JP4414047B2 - motor - Google Patents

motor Download PDF

Info

Publication number
JP4414047B2
JP4414047B2 JP2000042281A JP2000042281A JP4414047B2 JP 4414047 B2 JP4414047 B2 JP 4414047B2 JP 2000042281 A JP2000042281 A JP 2000042281A JP 2000042281 A JP2000042281 A JP 2000042281A JP 4414047 B2 JP4414047 B2 JP 4414047B2
Authority
JP
Japan
Prior art keywords
cylindrical portion
peripheral surface
thin
permanent magnet
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000042281A
Other languages
Japanese (ja)
Other versions
JP2001238422A (en
Inventor
利之 川合
Original Assignee
株式会社日東電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日東電機 filed Critical 株式会社日東電機
Priority to JP2000042281A priority Critical patent/JP4414047B2/en
Publication of JP2001238422A publication Critical patent/JP2001238422A/en
Application granted granted Critical
Publication of JP4414047B2 publication Critical patent/JP4414047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フレームに固定されたステータ本体部に対して軸方向(軸線方向)に対面したロータ本体部を備えたモータに係る。
【0002】
【従来の技術】
この種のモータのうち携帯式のミニディスクドライブなどでディスクの回転駆動に用いられるに適した、径が小さく且つ厚さが薄い、いわゆる扁平モータでは、従来、軸受は油含浸燒結金属などで形成され、軸受から出た油の漏洩などを避けるべく、軸受ハウジングは、全体として有底の筒状体からなり、少なくとも、軸受の周面を支える軸受ハウジング部分は、金属で形成されていた。
【0003】
【発明が解決しようとする課題】
しかしながら、有底筒状体からなるこの軸受ハウジングに、軸受を圧入した状態で、更に、ロータの回転軸を軸受内に挿入しようとすると、空気の逃げ場がないので、軸の挿入が容易でなかったり、軸受が戻される虞れがあった。なお、軸受燒結体の周面に空気逃げの溝を形成しようとすると、焼結体軸受が過度に弱化する虞れがある。また、軸受ハウジングの金属製の筒状部の小径の内周面に軸方向溝を形成しようとすることは、特殊な加工を要することになりコスト高になる虞れがある。一方、ステータに対してロータが軸方向(軸線方向)に対面した扁平モータでは、ロータの位置ズレを規制すべく、ロータの一部をなすヨーク部材に対して静磁的な引力を及ぼす永久磁石を配置することが好ましい。
【0004】
本発明は、前記諸点に鑑みなされたものであり、その目的とするところは、占有スペースを最小限にした状態で、永久磁石によってロータの位置ズレを最小限に抑制すると共に軸受ハウジングを補強し得るようにしたモータを提供することにある。
【0005】
【課題を解決するための手段】
本発明のモータは、前記目的を達成すべく、フレームに固定されたステータ本体部に対して軸方向に対面したロータ本体部を備えたモータであって、フレームの底壁に固定された厚肉筒状部及び該厚肉筒状部に実質的に同心の薄肉筒状部を備えたプラスチック製の軸受ハウジングと、軸受ハウジングの前記薄肉及び厚肉筒状部に嵌挿されロータ本体部と一体的な回転軸を回転自在に支持するジャーナル軸受と、ロータ本体部の位置ズレを抑制すべくロータ本体部と一体的なヨーク部に近接した位置で薄肉筒状部の外周に嵌装された環状の永久磁石とを有する。なお、各筒状部は、典型的には、横断面が円形の筒状部(但し所望により内周面に対して外周面を少し偏心させたり、軸線方向位置により径が異なる場合もある)からなる。
【0006】
本発明のモータでは、ロータ本体部の位置ズレを規制する永久磁石が設けられているから、フレームに固定されたステータ本体部に対して軸方向(この明細書では「軸線方向」ともいう)に対面したロータ本体部のステータ本体部に対する位置ズレが抑制され得るので、ロータ本体部に対する回転駆動の安定性が確保され得る。なお、位置ズレには、軸線方向の位置ズレと半径方向の位置ズレとがあり、永久磁石は、二つの位置ズレの位置のいずれか一方(すなわち、軸線方向の位置ズレ若しくは半径方向の位置ズレ)又は両方(軸線方向の位置ズレ及び半径方向の位置ズレ)を抑制する。軸線方向の位置ズレは、典型的には、ロータ本体部と一体的なヨーク部材に環状永久磁石の外周面に対して半径方向に対面する円筒状部を設けることにより抑制される。環状永久磁石は、円筒状部の軸線方向の中央よりも下方にズレた位置に配置され、円筒状部に下向きの静磁的力を及ぼす。環状永久磁石は、下端部がヨーク部材の円筒状部に対して半径方向に対面する位置にあっても、円筒状部の下端よりも下に位置していてもよい。なお、場合によっては、環状永久磁石の上端部がヨーク部材の円筒状部の下端よりも下方に位置していてもよいけれども、ヨーク部材の円筒状部に対する下向きの力の大きさがヨーク部材が上にズレるとより大きくなるように、環状永久磁石の上端部は、ヨーク部材の円筒状部の下端部よりも上に位置する(従って、環状永久磁石は上端を含む外周面のすくなくとも一部がヨーク部材の円筒状部に対して半径方向に対面する)。
【0007】
この明細書の全体において、「下」とは、特に断らない限り、フレームの底壁の側を指す。但し、地上において、フレームの底壁をモータの回転軸(ロータ構造体の回転軸)よりも下に配置することは好ましい一例ではあっても、これに限定する意図はない。本発明の別の好ましい一例では、例えば、フレームの底壁が地上で見て上に位置し、モータの回転軸のうち軸受に挿入された挿入端部とは反対の突出端部が地上で見て挿入端部やフレームの底壁よりも下に位置し、下端にある突出端部にターンテーブル等を取付けると共に光ディスク(光磁気ディスクを含む)や磁気ディスク等のメディアを下方(地上で見て)からターンテーブル等に装着するようにモータを配置する。
【0008】
また、本発明のモータでは、ロータ本体部の位置ズレを抑制する環状の永久磁石が嵌装された軸受ハウジングの筒状部が薄肉に形成されているから、永久磁石の内径を最小限にし得るので、永久磁石の外径も最小限にし得、円環状永久磁石がロータのヨーク部の形状や占有スペースに与える制限を最小限にし得る。更に、本発明のモータでは、軸受ハウジングの筒状部の一部の薄肉化による該筒状部の弱化は、該薄肉筒状部に嵌装された環状永久磁石によって補強され得るから、軸受ハウジングを例えばエンジニアリングプラスチックのようなプラスチック材料で形成することが可能になる。なお、環状永久磁石としては、例えば、いわゆるプラスチック磁石(硬磁性材料粉(ないし粒)を樹脂で固めると共に磁化させたもの)または焼結磁石(硬磁性材料粉(ないし粒)を燒結させると共に磁化させたもの)が用いられ得る。但し、他の材料からなっていてもよい。
【0009】
【課題を解決するための手段】
本発明のモータは、前記目的を達成すべく、フレームに固定されたステータ本体部に対して軸方向に対面したロータ本体部を備えたモータであって、内周面が共通の円筒状である厚肉筒状部及び薄肉筒状部を備えたプラスチック製の軸受ハウジングであって、厚肉筒状部でフレームの底壁に固定され、薄肉筒状部が前記内周面に対して偏心した外周面を備え、厚肉筒状部及び薄肉筒状部の前記内周面の軸線方向の実質的に全域に亘って軸線に平行に連続的に延在した溝が形成されたものと、軸受ハウジングの前記薄肉及び厚肉筒状部に嵌挿されロータ本体部と一体的な回転軸を回転自在に支持するジャーナル軸受と、ロータ本体部の位置ズレを抑制すべくロータ本体部と一体的なヨーク部に近接した位置で薄肉筒状部の外周に嵌装され該薄肉筒状部を補強する環状の永久磁石であって外周面と内周面とが同心で該外周面がロータの回転軸の軸線に関して偏心しているものとを有する。
なお、各筒状部は、典型的には、横断面が円形の筒状部(但し所望により内周面に対して外周面を少し偏心させたり、軸線方向位置により径が異なる場合もある)からなる。
この明細書において、この段落に記載の条件を満たさない平形導線の巻線コイルの製造方法は、文言上は、特許請求の範囲の範囲外である。
【0010】
このように、軸受ハウジングの筒状部がその底部で実際上液密に封止されている場合には、密封度が高ければ高いほど、軸受ハウジングの筒状部にジャーナル軸受及びモータの回転軸を挿入する際、該挿入に伴って排除されるべき有底筒状部内の空気の逃げ路を要する。本発明のモータでは、ロータ本体部の軸方向移動を規制する環状永久磁石によって軸受ハウジングの筒状部の補強を兼ねさせて軸受ハウジングをプラスチック材料で形成しているから、成形用モールド型ないし金型を用いたモールド成形、典型的にはフレームの底壁を型の一部とする用に該底壁の係合孔を被成形プラスチック材料の射出ないし注入孔として利用したアウトサート成形などにより、筒状部の内周面に空気逃げの溝が容易且つ確実に形成され得る。ここで、例えば、軸受ハウジングの筒状部の内径(ハウジングの孔の内径)は、典型的には1〜5mm程度であり、切削加工などにより溝を形成するのは実際上容易でない場合に特に有益である。但し、筒状部の内径は、より小さくてもより大きくてもよい。なお、軸受ハウジングの筒状部の軸線方向長さは、典型的には、1〜10mm程度である。但し、より長くてもより短くてもよい。
【0011】
従って、本発明のモータは、典型的には、薄肉及び厚肉筒状部の内周面に、両方の筒状部の軸線方向の実質的に全域に亘って連続的に延在した空気逃げ用の溝を有する。その結果、軸受ハウジングの筒状部にジャーナル軸受及びモータの回転軸を挿入する際、該挿入に伴って排除されるべき有底筒状部内の空気が軸受ハウジングの筒状部の内周面に形成された溝(すなわち軸受ハウジングの筒状部の内周面とジャーナル軸受の外周面との間に形成される通路)を通って、外部に排出され得るから、軸受や回転軸(軸受の圧入後に回転軸を挿入する典型的な場合では回転軸)が、容易且つ確実に所定深さまで挿入され得る。この場合、比較的脆い軸受の外周面に溝を形成するのと比較して、軸受の強度が低下する虞れもない。
【0012】
溝は、軸線方向に平行に延びていても、例えば、曲がっていてもよく、溝が複数本ある場合には、相互に交差していてもよい。なお、溝が軸線に平行に設けられる場合には、典型的には、溝は、周方向に等間隔に複数本形成される。これにより、一本の溝又は特定の溝の方に軸受が押しつけられて、偏心するのを避け得る。但し、意図的に特定の方向にある程度偏心させたい場合には、当該特定の方向にのみ溝を設けるか該方向における溝の占有面積(ないし分布密度)を高めてもよい。
【0013】
本発明のモータでは、典型的には、薄肉筒状部と厚肉筒状部との間に、環状永久磁石の外径よりも小さく且つ二つの筒状部の外径の中間の外径を備えた環状段部が形成されており、環状永久磁石の端面が径方向内周縁近傍において環状段部に当接している。この場合、環状永久磁石の下端面と厚肉筒状部の上端面との間に、環状永久磁石の径方向内周縁近傍以外のところで、環状段部の軸線方向長さ(高さ)に相当する大きさの軸方向間隙が形成される。この場合、モータを含む装置の落下などによりフレームに衝撃荷重がかかっても、該衝撃は、環状段部の弾性限界内での曲がり変形により吸収される(なお環状段部は一方では薄肉筒状部よりも厚く大径であるから該衝撃によって過度に折れ曲る虞れが少ない)。従って、薄肉筒状部や該薄肉筒状部に嵌装された円環状永久磁石に過度の衝撃がかかるのを最小限にし得るので、円環状永久磁石が比較的脆い場合でも割れる虞れが少ない。さらに、フレームの底壁に設けた複数の孔(開口)に軸受ハウジングの脚部を成形により固定しているような場合でも、環状段部の弾性限界内での曲げ変形により、孔の間の橋絡部にかかる応力が最小限に抑制され得るから、フレームの底壁部が曲がったりする虞れも少ない。
【0014】
なお、本発明のモータでは、典型的には、薄肉筒状体の外周面及び内周面の横断面が円形であり、環状永久磁石の外周面が、ロータの回転軸の軸線に関して偏心している。これにより、モータの回転軸を軸受の孔の一側に寄せることが可能になるから、回転軸の外径と軸受の内径との間の差異が比較的大きい場合でも、回転軸を実際上一定の軸線のまわりで回転させ得る。このためには、永久磁石がその内周面に対して偏心した外周面を有する(わずかに偏心した)円環状体であっても、軸受ハウジングの薄肉筒状部が、その内周面に対して偏心した外周面を有する(わずかに偏心した)円筒状体であってもよく、また、場合によっては、軸受がその内周面に対して偏心した外周面を有する(わずかに偏心した)円筒状体であってもよい。典型的には、成形が比較的容易な軸受ハウジングの薄肉筒状部を偏心させる。
【0015】
【発明の実施の形態】
次に、本発明による好ましい一実施の形態を添付図面に示した好ましい一実施例に基づいて説明する。なお、実施例の説明では、典型的な一例として、サイズを記載しているけれども、記載したサイズと同程度のサイズのものに発明を限定しようとするものではない。
【0016】
【実施例】
図1から図4に示した本発明による好ましい一実施例のモータ1は、ミニディスクドライブの一部としてミニディスクの回転駆動用のメカニカルデッキに用いられるもので、フレームないし枠体としてのフレーム構造体10と、該フレーム構造体10に固定されたステータ構造体40と、ロータ構造体50とを有する。
【0017】
フレーム構造体10は、金属製のフレーム底壁ないし底部フレーム部としての平板状のシャーシ11と、プラスチック製で、該シャーシ11に固定された側部ないし外周フレーム部として側壁部を構成するほぼ円筒状ないし環状の側壁部材12とを有する。例えば厚さが0.5mm程度のステンレス鋼のような鋼などからなるシャーシ11は、スラスト軸受として働く軸支部13と、軸支部13の周囲に周方向に間隔をおいて形成された複数の係合孔部14とを有する。従って、シャーシ11では、円周方向に並んだ一群の係合孔部14の外に拡がったシャーシ本体部15と軸支部13とが、周方向に隣接する係合孔部14,14の間の橋絡部ないしブリッジ部16でつながっている。係合孔部14は、例えば直径が1〜1.5mm程度で、係合孔部14の中心は例えば直径4mm程度の円に沿って周方向に等間隔に分布している。この例では、各係合孔部14の内周面の下縁部17は面取りされている。なお、側壁部12は、図1及び図3に示したように、水平な載置面12aと、光磁気ディスクからなるミニディスクの情報読取・書込用ピックアップ部がA方向に近接離間されるべき周方向領域及び後述のステータ基板の端子部が突出すべき周方向領域を除いて、垂直に立上った部分円筒状位置決め面18aを備えた位置決め壁部18を有する。なお、図2において、シャーシ11の孔14aは、側壁12をシャーシ11に固定するためのもので、孔14bは、シャーシ11と他の部材とを固定用等のものである。
【0018】
シャーシ11の軸支部13上には、射出成形などにより成形可能なPBT(ポリブチレンテレフタレート)樹脂やPC(ポリカーボネート)樹脂のようなエンジニアリングプラスチック製の軸受ハウジング20が載置固定されている。軸受ハウジング20は、薄肉筒状部としての薄肉円筒状部21と、該薄肉円筒状部21の下端から一体的に且つ実質的に同心に下方に延びた厚肉筒状部としての厚肉円筒状部22と、該厚肉円筒状部22の下端外周部から下方に延びた複数の係合突起部としての複数の脚部23とを有する。なお、薄肉円筒状部21と厚肉円筒状部22との間には、薄肉円筒状部21よりも少し径が大きく軸線方向高さの低い環状段部39が形成されている。薄肉円筒状部21は、外径が例えば3mm程度、内径が2mm程度、高さが例えば2mm程度であり、厚肉円筒状部22は、外径が例えば4.5〜5mm程度で高さが例えば1mm程度である。なお、段部39は、高さが例えば0.1mm程度で、その径が例えば0.3〜0.5mm程度だけ薄肉円筒状部21の外径よりも大きい。
【0019】
厚肉円筒状部22及び薄肉円筒状部21の内周面24は、該内周面24の長手方向に沿って中心軸線Cと実際上平行に延びる空気抜き用の溝部25及び厚肉円筒状部22の下端の内向環状突起部27を除いて、全体としてほぼ円柱状ないし円筒状の孔ないし室26を形成している。溝部25は、軸線Cに垂直な横断面で見て、例えば、ほぼ半円状である。但し、空気の逃げを可能にすべく断面積が比較的大きい(幅と同程度の深さがある)限りその形状は他のどのような形状でもよい。図1では、溝部25が一つ示されて(見えて)いるだけであるけれども、周方向に120度間隔をおいて、三本の溝部25が形成されている。この周方向に等間隔に形成された溝部25は、軸受ハウジング20の孔内に軸受及び回転軸を挿入する際、軸受ハウジング20が不均一に歪んで、軸受及び回転軸の中心軸線が一側にずれるのを最小限にするのに役立つ。なお、溝部25が軸線Cに平行に延在する場合、溝部25は、周方向に等間隔に形成されている限り、二本(180度間隔)でも、四本以上でもよい。溝部25は、内周面24の下端から上端まで実質上軸線方向Cの全域に亘って連続的につながっている限り、軸線Cに平行である代わりに、螺旋状など斜め方向に延びていても、交差していてもよい。但し、軸受の強固且つ安定な支持のためには、溝部25が内周面24を占有する面積は最小限であることが好ましい。
【0020】
薄肉円筒状部21の外周面21aは、図1に示した例では、内周面24に対してわずかに偏心している。すなわち、図1の場合、三本の溝部25のうち一本の溝部25と半径方向に重なる左側の部位21cにおいて肉厚が最大になるように、換言すれば、残りの二本の溝部25,25(共に図示せず)の丁度中間に位置する右側の壁部21dにおいて、内周面24と外周面21aとの間の半径方向厚さが最小になるように、偏心している。なお、最大偏心部が溝部25と径方向に重なる位置とは周方向にずれていてもよい。この例では、厚肉円筒状部22は内周面24に対して偏心していないけれども、場合によっては、厚肉円筒状部22も例えば薄肉円筒状部21と同様に偏心していてもよい。但し、この薄肉円筒状部21に嵌装される後述の永久磁石が、内周面に対して偏心した外周面を備えているような場合には、薄肉円筒状部21の外周面21aは、内周面24に対して偏心していなくてもよい。
【0021】
厚肉円筒状部22は、下面22aでシャーシ11の軸支部13の上面13aに液密に密接して、室26の下端を実際上封止しており、各脚部23は、シャーシ11の対応する係合孔部14と実際上相補的な形状をしている。軸受ハウジング20は、脚部23で、係合孔部14の下端の面取り部17に係合されて固定されるように、脚部23が、下部に、末広がりの円錐台状の係合縁部23aを有する。各係合孔部14及び脚部23は、軸線Cのまわりでの仮想回転により重なるような同一形状である。この軸受ハウジング20は、好ましくは、シャーシ11が型の一部をなすように成形金型内に配置した状態で、孔14から熱可塑性エンジニアリングプラスチック材料を型内に射出してアウトサート成形により形成される。
【0022】
係合孔部14と対応する係合突起部23とが相補的な形状で係合孔部14によって脚部23を固定することにより軸受ハウジング20を固定し得る限り、複数の係合孔部14や係合突起部23の夫々は、異なる形状でもよい。なお、図示の例では、厚肉円筒状部22と脚部23との間で厚肉円筒状部22の外周面22bと脚部23の上面23bとが直角に交差しているけれども、ロータ50の回転を妨げない限り、厚肉円筒状部22は、例えば、想像線29で示したように、応力の集中を避け得るような円錐台状で、連続的に脚部23につながった形状でもよい。
【0023】
厚肉円筒状部22の上端面22cと環状段部39と薄肉円筒状部21の外周面21aとによって形成されたほぼ環状の空間部には、薄肉円筒状部21に嵌装された円環状永久磁石30が配設されている。永久磁石30は、例えば、プラスチック磁石や焼結磁石などからなる。永久磁石30は、薄肉円筒状部21の外径と実際上同じ内径で、永久磁石30の下端面31は内周縁部の近傍で環状段部39の上面に当接し、永久磁石30の下端面31と厚肉円筒状部22の上端面22cとの間には、該下端面31の径方向の大半の領域に亘って、段部39の高さに相当する小さな軸方向間隙Gが形成されている。この間隙Gの軸方向長さは、前述の段部39の高さに相当し、例えば、0.1mm程度である。なお、環状ないし円環状永久磁石30は、外径が例えば5mm程度で高さが1.5mm程度ある。
【0024】
なお、永久磁石30は、薄肉円筒状部21を補強し得るように、上端32が、典型的には、薄肉円筒状部21の上端21bと同程度の高さのところに位置する。但し、場合によっては、薄肉円筒状部21の上端21bよりも少し低くても、高くてもよい。
【0025】
また、永久磁石30は、内周面30a及び外周面30bが同心の円環状であり、薄肉円筒状部21の外周面21aが部位21c側に偏心していることに起因して、図1では、右側に位置する壁部断面部分30dよりも左側に位置する壁部断面部分30cにおいて外周面30bが軸線Cからより離れた位置(半径方向外方)に位置する。なお、円環状ないしリング状永久磁石30も、軸受ハウジング20の薄肉円筒状部21と同様に偏心していてもよい。また、軸受ハウジング20の薄肉円筒状部21が偏心していない場合には、円環状永久磁石30は、その外周面30bが内周面30aに対して偏心した形状に形成される。
【0026】
永久磁石30は、例えば、半径方向に磁化されている。但し、軸線Cに垂直な水平面内で、一方向に磁化されていても、軸線Cに平行な方向に磁化されていてもよい。
【0027】
一方、軸受ハウジング20の室26内には、油含浸燒結体よりなる円筒状の軸受部材35が嵌着されている。軸受部材35は、下端面が軸受ハウジング20の厚肉円筒状部22の下端の内向環状突起27上に当接し、軸支部13の上面13aからはわずかに離れている。軸受部材35の円筒状外周面36と軸受ハウジング20の薄肉及び厚肉円筒状部21,22の内周面24との間は、溝部25を除き実際上密接している。
【0028】
フレーム10の側壁ないし周壁12には、ステータ構造体40のステータ基板41が周面の一部で位置決め面18aに当接・位置決めされて配設・固定されている。ステータ構造体40は、図4の(a)に示したようなステータ基板41とステータ基板41上のプリント配線42により通電されるべく周方向に間隔をおいて配置されたほぼ台形状のステータコイル43とを有する。図示の例では、ステータ本体部としての6個のコイル43のうち直径方向に向き合ったコイル対43A,43A;43B,43B;43C,43Cが直列につながっている。但し、コイル43の数は、より多くても少なくてもよい。42A,42B,42C,42Gは、配線42の端子ないしパッド部である。ステータ構造体40の全体の厚さは、例えば、0.5mm程度である。
【0029】
ロータ50は、軸受35に回転自在に嵌合されたモータ軸ないしロータ回転軸51と、該ロータ回転軸51に嵌着された上側ロータ構造体52と、上側ロータ構造体52に固定された下側ロータ構造体53とを有する。
【0030】
上側ロータ構造体52は、回転軸51が圧入・嵌着された中央円筒状部54と該円筒状部54の下端から水平に拡がった円板状部55とを有する軟磁性材料性の上側ヨーク部材56と、上側ヨーク部材56の係合孔57に係合脚部58で係合されていると共に上側ヨーク部材56の外周縁を抱きこむように下方に延びた側壁59を備え、且つ外周部の周方向に間隔をおいてバネの形態のディスク係合爪部60,61,62(図1及び図3)を備えた環状板63(図1)が上面に配置されたエンジニアリングプラスチック製のターンテーブル部64と、上側ヨーク部材56の下面65に上面66で密接してステータコイル43に軸方向に対面するようにターンテーブル部64の環状側壁部59内に嵌め込まれたロータ本体部としての環状の多極永久磁石構造体からなるロータ磁石67(図4の(b))とを有する。上側ヨーク部材56は、厚さが例えば0.5mm程度で、ロータ磁石67は、外径が例えば14mm程度、内径が例えば7mm程度、厚さが例えば1mm程度であり、例えば0.2mm程度の間隙を介してステータ構造体40に対して軸線方向に平行な向きに対面している。環状の永久磁石69は、ディスクの下面の磁性材料部分を静磁的に吸着して、ディスクをその中央開口(孔)でバネ爪60〜62に係合・芯合せさせると共にターンテーブル64に固定する。
【0031】
下側ロータ構造体53は、軟磁性材料からなる下側ヨーク部材70で形成されている。下側ヨーク部材70は、上側ロータ構造体52の上側ヨーク部材54の円板状部56の内周部の下面に静磁的に吸着・固定された内側環状板部71と、該内側環状板部71の外周縁72から下方に延びた円筒状部73と、該円筒状部73の下端ないし下縁74から半径方向外向きに延び上面75でステータ基板40のステータコイル43に軸方向に向き合った外側環状板部76とを有する。下側ヨーク部材70も例えば厚さが0.5mm程度で、例えば0.2mm程度の間隙を介してステータ構造体40に対して軸線方向に平行な方向に対面している。なお、内側環状板部71の下面77は永久磁石30の頂面32よりも、例えば0.2mm程度だけ、上に位置し、外側環状板部76の下面78は永久磁石30の底面31よりも、例えば0.1〜0.2mm程度だけ、湾曲下縁74の上端からは0.05〜0.1mm程度だけ、下に位置する。従って、永久磁石30の外周面30bは、下側ヨーク部材70の円筒状部73の内周面79の上下方向Zの中央部よりも下にズレたところで、該円筒状部73に対して半径方向に向き合っている。その結果、環状永久磁石30は、上下方向Zの全域において、下側ヨーク部材70に下向きZ1の力を及ぼす。但し、このZ1方向の力は、下側ヨーク部材70の内側環状板部71が永久磁石30から比較的離れている限り、下側ヨーク部材70が所定位置から上向きZ2にズレる程大きくなる。なお、外側環状板部76の下面78は、環状永久磁石30の下面よりも上に位置していてもよい。
【0032】
以上の如く構成された本発明による好ましい一実施例のモータ1では、組立てに際しては、脚部23の材料がシャーシ11の孔14内に充填されるように且つ脚部23と厚肉筒状部22とによりシャーシ11の軸支部13を抱きこむようにシャーシ11に対して一体的にアウトサート成形された軸受ハウジング部20の孔26内に、下端面が厚肉筒状部22の内向環状突起27の上面に当接するまで油含浸焼結体からなる軸受部材35を圧入する。この圧入により、軸受部材35の外周面36と軸受ハウジング20の内周面(すなわち孔26の周面ないし周壁)24との間は、溝25の部分(及び図1に示した如く軸受部材35の下端外周縁が面取りされている場合にはその面取り部)を除いて実際上全域において、密接する。このモータ1では、軸受ハウジング20の軸方向溝25が周方向に等間隔に形成されているから、圧入の際、軸受部材35が一つの溝25のある側へ偏心してしまう虞れが少ない。また、軸受部材35の下端面とシャーシ11の軸支部13の上面13aとの間には、小さな軸方向間隙が形成される。この軸方向間隙は、内周側では、軸受部材35の内周面37により規定された軸挿入孔を介して外部につながり、外周側では、溝25を介して外部につながっている。この軸方向間隙の大きさは、この例では、0.2mm程度であるけれども、もう少し大きくても、より小さくてもよい。
【0033】
次に、円環状プラスチック磁石30の下端面が軸受ハウジング20の環状段部39の上面に当接するまで、軸受ハウジング20の薄肉円筒状部21を円環状プラスチック磁石30に圧入して、円筒状磁石30を薄肉円筒状部21に嵌装する。薄肉円筒状部21の外周面21aは、軸線Cに対してわずかに偏心しているから、円筒状磁石30の外周面30bは、図1において、符号30cで示した左側の断面部分が右側断面部分30dよりも、軸線Cから、わずかに、離れたところに位置する。
【0034】
次に、下側ヨーク部材70を配置しステータ構造体40をフレーム10の側壁12に載置・固定した後、モータ1の回転軸51を軸受部材35に挿入する。この回転軸51の挿入の際、回転軸51と軸受部材35とシャーシ11の軸支部13とにより囲まれた領域内の空気が、厚肉円筒状部22の内向環状突起27のところの間隙及び溝25を通って外部に放出され得るから、軸受部材35と回転軸51とがほとんど隙間なく密接するような寸法で形成されていても、軸受部材35が軸受ハウジング20の孔から押し出されたりすることなく回転軸51を軸受部材35内に挿入し得る。なお、回転軸51の挿入の際、ロータ磁石67及び回転軸51と一体的な上側ヨーク部材56に下側ヨーク部材70が静磁的引力で吸着される。このとき、下側ヨーク部材70は、環状板63の内周部に周方向に間隔をおいて形成された三つのバネ爪68a,68b,68c(但し、68b,68cは図示せず)の下端突起部を内側環状板部71の内周上縁のテーパ部70aで半径方向内向きに押してバネ爪68a等の下端突起部をZ2方向に越え、上側ヨーク部材56の下面に吸着されると共に、半径方向外向きに元の位置に戻ったバネ爪68a等で芯合わせされて係止される。
【0035】
全体の組立てが完了した図1の状態のモータ1では、軸受ハウジング20の薄肉円筒状部21が円環状永久磁石30によって補強されているから、軸受ハウジング20により軸受部材35を強固に支持し得、軸受部材35に通常かかる虞れのある範囲内での不均一な半径方向荷重の下で、軸受部材35の中心軸線Cが揺動するような軸受部材35の動きを最小限に抑制し得る。
【0036】
また、モータ1では、円環状永久磁石30と厚肉円筒状部22との間に軸方向間隙Gが形成されているので、モータ1を含むミニディスクドライブの不測の落下等により例えばシャーシ11の延在平面に対して交差する方向等にシャーシ11に衝撃的な荷重がかかる場合でも、ロータ構造体50とシャーシ11との間に生ずる荷重ないし応力が、主として、間隙Gのある環状段部39のところに集中されるから、該環状段部39のところの弾性限界内での撓みによって、実際上、衝撃荷重が吸収され得る。その結果、薄肉円筒状部21を介して又は直接的に円環状永久磁石30にかかる荷重により永久磁石円環体30が壊れたり、シャーシ11の軸支部13の橋絡部16にかかる荷重により橋絡部16が端部等で折曲るような変形が生じたりする虞れが少ない。なお、軸受ハウジング20の厚肉筒状部22と脚部23との接続部に過度な応力が集中しすぎる虞れがある場合には、前述のように、厚肉筒状部22の外周を、例えば、想像線29で示したような応力集中を避け得る形状にすればよい。
【0037】
更に、このモータ1では、円環状永久磁石30の外周面30bが図1の左側(断面部分30cのところ)で軸線Cから最も離れ且つ右側(断面部分30dのところ)で軸線Cに最も近接するように外周面30bが軸線Cに対して近接しているので、ロータ構造体50の下側ヨーク部材70の円筒状部73対して断面部分30cの外周で最も近接し(間隙の径方向の大きさが例えば0.1mm程度)、断面部分30dの外周で最も離間している(間隙の径方向の大きさが例えば0.2mm程度)から、下側ヨーク部材70の円筒状部分73にB方向の偏倚力を及ぼす。その結果、ロータ構造体50は、図1では、回転軸51の外周面の右側縁が軸受部材35の内周面24の対面部分に当接する状態に保たれる。従って、回転軸51の外周面と軸受部材35の内周面との間に残るわずかな間隙によっても、回転軸が不規則にブレながら回転する虞れが少なく、回転軸線Cが実際上一定の位置及び向きに保たれやすい。なお、回転軸51の回転軸線Cが、仮に倒れる向きの力を受ける場合でも、軸51の上部が左に傾動する向きが実際上優先され易いので、万一傾動する場合でもその向き及び範囲が限られ軸線Cの向きが安定し易い。また、このモータ1では、軸受部材35の下端面と軸支部13の上面13aとの間に間隙が形成されているから、軸51が傾動するような場合でも、軸51の下端によって軸受部材35の下端が傷つけられる虞れがない。
【0038】
更に、このモータ1では、円環状永久磁石30は、その下端31が下側ヨーク部材70の円筒状部分73の下端部の近傍に位置し且つ円筒状部分73の上端部よりも十分下に位置しているから、回転軸51の下端を軸支部13に過度なスラスト力(荷重)で押しつけるような過度の下向きの力を下側ヨーク部材70に及ぼすことなく回転軸51が軸受部材35から抜けるのを抑制し得る。
【0039】
以上のような組立て容易性及び回転動作時の回転特性を有するモータ1では、ミニディスクカートリッジがターンテーブル上64の所定位置の付近に載せられると磁石69によりミニディスクカートリッジのミニディスクの鉄板部分が引き付けられてミニディスクの中央開口の周壁がバネ爪60〜62を偏倚させて該バネ爪60〜62の周囲に嵌め合わされて、ミニディスクカートリッジの装着が完了した後、多極永久磁石構造体からなるロータ磁石67及び上下のヨーク部材56,70からなる閉磁路を備えたロータ構造体50が、端子部分42A,42B,42C,42Gを介してステータコイル43A,43B,43Cへの三相等の形態での駆動電流の通電に伴い、該通電電流に応じて回転される。また、ピックアップ部は、立上り側壁部18のない(切欠かれた)領域において、A方向に径方向走査されて、所望の読出し(再生)や書込み(録音など)や消去などを行ない得る。
【0040】
以上においては、モータ1がミニディスクドライブに適用された例について説明したけれども、モータ1は扁平モータが用いられるに適した用途であれば他のどのようなものに用いられてもよい。なお、本発明のモータは、扁平モータ以外のモータとして形成されていてもよい。
【図面の簡単な説明】
【図1】本発明による好ましい一実施例のモータについての図3の(a)のI−I線断面説明図。
【図2】図1のモータのシャーシの平面説明図。
【図3】図1のモータの外観を示したもので、(a)は平面説明図、(b)は正面説明図。
【図4】図1のモータのステータ及びロータ磁石の示したもので、(a)はステータ構造体の平面説明図、(b)は多極ロータ磁石の平面説明図。
【符号の説明】
1 モータ
10 フレーム構造体
11 シャーシ
13 軸支部
14 係合孔部
15 シャーシ本体部
16 ブリッジ部(橋絡部)
17 下縁部(面取り部)
20 軸受ハウジング
21 薄肉円筒状部(薄肉筒状部)
21a (偏心)外周面
22 厚肉円筒状部(厚肉筒状部)
22a 下面
22c 上面
23 脚部
23a 係合縁部
24 内周面
25 溝部
26 室(孔)
27 内向環状突起部
30 円環状永久磁石
30a 内周面
30b 外周面
31 下端面
35 軸受部材
36 外周面
37 内周面
39 環状段部
40 ステータ構造体
41 ステータ基板
43,43A,43B,43C ステータコイル
50 ロータ構造体
51 回転軸
52 上側ロータ構造体
53 下側ロータ構造体
56 上側ヨーク部材
60,61,62 係合爪部
64 ターンテーブル
67 ロータ磁石(多極永久磁石構造体)
70 下側ヨーク部材
71 内側環状板部
73 円筒状部
76 外側環状板部
79 内周面
C 中心軸線
G 間隙
Z1 下向き
Z2 上向き
Z 上下方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a motor including a rotor main body facing in the axial direction (axial direction) with respect to a stator main body fixed to a frame.
[0002]
[Prior art]
Of this type of motor, a so-called flat motor with a small diameter and a small thickness, suitable for use in rotating a disk in a portable mini disk drive or the like, conventionally, the bearing has been formed of an oil-impregnated sintered metal or the like. In order to avoid leakage of oil from the bearing, the bearing housing is formed of a bottomed tubular body as a whole, and at least the bearing housing portion that supports the peripheral surface of the bearing is made of metal.
[0003]
[Problems to be solved by the invention]
However, when the bearing is press-fitted into the bearing housing made of a bottomed cylindrical body and the rotor rotation shaft is further inserted into the bearing, there is no air escape space, so the shaft insertion is not easy. Or the bearing may be returned. If an air escape groove is formed on the peripheral surface of the bearing sintered body, the sintered body bearing may be weakened excessively. In addition, attempting to form the axial groove on the small-diameter inner peripheral surface of the metal cylindrical portion of the bearing housing requires special processing and may increase the cost. On the other hand, in a flat motor in which the rotor faces the stator in the axial direction (axial direction), a permanent magnet that exerts a magnetostatic attractive force on a yoke member that forms part of the rotor in order to regulate the displacement of the rotor. Is preferably arranged.
[0004]
The present invention has been made in view of the above-mentioned points, and an object thereof is to reinforce the bearing housing while minimizing the positional deviation of the rotor with a permanent magnet in a state where the occupied space is minimized. The object is to provide a motor that can be obtained.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the motor of the present invention is a motor having a rotor body portion facing in the axial direction with respect to a stator body portion fixed to the frame, and is a thick wall fixed to the bottom wall of the frame. A plastic bearing housing having a cylindrical portion and a thin cylindrical portion substantially concentric with the thick cylindrical portion, and an integral body of the rotor body that is fitted into the thin and thick cylindrical portions of the bearing housing Journal bearing that rotatably supports a typical rotating shaft, and an annular ring that is fitted to the outer periphery of the thin cylindrical portion at a position close to the yoke portion integral with the rotor main body portion in order to suppress displacement of the rotor main body portion. Permanent magnet. Each cylindrical portion typically has a circular cylindrical cross section (however, the outer peripheral surface may be slightly decentered with respect to the inner peripheral surface or the diameter may vary depending on the axial position if desired). Consists of.
[0006]
In the motor of the present invention, since the permanent magnet for restricting the positional deviation of the rotor main body portion is provided, the axial direction (also referred to as “axial direction” in this specification) relative to the stator main body portion fixed to the frame is provided. Since the positional deviation of the facing rotor main body with respect to the stator main body can be suppressed, the stability of the rotational drive with respect to the rotor main body can be ensured. The positional shift includes an axial position shift and a radial position shift, and the permanent magnet has one of two position shift positions (that is, an axial position shift or a radial position shift). ) Or both (axial misalignment and radial misalignment). Axial misalignment is typically suppressed by providing a cylindrical member that faces the outer peripheral surface of the annular permanent magnet in a radial direction on a yoke member integral with the rotor body. The annular permanent magnet is disposed at a position shifted downward from the center of the cylindrical portion in the axial direction, and exerts a downward magnetostatic force on the cylindrical portion. The annular permanent magnet may be located below the lower end of the cylindrical part, even if the lower end part is in a position facing the cylindrical part of the yoke member in the radial direction. In some cases, the upper end portion of the annular permanent magnet may be positioned below the lower end of the cylindrical portion of the yoke member. However, the magnitude of the downward force on the cylindrical portion of the yoke member is determined by the yoke member. The upper end portion of the annular permanent magnet is positioned above the lower end portion of the cylindrical portion of the yoke member so that the upper end portion of the annular permanent magnet is shifted upward (so that at least a part of the outer peripheral surface including the upper end of the annular permanent magnet Facing the cylindrical part of the yoke member in the radial direction).
[0007]
Throughout this specification, “below” refers to the side of the bottom wall of the frame, unless otherwise specified. However, although it is a preferable example that the bottom wall of the frame is disposed below the rotating shaft of the motor (the rotating shaft of the rotor structure) on the ground, it is not intended to be limited thereto. In another preferred example of the present invention, for example, the bottom wall of the frame is positioned above the ground, and the projecting end of the motor rotating shaft opposite to the insertion end inserted into the bearing is viewed on the ground. A turntable is attached to the protruding end at the lower end, and the media such as optical disks (including magneto-optical disks) and magnetic disks are located below (when viewed from the ground). Place the motor so that it can be mounted on the turntable.
[0008]
Further, in the motor of the present invention, since the cylindrical portion of the bearing housing fitted with the annular permanent magnet that suppresses the displacement of the rotor main body portion is formed thin, the inner diameter of the permanent magnet can be minimized. Therefore, the outer diameter of the permanent magnet can be minimized, and the restrictions imposed on the shape and occupied space of the yoke portion of the rotor by the annular permanent magnet can be minimized. Furthermore, in the motor of the present invention, the weakening of the cylindrical portion due to the thinning of a part of the cylindrical portion of the bearing housing can be reinforced by the annular permanent magnet fitted to the thin cylindrical portion. Can be formed of a plastic material such as engineering plastic. Examples of the annular permanent magnet include a so-called plastic magnet (hard magnetic material powder (or particles) hardened with resin and magnetized) or sintered magnet (hard magnetic material powder (or particles) sintered and magnetized. Can be used. However, it may be made of other materials.
[0009]
[Means for Solving the Problems]
  In order to achieve the above object, the motor of the present invention is a motor having a rotor body portion facing in an axial direction with respect to a stator body portion fixed to a frame,The inner peripheral surface is a common cylindrical shapeThick cylindrical part andThinPlastic bearing housing with a meat tubeThe thick cylindrical portion is fixed to the bottom wall of the frame, and the thin cylindrical portion has an outer peripheral surface that is eccentric with respect to the inner peripheral surface, and the thick cylindrical portion and the thin cylindrical portion are A groove continuously extending in parallel with the axis over substantially the entire area in the axial direction of the inner peripheral surface;A journal bearing that is inserted into the thin and thick cylindrical portions of the bearing housing and rotatably supports a rotating shaft that is integral with the rotor main body, and integral with the rotor main body to suppress displacement of the rotor main body. Fitted to the outer periphery of the thin cylindrical portion at a position close to the yoke portion.Reinforce the thin cylindrical partAnnular permanent magnetThe outer peripheral surface and the inner peripheral surface are concentric and the outer peripheral surface is decentered with respect to the axis of rotation of the rotorAnd have.
  Each cylindrical portion typically has a circular cylindrical cross section (however, the outer peripheral surface may be slightly decentered with respect to the inner peripheral surface or the diameter may vary depending on the axial position if desired). Consists of.
  In this specification, a method of manufacturing a winding coil of a flat conductor that does not satisfy the conditions described in this paragraph is out of the scope of the claims.
[0010]
Thus, when the cylindrical portion of the bearing housing is actually liquid-tightly sealed at the bottom thereof, the higher the degree of sealing, the more the journal bearing and the rotating shaft of the motor in the cylindrical portion of the bearing housing. When inserting, the air escape path in a bottomed cylindrical part which should be excluded with this insertion is required. In the motor of the present invention, since the bearing housing is formed of a plastic material by using an annular permanent magnet that restricts the axial movement of the rotor body, the cylindrical shape of the bearing housing is also formed. Mold molding using a mold, typically outsert molding using the bottom wall of the frame as an injection hole or injection hole for the plastic material to be molded, and so on. An air escape groove can be easily and reliably formed on the inner peripheral surface of the cylindrical portion. Here, for example, the inner diameter of the cylindrical portion of the bearing housing (the inner diameter of the hole in the housing) is typically about 1 to 5 mm, and it is particularly difficult to form a groove by cutting or the like. It is beneficial. However, the inner diameter of the cylindrical portion may be smaller or larger. Note that the axial length of the cylindrical portion of the bearing housing is typically about 1 to 10 mm. However, it may be longer or shorter.
[0011]
Therefore, the motor of the present invention typically has an air escape extending continuously over substantially the entire area in the axial direction of both cylindrical portions on the inner peripheral surfaces of the thin and thick cylindrical portions. Has a groove for use. As a result, when the journal bearing and the rotating shaft of the motor are inserted into the cylindrical portion of the bearing housing, the air in the bottomed cylindrical portion that should be removed along with the insertion is transferred to the inner peripheral surface of the cylindrical portion of the bearing housing. Since it can be discharged to the outside through the formed groove (that is, the passage formed between the inner peripheral surface of the cylindrical portion of the bearing housing and the outer peripheral surface of the journal bearing), it can be discharged to the outside. In a typical case where the rotation axis is inserted later, the rotation axis) can be easily and reliably inserted to a predetermined depth. In this case, there is no possibility that the strength of the bearing will be reduced as compared with the case where grooves are formed on the outer peripheral surface of the relatively fragile bearing.
[0012]
The grooves may extend in parallel to the axial direction, for example, may be bent, or may intersect each other when there are a plurality of grooves. When the grooves are provided in parallel with the axis, typically, a plurality of grooves are formed at equal intervals in the circumferential direction. As a result, it can be avoided that the bearing is pressed toward one groove or a specific groove and is eccentric. However, when it is intentionally desired to be decentered to some extent in a specific direction, grooves may be provided only in the specific direction or the occupied area (or distribution density) of the grooves in the direction may be increased.
[0013]
In the motor of the present invention, typically, an outer diameter that is smaller than the outer diameter of the annular permanent magnet and intermediate between the outer diameters of the two cylindrical portions is provided between the thin cylindrical portion and the thick cylindrical portion. The provided annular step portion is formed, and the end face of the annular permanent magnet is in contact with the annular step portion in the vicinity of the radially inner peripheral edge. In this case, it corresponds to the axial length (height) of the annular step portion between the lower end surface of the annular permanent magnet and the upper end surface of the thick cylindrical portion, except in the vicinity of the radially inner periphery of the annular permanent magnet. An axial gap of a size is formed. In this case, even if an impact load is applied to the frame due to the dropping of the device including the motor, the impact is absorbed by the bending deformation within the elastic limit of the annular stepped portion (note that the annular stepped portion has a thin cylindrical shape on the one hand) Since it is thicker and larger in diameter than the part, there is little possibility of bending due to the impact). Therefore, since it is possible to minimize the excessive impact on the thin cylindrical portion and the annular permanent magnet fitted to the thin cylindrical portion, there is little possibility of cracking even when the annular permanent magnet is relatively fragile. . Furthermore, even when the legs of the bearing housing are fixed to a plurality of holes (openings) provided in the bottom wall of the frame by molding, the bending between the holes due to bending deformation within the elastic limit of the annular stepped portion Since the stress applied to the bridge portion can be minimized, there is little possibility that the bottom wall portion of the frame is bent.
[0014]
In the motor according to the present invention, typically, the outer circumferential surface and the inner circumferential surface of the thin cylindrical body are circular in cross section, and the outer circumferential surface of the annular permanent magnet is eccentric with respect to the axis of the rotation shaft of the rotor. . This makes it possible to move the rotating shaft of the motor to one side of the bearing hole, so that the rotating shaft is practically constant even when the difference between the outer diameter of the rotating shaft and the inner diameter of the bearing is relatively large. Can be rotated around the axis. For this purpose, even if the permanent magnet is an annular body having an outer peripheral surface eccentric to the inner peripheral surface (slightly eccentric), the thin cylindrical portion of the bearing housing is A cylindrical body having an outer peripheral surface that is eccentric (and slightly eccentric), and in some cases, a cylinder in which the bearing has an outer peripheral surface that is eccentric with respect to its inner peripheral surface (slightly eccentric) It may be a body. Typically, the thin cylindrical portion of the bearing housing that is relatively easy to mold is eccentric.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, a preferred embodiment of the present invention will be described based on a preferred example shown in the accompanying drawings. In the description of the embodiments, the size is described as a typical example, but the invention is not intended to be limited to a size of the same size as the described size.
[0016]
【Example】
A motor 1 according to a preferred embodiment of the present invention shown in FIGS. 1 to 4 is used as a part of a mini-disk drive for a mechanical deck for mini-disk rotation driving, and has a frame structure as a frame or a frame. A body structure 10, a stator structure 40 fixed to the frame structure 10, and a rotor structure 50.
[0017]
The frame structure 10 is made of a metal frame bottom wall or a flat-plate chassis 11 as a bottom frame portion, and is made of plastic, and is a substantially cylindrical portion that forms a side wall portion as a side portion or an outer peripheral frame portion fixed to the chassis 11. And an annular side wall member 12. For example, the chassis 11 made of steel such as stainless steel having a thickness of about 0.5 mm includes a shaft support portion 13 serving as a thrust bearing, and a plurality of members formed around the shaft support portion 13 at intervals in the circumferential direction. And a hole 14. Therefore, in the chassis 11, the chassis main body 15 and the shaft support portion 13 that have spread outside the group of engaging holes 14 arranged in the circumferential direction are between the engaging holes 14, 14 adjacent in the circumferential direction. They are connected by a bridge or bridge 16. The engagement hole 14 has a diameter of about 1 to 1.5 mm, for example, and the centers of the engagement holes 14 are distributed at equal intervals in the circumferential direction along a circle of about 4 mm in diameter, for example. In this example, the lower edge 17 of the inner peripheral surface of each engagement hole 14 is chamfered. As shown in FIGS. 1 and 3, the side wall 12 has a horizontal mounting surface 12a and an information reading / writing pickup portion of a mini-disc made of a magneto-optical disc that are closely spaced in the A direction. A positioning wall portion 18 having a partially cylindrical positioning surface 18a rising vertically is provided except for a peripheral region and a peripheral region where a terminal portion of a stator substrate described later should protrude. In FIG. 2, a hole 14a in the chassis 11 is for fixing the side wall 12 to the chassis 11, and a hole 14b is for fixing the chassis 11 and other members.
[0018]
A bearing housing 20 made of engineering plastic such as PBT (polybutylene terephthalate) resin or PC (polycarbonate) resin that can be molded by injection molding or the like is placed and fixed on the shaft support portion 13 of the chassis 11. The bearing housing 20 includes a thin cylindrical portion 21 as a thin cylindrical portion, and a thick cylindrical portion as a thick cylindrical portion that extends integrally and substantially concentrically downward from the lower end of the thin cylindrical portion 21. And a plurality of leg portions 23 as a plurality of engaging projections extending downward from the outer peripheral portion of the lower end of the thick cylindrical portion 22. Between the thin cylindrical portion 21 and the thick cylindrical portion 22, an annular step portion 39 having a slightly larger diameter and a lower height in the axial direction than the thin cylindrical portion 21 is formed. The thin cylindrical portion 21 has an outer diameter of, for example, about 3 mm, an inner diameter of about 2 mm, and a height of, for example, about 2 mm. The thick-walled cylindrical portion 22 has an outer diameter of, for example, about 4.5 to 5 mm, and has a height of about 2 mm. For example, it is about 1 mm. The stepped portion 39 has a height of, for example, about 0.1 mm and a diameter that is larger than the outer diameter of the thin cylindrical portion 21 by, for example, about 0.3 to 0.5 mm.
[0019]
The inner peripheral surface 24 of the thick-walled cylindrical portion 22 and the thin-walled cylindrical portion 21 includes an air vent groove 25 and a thick-walled cylindrical portion that extend substantially parallel to the central axis C along the longitudinal direction of the inner peripheral surface 24. Except for the inward annular protrusion 27 at the lower end of 22, a substantially columnar or cylindrical hole or chamber 26 is formed as a whole. The groove 25 is, for example, substantially semicircular when viewed in a cross section perpendicular to the axis C. However, the shape may be any other shape as long as the cross-sectional area is relatively large so that air can escape (there is a depth equivalent to the width). In FIG. 1, only one groove portion 25 is shown (visible), but three groove portions 25 are formed at intervals of 120 degrees in the circumferential direction. The groove portions 25 formed at equal intervals in the circumferential direction are such that when the bearing and the rotating shaft are inserted into the holes of the bearing housing 20, the bearing housing 20 is distorted unevenly, and the central axis of the bearing and the rotating shaft is on one side. Helps minimize slippage. In addition, when the groove part 25 extends in parallel with the axis C, the groove part 25 may be two (180 degree intervals) or four or more as long as it is formed at equal intervals in the circumferential direction. As long as the groove 25 is continuously connected over the entire region in the axial direction C from the lower end to the upper end of the inner peripheral surface 24, the groove 25 may extend in an oblique direction such as a spiral instead of being parallel to the axis C. , May cross. However, in order to support the bearing firmly and stably, it is preferable that the area that the groove portion 25 occupies the inner peripheral surface 24 is a minimum.
[0020]
In the example shown in FIG. 1, the outer peripheral surface 21 a of the thin-walled cylindrical portion 21 is slightly eccentric with respect to the inner peripheral surface 24. That is, in the case of FIG. 1, the remaining two groove portions 25, in other words, so that the thickness is maximized in the left portion 21 c that overlaps one of the three groove portions 25 in the radial direction. 25 (both not shown) is eccentric so that the thickness in the radial direction between the inner peripheral surface 24 and the outer peripheral surface 21a is minimized at the right wall portion 21d located in the middle. The position where the maximum eccentric portion overlaps the groove portion 25 in the radial direction may be shifted in the circumferential direction. In this example, the thick cylindrical portion 22 is not eccentric with respect to the inner peripheral surface 24, but the thick cylindrical portion 22 may also be eccentric in the same manner as the thin cylindrical portion 21, for example. However, when a permanent magnet, which will be described later, fitted to the thin cylindrical portion 21 has an outer peripheral surface that is eccentric with respect to the inner peripheral surface, the outer peripheral surface 21a of the thin cylindrical portion 21 is: It does not have to be eccentric with respect to the inner peripheral surface 24.
[0021]
The thick cylindrical portion 22 is in liquid-tight contact with the upper surface 13a of the shaft support portion 13 of the chassis 11 at the lower surface 22a, and actually seals the lower end of the chamber 26. The shape is practically complementary to the corresponding engagement hole 14. The bearing housing 20 is engaged with the chamfered portion 17 at the lower end of the engagement hole portion 14 at the leg portion 23, and the leg portion 23 has a frustoconical engagement edge portion extending downward at the lower end. 23a. Each engagement hole 14 and leg 23 have the same shape so as to overlap each other by virtual rotation around the axis C. The bearing housing 20 is preferably formed by outsert molding by injecting a thermoplastic engineering plastic material into the mold from the hole 14 in a state where the chassis 11 is arranged in the molding die so as to form a part of the mold. Is done.
[0022]
As long as the bearing housing 20 can be fixed by fixing the leg portion 23 by the engagement hole 14 so that the engagement protrusion 14 and the corresponding engagement protrusion 23 are complementary, the plurality of engagement holes 14 are provided. Each of the engagement protrusions 23 may have a different shape. In the illustrated example, the outer peripheral surface 22b of the thick cylindrical portion 22 and the upper surface 23b of the leg portion 23 intersect at right angles between the thick cylindrical portion 22 and the leg portion 23. As long as the rotation of the thick cylindrical portion 22 is not hindered, the thick cylindrical portion 22 is, for example, a truncated cone shape that can avoid stress concentration, as shown by an imaginary line 29, and a shape that is continuously connected to the leg portion 23. Good.
[0023]
In the substantially annular space formed by the upper end surface 22 c of the thick cylindrical portion 22, the annular step portion 39, and the outer peripheral surface 21 a of the thin cylindrical portion 21, an annular shape fitted to the thin cylindrical portion 21 is provided. A permanent magnet 30 is provided. The permanent magnet 30 is made of, for example, a plastic magnet or a sintered magnet. The permanent magnet 30 has an inner diameter that is substantially the same as the outer diameter of the thin cylindrical portion 21, and the lower end surface 31 of the permanent magnet 30 abuts on the upper surface of the annular step portion 39 in the vicinity of the inner peripheral edge. A small axial gap G corresponding to the height of the stepped portion 39 is formed between the upper end surface 22c of the thick cylindrical portion 22 and the upper end surface 22c of the thick-walled cylindrical portion 22 over the most radial region of the lower end surface 31. ing. The length of the gap G in the axial direction corresponds to the height of the stepped portion 39 described above, and is about 0.1 mm, for example. The annular or annular permanent magnet 30 has an outer diameter of, for example, about 5 mm and a height of about 1.5 mm.
[0024]
Note that the upper end 32 of the permanent magnet 30 is typically located at the same height as the upper end 21 b of the thin cylindrical portion 21 so that the thin cylindrical portion 21 can be reinforced. However, depending on the case, it may be slightly lower or higher than the upper end 21b of the thin cylindrical portion 21.
[0025]
Further, the permanent magnet 30 has an annular shape in which the inner peripheral surface 30a and the outer peripheral surface 30b are concentric, and the outer peripheral surface 21a of the thin cylindrical portion 21 is eccentric to the part 21c side. In the wall section cross section 30c located on the left side of the wall section section 30d located on the right side, the outer peripheral surface 30b is located at a position further away from the axis C (radially outward). The annular or ring-shaped permanent magnet 30 may also be eccentric like the thin cylindrical portion 21 of the bearing housing 20. When the thin cylindrical portion 21 of the bearing housing 20 is not eccentric, the annular permanent magnet 30 is formed in a shape in which the outer peripheral surface 30b is eccentric with respect to the inner peripheral surface 30a.
[0026]
The permanent magnet 30 is magnetized in the radial direction, for example. However, it may be magnetized in one direction or in a direction parallel to the axis C in a horizontal plane perpendicular to the axis C.
[0027]
On the other hand, a cylindrical bearing member 35 made of an oil-impregnated sintered body is fitted in the chamber 26 of the bearing housing 20. The lower end surface of the bearing member 35 abuts on the inward annular protrusion 27 at the lower end of the thick cylindrical portion 22 of the bearing housing 20, and is slightly separated from the upper surface 13 a of the shaft support portion 13. The cylindrical outer peripheral surface 36 of the bearing member 35 and the inner peripheral surface 24 of the thin and thick cylindrical portions 21 and 22 of the bearing housing 20 are practically in close contact except for the groove portion 25.
[0028]
On the side wall or the peripheral wall 12 of the frame 10, the stator substrate 41 of the stator structure 40 is disposed and fixed in contact with and positioned on the positioning surface 18 a at a part of the peripheral surface. The stator structure 40 has a substantially trapezoidal stator coil arranged in the circumferential direction so as to be energized by a stator substrate 41 and a printed wiring 42 on the stator substrate 41 as shown in FIG. 43. In the illustrated example, among the six coils 43 serving as the stator body, coil pairs 43A, 43A; 43B, 43B; 43C, 43C facing in the diameter direction are connected in series. However, the number of the coils 43 may be larger or smaller. Reference numerals 42A, 42B, 42C, and 42G denote terminals or pad portions of the wiring 42. The total thickness of the stator structure 40 is, for example, about 0.5 mm.
[0029]
The rotor 50 includes a motor shaft or a rotor rotation shaft 51 that is rotatably fitted to the bearing 35, an upper rotor structure 52 that is fitted to the rotor rotation shaft 51, and a lower portion that is fixed to the upper rotor structure 52. Side rotor structure 53.
[0030]
The upper rotor structure 52 includes an upper yoke made of a soft magnetic material having a central cylindrical portion 54 into which the rotating shaft 51 is press-fitted and fitted, and a disc-like portion 55 extending horizontally from the lower end of the cylindrical portion 54. A member 56 and a side wall 59 engaged with the engagement hole 57 of the upper yoke member 56 by the engagement leg 58 and extending downward so as to embrace the outer peripheral edge of the upper yoke member 56; An engineering plastic turntable portion having an annular plate 63 (FIG. 1) provided with disk engaging claws 60, 61, 62 (FIGS. 1 and 3) in the form of springs spaced in the direction. 64 and an annular multi-piece as a rotor main body portion fitted in the annular side wall portion 59 of the turntable portion 64 so as to be in close contact with the lower surface 65 of the upper yoke member 56 at the upper surface 66 and face the stator coil 43 in the axial direction. very A rotor magnet 67 made of a permanent magnet structure (in FIG. 4 (b)) and. The upper yoke member 56 has a thickness of about 0.5 mm, for example, and the rotor magnet 67 has an outer diameter of about 14 mm, an inner diameter of about 7 mm, a thickness of about 1 mm, and a gap of about 0.2 mm, for example. The stator structure 40 is faced in a direction parallel to the axial direction. An annular permanent magnet 69 magnetically attracts the magnetic material portion on the lower surface of the disk to engage and align the disk with the spring claws 60 to 62 through its central opening (hole) and to fix the disk to the turntable 64. To do.
[0031]
The lower rotor structure 53 is formed of a lower yoke member 70 made of a soft magnetic material. The lower yoke member 70 includes an inner annular plate portion 71 that is magnetostatically attracted and fixed to the lower surface of the inner peripheral portion of the disk-like portion 56 of the upper yoke member 54 of the upper rotor structure 52, and the inner annular plate. A cylindrical part 73 extending downward from the outer peripheral edge 72 of the part 71 and a radially outwardly extending upper end 75 from the lower end or lower edge 74 of the cylindrical part 73 face the stator coil 43 of the stator substrate 40 in the axial direction. And an outer annular plate portion 76. The lower yoke member 70 also has a thickness of about 0.5 mm, for example, and faces the stator structure 40 in a direction parallel to the axial direction through a gap of about 0.2 mm, for example. The lower surface 77 of the inner annular plate portion 71 is positioned above the top surface 32 of the permanent magnet 30 by, for example, about 0.2 mm, and the lower surface 78 of the outer annular plate portion 76 is more than the bottom surface 31 of the permanent magnet 30. For example, it is positioned about 0.05 to 0.1 mm below the upper end of the curved lower edge 74 by about 0.1 to 0.2 mm. Therefore, when the outer peripheral surface 30 b of the permanent magnet 30 is shifted below the central portion in the vertical direction Z of the inner peripheral surface 79 of the cylindrical portion 73 of the lower yoke member 70, the radius is set to the cylindrical portion 73. Facing each other. As a result, the annular permanent magnet 30 exerts a downward Z1 force on the lower yoke member 70 in the entire vertical direction Z. However, as long as the inner annular plate portion 71 of the lower yoke member 70 is relatively separated from the permanent magnet 30, the force in the Z1 direction increases as the lower yoke member 70 shifts upward from the predetermined position to Z2. Note that the lower surface 78 of the outer annular plate portion 76 may be located above the lower surface of the annular permanent magnet 30.
[0032]
In the motor 1 according to a preferred embodiment of the present invention configured as described above, when assembling, the material of the leg portion 23 is filled in the hole 14 of the chassis 11, and the leg portion 23 and the thick cylindrical portion. 22 in the hole 26 of the bearing housing part 20 formed outsert integrally with the chassis 11 so as to embrace the shaft support part 13 of the chassis 11. A bearing member 35 made of an oil-impregnated sintered body is press-fitted until it comes into contact with the upper surface of the steel. By this press-fitting, between the outer peripheral surface 36 of the bearing member 35 and the inner peripheral surface (that is, the peripheral surface or peripheral wall of the hole 26) 24 of the bearing housing 20, a portion of the groove 25 (and the bearing member 35 as shown in FIG. 1). In the case where the outer peripheral edge of the lower end is chamfered, it is in close contact with the entire area except for the chamfered portion). In the motor 1, the axial grooves 25 of the bearing housing 20 are formed at equal intervals in the circumferential direction, so that there is little possibility that the bearing member 35 is eccentric to the side where the one groove 25 is present during press-fitting. A small axial gap is formed between the lower end surface of the bearing member 35 and the upper surface 13 a of the shaft support portion 13 of the chassis 11. This axial gap is connected to the outside via an axial insertion hole defined by the inner peripheral surface 37 of the bearing member 35 on the inner peripheral side, and connected to the outside via a groove 25 on the outer peripheral side. The size of the axial gap is about 0.2 mm in this example, but may be a little larger or smaller.
[0033]
Next, the thin cylindrical portion 21 of the bearing housing 20 is press-fitted into the annular plastic magnet 30 until the lower end surface of the annular plastic magnet 30 comes into contact with the upper surface of the annular step portion 39 of the bearing housing 20. 30 is fitted into the thin cylindrical portion 21. Since the outer peripheral surface 21a of the thin-walled cylindrical portion 21 is slightly eccentric with respect to the axis C, the outer peripheral surface 30b of the cylindrical magnet 30 is the right cross-sectional portion shown in FIG. It is located slightly away from the axis C rather than 30d.
[0034]
Next, after the lower yoke member 70 is disposed and the stator structure 40 is placed and fixed on the side wall 12 of the frame 10, the rotating shaft 51 of the motor 1 is inserted into the bearing member 35. When the rotary shaft 51 is inserted, the air in the region surrounded by the rotary shaft 51, the bearing member 35, and the shaft support portion 13 of the chassis 11 is separated from the gap at the inward annular protrusion 27 of the thick cylindrical portion 22 and Since it can be discharged to the outside through the groove 25, the bearing member 35 is pushed out of the hole of the bearing housing 20 even if the bearing member 35 and the rotary shaft 51 are formed in such a size that they are in close contact with each other without any gap. The rotating shaft 51 can be inserted into the bearing member 35 without any problem. When the rotary shaft 51 is inserted, the lower yoke member 70 is attracted to the upper yoke member 56 integral with the rotor magnet 67 and the rotary shaft 51 by magnetostatic attraction. At this time, the lower yoke member 70 is a lower end of three spring claws 68a, 68b, 68c (68b, 68c are not shown) formed on the inner peripheral portion of the annular plate 63 at intervals in the circumferential direction. The protruding portion is pushed inward in the radial direction by the tapered portion 70a of the inner peripheral upper edge of the inner annular plate portion 71 so as to cross the lower end protruding portion such as the spring pawl 68a in the Z2 direction, and is adsorbed to the lower surface of the upper yoke member 56, It is aligned and locked by a spring claw 68a or the like that has returned to its original position radially outward.
[0035]
In the motor 1 in the state of FIG. 1 in which the entire assembly has been completed, the thin cylindrical portion 21 of the bearing housing 20 is reinforced by the annular permanent magnet 30, so that the bearing member 35 can be firmly supported by the bearing housing 20. The movement of the bearing member 35 such that the central axis C of the bearing member 35 swings can be minimized under a non-uniform radial load within a range where the bearing member 35 may normally be applied. .
[0036]
Further, in the motor 1, since the axial gap G is formed between the annular permanent magnet 30 and the thick cylindrical portion 22, for example, due to an unexpected drop of the mini disk drive including the motor 1, for example, the chassis 11. Even when an impact load is applied to the chassis 11 in a direction crossing the extending plane, the load or stress generated between the rotor structure 50 and the chassis 11 is mainly the annular stepped portion 39 having the gap G. Therefore, the impact load can be actually absorbed by the deflection within the elastic limit of the annular step 39. As a result, the permanent magnet ring 30 is broken by the load applied to the annular permanent magnet 30 through the thin cylindrical portion 21 or directly, or the bridge is applied by the load applied to the bridging portion 16 of the shaft support portion 13 of the chassis 11. There is little possibility that the tangled portion 16 is deformed such that it is bent at the end or the like. If there is a possibility that excessive stress is concentrated on the connecting portion between the thick cylindrical portion 22 and the leg portion 23 of the bearing housing 20, as described above, the outer periphery of the thick cylindrical portion 22 is For example, a shape that can avoid stress concentration as indicated by an imaginary line 29 may be used.
[0037]
Further, in this motor 1, the outer peripheral surface 30b of the annular permanent magnet 30 is farthest from the axis C on the left side (at the cross section 30c) and closest to the axis C on the right side (at the cross section 30d). Thus, the outer peripheral surface 30b is close to the axis C, so that it is closest to the cylindrical portion 73 of the lower yoke member 70 of the rotor structure 50 on the outer periphery of the cross-sectional portion 30c (the size of the gap in the radial direction). For example, about 0.1 mm), and the outermost part of the cross-sectional portion 30d is farthest away (the radial size of the gap is about 0.2 mm, for example). Exerts a biasing force. As a result, in FIG. 1, the rotor structure 50 is maintained in a state in which the right edge of the outer peripheral surface of the rotating shaft 51 is in contact with the facing portion of the inner peripheral surface 24 of the bearing member 35. Therefore, even with a slight gap remaining between the outer peripheral surface of the rotating shaft 51 and the inner peripheral surface of the bearing member 35, the rotating shaft is less likely to rotate while being irregularly shaken, and the rotating axis C is practically constant. Easy to keep in position and orientation. Even if the rotation axis C of the rotating shaft 51 receives a force in a direction to tilt, the direction in which the upper portion of the shaft 51 tilts to the left is practically prioritized. The direction of the axis C is limited and is easy to stabilize. In the motor 1, since a gap is formed between the lower end surface of the bearing member 35 and the upper surface 13 a of the shaft support portion 13, the bearing member 35 is supported by the lower end of the shaft 51 even when the shaft 51 tilts. There is no risk of damaging the lower end.
[0038]
Furthermore, in the motor 1, the annular permanent magnet 30 has a lower end 31 positioned in the vicinity of the lower end portion of the cylindrical portion 73 of the lower yoke member 70 and sufficiently below the upper end portion of the cylindrical portion 73. Therefore, the rotary shaft 51 comes out of the bearing member 35 without exerting an excessive downward force on the lower yoke member 70 that presses the lower end of the rotary shaft 51 against the shaft support portion 13 with an excessive thrust force (load). Can be suppressed.
[0039]
In the motor 1 having the ease of assembly and the rotation characteristics during the rotation operation as described above, when the mini disc cartridge is placed near a predetermined position on the turntable 64, the iron plate portion of the mini disc of the mini disc cartridge is caused by the magnet 69. The peripheral wall of the central opening of the mini disk is attracted to bias the spring claws 60 to 62 and fitted around the spring claws 60 to 62. After the mini disk cartridge is completely mounted, the multipolar permanent magnet structure is removed. The rotor structure 50 having a closed magnetic path composed of the rotor magnet 67 and the upper and lower yoke members 56, 70 has a three-phase configuration to the stator coils 43A, 43B, 43C via the terminal portions 42A, 42B, 42C, 42G. With the energization of the drive current at, it is rotated according to the energization current. Further, the pickup section can be scanned in the radial direction in the A direction in a region where the rising side wall portion 18 is not (notched), and can perform desired reading (reproduction), writing (recording, etc.), erasing, and the like.
[0040]
In the above, an example in which the motor 1 is applied to a mini disk drive has been described. However, the motor 1 may be used for any other application as long as it is suitable for use with a flat motor. In addition, the motor of this invention may be formed as motors other than a flat motor.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view taken along the line II of FIG. 3A of a motor according to a preferred embodiment of the present invention.
2 is an explanatory plan view of a chassis of the motor shown in FIG. 1; FIG.
FIGS. 3A and 3B are external views of the motor of FIG. 1, in which FIG. 3A is an explanatory plan view, and FIG.
4A and 4B show a stator and a rotor magnet of the motor of FIG. 1, in which FIG. 4A is a plan view of a stator structure, and FIG. 4B is a plan view of a multipolar rotor magnet.
[Explanation of symbols]
1 Motor
10 Frame structure
11 Chassis
13 Shaft support
14 engagement hole
15 Chassis body
16 Bridge part (bridge part)
17 Lower edge (chamfered part)
20 Bearing housing
21 Thin cylindrical part (thin cylindrical part)
21a (Eccentric) outer peripheral surface
22 Thick cylindrical part (thick cylindrical part)
22a bottom
22c upper surface
23 legs
23a Engagement edge
24 inner circumference
25 Groove
26 rooms (holes)
27 Inward annular projection
30 toroidal permanent magnet
30a Inner peripheral surface
30b Outer peripheral surface
31 Lower end surface
35 Bearing members
36 outer peripheral surface
37 Inner peripheral surface
39 Annular steps
40 Stator structure
41 Stator substrate
43, 43A, 43B, 43C Stator coil
50 Rotor structure
51 Rotating shaft
52 Upper rotor structure
53 Lower rotor structure
56 Upper yoke member
60, 61, 62 engaging claw
64 turntable
67 Rotor magnet (multi-pole permanent magnet structure)
70 Lower yoke member
71 Inner annular plate
73 Cylindrical part
76 Outer annular plate
79 Inner surface
C Center axis
G gap
Z1 downward
Z2 upward
Z Vertical direction

Claims (5)

フレームに固定されたステータ本体部に対して軸方向に対面したロータ本体部を備えたモータであって、
内周面が共通の円筒状である厚肉筒状部及び薄肉筒状部を備えたプラスチック製の軸受ハウジングであって、厚肉筒状部でフレームの底壁に固定され、薄肉筒状部が前記内周面に対して偏心した外周面を備え、厚肉筒状部及び薄肉筒状部の前記内周面の軸線方向の実質的に全域に亘って軸線に平行に連続的に延在した溝が形成されたものと、
軸受ハウジングの前記薄肉及び厚肉筒状部に嵌挿されロータ本体部と一体的な回転軸を回転自在に支持するジャーナル軸受と、
ロータ本体部の位置ズレを抑制すべくロータ本体部と一体的なヨーク部に近接した位置で薄肉筒状部の外周に嵌装され該薄肉筒状部を補強する環状の永久磁石であって外周面と内周面とが同心で該外周面がロータの回転軸の軸線に関して偏心しているもの
を有するモータ。
A motor having a rotor body facing in the axial direction with respect to a stator body fixed to a frame,
The inner circumferential surface a plastic bearing Haujin grayed having a common thick cylindrical portion及beauty thin walled tubular portion is cylindrical, fixed to the bottom wall of the frame in thick cylindrical portion, thin The cylindrical portion has an outer peripheral surface that is eccentric with respect to the inner peripheral surface, and is continuous in parallel with the axis over substantially the entire axial direction of the inner peripheral surface of the thick cylindrical portion and the thin cylindrical portion. With a groove extending to
A journal bearing which is inserted into the thin and thick cylindrical portion of the bearing housing and rotatably supports a rotating shaft integral with the rotor body portion;
An annular permanent magnet which is fitted on the outer periphery of the thin cylindrical portion and is reinforced on the outer periphery of the thin cylindrical portion at a position close to the yoke portion integral with the rotor main body portion in order to suppress displacement of the rotor main body portion. A motor having a surface and an inner peripheral surface that are concentric and the outer peripheral surface is eccentric with respect to an axis of a rotation shaft of the rotor .
溝が、薄肉筒状部のうち半径方向の厚さが最小の部位から周方向に離れたところに形成されている請求項1に記載のモータ。The motor according to claim 1, wherein the groove is formed at a position away from a portion having a minimum radial thickness in the circumferential direction in the thin cylindrical portion . が周方向に等間隔に複数本形成され、溝が3本の場合、溝のうちの1本が薄肉筒状部のうち肉厚が最大になる部位に形成されている請求項1に記載のモータ。The plurality of grooves are formed at equal intervals in the circumferential direction, and when there are three grooves, one of the grooves is formed at a portion of the thin cylindrical portion where the thickness is maximum. Motor. 薄肉筒状部と厚肉筒状部との間に、環状永久磁石の外径よりも小さく且つ二つの筒状部の外径の中間の外径を備えた環状段部が形成されており、環状永久磁石の端面が径方向内周縁近傍において環状段部に当接している請求項1から3までのいずれか一つの項に記載のモータ。  Between the thin cylindrical portion and the thick cylindrical portion, an annular step portion having an outer diameter that is smaller than the outer diameter of the annular permanent magnet and intermediate between the outer diameters of the two cylindrical portions is formed. The motor according to any one of claims 1 to 3, wherein an end surface of the annular permanent magnet is in contact with the annular step portion in the vicinity of the radially inner peripheral edge. 厚肉筒状部がフレームの底壁に形成された複数の係合孔部に係合された複数の脚部でフレームの底壁に固定されている請求項1から4までのいずれか一つの項に記載のモータ。Thick tubular portion of any one of claims 1, which is fixed to the bottom wall of the frame by a plurality of legs engaged with the plurality of engaging holes formed in the bottom wall of the frame to the 4 The motor according to item.
JP2000042281A 2000-02-21 2000-02-21 motor Expired - Fee Related JP4414047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000042281A JP4414047B2 (en) 2000-02-21 2000-02-21 motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000042281A JP4414047B2 (en) 2000-02-21 2000-02-21 motor

Publications (2)

Publication Number Publication Date
JP2001238422A JP2001238422A (en) 2001-08-31
JP4414047B2 true JP4414047B2 (en) 2010-02-10

Family

ID=18565378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000042281A Expired - Fee Related JP4414047B2 (en) 2000-02-21 2000-02-21 motor

Country Status (1)

Country Link
JP (1) JP4414047B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027186B1 (en) * 2003-01-10 2011-04-05 소니 주식회사 Bearing unit and rotation drive device using the same
US11799342B2 (en) 2020-02-20 2023-10-24 Kohler Co. Printed circuit board electrical machine

Also Published As

Publication number Publication date
JP2001238422A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
US6455961B1 (en) Motor with aligned magnetic centers
US8094410B2 (en) Spindle motor with flange land portion for ensuring flatness of recording disc
JP2002027721A (en) High-speed rotation spindle motor
JP2008010071A (en) Holding device of recording medium, and motor unit using the same
US8908320B2 (en) Spindle motor having lower thrust member with fitting protrusion and hard disk drive including the same
US7911092B2 (en) Spindle motor
JP4162924B2 (en) Spindle motor
JP4414047B2 (en) motor
US7847451B2 (en) Spindle motor
US20020113503A1 (en) Spindle motor
JP2005045876A (en) Spindle motor and information recorder/reproducer employing it
JP3003763B2 (en) Bearing device for motor
JP4105298B2 (en) Thin motor
JP2003070206A (en) Spindle motor
JP2013187976A (en) Motor, disk drive and method for manufacturing motor
JP3506909B2 (en) Motor and method of assembling the same
CN202142922U (en) Motor and disk driving device
JPH03285546A (en) Spindle motor
US8156513B2 (en) Motor and storage disk drive apparatus
JP2002325411A (en) Spindle motor with disk-mounting section and its manufacturing method
JPH11236921A (en) Spindle motor
JP4113441B2 (en) Disk drive device and disk cartridge
JP2002257133A (en) Bearing device and motor provided therewith
KR101070042B1 (en) motor device and method of manufacturing thereof
JP2000069708A (en) Spindle motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees