is not restricted by the wiring pattern formed on the circuit board 11, and the wiring pattern Therefore, a larger current can be passed through the power conversion unit 31 without increasing the size of the circuit board 11. In addition, after connecting the board connecting portion 47 of the circuit pattern 43 to the circuit board 11, if necessary, the frame-like portion 54 that is the peripheral portion of the lead frame 41 is cut off, so that a plurality of circuit patterns 43 independent in an island shape are obtained. Can be easily formed as a conductive path of the power converter 31. In addition, the circuit pattern 43 of the lead frame 41 is integrally formed with a heat radiating part 48 that radiates heat to the outside, so that the temperature increase of the power conversion part 31 can be suppressed by using the heat radiating part 48. In addition, the conductive path of the power conversion unit 31 and the heat radiating unit 48 can be manufactured at the same time by the common lead frame 41, and the productivity can be improved.

また本実施例では、電力変換部31の発熱部品である電子部品32を接続する部品接続部46を、リードフレーム41の回路パターン43に形成している。   In the present embodiment, the component connection portion 46 for connecting the electronic component 32 that is the heat generating component of the power conversion portion 31 is formed in the circuit pattern 43 of the lead frame 41.

この場合、リードフレーム41の回路パターン43に形成した部品接続部46に電力変換部31の発熱する電子部品32を接続することができるので、電子部品32からの熱が同じリードフレーム41の部品接続部46から放熱部48に直接伝わり、電子部品32とその周辺におけるヒートスポットを効果的に抑制できる。   In this case, since the heat generating electronic component 32 of the power conversion unit 31 can be connected to the component connecting portion 46 formed on the circuit pattern 43 of the lead frame 41, the component connection of the lead frame 41 with the same heat from the electronic component 32 is possible. It is directly transmitted from the part 46 to the heat radiating part 48, and the heat spots in the electronic component 32 and its periphery can be effectively suppressed.

また本実施例では、全ての枠状部54を回路パターン43から切り離して、電力変換部31のコンパクト化を図っているが、必要に応じて枠状部54を回路パターン43から切り離さずに、この残した枠状部54を外部に熱を輻射する放熱部としてもよい。   Further, in this embodiment, all the frame-like parts 54 are separated from the circuit pattern 43, and the power converter 31 is made compact, but if necessary, without separating the frame-like part 54 from the circuit pattern 43, The remaining frame portion 54 may be a heat radiating portion that radiates heat to the outside.

枠状部54は本来リードフレーム41の不要部分として回路パターン43から切り離されるが、回路パターン43に形成した放熱部48だけでは電力変換部31としての放熱容量が不足する場合は、この枠状部54を切り離さずに残して放熱部48とすれば、わざわざ別部材で放熱器などを取付けなくても、必要な放熱容量を確保できる。   The frame-like portion 54 is originally separated from the circuit pattern 43 as an unnecessary part of the lead frame 41. However, if the heat-dissipating capacity as the power conversion portion 31 is insufficient only by the heat-dissipating portion 48 formed in the circuit pattern 43, this frame-like portion If the heat radiation part 48 is left without being separated, the necessary heat radiation capacity can be ensured without the need to install a radiator or the like with a separate member.

また本実施例では、リードフレーム41(リードフレーム基板52)と回路基板11との間に隙間53を形成している。   In this embodiment, a gap 53 is formed between the lead frame 41 (lead frame substrate 52) and the circuit board 11.

このようにすると、回路基板11に対向していない放熱部48の一側面は勿論、回路基板11に対向する放熱部48の他側面でも、隙間53である空気との間で熱交換が促進され、リードフレーム41の放熱部48からの放熱性を高めることができる。また、リードフレーム41から回路基板11への熱影響を回避でき、電源装置として安定した動作を実現できる。   In this way, heat exchange is promoted with the air that is the gap 53 not only on one side surface of the heat radiating part 48 not facing the circuit board 11 but also on the other side surface of the heat radiating part 48 facing the circuit board 11. In addition, the heat dissipation from the heat radiating portion 48 of the lead frame 41 can be enhanced. Further, the influence of heat from the lead frame 41 to the circuit board 11 can be avoided, and a stable operation as a power supply device can be realized.

また本実施例では、放熱部48の表面に放熱性の高い膜層を設けている。ここでいう放熱性の高い膜層とは、リードフレーム41の材料(金属板42)が例えばアルミニウムであれば白色や黒色のアルマイトでもよく、また輻射放熱用塗料などを使用しても良い。このようにすると、放熱部48から膜層50を介してより効果的に熱を放散できると共に、膜層50がリードフレーム41の酸化防止の役割を果たし、装置としての信頼性を向上できる。   In this embodiment, a film layer having a high heat dissipation property is provided on the surface of the heat dissipation portion 48. The film layer with high heat dissipation herein may be white or black alumite if the material (metal plate 42) of the lead frame 41 is aluminum, for example, or may use a radiation heat radiation paint. In this way, heat can be more effectively dissipated from the heat radiating portion 48 via the film layer 50, and the film layer 50 can play a role in preventing the oxidation of the lead frame 41, thereby improving the reliability of the device.

なお、本実施例は上記各実施例に限定されるものではなく、種々の変形実施が可能である。例えば、回路基板11の実装密度を高めるために、回路基板11の他側面に制御部21若しくは電力変換部31の導電路となる配線パターンを形成して、そこに電子部品22,32を搭載してもよい。また、回路基板11に対向するリードフレーム41の一側面に電力変換部31の全ての電子部品32を配設し、リードフレーム41の他側面全体を放熱部48にして、その表面に放熱性の高い膜層50を設けてもよい。こうすれば、リードフレーム41の他側面全体が電力変換部31の放熱面となって、放熱効果をより高めることができる。   In addition, a present Example is not limited to said each Example, A various deformation | transformation implementation is possible. For example, in order to increase the mounting density of the circuit board 11, a wiring pattern serving as a conductive path of the control unit 21 or the power conversion unit 31 is formed on the other side surface of the circuit board 11, and the electronic components 22 and 32 are mounted thereon. May be. Also, all the electronic components 32 of the power conversion unit 31 are disposed on one side of the lead frame 41 facing the circuit board 11, and the entire other side of the lead frame 41 is the heat radiating unit 48. A high film layer 50 may be provided. In this way, the entire other side surface of the lead frame 41 becomes the heat radiating surface of the power conversion unit 31, and the heat radiating effect can be further enhanced.

本発明の好ましい実施例を示す完成状態における電源装置の背面図である。It is a rear view of the power supply device in a completed state showing a preferred embodiment of the present invention. 同上、完成状態における電源装置の側面図である。It is a side view of the power supply device in a completed state. 同上、放熱部の要部断面図である。It is a principal part sectional drawing of a thermal radiation part same as the above. 同上、回路基板単体の完成状態を示す平面図である。It is a top view which shows the completion state of a circuit board single-piece | unit same as the above. 同上、リードフレーム単独の状態を示す背面図である。FIG. 6 is a rear view showing the state of the lead frame alone. 同上、電力変換部の各電子部品の実装が終了した段階の状態を示す平面図である。It is a top view which shows the state of the stage which the mounting of each electronic component of a power conversion part was complete | finished same as the above. 同上、リードフレーム基板と回路基板とを接合する状態の側面図である。It is a side view of the state which joins a lead frame board | substrate and a circuit board same as the above.

1 絶縁基板
3 小電流パターン
11 回路基板
21 制御部
31 電力変換部
32 電子部品(発熱部品)
41 リードフレーム
43 回路パターン
46 部品接続部
47 基板接続部
48 放熱部
50 膜層
53 隙間
54 枠状部(周囲部)
1 Insulating substrate 3 Small current pattern
11 Circuit board
21 Control unit
31 Power converter
32 Electronic parts (heating parts)
41 Lead frame
43 Circuit pattern
46 Parts connection
47 Board connection
48 Heat sink
50 membrane layers
53 Clearance
54 Frame (periphery)

Claims (4)

大電流が流れる電力変換部と、小電流が流れる制御部とを備えた電源装置の製造方法において、
前記制御部の導電路となる小電流パターンを絶縁基板上に配設して回路基板を組立てる工程と、
前記電力変換部の導電路となる回路パターン周囲部に繋がれ、且つこの回路パターンに、前記回路基板との導通を図るのに接続される基板接続部と外部に熱を輻射する放熱部とを形成するように、リードフレームを形成する工程と、
記周囲部の全てを前記回路パターンから切り離すか、あるいは前記放熱部だけでは放熱容量が不十分な場合に、前記周囲部の一部または全体を残し、この残した周囲部を外部に熱を放射する放熱部にする工程と、を行なうことを特徴とする電源装置の製造方法
In a method of manufacturing a power supply device including a power conversion unit through which a large current flows and a control unit through which a small current flows,
A step of assembling a circuitry substrate by disposing a small current pattern serving as a conductive path of the control unit on an insulating substrate,
Joint scree circuit pattern to be conductive path of the power conversion part to the peripheral part, and this circuit pattern, the heat radiating unit for radiating heat to the board connecting portion and the outside to be connected to ensure electrical connections between the circuit board Forming a lead frame so as to form
Or disconnect all pre SL peripheral portion from the circuit pattern, or if the only radiating section insufficient heat dissipation capacity, leaving a part or the whole of the periphery, the heat perimeter leaving this to the outside manufacturing method of a power supply device and carrying out the steps of the heat radiating unit that radiates a.
前記リードフレームを形成する工程で、前記電力変換部の発熱部品を接続する部品接続部を、前記リードフレームの回路パターンに形成したことを特徴とする請求項1記載の電源装置の製造方法 2. The method of manufacturing a power supply device according to claim 1 , wherein in the step of forming the lead frame, a component connecting portion for connecting a heat generating component of the power conversion portion is formed in a circuit pattern of the lead frame. 前記リードフレームと前記回路基板との間に隙間を形成して、前記制御部と前記電力変換部を接続することを特徴とする請求項1または2のいずれか一つに記載の電源装置の製造方法 Forming a gap between the circuit board and the lead frame, the production of the power supply device according to claim 1 or 2, characterized in that for connecting the control unit and the power converting unit Way . 前記放熱部の表面に放熱性の高い膜層を設ける工程をさらに行なうことを特徴とする請求項1〜3のいずれか一つに記載の電源装置の製造方法
Method of manufacturing a power supply device according to any one of claims 1 to 3, wherein the performing further step of Ru maintain high film layer having heat dissipation on the surface of the heat radiating portion.
JP2003311912A 2003-09-03 2003-09-03 Method for manufacturing power supply device Expired - Fee Related JP4415372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003311912A JP4415372B2 (en) 2003-09-03 2003-09-03 Method for manufacturing power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003311912A JP4415372B2 (en) 2003-09-03 2003-09-03 Method for manufacturing power supply device

Publications (2)

Publication Number Publication Date
JP2005079552A JP2005079552A (en) 2005-03-24
JP4415372B2 true JP4415372B2 (en) 2010-02-17

Family

ID=34413356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003311912A Expired - Fee Related JP4415372B2 (en) 2003-09-03 2003-09-03 Method for manufacturing power supply device

Country Status (1)

Country Link
JP (1) JP4415372B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108719A (en) * 2007-10-29 2009-05-21 Denso Corp Circuit arrangement

Also Published As

Publication number Publication date
JP2005079552A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US20110100681A1 (en) Substrate-mounted circuit module having components in a plurality of contacting planes
JP2011108924A (en) Heat conducting substrate and method for mounting electronic component on the same
JP5930980B2 (en) Semiconductor device and manufacturing method thereof
JP4558407B2 (en) Switching power supply
CN111132476A (en) Preparation method of double-sided circuit radiating substrate
JP2014132680A (en) Electric or electronic device
JP2007053349A (en) Insulating substrate and manufacturing method thereof as well as power module and substrate thereof
WO2020250405A1 (en) Substrate with built-in component and method for manufacturing substrate with built-in component
CN111031687A (en) Method for preparing heat dissipation circuit board
JP2008091814A (en) Circuit substrate, and method of manufacturing circuit substrate
JP2012190955A (en) Injection molded substrate
JP4415372B2 (en) Method for manufacturing power supply device
CN112713120A (en) Power electronic component and method for producing the same
JP2005174955A (en) Semiconductor module
JP2010251582A (en) Dc-dc converter
CN111064344A (en) Power module with bottom metal heat dissipation substrate
JP5445368B2 (en) Semiconductor module and method for manufacturing semiconductor module
JP2019029622A (en) Heat dissipation substrate and method for manufacturing heat dissipation substrate
JP4761200B2 (en) controller
JP2009218254A (en) Circuit module, and method of manufacturing the same
JP2015208200A (en) Power supply device
JP4255786B2 (en) Power supply device and manufacturing method thereof
JP4370613B2 (en) Multilayer hybrid circuit
JP7184933B2 (en) power converter
JP6952824B2 (en) Power modules and power semiconductor devices using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees