JP4412503B2 - PROCESSING DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD - Google Patents

PROCESSING DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD Download PDF

Info

Publication number
JP4412503B2
JP4412503B2 JP2007033764A JP2007033764A JP4412503B2 JP 4412503 B2 JP4412503 B2 JP 4412503B2 JP 2007033764 A JP2007033764 A JP 2007033764A JP 2007033764 A JP2007033764 A JP 2007033764A JP 4412503 B2 JP4412503 B2 JP 4412503B2
Authority
JP
Japan
Prior art keywords
phosphoric acid
processing apparatus
tank
etching
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007033764A
Other languages
Japanese (ja)
Other versions
JP2007123947A (en
Inventor
昭則 進藤
直人 窪田
安正 小林
宙幸 原田
信彦 伊豆田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007033764A priority Critical patent/JP4412503B2/en
Publication of JP2007123947A publication Critical patent/JP2007123947A/en
Application granted granted Critical
Publication of JP4412503B2 publication Critical patent/JP4412503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、半導体装置である半導体ウエハ(例えば、Siウエハで、以下、ウエハと記す)等の窒化珪素膜(以下、窒化膜と略称する)を熱燐酸(以下、燐酸と略称することもある)等によって薬液処理するような場合に好適な処理装置に関し、特に薬液処理に寄与した使用中の薬液を回収して再利用可能にする再生部を有した処理装置および半導体装置の製造方法に関するものである。   In the present invention, a silicon nitride film (hereinafter abbreviated as a nitride film) such as a semiconductor wafer (for example, a Si wafer, hereinafter abbreviated as a wafer), which is a semiconductor device, may be abbreviated as hot phosphoric acid (hereinafter abbreviated as phosphoric acid). In particular, the present invention relates to a processing apparatus having a regenerating unit that makes it possible to recover and reuse a used chemical solution that has contributed to the chemical processing, and a method for manufacturing a semiconductor device. It is.

半導体製造等におけるウエハ処理には、ウエハに微細な窒化膜パターンをエッチングで形成することがある。このエッチングではドライエッチングが主流となっているが、形成された窒化膜を酸化マスクして選択的に酸化膜を形成し、不要となった窒化膜マスクの除去には窒化膜と酸化膜のエッチング選択比が大きい熱燐酸を用いて処理する方法が今日でも広く採用されている。このウエハ処理においては、窒化膜と酸化膜のエッチング選択比が大きい条件でエッチングを行えば、ウエハの窒化膜が水と反応して酸化珪素とアンモニアに分解するため、エッチングが適切に行われる。この反応では、燐酸が触媒として作用し、かつ消耗せずに水を補給するだけで永久的に触媒として利用できることが知られており、効率的なエッチングが可能である。
特開平11−293479号公報 特開平9−45660号公報 特開平9−275091号公報
In wafer processing in semiconductor manufacturing or the like, a fine nitride film pattern may be formed on a wafer by etching. In this etching, dry etching is mainly used, but an oxide film is selectively formed by using the formed nitride film as an oxidation mask, and the nitride film and the oxide film are etched to remove the unnecessary nitride film mask. A method of treating with hot phosphoric acid having a high selectivity is still widely used today. In this wafer processing, if etching is performed under a condition where the etching selectivity between the nitride film and the oxide film is large, the nitride film on the wafer reacts with water and decomposes into silicon oxide and ammonia, so that the etching is performed appropriately. In this reaction, it is known that phosphoric acid acts as a catalyst and can be used permanently as a catalyst by simply replenishing water without being consumed, and efficient etching is possible.
Japanese Patent Laid-Open No. 11-293479 JP-A-9-45660 Japanese Patent Laid-Open No. 9-275091

ところが、実際のウエハ処理においては、エッチング選択比を大きくするため、どうしても分解された酸化珪素が熱燐酸に高濃度に溶解した状態で使用せざるを得ないが、この条件で使用すると、この溶解量が飽和溶解量に達しその酸化珪素が微細な粒子となって析出することになり、これが微細なパーティクルとなってウエハを汚染したり、エッチング液を再利用するための循環濾過フィルタを詰まらせるといった種々の障害の原因となる。そこで、酸化珪素の溶解量が飽和溶解量に達する前に、例えばエッチング液を新しい燐酸に交換したり、燐酸中の酸化珪素濃度を下げればならない。酸化珪素を多く含む燐酸はエッチング液として使用できず、廃液として廃棄処理しなければならないだけでなく、環境へ悪影響を与えかねない。   However, in actual wafer processing, in order to increase the etching selectivity, it is unavoidable to use the decomposed silicon oxide dissolved in hot phosphoric acid at a high concentration. The amount reaches the saturation dissolution amount and the silicon oxide precipitates as fine particles, which become fine particles that contaminate the wafer and clog the circulating filter for reusing the etchant. Cause various obstacles. Therefore, before the dissolved amount of silicon oxide reaches the saturated dissolved amount, for example, the etching solution must be replaced with new phosphoric acid, or the concentration of silicon oxide in phosphoric acid must be lowered. Phosphoric acid containing a large amount of silicon oxide cannot be used as an etching solution and must be disposed of as a waste solution, which may adversely affect the environment.

また、窒化膜マスクのエッチング速度は、燐酸温度が一定であれば酸化珪素濃度と関係なく一定であるが、酸化膜のエッチング速度は燐酸中の酸化珪素濃度に反比例し、酸化珪素濃度が高くなると減少する。このように、窒化膜と酸化膜のエッチング選択比は、酸化珪素膜濃度に応じて変化するため、処理ロット間で酸化膜厚が変動する原因となり、品質低下を招くことになる。従って、その分だけ、使用ウエハ処理装置の設計や加工処理マージンを大きくする必要性があるが、ICの微細化、高集積化の進展に伴って、許容されるマージンが小さくなってきている。このような背景から、選択比が大きく、処理ロット間でバラツキが少なく、しかも燐酸廃液が排出されないウエハ処理装置の実現が望まれている。   Further, the etching rate of the nitride film mask is constant regardless of the silicon oxide concentration if the phosphoric acid temperature is constant, but the etching rate of the oxide film is inversely proportional to the silicon oxide concentration in phosphoric acid, and the silicon oxide concentration increases. Decrease. As described above, since the etching selectivity between the nitride film and the oxide film changes according to the silicon oxide film concentration, it causes the oxide film thickness to fluctuate between the processing lots, resulting in quality degradation. Therefore, it is necessary to increase the design and processing margin of the used wafer processing apparatus by that amount, but the allowable margin has been reduced as IC miniaturization and higher integration progressed. From such a background, it is desired to realize a wafer processing apparatus that has a high selection ratio, little variation between processing lots, and that does not discharge phosphoric acid waste liquid.

本出願人らは、以上の状況から特開平11−293479号や特開平9−45660号等のウエハ処理装置構造や再生方法を開発してきた。本発明はそれらを更に改善したものであり、エッチング槽内の使用中の燐酸を、循環濾過経路部による再生と、分岐配管を介し回収してフッ酸を用いる燐酸再生装置による再生とを行うウエハ処理装置において、燐酸再生装置側へ回収する回収時および回収量を自動化し易くし、かつ燐酸中の不純物を低減したり一定に維持可能にすることを目的としている。そして、窒化膜と酸化膜のエッチング選択比を大きいままとし、かつ該選択比を一定とした燐酸により窒化膜エッチングを行うことができるようにする。   The present applicants have developed a wafer processing apparatus structure and a regeneration method such as Japanese Patent Application Laid-Open Nos. 11-293479 and 9-45660 from the above situation. The present invention is a further improvement of the present invention, in which phosphoric acid in use in an etching tank is regenerated by a circulation filtration path and regenerated by a phosphoric acid regenerating apparatus using hydrofluoric acid recovered through a branch pipe. It is an object of the processing apparatus to facilitate the automation of the recovery amount and the recovery amount to the phosphoric acid regenerating apparatus side, and to reduce or maintain the impurities in the phosphoric acid. Then, the etching selectivity between the nitride film and the oxide film is kept high, and the nitride film can be etched with phosphoric acid with a constant selectivity.

上記目的を達成するため請求項1の本発明は、図面に例示される如く半導体ウエハ1を熱燐酸によってエッチング処理する溢流部3a付のエッチング槽3と、前記溢流部3aに溢流した燐酸をエッチング槽外に導いて濾過、加熱及び純水を添加してエッチング槽3内へ戻す循環濾過経路部5と、前記循環濾過経路部5から分岐配管60を介し取り出された燐酸にフッ酸を加えて加熱処理する燐酸再生装置6と、前記燐酸再生装置6で再生された燐酸を前記エッチング槽3に補給する補給配管67aとを備えている処理装置において、前記分岐配管60を前記循環濾過経路部5の燐酸を濾過する濾過部51の手前に設け、前記燐酸再生装置6側へ分岐する燐酸の量を前記濾過部51へ流れる循環液圧に応じて制御可能な流量調節手段(圧力計61とニードル弁65又は流量計等)を有していることを特徴としている。   In order to achieve the above object, according to the present invention of claim 1, as illustrated in the drawing, the semiconductor wafer 1 is etched with hot phosphoric acid, the etching tank 3 with the overflow portion 3a, and the overflow portion 3a overflowed. Circulating filtration path section 5 for introducing phosphoric acid outside the etching tank, filtering, heating, adding pure water and returning it to the etching tank 3, and hydrofluoric acid in the phosphoric acid taken out from the circulation filtering path section 5 through the branch pipe 60 And a replenishing pipe 67a for replenishing the etching tank 3 with the phosphoric acid regenerated by the phosphoric acid regenerating apparatus 6, the branch pipe 60 is subjected to the circulation filtration. A flow rate adjusting means (pressure gauge) that is provided in front of the filtration unit 51 for filtering the phosphoric acid in the passage unit 5 and that can control the amount of phosphoric acid branched to the phosphoric acid regenerating apparatus 6 side according to the circulating fluid pressure flowing to the filtration unit 51 6 It is characterized by having a needle valve 65 or the flow meter or the like) and.

以上の構造では、まず、エッチング部において、熱燐酸がエッチング槽3から循環濾過経路部5に導かれ、濾過と加熱及び純水添加処理されつつ循環されて、該循環濾過経路5中で不純物(酸化珪素等)除去と燐酸濃度(水分蒸発に起因した濃度の変化)を一定に調整処理される。これを前提とし、主要部は、濾過部51の手前に設けられた分岐配管60で分岐する燐酸の量を濾過部51へ流れる循環液圧に応じて制御可能にした点にある。即ち、濾過部51のフィルターは、濾過作用により次第に目詰まりの度合が高くなる。循環液圧はその目詰まりの度合に比例する。そこで、本発明は、分岐配管60から分岐して再生部へ回収する燐酸の量をその循環液圧に対応させ、使用燐酸中の不純物(酸化珪素等)が多くなるのに比例して燐酸再生装置6側へ取り出す(なお、この回収量に対応する量は補給配管67aから補充される)。即ち、燐酸再生装置6側への取出量が流量調節手段(例えば、圧力計61とニードル弁65又は計量槽等)により自動的に行えるようしたものである。これは、循環濾過経路5から燐酸再生装置6への燐酸の回収時及び回収量の制御を自動化できるだけではなく、使用燐酸中の不純物(酸化珪素等)を所定の値に保つことを可能にする。この利点は、従来の如く使用燐酸の一部又は全部を定期的に交換する方式で問題となる交換前後でのエッチング特性の変動(窒化膜と酸化膜とのエッチング速度比つまり選択比のバラツキ)及び装置稼動率悪化を生じない。また、濾過部51のフイルターの寿命を長くでき、フイルター交換に伴う稼働率低下も回避できる。   In the above structure, first, in the etching section, hot phosphoric acid is led from the etching tank 3 to the circulation filtration path section 5 and circulated while being filtered, heated and added with pure water, and impurities ( (Silicon oxide etc.) removal and phosphoric acid concentration (concentration change caused by moisture evaporation) are adjusted to be constant. Based on this premise, the main part is that the amount of phosphoric acid branched by the branch pipe 60 provided in front of the filtering part 51 can be controlled according to the circulating fluid pressure flowing to the filtering part 51. That is, the degree of clogging of the filter of the filtration unit 51 gradually increases due to the filtration action. Circulating fluid pressure is proportional to the degree of clogging. Therefore, the present invention makes the amount of phosphoric acid branched off from the branch pipe 60 and recovered in the regeneration section correspond to the circulating fluid pressure, and the phosphoric acid regeneration is proportional to the amount of impurities (such as silicon oxide) in the phosphoric acid used. Take out to the apparatus 6 side (note that the amount corresponding to the recovered amount is replenished from the replenishment pipe 67a). That is, the removal amount to the phosphoric acid regenerating apparatus 6 side can be automatically performed by a flow rate adjusting means (for example, a pressure gauge 61 and a needle valve 65 or a measuring tank). This not only automates the control of the recovery amount and the recovery amount of phosphoric acid from the circulation filtration path 5 to the phosphoric acid regenerating apparatus 6, but also makes it possible to keep impurities (such as silicon oxide) in the used phosphoric acid at a predetermined value. . This advantage is due to fluctuations in etching characteristics before and after replacement, which is a problem in a method in which part or all of phosphoric acid used is periodically replaced as in the past (the variation in the etching rate ratio of the nitride film and the oxide film, that is, the variation in selectivity). In addition, the device operation rate does not deteriorate. Moreover, the lifetime of the filter of the filtration part 51 can be lengthened, and the operating rate fall accompanying filter replacement can also be avoided.

以上の発明は、請求項2〜6の如く具体化されることがより好ましい。即ち、
・第1に、前記燐酸再生装置6は、前記分岐配管60によって分岐した燐酸を一旦入れる受け槽63と、前記受け槽63から導入される燐酸にフッ酸を加えて加熱する処理槽100と、前記処理槽100で再生処理された燐酸を一時貯留する貯留槽113とからなり、前記処理槽100は、処理槽内から蒸発する蒸気を冷却して液化する冷却器200及び該冷却器200で液化された液を一定温度に調整する恒温槽201、並びに該恒温槽201で調整された液中のフッ素濃度を計測するフッ素計測器205等からなる測定部112を有している構成である。この構造では、例えば、受け槽63の回収燐酸を処理槽100にバッチ的に移し、該処理槽100で回収燐酸を再生処理し、該再生の終点判断を測定部112を介し行う。そして、回収された燐酸が所定の低酸化珪素濃度になると、該燐酸を貯留槽113に貯留したり、貯留槽113の燐酸をエッチング槽3側への補充用として使用可能にする。フッ酸による再生原理は、特開平11−293479号や特開平9−45660号と同じである。装置的には、エッチング処理と再生処理とを簡明な制御により連続的に行うことを可能にする。
・第2に、前記フッ素計測器205が比抵抗計又は導電率計からなる構成である。これは、特に再生燐酸中のフッ素濃度を高精度で計測可能にし、その結果、当該燐酸中の酸化珪素濃度を一定に制御できるようにして、本発明装置の制御精度の向上を図るようにしたものである。
・第3に、前記貯留槽113は、前記処理槽100から導入される再生された燐酸を所定温度に制御する加熱手段116,120を有していると共に、前記溢流部3aとの間が前記補給配管67aで接続されている構成である。これは、特に、貯留槽113の再生されかつ加温された燐酸が補給配管67aを介しエッチング槽3の溢流部3aへ一旦送られ、該溢流部3aから循環濾過経路部5を通ってエッチング槽3内に導入されるようにし、使用中の燐酸に補充される再生燐酸の濃度及び温度変動を極力小さく抑えるようにした点に意義がある。
・第4に、前記貯留槽113から送る燐酸補給量が、前記溢流部3aに設けた液面計36からの信号により制御可能になっている構成である。これは、燐酸補給量を溢流部3aの燐酸量に応じて自動制御されるようにし、エッチング槽3に必要な量の燐酸を確保するようにした点に意義がある。
・第5に、前記補給配管は、前記貯留槽113から取り出された再生燐酸を、前記エッチング槽3又は溢流部3aへ送る経路67aと、再び貯留槽へ戻す循環経路67bとを切換可能に構成していることである。これは、特に、循環経路67bにより貯留槽113内の再生燐酸を循環して温度等を均一にし、最適な状態で使用できるようにする。
The above invention is more preferably embodied as in claims 2-6. That is,
First, the phosphoric acid regenerating apparatus 6 includes a receiving tank 63 for temporarily storing the phosphoric acid branched by the branch pipe 60, a treatment tank 100 for adding and heating hydrofluoric acid to phosphoric acid introduced from the receiving tank 63, and The storage tank 113 temporarily stores phosphoric acid regenerated in the processing tank 100, and the processing tank 100 cools and liquefies the vapor evaporated from the processing tank, and is liquefied by the cooler 200. It has a configuration including a thermostatic chamber 201 that adjusts the obtained liquid to a constant temperature, and a measurement unit 112 that includes a fluorine measuring device 205 that measures the fluorine concentration in the liquid adjusted in the thermostatic chamber 201. In this structure, for example, the recovered phosphoric acid in the receiving tank 63 is batch transferred to the processing tank 100, the recovered phosphoric acid is regenerated in the processing tank 100, and the end point of the regeneration is determined via the measuring unit 112. When the recovered phosphoric acid reaches a predetermined low silicon oxide concentration, the phosphoric acid is stored in the storage tank 113, or the phosphoric acid in the storage tank 113 can be used for replenishment to the etching tank 3 side. The regeneration principle using hydrofluoric acid is the same as that of JP-A-11-293479 and JP-A-9-45660. In terms of apparatus, it is possible to continuously perform the etching process and the regeneration process by simple control.
Secondly, the fluorine measuring device 205 is constituted by a resistivity meter or a conductivity meter. In particular, the fluorine concentration in the regenerated phosphoric acid can be measured with high accuracy, and as a result, the silicon oxide concentration in the phosphoric acid can be controlled to be constant, thereby improving the control accuracy of the apparatus of the present invention. Is.
Thirdly, the storage tank 113 has heating means 116 and 120 for controlling the regenerated phosphoric acid introduced from the processing tank 100 to a predetermined temperature, and between the overflow section 3a. It is the structure connected by the said supply piping 67a. In particular, the regenerated and heated phosphoric acid in the storage tank 113 is once sent to the overflow part 3a of the etching tank 3 through the replenishment pipe 67a and passes through the circulation filtration path part 5 from the overflow part 3a. This is significant in that it is introduced into the etching tank 3 and the concentration and temperature fluctuations of the regenerated phosphoric acid supplemented to the phosphoric acid in use are minimized.
Fourth, the amount of phosphoric acid replenished sent from the storage tank 113 can be controlled by a signal from the liquid level gauge 36 provided in the overflow portion 3a. This is significant in that the amount of phosphoric acid replenished is automatically controlled according to the amount of phosphoric acid in the overflow portion 3a, and a necessary amount of phosphoric acid is secured in the etching tank 3.
Fifth, the supply pipe can switch between a path 67a for sending the regenerated phosphoric acid taken out from the storage tank 113 to the etching tank 3 or the overflow part 3a, and a circulation path 67b for returning to the storage tank again. That is to make up. In particular, the regenerated phosphoric acid in the storage tank 113 is circulated by the circulation path 67b so that the temperature and the like are made uniform and can be used in an optimum state.

なお、以上のような本発明装置は、使用中の燐酸及び再生燐酸を所望の酸化珪素濃度に維持できることから、例えば、異なるウエハを製造する多品種少量生産ラインにあって、エッチングで除去する窒化膜量に差がある場合でも、容易に対処可能となり、近年必要性が大きくなっているシステムLSI生産ラインに好適なものとなる。また、燐酸の酸化珪素濃度を所望に制御することにより、窒化膜マスクを形成する上で燐酸中におけるウエハ1の酸化膜のエッチング量はできるだけ少ない方が望ましく、用いられる熱燐酸中の酸化珪素濃度は可能な限り高くすることが必要とされる場合にも適用でき、特に微細なIC製造ではそのような高酸化珪素濃度の熱燐酸によるエッチングが可能となる。これは、エッチング槽3の溢流部3aに溢流した燐酸が補給される再生燐酸と共に循環濾過経路部5における濾過部51の沈着酸化珪素を再溶解するため、微粒子汚染が急激に増えることもなく、濾過部51のフィルタの目詰まりが解消され、プロセスが正常に維持されるからである。   The apparatus of the present invention as described above can maintain phosphoric acid and regenerated phosphoric acid in use at a desired silicon oxide concentration. For example, in a high-mix low-volume production line that manufactures different wafers, nitridation that is removed by etching. Even if there is a difference in film amount, it can be easily dealt with, and it is suitable for a system LSI production line that has become increasingly necessary in recent years. Further, by controlling the silicon oxide concentration of phosphoric acid as desired, it is desirable that the etching amount of the oxide film of the wafer 1 in phosphoric acid be as small as possible in forming the nitride film mask, and the silicon oxide concentration in the hot phosphoric acid used. Can be applied to the case where it is required to be as high as possible, and etching with hot phosphoric acid having such a high silicon oxide concentration is possible particularly in the manufacture of fine ICs. This is because the deposited silicon oxide in the filtration part 51 in the circulation filtration path part 5 is re-dissolved together with the regenerated phosphoric acid that is replenished with the phosphoric acid overflowing the overflow part 3a of the etching tank 3, so that the particulate contamination increases rapidly. This is because clogging of the filter of the filtration unit 51 is eliminated and the process is maintained normally.

以上の各発明は実施の形態に基づいて特定したものである。技術思想としては、例えば、前記半導体ウエハを被処理物とし、前記エッチング槽をエッチング等の処理を施す処理槽とし、循環濾過経路部を循環し濾過等を施す循環経路部とし、前記燐酸再生装置を燐酸等の薬液を再生等の処理を施す薬液処理部とすることにより請求項7〜9のように一般化できる。   Each of the above inventions is specified based on the embodiment. As a technical idea, for example, the semiconductor wafer is an object to be processed, the etching tank is a processing tank that performs processing such as etching, the circulation filtering path is circulated and a circulation path that performs filtration, and the like. Can be generalized as in claims 7 to 9 by using a chemical solution treatment unit for performing a treatment such as regeneration of a chemical solution such as phosphoric acid.

即ち、請求項7の発明は、被処理物1を薬液によって処理する処理槽3と、前記処理槽内の薬液を槽外に導いて再び処理槽内へ戻す循環経路部5と、前記薬液に処理を加える薬液処理部6とを備えている処理装置において、前記薬液処理部6に送る前記薬液の流量を、前記循環経路部5に流れる前記薬液の液圧に応じて制御する流量調節手段(圧力計61とニードル弁65又は流量計等)を有していることを特徴としている。この発明において、前記循環経路部5は、前記薬液を濾過する濾過部51を備え、前記液圧は、主として、前記薬液が前記濾過部51を通過することにより生ずる液圧である。又、前記循環経路部5は、前記薬液を前記処理槽3から前記濾過部51に送る第1循環経路部(図2の排出口34と濾過部51との間を接続している配管)と、前記濾過部を通過した前記薬液を前記濾過部51から前記処理槽3に送る第2循環経路部(図2の濾過部51と供給口35との間を接続している配管)とを含むと共に、前記第1循環経路部と前記薬液処理部6とを接続する分岐配管60を有し、前記分岐配管を介して前記薬液が前記薬液処理部6に送られる構成である。   That is, the invention of claim 7 includes a treatment tank 3 for treating the object to be treated 1 with a chemical solution, a circulation path section 5 for guiding the chemical solution in the treatment tank to the outside of the tank and returning it to the treatment tank, and the chemical solution. In a processing apparatus including a chemical solution processing unit 6 that performs processing, a flow rate adjusting unit that controls the flow rate of the chemical solution sent to the chemical solution processing unit 6 according to the pressure of the chemical solution flowing in the circulation path unit 5 ( It has a pressure gauge 61 and a needle valve 65 or a flow meter). In the present invention, the circulation path unit 5 includes a filtering unit 51 that filters the chemical solution, and the hydraulic pressure is mainly a hydraulic pressure that is generated when the chemical solution passes through the filtering unit 51. In addition, the circulation path section 5 includes a first circulation path section (a pipe connecting the discharge port 34 and the filtration section 51 in FIG. 2) that sends the chemical solution from the processing tank 3 to the filtration section 51. And a second circulation path section (pipe connecting between the filtration section 51 and the supply port 35 in FIG. 2) that sends the chemical solution that has passed through the filtration section to the treatment tank 3 from the filtration section 51. In addition, a branch pipe 60 that connects the first circulation path section and the chemical liquid processing section 6 is provided, and the chemical liquid is sent to the chemical liquid processing section 6 through the branch pipe.

以上の構造では、例えば、上記ウエハ以外の被処理物や薬液として燐酸以外のエッチング液でも、上記した発明の利点を具備できる。また、請求項10の製造方法は、以上の各発明が処理装置であるのに対し、各種ウエハを半導体装置として捉えそれを作る点から特定したことに意義がある。   In the structure described above, for example, an object other than the wafer or an etching solution other than phosphoric acid as the chemical solution can provide the advantages of the above-described invention. Further, the manufacturing method of claim 10 is significant in that each of the above inventions is a processing apparatus, and is specified from the viewpoint of making various wafers as semiconductor devices.

以上説明したように、本発明に係る処理装置および半導体装置の製造方法にあっては、例えば、請求項1のように、エッチング槽の溢流部に溢流した燐酸を濾過、加熱及び純水添加による循環濾過経路部を備えた構造において、その循環濾過経路部の濾過の手前の循環液圧を測定し、該循環液圧圧に応じて分岐配管へ分岐する液量を制御することから、燐酸再生装置側への回収時及び回収量の制御を自動化し易いこと、エッチング精度を維持して回収量を抑えること、ロット間でのウエハのエッチング精度バラツキを抑えること等が実現できる。   As described above, in the processing apparatus and the method for manufacturing a semiconductor device according to the present invention, for example, as in claim 1, the phosphoric acid overflowed in the overflow portion of the etching tank is filtered, heated, and purified water. In the structure provided with the circulation filtration path portion by addition, the circulation fluid pressure before filtration of the circulation filtration passage portion is measured, and the amount of liquid branched to the branch pipe is controlled according to the circulation fluid pressure pressure. It is easy to automate the control of the recovery amount and the recovery amount to the regenerator side, maintain the etching accuracy and suppress the recovery amount, suppress variation in wafer etching accuracy between lots, and the like.

以下、本発明を実施の形態として示した図面を参照しつつ説明する。図1は本発明装置の全体模式構成図、図2は同装置のうちエッチング槽及び循環濾過経路部を主体とした構成図、図3は同装置のうち燐酸再生装置を主体とした構成図である。以下の説明では、本発明装置の各部を説明した後、装置作動例を言及し本発明の利点を明らかにする。
(装置構造)このウエハ処理装置は、複数のウエハ1をウエハカセット2に収容した状態で熱燐酸(エッチング液)に浸して同ウエハ1の窒化膜をエッチングするエッチング槽3を主体としたエッチング部4と、エッチング槽3から溢流した燐酸を濾過、加熱及び純水添加工程を経て再びエッチング槽3へ戻す循環濾過経路部5と、循環濾過経路部5から燐酸を分岐して同燐酸中の酸化珪素濃度を下げ、当該エッチング液に使用可能な一定の酸化珪素濃度の燐酸に再生してエッチング槽3の溢流部3aへ戻す燐酸再生装置6とを備えている。
(エッチング部)このエッチング部4では、エッチング槽3と共に不図示の自動移送ロボットやベルトコンベヤ等が配置され、ウエハ1がエッチング槽3の槽本体内に出し入れされてエッチング処理される。エッチング槽3は、内周壁30及び底壁31で槽本体を区画形成していると共に、内周壁30の上端から溢れる燐酸を受け入れる溢流部3aを外周に形成している。内周壁30及び底壁31には不図示の発熱体である面ヒータが内設されている。槽本体には、底内側に分散板であるメッシュ32が設けられ、該メッシュ32の上にウエハカセット2が保持される。また、液の導入・排出構造は、溢流部3aの上側に設けられて燐酸(主に再生燐酸)を補給する補給口33と、溢流部3aの底壁に設けられて溢流した燐酸を循環濾過経路部5へ排出する排出口34と、底壁31に設けられて循環濾過経路部5で処理された燐酸を槽本体内に導入する供給口35とからなる。制御系としては、溢流部3aの燐酸液面を計測する複数の液面センサ(S1〜S3)36と、槽本体内の燐酸の液温度を検出する温度センサ37と、温度センサ37による検出温度を基にして前記した面ヒータを制御して燐酸を一定の所定温度に維持するヒータコントローラ38とが設けられている。
(循環濾過経路部)この循環濾過経路部5は、排出口34から排出される燐酸を供給口35からエッチング槽3の槽本体に戻すためのポンプ50と、その燐酸を濾過するフィルタ51と、この濾過した燐酸を一定の所定温度にする加熱器であるラインヒータ52と、このラインヒータ52を制御するための温度センサ53及びヒータコントローラ54と、その一定温度に加温された燐酸に所定量の純水を添加するための計量ポンプ55とを備えている。即ち、ここでは、溢流部3aから排出されたエッチング液つまり燐酸について、まず、フィルタ51により燐酸を濾過する。次に、燐酸は、ラインヒータ52で一定の温度まで加温された後、計量ポンプ55で純水を添加して燐酸濃度が一定に保たれるよう調整されて槽本体内へ戻される。なお、ラインヒータ52は溢流部3aから排出された燐酸の温度が少し下がるため加温し、計量ポンプ55は蒸発に起因した燐酸濃度の変動を補正し、フィルタ51は燐酸中の不純物(析出された酸化珪素を含む)を除去する。従って、フィルタ51の濾過は、溢流部3aから排出された燐酸を加温する前に行うことが重要となる。
(燐酸再生装置)この燐酸再生装置6は、循環濾過経路部5において、ポンプ50とフィルタ51の間の配管部に設けられた分岐配管60及び流量調節手段(圧力計61とニードル弁65等)を介し循環濾過経路部5を流れる燐酸の適量を受け槽63に回収し、図2の再生部7にてその回収された燐酸を再利用可能に処理する。即ち、分岐配管60には、圧力計61、流量計62、ニードル弁65及び自動弁66が設けられている。ここで、圧力計61は、ポンプ50とフィルタ51の間の配管部、つまりフィルタ51の手前の液圧力(循環液圧又は濾過圧)を測定する。流量計62は積算型であり、分岐配管60を介して分岐された燐酸(再生処理の対象となる燐酸)の流量を計測する。ニードル弁65は流量調整弁であり、このニードル弁65の弁開度を適宜に調整しておくことにより、分岐配管60から分岐される燐酸の流量は前記した循環液圧に対応して自動的に制御される。自動弁66は開閉弁である。そして、自動弁66の開状態のとき、分岐配管60から分岐された燐酸が受け槽63に回収される。この受け槽63は、複数の液面センサ(S4,S5)64を有し、前記回収量を常に計測している。ここに回収された燐酸は、所定量以上にある状態で、後述する制御回路300からの信号で自動弁101を制御することにより底部の排水口72から処理槽100へ導入される。
Hereinafter, the present invention will be described with reference to the drawings showing the embodiments. 1 is an overall schematic configuration diagram of the apparatus of the present invention, FIG. 2 is a configuration diagram mainly including an etching tank and a circulation filtration path portion of the apparatus, and FIG. 3 is a configuration diagram mainly including a phosphoric acid regenerating apparatus of the apparatus. is there. In the following description, after describing each part of the apparatus of the present invention, the advantages of the present invention will be clarified by referring to an apparatus operation example.
(Apparatus Structure) This wafer processing apparatus is an etching unit mainly composed of an etching tank 3 for etching a nitride film of the wafer 1 by immersing the wafer 1 in a hot phosphoric acid (etching solution) in a state where the wafer 1 is housed in a wafer cassette 2. 4, a circulation filtration path part 5 for returning the phosphoric acid overflowing from the etching tank 3 to the etching tank 3 again through filtration, heating and pure water addition steps, and branching the phosphoric acid from the circulation filtration path part 5 A phosphoric acid regenerating apparatus 6 is provided which lowers the silicon oxide concentration, regenerates phosphoric acid having a certain silicon oxide concentration usable in the etching solution, and returns the phosphoric acid to the overflow portion 3a of the etching tank 3.
(Etching part) In this etching part 4, an automatic transfer robot (not shown), a belt conveyor, and the like are disposed together with the etching tank 3, and the wafer 1 is taken in and out of the tank body of the etching tank 3 to be etched. In the etching tank 3, the tank body is defined by the inner peripheral wall 30 and the bottom wall 31, and an overflow portion 3 a that receives phosphoric acid overflowing from the upper end of the inner peripheral wall 30 is formed on the outer periphery. The inner peripheral wall 30 and the bottom wall 31 are provided with a surface heater which is a heating element (not shown). The tank body is provided with a mesh 32 which is a dispersion plate inside the bottom, and the wafer cassette 2 is held on the mesh 32. Further, the liquid introduction / discharge structure is provided on the upper side of the overflow portion 3a to supply replenishment port 33 for replenishing phosphoric acid (mainly regenerated phosphoric acid), and the overflowed phosphoric acid provided on the bottom wall of the overflow portion 3a. And a supply port 35 for introducing phosphoric acid provided in the bottom wall 31 and treated in the circulation filtration path 5 into the tank body. As a control system, a plurality of liquid level sensors (S1 to S3) 36 for measuring the phosphoric acid liquid level of the overflow portion 3a, a temperature sensor 37 for detecting the liquid temperature of phosphoric acid in the tank body, and detection by the temperature sensor 37 A heater controller 38 is provided for controlling the surface heater based on the temperature to maintain phosphoric acid at a predetermined temperature.
(Circulation filtration path part) This circulation filtration path part 5 includes a pump 50 for returning phosphoric acid discharged from the discharge port 34 to the tank body of the etching tank 3 from the supply port 35, a filter 51 for filtering the phosphoric acid, A line heater 52 which is a heater for bringing the filtered phosphoric acid to a predetermined temperature, a temperature sensor 53 and a heater controller 54 for controlling the line heater 52, and a predetermined amount of phosphoric acid heated to the predetermined temperature. And a metering pump 55 for adding pure water. That is, here, phosphoric acid is first filtered by the filter 51 with respect to the etching solution, that is, phosphoric acid discharged from the overflow portion 3a. Next, phosphoric acid is heated to a certain temperature by the line heater 52, and then purified water is added by the metering pump 55 to adjust the phosphoric acid concentration to be kept constant, and returned to the tank body. The line heater 52 is heated because the temperature of the phosphoric acid discharged from the overflow portion 3a is slightly lowered, the metering pump 55 corrects the fluctuation of the phosphoric acid concentration caused by the evaporation, and the filter 51 contains impurities (precipitation) in the phosphoric acid. Removed silicon oxide). Therefore, it is important to filter the filter 51 before warming the phosphoric acid discharged from the overflow portion 3a.
(Phosphoric acid regenerating apparatus) This phosphoric acid regenerating apparatus 6 includes a branch pipe 60 and a flow rate adjusting means (pressure gauge 61, needle valve 65, etc.) provided in the piping section between the pump 50 and the filter 51 in the circulation filtration path section 5. An appropriate amount of phosphoric acid flowing through the circulation filtration path unit 5 is collected in the receiving tank 63, and the collected phosphoric acid is processed in the regenerating unit 7 of FIG. 2 so that it can be reused. That is, the branch pipe 60 is provided with a pressure gauge 61, a flow meter 62, a needle valve 65, and an automatic valve 66. Here, the pressure gauge 61 measures the fluid pressure (circulating fluid pressure or filtration pressure) before the filter 51, that is, the piping portion between the pump 50 and the filter 51. The flow meter 62 is an integrating type, and measures the flow rate of phosphoric acid (phosphoric acid to be regenerated) branched via the branch pipe 60. The needle valve 65 is a flow rate adjusting valve. By appropriately adjusting the opening degree of the needle valve 65, the flow rate of phosphoric acid branched from the branch pipe 60 is automatically set in accordance with the circulating fluid pressure. Controlled. The automatic valve 66 is an on-off valve. When the automatic valve 66 is in an open state, the phosphoric acid branched from the branch pipe 60 is collected in the receiving tank 63. The receiving tank 63 has a plurality of liquid level sensors (S4, S5) 64, and always measures the recovery amount. The phosphoric acid collected here is introduced into the treatment tank 100 from the drain port 72 at the bottom by controlling the automatic valve 101 with a signal from the control circuit 300 described later in a state where it is in a predetermined amount or more.

処理槽100は、濃度測定部112及び貯留槽113と組に構成されている。処理槽100には、液面センサ(S6,S7)102と、槽内の燐酸を加熱する面ヒータ103及び面ヒータ104等と、槽内の燐酸の温度を検出する温度センサ105と、温度センサ105の検出温度を基にして面ヒータ103,104等を制御して槽内の燐酸を加温にするヒータコントローラ106と、槽内に純水を添加する純水供給手段である計量ポンプ107及び槽内の補給配管108と、槽内にHF(フッ酸、つまりフッ化水素)の必要量供給する薬液供給手段であるHFタンク109及び計量ポンプ110と、槽上部に設けられて蒸発する蒸気を取り出すための蒸気取り出し口111等が設けられている。   The processing tank 100 is configured as a set with the concentration measuring unit 112 and the storage tank 113. The treatment tank 100 includes a liquid level sensor (S6, S7) 102, a surface heater 103 and a surface heater 104 for heating phosphoric acid in the tank, a temperature sensor 105 for detecting the temperature of phosphoric acid in the tank, and a temperature sensor. A heater controller 106 for heating the phosphoric acid in the tank by controlling the surface heaters 103, 104 and the like based on the detected temperature 105; a metering pump 107 which is a pure water supply means for adding pure water into the tank; The replenishment pipe 108 in the tank, the HF tank 109 and the metering pump 110 which are chemical supply means for supplying a necessary amount of HF (hydrofluoric acid, that is, hydrogen fluoride) into the tank, and the vapor provided to evaporate provided in the upper part of the tank. A steam outlet 111 and the like for extraction are provided.

測定部112は、再生用として処理槽100の燐酸に投入されたフッ酸の現在濃度を検出し、再生の進行及び終点を判定する箇所である。この形態では、処理槽100の蒸気を冷却する冷却器200と、ここで冷却された液体を一定の温度に調整するスパイラル管を含む恒温槽201及びその温度コントローラ202と、恒温槽201からの液体を受ける保温容器203と、処理槽100内の燐酸のフッ素濃度を算出するために、保温容器203の液体の導電率を測定する導電率センサ204を有する導電率計205とを備えている。ここでの保温容器203は、導電率センサ204を用いていることから、ある程度の深さのものが用いられる。また、処理槽100の燐酸中のフッ素濃度は、導電率計で測定された導電率のデータを基にして当該装置のメイン制御手段である制御回路(マイクロコンピュータ等)300で演算処理して算出される。なお、制御回路300は、処理槽100内の燐酸量に応じたフッ酸及び純水の投入量を算出し、各算出投入量を充足するよう計量ポンプ110,107を制御したり、前記フッ素濃度が所定値以下となったときその再生終了を知らせたり、上述した各部の自動弁、ニードル弁及び計量ポンプ等も必要に応じて制御したり、各部のヒータコントローラ等との間で必要な信号の授受を行ってウエハ処理装置全体を制御する。   The measuring unit 112 is a part for detecting the current concentration of hydrofluoric acid introduced into the phosphoric acid in the treatment tank 100 for regeneration and determining the progress and end point of regeneration. In this embodiment, a cooler 200 that cools the vapor of the processing bath 100, a thermostatic chamber 201 including a spiral tube that adjusts the liquid cooled here to a constant temperature, its temperature controller 202, and the liquid from the thermostatic bath 201. In order to calculate the fluorine concentration of phosphoric acid in the treatment tank 100, a conductivity meter 205 having a conductivity sensor 204 that measures the conductivity of the liquid in the heat retention vessel 203 is provided. Since the heat retaining container 203 here uses the conductivity sensor 204, a container having a certain depth is used. Further, the fluorine concentration in the phosphoric acid in the treatment tank 100 is calculated by calculation processing by a control circuit (microcomputer or the like) 300 which is the main control means of the apparatus based on the conductivity data measured by the conductivity meter. Is done. The control circuit 300 calculates the input amount of hydrofluoric acid and pure water according to the amount of phosphoric acid in the treatment tank 100, controls the metering pumps 110 and 107 to satisfy each calculated input amount, and controls the fluorine concentration. When the value becomes less than the specified value, the end of regeneration is notified, the automatic valves, needle valves, metering pumps, etc. of each part described above are controlled as necessary, and necessary signals are exchanged with the heater controller, etc. of each part. The entire wafer processing apparatus is controlled by giving and receiving.

これに対し、貯留槽113は、処理槽100内で再生処理された燐酸を自動弁115を介しバッチ式に貯留し、その再生燐酸を補給配管67aを介し前記溢流部3aへ補給する箇所である。貯留槽113には、貯留された再生燐酸を所定温度に加熱する面ヒータ116及び面ヒータ117と、貯留槽113内の燐酸量を計測する複数の液面センサ(S8〜S10)118と、貯留槽113内の燐酸の温度を検出する温度センサ119と、温度センサ119による検出温度を基にして貯留槽113内の燐酸を所定温度に制御するヒータコントローラ120とを備えている。また、貯留槽113と溢流部3aとの間は、溢流部3a側に自動弁69とニードル弁70を付設した補給配管67aで接続されている。そして、貯留槽113内の再生燐酸は、前記した液面センサ(S1〜S3)36の信号を制御回路300で受け、制御回路300からポンプ68、ニードル弁70へ送信される指令により溢流部3aへ補給される。また、この構造では、貯留槽113から取り出された再生燐酸が溢流部3aへ送る補給配管67aと共に、再び貯留槽へ戻す循環配管67bとを有している。循環配管67bは、自動弁69の閉状態において、貯留槽113内の再生燐酸を補給配管67aから再び貯留槽113内へ循環する。
(装置稼動)次に、以上のウエハ処理装置の稼動又は動作例について概説する。まず、窒化膜を施したウエハ1は、ウエハカセット2に収納された状態で、加熱された燐酸で満たされたエッチング槽3に入れられると、その熱燐酸によってウエハ1の窒化膜がエッチング処理される。この処理過程では、エッチング槽3の本体から溢れ出る熱燐酸が溢流部3aに集められ排出口34から循環濾過経路部5へ排出され、ポンプ50によってフィルタ51側へ送られる。このフィルタ51を通過した燐酸は、ラインヒータ52で所望の温度(例えば燐酸の沸点直前の温度)に昇温されると共に、昇温された燐酸に計量ポンプ55を介し所定量の純水が添加されて供給口35からエッチング槽3の本体内に送られて循環される。このようにして、燐酸がエッチング槽3に循環されるため、ウエハ1の窒化膜が適切にエッチング処理される。この処理過程において、燐酸中の酸化珪素濃度が高くなると、ウエハ1の窒化膜の選択的エッチングが適切に行われず、しかもフィルタ51の酸化珪素沈着が多くなり、フィルタ51の濾過圧つまり循環濾過経路部5におけるフィルタ51の手前の循環液圧が高くなる。
On the other hand, the storage tank 113 stores the phosphoric acid regenerated in the processing tank 100 in a batch manner via the automatic valve 115, and replenishes the regenerated phosphoric acid to the overflow portion 3a via the supply pipe 67a. is there. The storage tank 113 includes a surface heater 116 and a surface heater 117 that heat the stored regenerated phosphoric acid to a predetermined temperature, a plurality of liquid level sensors (S8 to S10) 118 that measure the amount of phosphoric acid in the storage tank 113, and storage. A temperature sensor 119 for detecting the temperature of phosphoric acid in the tank 113 and a heater controller 120 for controlling the phosphoric acid in the storage tank 113 to a predetermined temperature based on the temperature detected by the temperature sensor 119 are provided. Further, the storage tank 113 and the overflow portion 3a are connected by a replenishment pipe 67a provided with an automatic valve 69 and a needle valve 70 on the overflow portion 3a side. The regenerated phosphoric acid in the storage tank 113 receives the signal from the liquid level sensors (S1 to S3) 36 by the control circuit 300, and overflows in response to a command transmitted from the control circuit 300 to the pump 68 and the needle valve 70. Replenished to 3a. Further, in this structure, the recycle phosphoric acid taken out from the storage tank 113 is provided with a supply pipe 67a for sending it to the overflow portion 3a and a circulation pipe 67b for returning it to the storage tank again. The circulation pipe 67b circulates the regenerated phosphoric acid in the storage tank 113 from the supply pipe 67a into the storage tank 113 again when the automatic valve 69 is closed.
(Apparatus Operation) Next, the operation or operation example of the above wafer processing apparatus will be outlined. First, when the nitride film-formed wafer 1 is placed in the wafer cassette 2 and placed in the etching bath 3 filled with heated phosphoric acid, the nitride film on the wafer 1 is etched by the hot phosphoric acid. The In this treatment process, hot phosphoric acid overflowing from the main body of the etching tank 3 is collected in the overflow portion 3 a, discharged from the discharge port 34 to the circulation filtration path portion 5, and sent to the filter 51 side by the pump 50. The phosphoric acid that has passed through the filter 51 is heated to a desired temperature (for example, the temperature just before the boiling point of phosphoric acid) by the line heater 52, and a predetermined amount of pure water is added to the heated phosphoric acid via the metering pump 55. Then, it is sent from the supply port 35 into the main body of the etching tank 3 and circulated. In this way, since phosphoric acid is circulated in the etching tank 3, the nitride film of the wafer 1 is appropriately etched. In this process, when the concentration of silicon oxide in phosphoric acid becomes high, the selective etching of the nitride film on the wafer 1 is not performed properly, and the silicon oxide deposition on the filter 51 increases, and the filtration pressure of the filter 51, that is, the circulation filtration path. The circulating fluid pressure in front of the filter 51 in the part 5 increases.

このようなエッチングでは、燐酸がエッチング槽3の本体構成素材である石英をも微量にエッチングする関係で、燐酸中の酸化珪素濃度は単純にウエハ1の処理枚数だけでは正確に推定することができない。しかし、フィルタ51の目詰まり具合いは、燐酸中の酸化珪素濃度を推定する場合によい指針であることに変わらず、特に飽和溶解値に近い高酸化珪素濃度においてエッチングが行われている場合には極めて最適な目安とすることができる。これは、例えば、フィルタ51が新しく、或いは燐酸が新しく、つまり燐酸が低酸化珪素濃度であると、フィルタ51の酸化珪素沈着が少ない。この場合、圧力計61で計測される圧力値(循環液圧)が第1の所定値(X1)以下であれば、自動弁66を閉状態とし、燐酸が受け槽63側へ流入しないようにする。これは、循環濾過経路部5の濾過、加熱及び純水添加工程を経た燐酸により、ウエハ1の窒化膜の選択的エッチングがまだ適切に行われるからである。ここで、ウエハ1の処理稼動時間が長く、或いは処理したウエハ1の枚数が多く、燐酸中の酸化珪素濃度が高くなると(飽和溶解値に近くなると)、前記した循環液圧が上昇する。すると、分岐配管60から分岐して再生部へ回収される燐酸の量は、例えば、ニードル弁65の弁開度が一定であれば、その循環液圧に比例して受け槽63へ自動的に取り出されることになる。また、他の制御としては、圧力計61で計測した圧力が第1の所定値(X1)より大きいが、第2の所定値(X2)以下である場合、ニードル弁65をその計測した圧力に応じて制御し、循環濾過経路部5から分岐して受け槽63へ取り出す燐酸の回収量を調節する。なお、前記各所定値(X1),(X2)は経験的に求めた値であり、圧力計61で測定された圧力が大きいほど、ニードル弁65の開度合を大きくして大量に回収し、逆に圧力が小さいほど少ない回収量とする。所定値(X2)以上のときはニードル弁65を全開とし、短時間で大量に回収することになる。   In such etching, phosphoric acid etches a very small amount of quartz, which is the main constituent material of the etching tank 3, so that the silicon oxide concentration in phosphoric acid cannot be accurately estimated simply by the number of processed wafers 1. . However, the clogging of the filter 51 remains a good guideline for estimating the silicon oxide concentration in phosphoric acid, particularly when etching is performed at a high silicon oxide concentration close to the saturation dissolution value. It can be a very optimal guide. This is because, for example, when the filter 51 is new or phosphoric acid is new, that is, phosphoric acid has a low silicon oxide concentration, silicon oxide deposition on the filter 51 is small. In this case, if the pressure value (circulation fluid pressure) measured by the pressure gauge 61 is equal to or less than the first predetermined value (X1), the automatic valve 66 is closed so that phosphoric acid does not flow into the receiving tank 63 side. To do. This is because the selective etching of the nitride film of the wafer 1 is still appropriately performed by phosphoric acid that has undergone the filtration, heating, and pure water addition steps of the circulation filtration path portion 5. Here, when the processing operation time of the wafer 1 is long, or when the number of processed wafers 1 is large and the silicon oxide concentration in phosphoric acid becomes high (close to the saturation dissolution value), the circulating fluid pressure increases. Then, the amount of phosphoric acid branched off from the branch pipe 60 and recovered to the regeneration unit is automatically supplied to the receiving tank 63 in proportion to the circulating fluid pressure if the valve opening of the needle valve 65 is constant, for example. It will be taken out. As another control, when the pressure measured by the pressure gauge 61 is larger than the first predetermined value (X1) but less than the second predetermined value (X2), the needle valve 65 is adjusted to the measured pressure. The amount of phosphoric acid recovered from the circulation filtration path 5 and taken out to the receiving tank 63 is adjusted accordingly. The predetermined values (X1) and (X2) are empirically obtained values, and the larger the pressure measured by the pressure gauge 61, the larger the degree of opening of the needle valve 65 and the greater the amount recovered. Conversely, the smaller the pressure, the smaller the recovery amount. When the value is equal to or greater than the predetermined value (X2), the needle valve 65 is fully opened and a large amount is collected in a short time.

上記循環濾過経路部5の燐酸は、以上のような制御により分岐配管60、流量計62、ニードル弁65、自動弁65を介して受け槽63へ流入されると、これに伴って、受け槽63の燐酸が増加し、又、エッチング槽3の燐酸が減る。流量計62は受け槽63へ回収される燐酸の総量をモニタし、制御回路300を介し以後の処理に必要なデータを得る。例えば、制御回路300は、自動弁69を開状態とし、又、ニードル弁70を介し貯留槽113の再生燐酸を補給口33から溢流部3aへ適量だけ補給するよう制御する。なお、溢流部3aの燐酸量は、液面センサ(S2)36で検出されており、適量補給されると、制御回路300の信号により自動弁69を閉状態とする。溢流部3aに補給された燐酸は、排出口34を介して循環濾過経路部5へ流れ、これによってエッチング槽3の燐酸量が一定に維持される。   When the phosphoric acid in the circulation filtration path section 5 flows into the receiving tank 63 through the branch pipe 60, the flow meter 62, the needle valve 65, and the automatic valve 65 by the control as described above, the receiving tank is associated with this. 63 phosphoric acid increases, and phosphoric acid in the etching tank 3 decreases. The flow meter 62 monitors the total amount of phosphoric acid recovered in the receiving tank 63 and obtains data necessary for subsequent processing via the control circuit 300. For example, the control circuit 300 controls the automatic valve 69 to be in an open state and supplies the regenerated phosphoric acid in the storage tank 113 through the needle valve 70 to an appropriate amount from the replenishing port 33 to the overflow portion 3a. The amount of phosphoric acid in the overflow portion 3a is detected by the liquid level sensor (S2) 36. When an appropriate amount is supplied, the automatic valve 69 is closed by a signal from the control circuit 300. The phosphoric acid replenished to the overflow part 3a flows into the circulation filtration path part 5 through the discharge port 34, and thereby the amount of phosphoric acid in the etching tank 3 is kept constant.

この場合、貯留槽113の再生燐酸は、処理槽100で再生されて低酸化珪素濃度の燐酸であることから、エッチング槽3の燐酸中の酸化珪素濃度もそれに応じて低い値に維持可能にする。また、循環濾過経路部5では、その低酸化珪素濃度の燐酸がポンプ50からフィルタ51側へ送られるため、フィルタ51の沈着酸化珪素を再溶解して除去する。この利点は、低酸化珪素濃度の燐酸になると、フィルタ51の沈着酸化珪素が再溶解してフィルタ51を長期に使用可能にする。   In this case, since the regenerated phosphoric acid in the storage tank 113 is regenerated in the treatment tank 100 and has a low silicon oxide concentration, the silicon oxide concentration in the phosphoric acid in the etching tank 3 can be maintained at a low value accordingly. . Further, in the circulating filtration path section 5, since the phosphoric acid having a low silicon oxide concentration is sent from the pump 50 to the filter 51 side, the deposited silicon oxide on the filter 51 is redissolved and removed. This advantage is that when the phosphoric acid has a low silicon oxide concentration, the deposited silicon oxide of the filter 51 is redissolved so that the filter 51 can be used for a long time.

従って、この構造では、フィルタ51の目詰まりによって循環液圧(濾過圧)の上昇が解消されるだけでなく、エッチング槽3の燐酸中の酸化珪素濃度が下がることにより、エッチング槽3の燐酸は望ましいエッチング速度比の酸化珪素濃度となり、つまり窒化膜と酸化膜のエッチング選択比を大きく、かつその比を一定とした燐酸が得られ、しかも酸化珪素が飽和溶解値に達することもない。なお、前記循環液圧(濾過圧)が下がれば、循環濾過経路部5の燐酸を分岐して燐酸再生装置6へ流す量を減らしたり、その燐酸の分岐を停止する時間も長くできる。また、窒化膜と酸化膜のエッチング選択比を大きく、かつその比を一定とした燐酸により、ウエハ1の窒化膜マスクを継続して最適な条件でエッチングし、高効率のエッチングが保たれるだけでなく、ウエハ1の処理ロット間に発生し易い精度バラツキも解消できる。   Therefore, in this structure, not only the increase of the circulating fluid pressure (filtering pressure) due to clogging of the filter 51 is eliminated, but also the phosphoric acid in the etching tank 3 is reduced by decreasing the silicon oxide concentration in the phosphoric acid in the etching tank 3. Phosphoric acid is obtained in which the silicon oxide concentration has a desired etching rate ratio, that is, the etching selectivity ratio between the nitride film and the oxide film is large and the ratio is constant, and the silicon oxide does not reach the saturation dissolution value. If the circulating fluid pressure (filtering pressure) decreases, the amount of phosphoric acid in the circulation filtration path 5 that branches and flows to the phosphoric acid regenerating apparatus 6 can be reduced, or the time for stopping the branching of phosphoric acid can be lengthened. In addition, the nitride film mask of the wafer 1 is continuously etched under optimum conditions by phosphoric acid having a large etching selectivity ratio between the nitride film and the oxide film and a constant ratio thereof, and high-efficiency etching is maintained. In addition, the accuracy variation that easily occurs between the processing lots of the wafer 1 can be eliminated.

一方、受け槽63の燐酸は、自動弁101を介し処理槽100へ入れられ、処理槽100で使用可能な燐酸に再生処理される。この再生処理においては、HFタンク109のフッ酸が計量ポンプ110によって処理槽100内へ適量供給されると共に、純水が計量ポンプ107によって純水供給管108を介し処理槽100内へ適量供給される。なお、前記フッ酸及び純水の供給量は、例えば、特開平11ー293479号の関係箇所を参照されたい。そして、この再生処理では、面ヒータ103,104を制御して処理槽100内の液温度を上げるようにし、蒸発した蒸気を蒸気取り出し口111から冷却器200に導いて冷却して液体に戻す。この液体は、恒温槽201内のスパラル管を通って、定温度に調整されつつ保温容器203へ流し込まれる。なお、保温容器203には常に新たな液体が流入され、古い液体が溜まらないようになっている。保温容器203から流れ出した液体は必要な処理が施される。   On the other hand, phosphoric acid in the receiving tank 63 is put into the processing tank 100 through the automatic valve 101 and regenerated into phosphoric acid usable in the processing tank 100. In this regeneration process, an appropriate amount of hydrofluoric acid in the HF tank 109 is supplied into the processing tank 100 by the metering pump 110, and pure water is supplied into the processing tank 100 through the pure water supply pipe 108 by the measuring pump 107. The For the supply amount of the hydrofluoric acid and pure water, see, for example, the relevant part of JP-A-11-293479. In this regeneration process, the surface heaters 103 and 104 are controlled to raise the liquid temperature in the treatment tank 100, and the evaporated vapor is led from the vapor outlet 111 to the cooler 200 to be cooled and returned to the liquid. This liquid flows into the heat insulating container 203 while being adjusted to a constant temperature through the spalar pipe in the thermostat 201. It should be noted that new liquid always flows into the heat retaining container 203 so that old liquid does not accumulate. The liquid that has flowed out of the heat insulating container 203 is subjected to necessary processing.

続いて、保温容器203の液体の導電率を導電率計205(導電率センサ204)で計測し、該計測したデータが制御回路300の記憶部に記憶される。制御回路300では、そのデータを演算処理してフッ素濃度を算出し、該フッ素濃度が所望の値と対応する導電率になる時点を判断し、処理槽100の燐酸中の酸化珪素濃度が所定値より低くなった時点を確定する。なお、処理槽100内の燐酸は、上記したフッ酸を加え、純水を添加することにより、燐酸中の酸化珪素濃度が下がり、この燐酸がウエハ1の窒化膜エッチングに使用可能な低酸化珪素濃度になると、自動弁115が開状態となり、貯留槽113へ排出される。この貯留槽113内の燐酸は、液面が液面センサ(S8,S9,S10)118の何れによって検出されているかにより、自動弁115の開時間が制御される。   Subsequently, the conductivity of the liquid in the heat retaining container 203 is measured by the conductivity meter 205 (conductivity sensor 204), and the measured data is stored in the storage unit of the control circuit 300. In the control circuit 300, the data is arithmetically processed to calculate the fluorine concentration, the time when the fluorine concentration becomes a conductivity corresponding to a desired value is determined, and the silicon oxide concentration in the phosphoric acid in the treatment tank 100 is a predetermined value. Determine when it is lower. The phosphoric acid in the treatment tank 100 is added with the above-mentioned hydrofluoric acid and added with pure water, so that the silicon oxide concentration in the phosphoric acid is lowered, and this phosphoric acid can be used for etching the nitride film of the wafer 1. When the concentration is reached, the automatic valve 115 is opened and discharged to the storage tank 113. The opening time of the automatic valve 115 is controlled depending on which of the liquid level sensors (S8, S9, S10) 118 detects the liquid level of the phosphoric acid in the storage tank 113.

また、貯留槽113内の燐酸は、面ヒータ116,117によって所定温度(例えば沸点の一歩手前の温度)に保たれ、溢流部3aに補給された際、循環濾過経路部5及びエッチング槽3の本体にある燐酸の温度低下を起こさないように処理される。そして、溢流部3aへの補給では、自動弁69が開状態とされ、貯留槽113内の燐酸がポンプ68、自動弁69及びニードル弁70を介し供給される。なお、貯留槽113内の燐酸は、通常、補給配管67aからニードル弁71及び循環配管67bを介して循環されている。ニードル弁71は、例えば、溢流部3aへの補給時のみ弁開度が最少となるよう制御される。これは、貯留槽113内の燐酸温度を極力一定に維持するためである。また、以上の循環濾過経路部5と処理槽100へ供給される純水は、実際には同じ純水溜部から図示された配管を通じてそれぞれ送られるようになっている。   Moreover, when the phosphoric acid in the storage tank 113 is maintained at a predetermined temperature (for example, a temperature just before the boiling point) by the surface heaters 116 and 117 and replenished to the overflow part 3a, the circulation filtration path part 5 and the etching tank 3 It is processed so as not to cause a temperature drop of the phosphoric acid in the main body. And in the replenishment to the overflow part 3a, the automatic valve 69 is made into an open state, and the phosphoric acid in the storage tank 113 is supplied through the pump 68, the automatic valve 69, and the needle valve 70. In addition, the phosphoric acid in the storage tank 113 is normally circulated through the replenishment piping 67a through the needle valve 71 and the circulation piping 67b. The needle valve 71 is controlled so that the valve opening is minimized, for example, only when refilling the overflow portion 3a. This is to maintain the phosphoric acid temperature in the storage tank 113 as constant as possible. Moreover, the pure water supplied to the above circulation filtration path part 5 and the processing tank 100 is actually sent from the same pure water reservoir part through the illustrated piping.

以上のように、この構造では、処理槽100内の燐酸中のフッ素濃度が温度変化や空気中の二酸化炭素の影響を受けない状態で測定されるため、処理槽100で再生処理される燐酸に残留するフッ素濃度を高精度で計測可能となり、引いては燐酸中の酸化珪素濃度をフッ素濃度の計測値から高精度に推定できる。また、燐酸液再生装置6としては、廃液となる燐酸が極力抑えられるようになり、コスト低減だけでなく、環境への悪影響も抑えることができる。
(変形例)本発明は以上の形態例に何ら制約されるものではなく、請求項の技術要件を備えている範囲内で種々変形したり、展開することも可能である。その例としては、貯留槽113内の再生燐酸を溢流部3aではなく、循環濾過経路部5へ供給したり、エッチング槽3の本体内へ供給するようにしてもよい。循環濾過経路部5へ供給させる場合は、フィルタ51の上流側に再生燐酸が合流する形態が好ましい。再生燐酸がエッチング槽3に供給される前にフィルタ51を通過することにより、再生燐酸中に含まれるパーテイクルなどを自動的に除去することができるからである。更に、ラインヒータ52及び計量ポンプ55の上流側に再生燐酸が合流する形態を採用すると、再生燐酸がエッチング槽3に供給される前に、計量ポンプ55から純水を供給することで燐酸の濃度調整を効率的に行うことができ、ラインヒータで温度調節を効率的に行うことができる。また、エッチング槽3の容量が大きい場合等においては、処理槽100を対に設けておき、受け槽63の回収燐酸を両処理槽100へ切換方式で導入し再生処理するようにしてもよい。一方、再生燐酸を貯蔵する貯留槽113にも計量ポンプを設けて、純水を供給できる構成であってもよい。この場合、再生燐酸が貯留槽113内に貯留されている状態で、その濃度調節を行うことができる。つまり、貯留槽113内にある再生燐酸を、常にエッチング処理にそのまま使用できる状態に保つことができるので、貯留槽113内にある再生燐酸をそのままエッチング処理に用いる場合は、エッチング槽3への燐酸の供給時間を短縮することができる。
As described above, in this structure, the fluorine concentration in the phosphoric acid in the treatment tank 100 is measured without being affected by temperature change or carbon dioxide in the air. The remaining fluorine concentration can be measured with high accuracy, and the silicon oxide concentration in phosphoric acid can be estimated with high accuracy from the measured value of fluorine concentration. Further, the phosphoric acid solution regenerating apparatus 6 can suppress phosphoric acid as a waste solution as much as possible, and can suppress not only cost reduction but also adverse effects on the environment.
(Modifications) The present invention is not limited to the above embodiments, and various modifications and developments can be made within the scope of the technical requirements of the claims. For example, the regenerated phosphoric acid in the storage tank 113 may be supplied not to the overflow part 3 a but to the circulation filtration path part 5 or to the main body of the etching tank 3. When supplying to the circulation filtration path | route part 5, the form with which regenerated phosphoric acid joins the upstream of the filter 51 is preferable. This is because particles and the like contained in the regenerated phosphoric acid can be automatically removed by passing the regenerated phosphoric acid through the filter 51 before being supplied to the etching tank 3. Furthermore, when the form in which the regenerated phosphoric acid joins the upstream side of the line heater 52 and the metering pump 55 is adopted, the concentration of phosphoric acid is obtained by supplying pure water from the metering pump 55 before the regenerated phosphoric acid is supplied to the etching tank 3. Adjustment can be performed efficiently, and temperature adjustment can be performed efficiently with a line heater. Further, when the capacity of the etching tank 3 is large, the processing tanks 100 may be provided in pairs, and the recovered phosphoric acid in the receiving tank 63 may be introduced into both the processing tanks 100 by a switching method and regenerated. On the other hand, the storage tank 113 for storing regenerated phosphoric acid may be provided with a metering pump to supply pure water. In this case, the concentration of the regenerated phosphoric acid can be adjusted while being stored in the storage tank 113. That is, since the regenerated phosphoric acid in the storage tank 113 can be always used as it is for the etching process, when the regenerated phosphoric acid in the storage tank 113 is used for the etching process as it is, the phosphoric acid to the etching tank 3 is used. The supply time can be shortened.

また、エッチング槽3から燐酸を連続的に燐酸再生装置6へ送る場合、循環濾過経路部5に接続されるフィルタ51のエアーベントラインを介して燐酸を送ってもよい。この場合、燐酸再生装置6へ送られた量と同量の再生燐酸がエッチング槽3に供給されるように設定する。ここで、エアーベントラインとは、循環濾過経路部5に混入したエアーを抜くためにフィルタ51に設けられる配管である。エッチング槽3の燐酸を交換した際や、循環している燐酸の量が減少した際などに、排出口34から循環濾過経路部5にエアーが混入してしまう。そのまま循環を継続すると混入したエアーはフィルタ51に滞留し、フィルタ51内部の濾過材が乾燥して濾過能を低下するため、フィルタ51内のエアーを抜く必要がある訳である。一般的には、このエアーベントラインの配管はエッチング槽3の溢流部3aに接続されており、エアーが混入していないときでも常時少量の燐酸が溢流部3aに供給されている。従って、このエアーベントラインの配管を用いることによって、別途分岐配管60とエアーベントラインとを兼用することが可能となり、装置の構成をより簡素化することができる。   Further, when the phosphoric acid is continuously sent from the etching tank 3 to the phosphoric acid regenerating apparatus 6, the phosphoric acid may be sent via an air vent line of a filter 51 connected to the circulation filtration path unit 5. In this case, it is set so that the same amount of regenerated phosphoric acid sent to the phosphoric acid regenerating apparatus 6 is supplied to the etching tank 3. Here, the air vent line is a pipe provided in the filter 51 in order to remove air mixed in the circulation filtration path 5. When the phosphoric acid in the etching tank 3 is replaced or when the amount of circulating phosphoric acid is reduced, air is mixed into the circulation filtration path 5 from the discharge port 34. If the circulation is continued as it is, the mixed air stays in the filter 51, and the filtering material in the filter 51 is dried to reduce the filtering ability. Therefore, it is necessary to remove the air in the filter 51. Generally, the piping of this air vent line is connected to the overflow part 3a of the etching tank 3, and a small amount of phosphoric acid is always supplied to the overflow part 3a even when air is not mixed. Therefore, by using this air vent line pipe, it is possible to separately use the branch pipe 60 and the air vent line, and the configuration of the apparatus can be further simplified.

更に、エッチング槽3から燐酸を燐酸再生装置6へ送る他の方法として、断続的に燐酸を燐酸再生装置6へ送る形態であってもよい。この形態においては、ウエハ1を収納したウエハカセット2がエッチング槽3内に搬入された際に、その体積と同量の燐酸が溢流部3aにオーバーフローする。このオーバーフローした燐酸は、溢流部3aの液面センサ(S1)36で検出され、制御回路300からの信号で自動弁66を開状態とすることにより燐酸再生装置6へ回収される。そして、適量回収された後、溢流部3aの燐酸量の減少を液面センサ(S1〜S3)36が検出し、制御装置300からの信号で自動弁66を閉状態とすることにより回収を停止する。また、ウエハカセット2がエッチング槽3から搬出された際には、溢流部3aの燐酸量はその体積と同量だけ減少することになる。この減少した分の燐酸量は、溢流部3aの液面センサ(S2〜S3)36で検出され、制御装置300からの信号で自動弁69を開状態とすることにより、再生燐酸がエッチング槽3へ供給される。なお、エッチング槽3内の燐酸の一部を断続的に再生燐酸と入れ替える場合、エッチング槽3内の燐酸に含まれる酸化珪素濃度は、ウエハの処理数の増加に伴って高くなる。従って、断続的にエッチング槽内の燐酸を再生燐酸と入れ替えるタイミングは、ウエハを新たに処理するタイミングと合わせることが好ましい。このことから、ウエハカセット2がエッチング槽3内に搬入された際にオーバーフローする燐酸を燐酸再生装置6に送られるようにすることが好ましい。   Further, as another method for sending phosphoric acid from the etching tank 3 to the phosphoric acid regenerating apparatus 6, a mode in which phosphoric acid is intermittently sent to the phosphoric acid regenerating apparatus 6 may be used. In this embodiment, when the wafer cassette 2 containing the wafer 1 is carried into the etching tank 3, the same amount of phosphoric acid overflows into the overflow portion 3a. The overflowed phosphoric acid is detected by the liquid level sensor (S1) 36 in the overflow portion 3a, and is recovered by the phosphoric acid regenerating apparatus 6 by opening the automatic valve 66 with a signal from the control circuit 300. Then, after the appropriate amount is recovered, the liquid level sensor (S1 to S3) 36 detects a decrease in the amount of phosphoric acid in the overflow portion 3a, and the automatic valve 66 is closed by a signal from the control device 300. Stop. Further, when the wafer cassette 2 is carried out of the etching tank 3, the amount of phosphoric acid in the overflow portion 3a is reduced by the same amount as its volume. The amount of phosphoric acid thus reduced is detected by the liquid level sensors (S2 to S3) 36 in the overflow portion 3a, and the automatic valve 69 is opened by a signal from the control device 300, so that the regenerated phosphoric acid is removed from the etching tank. 3 is supplied. When a part of phosphoric acid in the etching tank 3 is intermittently replaced with regenerated phosphoric acid, the concentration of silicon oxide contained in the phosphoric acid in the etching tank 3 increases as the number of wafers processed increases. Therefore, it is preferable to match the timing of intermittently replacing the phosphoric acid in the etching tank with the regenerated phosphoric acid with the timing of newly processing the wafer. Therefore, it is preferable that the phosphoric acid overflowing when the wafer cassette 2 is carried into the etching tank 3 is sent to the phosphoric acid regenerating apparatus 6.

更にまた、処理槽100で再生された再生燐酸を、溢流部3aへ補給するまでの間で濾過するフィルタを設けてもよい。この場合、濾過部は処理槽100と貯蔵槽113との間の配管に設けてもよいし、補給配管67a,67bに設けることもできる。また、貯蔵槽113に接続される貯蔵内循環経路を新たに設け、該貯蔵内循環経路に濾過部を設けることもできる。この場合、貯蔵槽113内の再生燐酸は、貯蔵槽113から前記貯蔵内循環経路に流れ、濾過部によって濾過された後に再び貯蔵槽113に循環される。同様に、処理槽100に接続される処理槽内循環経路を新たに設け、該処理槽内循環経路に濾過部を設けることもできる。   Furthermore, a filter that filters the regenerated phosphoric acid regenerated in the treatment tank 100 until it is supplied to the overflow portion 3a may be provided. In this case, the filtration unit may be provided in a pipe between the processing tank 100 and the storage tank 113, or may be provided in the supply pipes 67a and 67b. It is also possible to newly provide an in-storage circulation path connected to the storage tank 113 and provide a filtration unit in the in-storage circulation path. In this case, the regenerated phosphoric acid in the storage tank 113 flows from the storage tank 113 to the in-storage circulation path, and after being filtered by the filtration unit, is recirculated to the storage tank 113. Similarly, a circulation path in the treatment tank connected to the treatment tank 100 can be newly provided, and a filtration unit can be provided in the circulation path in the treatment tank.

本発明のウエハ処理装置を示す全体模式構成図である。It is a whole schematic block diagram which shows the wafer processing apparatus of this invention. 図1のエッチング部及び循環濾過経路部を主体とした構成図である。It is a block diagram which made the main part the etching part and circulation filtration path | route part of FIG. 図1の再生部を主体とした構成図である。FIG. 2 is a configuration diagram mainly including a playback unit in FIG. 1.

符号の説明Explanation of symbols

1…半導体ウエハ(被処理物)、 3…エッチング槽(処理槽)、 3a…溢流部、 4…エッチング部、 5…循環濾過経路部(循環経路部)、 6…燐酸再生装置(薬液処理部)、 7…再生部、 51…フィルタ(濾過部)、 60…分岐配管、 61…圧力計(流量調節手段)、 62…流量計(流量調節手段)、 63…受け槽、 65…ニードル弁(流量調節手段)、 67a…補給配管、 68a…循環配管、 100…処理槽、 109…フッ酸タンク(HFタンク)、 112…測定部、 113…貯留槽、 200…冷却器、 201…恒温槽(スパイラル管を含む)、 202…温度コントローラ、 203…保温容器、 204…導電率センサ、 205…導電率計(フッ素計測器)、 300…制御回路(制御手段)   DESCRIPTION OF SYMBOLS 1 ... Semiconductor wafer (to-be-processed object), 3 ... Etching tank (processing tank), 3a ... Overflow part, 4 ... Etching part, 5 ... Circulation filtration path part (circulation path part), 6 ... Phosphate regenerator (chemical solution processing) Part), 7 ... regenerating part, 51 ... filter (filtering part), 60 ... branch pipe, 61 ... pressure gauge (flow rate adjusting means), 62 ... flow meter (flow rate adjusting means), 63 ... receiving tank, 65 ... needle valve (Flow rate adjusting means), 67a ... replenishment piping, 68a ... circulation piping, 100 ... treatment tank, 109 ... hydrofluoric acid tank (HF tank), 112 ... measuring section, 113 ... storage tank, 200 ... cooler, 201 ... constant temperature bath (Including spiral tube), 202 ... temperature controller, 203 ... heat insulation container, 204 ... conductivity sensor, 205 ... conductivity meter (fluorine meter), 300 ... control circuit (control means)

Claims (24)

半導体ウエハを燐酸によりエッチング処理するエッチング部と、
前記エッチング部から前記燐酸が導入される分岐配管と、
前記分岐配管から前記燐酸が導入される循環濾過経路部と、
前記分岐配管から前記燐酸が導入される燐酸再生装置と、
前記燐酸再生装置から前記循環濾過経路部に前記燐酸が導入される第1の配管と、
前記循環濾過経路部から前記エッチング部に前記燐酸が導入される第2の配管と、
を含み、
前記分岐配管は、圧力計と、該圧力計に接続された制御回路と、を含む流量調節手段を有し、
前記流量調節手段は、前記圧力計で計測される液圧に応じて、前記制御回路により前記燐酸再生装置側へ分岐する前記燐酸の量を制御することを特徴とする処理装置。
An etching section for etching a semiconductor wafer with phosphoric acid;
A branch pipe into which the phosphoric acid is introduced from the etching section;
A circulation filtration path part into which the phosphoric acid is introduced from the branch pipe;
A phosphoric acid regenerator in which the phosphoric acid is introduced from the branch pipe;
A first pipe through which the phosphoric acid is introduced from the phosphoric acid regenerating apparatus into the circulation filtration path;
A second pipe through which the phosphoric acid is introduced into the etching part from the circulation filtration path part;
Including
The branch pipe has a flow rate adjusting means including a pressure gauge and a control circuit connected to the pressure gauge,
The flow rate adjusting means controls the amount of the phosphoric acid branched to the phosphoric acid regenerator side by the control circuit in accordance with the hydraulic pressure measured by the pressure gauge.
請求項1記載の処理装置において、
前記循環濾過経路部は、前記分岐配管に接続された第1の濾過部と、
前記第1の濾過部に接続された加熱手段と、
前記加熱手段に接続された純水を添加する手段と、
前記純水を添加する手段と、前記エッチング部とを接続する第2の配管と、を有することを特徴とする処理装置。
The processing apparatus according to claim 1, wherein
The circulation filtration path section includes a first filtration section connected to the branch pipe;
Heating means connected to the first filtration unit;
Means for adding pure water connected to the heating means;
A processing apparatus comprising: means for adding the pure water; and a second pipe connecting the etching unit.
請求項2記載の処理装置において、
前記第1の配管は、前記燐酸再生装置から、前記第1の濾過部の手前に接続されることを特徴とする処理装置。
The processing apparatus according to claim 2, wherein
The processing apparatus according to claim 1, wherein the first pipe is connected from the phosphoric acid regenerating apparatus before the first filtering unit.
請求項1ないし請求項3いずれかに記載の処理装置において、
前記エッチング部は、エッチング槽と、前記エッチング槽の周囲に設けられた溢流部と、を含むことを特徴とする処理装置。
The processing apparatus according to any one of claims 1 to 3,
The processing apparatus, wherein the etching section includes an etching tank and an overflow section provided around the etching tank.
請求項1ないし請求項4いずれかに記載の処理装置において、
前記循環濾過経路部は、前記エッチング部の底壁に、接続されることを特徴とする処理装置。
The processing apparatus according to any one of claims 1 to 4,
The processing apparatus, wherein the circulation filtration path is connected to a bottom wall of the etching unit.
請求項1ないし請求項5いずれかに記載の処理装置において、
前記流量調節手段は、前記圧力計で計測される液圧に比例した前記燐酸の量を、前記燐酸再生装置側へ分岐するように制御することを特徴とする処理装置。
In the processing apparatus in any one of Claims 1 thru | or 5,
The flow rate adjusting means controls the amount of the phosphoric acid proportional to the hydraulic pressure measured by the pressure gauge so as to branch to the phosphoric acid regenerating apparatus side.
請求項1ないし請求項5いずれかに記載の処理装置において、
前記流量調節手段は、前記圧力計で計測される液圧が大きいほど前記燐酸再生装置に導入する前記燐酸の量が大きくなり、液圧が小さいほど前記燐酸再生装置に導入する前記燐酸の量が小さくなるように制御することを特徴とする処理装置。
In the processing apparatus in any one of Claims 1 thru | or 5,
The flow rate adjusting means increases the amount of the phosphoric acid introduced into the phosphoric acid regenerator as the liquid pressure measured by the pressure gauge increases, and the amount of the phosphoric acid introduced into the phosphoric acid regenerator as the liquid pressure decreases. A processing apparatus that is controlled to be small.
請求項1ないし請求項7いずれかに記載の処理装置において、
前記流量調節手段は、前記圧力計で計測される液圧が所定の値以下の場合に、前記燐酸が前記燐酸再生装置側に分岐されないように制御することを特徴とする処理装置。
The processing apparatus according to any one of claims 1 to 7,
The flow rate adjusting means controls the phosphoric acid so that the phosphoric acid is not branched to the phosphoric acid regenerating apparatus side when the hydraulic pressure measured by the pressure gauge is not more than a predetermined value.
請求項1ないし請求項8いずれかに記載の処理装置において、
前記流量調節手段は、前記圧力計と前記燐酸再生装置との間に第1の弁を有し、
前記第1の弁は、前記圧力計で計測される液圧が所定の値以上の場合に、開度が最大になるように制御されることを特徴とする処理装置。
The processing apparatus according to any one of claims 1 to 8,
The flow rate adjusting means has a first valve between the pressure gauge and the phosphoric acid regeneration device,
The processing apparatus according to claim 1, wherein the first valve is controlled so that the opening degree is maximized when a hydraulic pressure measured by the pressure gauge is equal to or greater than a predetermined value.
請求項1ないし請求項9いずれかに記載の処理装置において、
前記燐酸再生装置は、前記分岐配管によって分岐した前記燐酸を入れる受け槽と、
前記受け槽から導入される前記燐酸を処理する処理槽と、
前記処理槽で処理された前記燐酸を貯留する貯留槽と、を含み、
前記処理槽は、該処理槽内から蒸発する蒸気を冷却する冷却器と、該冷却器で冷却された液を一定温度に調整する恒温槽と、前記恒温槽で調整された前記液中の濃度を計測する測定部と、を有することを特徴とする処理装置。
The processing apparatus according to any one of claims 1 to 9 ,
The phosphoric acid regenerating apparatus includes a receiving tank for containing the phosphoric acid branched by the branch pipe;
A treatment tank for treating the phosphoric acid introduced from the receiving tank;
A storage tank for storing the phosphoric acid processed in the processing tank,
The treatment tank includes a cooler that cools vapor evaporated from the treatment tank, a thermostat that adjusts the liquid cooled by the cooler to a constant temperature, and a concentration in the liquid that is adjusted in the thermostat. And a measuring unit that measures the above.
請求項10記載の処理装置において、
前記測定部は導電率計を含むことを特徴とする処理装置。
The processing apparatus according to claim 10 , wherein
The processing unit, wherein the measurement unit includes a conductivity meter.
請求項10または請求項11記載の処理装置において、
前記処理槽は、純水供給手段と、フッ酸供給手段と、を更に有することを特徴とする処理装置。
The processing apparatus according to claim 10 or 11 ,
The processing tank further includes pure water supply means and hydrofluoric acid supply means.
請求項10ないし請求項12いずれかに記載の処理装置において、
前記貯留槽は、前記処理槽から導入される前記燐酸を所定温度に制御する加熱手段を有することを特徴とする処理装置。
The processing apparatus according to any one of claims 10 to 12 ,
The said storage tank has a heating means which controls the said phosphoric acid introduced from the said processing tank to predetermined temperature, The processing apparatus characterized by the above-mentioned.
請求項10ないし請求項13いずれかに記載の処理装置において、
前記処理槽は、前記受け槽から導入される前記燐酸を所定温度に制御する加熱手段を有することを特徴とする処理装置。
The processing apparatus according to any one of claims 10 to 13 ,
The said processing tank has a heating means which controls the said phosphoric acid introduced from the said receiving tank to predetermined temperature, The processing apparatus characterized by the above-mentioned.
請求項10ないし請求項14いずれかに記載の処理装置において、
前記エッチング部は、前記燐酸の量を計測する液面計を有し、
前記液面計の信号により、前記エッチング部内の前記燐酸の量を制御することを特徴と
する処理装置。
The processing apparatus according to any one of claims 10 to 14 ,
The etching unit has a liquid level meter for measuring the amount of phosphoric acid,
The processing apparatus, wherein the amount of phosphoric acid in the etching unit is controlled by a signal from the liquid level gauge.
請求項10ないし請求項15いずれかに記載の処理装置において、
前記第1の配管は、前記燐酸を前記貯留槽から前記循環濾過経路部へ導入する第1の経路と、前記第1の経路に導入された前記燐酸を前記貯留槽に再び導入する第2の経路と、を有することを特徴とする処理装置。
The processing apparatus according to any one of claims 10 to 15 ,
The first pipe introduces the phosphoric acid from the storage tank into the circulation filtration path section, and the second pipe introduces the phosphoric acid introduced into the first path into the storage tank again. And a processing device.
請求項16記載の処理装置において、
前記第2の経路は、第2の弁を有し、
前記燐酸が前記貯留から前記循環濾過経路部に導入される時に、前記第2の弁の開度が最小となるように制御されることを特徴とする処理装置。
The processing apparatus according to claim 16 , wherein
The second path has a second valve;
The processing apparatus is characterized in that when the phosphoric acid is introduced from the storage tank into the circulation filtration path, the opening degree of the second valve is controlled to be minimum.
請求項10ないし請求項17いずれかに記載の処理装置において、
前記処理槽は、対に設けられ、
前記受け槽から導入される前記燐酸は、対に設けられた前記処理槽へ切換方式で導入されることを特徴とする処理装置。
The processing apparatus according to any one of claims 10 to 17 ,
The treatment tanks are provided in pairs,
The said phosphoric acid introduce | transduced from the said receiving tank is introduced into the said processing tank provided in the pair by the switching system, The processing apparatus characterized by the above-mentioned.
請求項10ないし請求項18いずれかに記載の処理装置において、
前記貯留は、純水を添加する手段を有することを特徴とする処理装置。
The processing apparatus according to any one of claims 10 to 18 ,
The said storage tank has a means to add a pure water, The processing apparatus characterized by the above-mentioned.
請求項10ないし請求項19いずれかに記載の処理装置において、
前記貯留槽は、前記エッチング部に接続する第3の配管を有することを特徴とする処理装置。
The processing apparatus according to any one of claims 10 to 19 ,
The processing apparatus , wherein the storage tank has a third pipe connected to the etching unit.
請求項10ないし請求項20いずれかに記載の処理装置において、
前記貯留槽は、第2の濾過部を有することを特徴とする処理装置。
The processing apparatus according to any one of claims 10 to 20 ,
The said storage tank has a 2nd filtration part, The processing apparatus characterized by the above-mentioned.
請求項12ないし請求項21いずれかに記載の処理装置において、
前記処理槽は、第3の濾過部を有することを特徴とする処理装置。
The processing apparatus according to any one of claims 12 to 21 ,
The said processing tank has a 3rd filtration part, The processing apparatus characterized by the above-mentioned.
請求項1ないし請求項22いずれかに記載の処理装置において、
前記第1の配管は、第4の濾過部を有することを特徴とする処理装置。
The processing apparatus according to any one of claims 1 to 22 ,
The first pipe has a fourth filtration unit.
請求項1ないし請求項23いずれかに記載の処理装置を使用して半導体装置を製造する半導体装置の製造方法。 24. A semiconductor device manufacturing method for manufacturing a semiconductor device using the processing apparatus according to claim 1 .
JP2007033764A 2007-02-14 2007-02-14 PROCESSING DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD Expired - Fee Related JP4412503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007033764A JP4412503B2 (en) 2007-02-14 2007-02-14 PROCESSING DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033764A JP4412503B2 (en) 2007-02-14 2007-02-14 PROCESSING DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002093484A Division JP3975333B2 (en) 2002-03-29 2002-03-29 Processing apparatus and method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2007123947A JP2007123947A (en) 2007-05-17
JP4412503B2 true JP4412503B2 (en) 2010-02-10

Family

ID=38147348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033764A Expired - Fee Related JP4412503B2 (en) 2007-02-14 2007-02-14 PROCESSING DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP4412503B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111354637B (en) * 2020-02-28 2023-07-25 通威太阳能(眉山)有限公司 Method for washing graphite boat by recycling hydrofluoric acid

Also Published As

Publication number Publication date
JP2007123947A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4966223B2 (en) Substrate processing apparatus and substrate processing method
JP5931484B2 (en) Substrate processing method and substrate processing apparatus
CN100511602C (en) Substrate processing apparatus
KR101976943B1 (en) Substrate treating device and substrate treating method
JP2008103678A (en) Substrate processing apparatus
JP2001023952A (en) Etching method and device
KR20160117292A (en) Substrate processing apparatus and substrate processing method
JP4424517B2 (en) PROCESSING DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP4412502B2 (en) Processing apparatus and method for manufacturing semiconductor device
JP2009260245A (en) Substrate treating apparatus and substrate treating method
US20180096855A1 (en) Substrate liquid treatment apparatus, substrate liquid treatment method and storage medium
JP3975333B2 (en) Processing apparatus and method for manufacturing semiconductor device
EP1306886B1 (en) Apparatus for assessing the silicon dioxide content
JP4471131B2 (en) PROCESSING DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP4062419B2 (en) Processing apparatus and method for manufacturing semiconductor device
JP4412503B2 (en) PROCESSING DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP3891277B2 (en) Processing apparatus and method for manufacturing semiconductor device
JP4975710B2 (en) Heating unit, substrate processing apparatus, and fluid heating method
JP4412501B2 (en) PROCESSING DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP2007194647A (en) Treatment device, and method of manufacturing semiconductor device
JP4062418B2 (en) Processing apparatus and method for manufacturing semiconductor device
JPH03107477A (en) Method and device for wet-treating semiconductor material
JP4987793B2 (en) Substrate processing apparatus, substrate processing method, program, and recording medium
JP2004179310A (en) Etching solution and processing method, processing apparatus, and semiconductor device manufacturing method using the same
JP3819668B2 (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees