JP4410769B2 - Power conversion system for AC train vehicles - Google Patents

Power conversion system for AC train vehicles Download PDF

Info

Publication number
JP4410769B2
JP4410769B2 JP2006108151A JP2006108151A JP4410769B2 JP 4410769 B2 JP4410769 B2 JP 4410769B2 JP 2006108151 A JP2006108151 A JP 2006108151A JP 2006108151 A JP2006108151 A JP 2006108151A JP 4410769 B2 JP4410769 B2 JP 4410769B2
Authority
JP
Japan
Prior art keywords
power supply
pwm converter
phase difference
pwm
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006108151A
Other languages
Japanese (ja)
Other versions
JP2007282434A (en
Inventor
啓太 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006108151A priority Critical patent/JP4410769B2/en
Publication of JP2007282434A publication Critical patent/JP2007282434A/en
Application granted granted Critical
Publication of JP4410769B2 publication Critical patent/JP4410769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、同一の電源に接続された複数台の電源ユニットで構成される電力変換システムの高調波成分を低減する技術に関するものであり、特に可変電圧可変周波数の交流電力で、可変速駆動される電動機にて推進される交流列車車両システムに適用された電力変換システムにおけるPWMコンバータに係るものである。   The present invention relates to a technique for reducing harmonic components of a power conversion system composed of a plurality of power supply units connected to the same power supply, and in particular, is driven at variable speed with AC power of variable voltage and variable frequency. The present invention relates to a PWM converter in a power conversion system applied to an AC train vehicle system propelled by an electric motor.

従来の電力変換装置として、複数台すべてのPWMコンバータにおけるパルス幅変調制御に用いる変調波は電源電圧と同位相とし、列車を編成する駆動車両を均等分割したグループのPWMコンバータ間で、PWMコンバータのパルス幅変調制御に用いる搬送波に、所定の位相差を持たせるものが示されている(例えば、特許文献1参照)。   As a conventional power conversion device, the modulation wave used for pulse width modulation control in all of the plurality of PWM converters has the same phase as the power supply voltage, and the PWM converters of the PWM converters are divided between the PWM converters of the group in which the driving vehicles forming the train are equally divided. A carrier wave used for pulse width modulation control has a predetermined phase difference (see, for example, Patent Document 1).

特開平08−051703号公報(図1)Japanese Patent Laid-Open No. 08-051703 (FIG. 1)

しかしながら、前記特許文献1に示された従来のPWMコンバータの制御方法では、負荷を均等に分割する必要があり、均等分割は駆動車両によっては現実問題として、実施することが困難な場合があり、それ故に高調波の低減が十分に実施できないという問題点があった。   However, in the conventional PWM converter control method disclosed in Patent Document 1, it is necessary to divide the load evenly, and even division may be difficult to implement as an actual problem depending on the driving vehicle. Therefore, there is a problem that harmonics cannot be sufficiently reduced.

この発明は前記の課題を解決するためになされたものであり、負荷が均等に分割できない場合でも、高調波を低減することが可能な電力変換システムを得ることを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a power conversion system capable of reducing harmonics even when a load cannot be divided equally.

この発明に係る交流列車車両用の電力変換システムは、共通の電力が供給され互いに負荷量が異なる複数の電源ユニットと、この複数の電源ユニットに制御指令信号を出力する制御装置とが設けられ電力変換システム制御装置は、電源ユニットに設けられている各PWMコンバータの電圧指令Vcと直流電源VdcとからVk=Vc/Vdcで求まる変調率Vkを算出するとともに、変調率Vkの各ベクトルの合成ベクトルの大きさが最小となるような位相差を演算し、この位相差を各PWMコンバータの搬送波の位相差として、各PWMコンバータを制御することを特徴とするものである。 A power conversion system for an AC train vehicle according to the present invention is provided with a plurality of power supply units that are supplied with common power and have different load amounts, and a control device that outputs a control command signal to the plurality of power supply units. The conversion system control device calculates a modulation rate Vk obtained by Vk = Vc / Vdc from a voltage command Vc and a DC power supply Vdc of each PWM converter provided in the power supply unit, and a combined vector of the vectors of the modulation rate Vk A phase difference that minimizes the size of the PWM converter is calculated, and each PWM converter is controlled using the phase difference as the phase difference of the carrier wave of each PWM converter .

この発明に係る交流列車車両用の電力変換システムは、上記のような構成を備えているので、各PWMコンバータの負荷量が異なる場合であっても、高調波成分を低減することができるという効果がある。 Since the power conversion system for an AC train vehicle according to the present invention has the above-described configuration, it is possible to reduce harmonic components even when the load amounts of the respective PWM converters are different. There is.

実施の形態1.
以下、この実施の形態1を図に基づいて説明する。
図1は電力変換システム200の一応用例である交流車両システムを示す概略構成図である。列車を構成する3台の駆動車両110、120、130の内、1番目の車両110には電源ユニット10が、2番目の車両120には電源ユニット20が、3番目の車両130には電源ユニット30がそれぞれ搭載され共通の電源5より電力を供給されている。前記電源ユニット10は変圧器1、PWMコンバータ2a、2台のインバータ3aで構成されるとともに、負荷として同一容量の2台のモータ4aが接続されている。電源ユニット20は変圧器1a、PWMコンバータ2b、1台のインバータ3bで構成され、負荷として1台のモータ4bが接続されている。電源ユニット30は変圧器1、PWMコンバータ2c、2台のインバータ3aで構成され、前記電源ユニット10と同一容量の負荷である2台のモータ4aが接続されている。また1番目の車両110には電源ユニット10〜30に制御指令信号を出力する制御装置6が設けられており、列車は図1の左方向に進行する。
Embodiment 1 FIG.
Hereinafter, the first embodiment will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an AC vehicle system as an application example of a power conversion system 200. Of the three driving vehicles 110, 120, 130 constituting the train, the first vehicle 110 has a power supply unit 10, the second vehicle 120 has a power supply unit 20, and the third vehicle 130 has a power supply unit. 30 are mounted and supplied with power from a common power source 5. The power supply unit 10 is composed of a transformer 1, a PWM converter 2a, and two inverters 3a, and two motors 4a having the same capacity are connected as loads. The power supply unit 20 includes a transformer 1a, a PWM converter 2b, and one inverter 3b, and one motor 4b is connected as a load. The power supply unit 30 includes a transformer 1, a PWM converter 2c, and two inverters 3a, to which two motors 4a that are loads having the same capacity as the power supply unit 10 are connected. The first vehicle 110 is provided with a control device 6 that outputs a control command signal to the power supply units 10 to 30, and the train travels in the left direction in FIG.

前述したように、1、3番目の車両110、130の電源ユニット10、30のPWMコンバータ2a、2cと、2番目の車両120の電源ユニット20のPWMコンバータ2bの負荷電力量が異なっている。各PWMコンバータ2a〜2cの変調波信号は、前記電源ユニット10、30のPWMコンバータ2a、2cでは互いに同位相であるが、このPWMコンバータ2a、2cと電源ユニット20のPWMコンバータ2bとは、負荷電力量の相違分だけずれている。そして1番目の車両110に設けられた制御装置6に設けられた搬送波信号発生部の出力する搬送波信号は所定の位相だけずれている。   As described above, the load power amounts of the PWM converters 2a and 2c of the power supply units 10 and 30 of the first and third vehicles 110 and 130 and the PWM converter 2b of the power supply unit 20 of the second vehicle 120 are different. The modulated wave signals of the PWM converters 2a to 2c are in phase with each other in the PWM converters 2a and 2c of the power supply units 10 and 30, but the PWM converters 2a and 2c and the PWM converter 2b of the power supply unit 20 It is shifted by the amount of power difference. The carrier signal output from the carrier signal generator provided in the control device 6 provided in the first vehicle 110 is shifted by a predetermined phase.

図2は、2番目の車両120に搭載された1台のモータ4bを駆動するPWMコンバータ2bの電圧指令を、図3は1番目および3番目の車両110、130に搭載されたモータ4aの2台を駆動するPWMコンバータ2a、2cの電圧指令を表したものである。
図2において、Vsは電源ユニットの電圧、ωは電源ユニットの周波数、Lは変圧器1aのインダクタンス、Ic2は電源ユニット20を流れる電流値、Vc2はPWMコンバータ2bの電圧指令値、θ2は前記電圧指令値Vc2と電源電圧Vsとの位相を示す。図3においてもIc1、Ic3は電源ユニット10、30を流れる電流値、Vc1、Vc3はPWMコンバータ2a、2cの電圧指令値を、θ1、θ3は前記電圧指令値Vc1、Vc3と電源電圧Vsとの位相を示す。
図2、図3から判るように、1、3番目の車両110、130に搭載された2台のモータ4aを駆動するPWMコンバータ2a、2cの電圧指令値Vc1、Vc3が、2番目の車両120に搭載された1台のモータ4bを駆動するPWMコンバータ2bの電圧指令値Vc2より、大きさと位相が大きくなる。
2 shows a voltage command of the PWM converter 2b that drives one motor 4b mounted on the second vehicle 120, and FIG. 3 shows two of the motors 4a mounted on the first and third vehicles 110 and 130. The voltage command of PWM converter 2a, 2c which drives a stand is represented.
In FIG. 2, Vs is the voltage of the power supply unit, ω is the frequency of the power supply unit, L is the inductance of the transformer 1a, Ic2 is the current value flowing through the power supply unit 20, Vc2 is the voltage command value of the PWM converter 2b, and θ2 is the voltage. The phase between the command value Vc2 and the power supply voltage Vs is shown. Also in FIG. 3, Ic1 and Ic3 are current values flowing through the power supply units 10 and 30, Vc1 and Vc3 are voltage command values of the PWM converters 2a and 2c, and θ1 and θ3 are the voltage command values Vc1 and Vc3 and the power supply voltage Vs. Indicates the phase.
As can be seen from FIGS. 2 and 3, the voltage command values Vc1 and Vc3 of the PWM converters 2a and 2c that drive the two motors 4a mounted on the first and third vehicles 110 and 130 are the second vehicle 120. The magnitude and phase are larger than the voltage command value Vc2 of the PWM converter 2b that drives one motor 4b mounted on the motor.

PWMコンバータの電圧指令Vcは、電源の電圧Vsと電源の周波数ωと変圧器のインダクタンスLと電流Icから決まり、次の数式1で表される。

Figure 0004410769
よって、PWMコンバータの電圧指令Vcの大きさと電源電圧からの位相θは次の数式2、3となる。
Figure 0004410769
Figure 0004410769
The voltage command Vc of the PWM converter is determined from the voltage Vs of the power source, the frequency ω of the power source, the inductance L of the transformer, and the current Ic, and is expressed by the following formula 1.
Figure 0004410769
Therefore, the magnitude of the voltage command Vc of the PWM converter and the phase θ from the power supply voltage are expressed by the following formulas 2 and 3.
Figure 0004410769
Figure 0004410769

高調波成分はPWMコンバータの電圧指令Vcと同位相となるため、搬送波信号の位相差は各PWMコンバータの電圧指令Vcの大きさと位相により決定する。その位相差は、PWMコンバータの電圧指令Vcの位相に、PWMコンバータの電圧指令Vcと直流電圧Vdcから求まる下記数式4に示す変調率Vkの各ベクトルの合成ベクトルの大きさが十分に零に近くなるような最小の位相差を求め、それらを加算する。

Figure 0004410769
Since the harmonic component has the same phase as the voltage command Vc of the PWM converter, the phase difference of the carrier wave signal is determined by the magnitude and phase of the voltage command Vc of each PWM converter. The phase difference is such that the magnitude of the combined vector of each vector of the modulation factor Vk shown in the following formula 4 obtained from the voltage command Vc of the PWM converter and the DC voltage Vdc is sufficiently close to the phase of the voltage command Vc of the PWM converter. Find the smallest phase difference and add them.
Figure 0004410769

図4は各PWMコンバータ2a〜2cの変調率Vk1〜Vk3の関係を表したもので、3つの変調率ベクトルの合成ベクトルの大きさが最小となるように各変調率Vkの位相差を求める。
例えば、図4において、Vk2を基準とすると、次式が成り立つとき合成ベクトルが最小となる。
Vk1×sin(180°−θ12)=Vk3×sin(180°−θ23)
・・・(5)
Vk1×cos(180°−θ12)+Vk3×cos(180°−θ23)=Vk2 ・・・(6)
Vk1=Vk3 ・・・(7)
)式と(7)式より、
θ12=θ23 ・・・(8)
(7)(8)式を(6)式に代入すると
θ12=θ23=180°−acos−1(Vk2/Vk1/2)・・・(9)
θ12+θ23+θ13=360° ・・・(10)
(9)(10)式より
θ13=2×acos−1(Vk2/Vk1/2)
基準ベクトルを考え、基準ベクトルと同じ方向の成分を最小とし、基準ベクトルと鉛直な方向も最小となる位相を決定する。
Vk1=Vk2=Vk3の場合、θ12=θ23=θ13となる。
なお、合成ベクトルの大きさの最小値は零(ゼロ)である。
なおここで変調率ベクトルが3個の場合について述べたが、変調率ベクトルが4個以上の場合、一意に決まらない場合(極小となる位相差が複数ある場合)は極小となる位相差のいずれでもよい。
FIG. 4 shows the relationship between the modulation rates Vk1 to Vk3 of the PWM converters 2a to 2c. The phase difference of each modulation rate Vk is obtained so that the combined vector of the three modulation rate vectors is minimized.
For example, in FIG. 4, when Vk2 is used as a reference, the combined vector becomes the minimum when the following equation holds.
Vk1 × sin (180 ° −θ12) = Vk3 × sin (180 ° −θ23)
... (5)
Vk1 × cos (180 ° −θ12) + Vk3 × cos (180 ° −θ23) = Vk2 (6)
Vk1 = Vk3 (7)
From ( 5 ) and (7),
θ12 = θ23 (8)
Substituting equation (7) and equation (8) into equation (6), θ12 = θ23 = 180 ° −acos −1 (Vk2 / Vk1 / 2) (9)
θ12 + θ23 + θ13 = 360 ° (10)
(9) From equation (10) θ13 = 2 × acos −1 (Vk2 / Vk1 / 2)
Considering the reference vector, the phase that minimizes the component in the same direction as the reference vector and also minimizes the direction perpendicular to the reference vector is determined.
When Vk1 = Vk2 = Vk3, θ12 = θ23 = θ13.
In addition, the minimum value of the magnitude | size of a synthetic | combination vector is zero (zero).
Although the case where there are three modulation factor vectors has been described here, when there are four or more modulation factor vectors, when the number is not uniquely determined (when there are a plurality of minimum phase differences), any of the minimum phase differences But you can.

図5は各PWMコンバータ2a〜2cの搬送波信号の位相の関係を表したものである。図5から判るように、PWMコンバータ2aの搬送波(1)に対し、PWMコンバータ2bの搬送波(2)は所定の位相差であるθ12分だけ時間的に遅れている。また同様にPWMコンバータ2cの搬送波(3)は所定の位相差であるθ12+θ23分だけ遅れている。   FIG. 5 shows the phase relationship of the carrier wave signals of the PWM converters 2a to 2c. As can be seen from FIG. 5, the carrier wave (2) of the PWM converter 2b is delayed in time by θ12 which is a predetermined phase difference with respect to the carrier wave (1) of the PWM converter 2a. Similarly, the carrier wave (3) of the PWM converter 2c is delayed by a predetermined phase difference of θ12 + θ23.

このように、この実施の形態1の電力変換システム200に設けられた制御装置6は、各PWMコンバータ2a〜2cの搬送波信号の位相差は、各PWMコンバータの変調率ベクトルの合成ベクトルの大きさが最小となる位相差に、この位相の差を加算して所定の位相差とし、この所定の位相差を前記複数のPWMコンバータの搬送波の位相差となるよう各PWMコンバータ2a〜2cに出力する。つまり、制御装置6は、各車両110〜130の各負荷量(Ic、L)、電圧指令値Vcから位相θを求めて、前述の如く搬送波信号の位相差を各PWMコンバータに指令するものである。
すなわちPWMでは、信号波(正弦波)と搬送波(三角波)を比較してパルスを作成する。共通の電源に複数の変換器が接続された場合、信号波の方は電源の位相でほぼ決まるので、搬送波をずらして高調波を低減しようとするものであり、この実施の形態1に示すように搬送波のずらし方を図4の位相差でずらすものである。したがって、この実施の形態1のような各PWMコンバータの負荷電力量が異なる場合でも高調波成分を低減することができるという効果がある。
As described above, in the control device 6 provided in the power conversion system 200 of the first embodiment, the phase difference of the carrier wave signals of the PWM converters 2a to 2c is the magnitude of the combined vector of the modulation factor vectors of the PWM converters. Is added to the phase difference that minimizes the phase difference to obtain a predetermined phase difference, and the predetermined phase difference is output to each of the PWM converters 2a to 2c so as to be the phase difference of the carrier waves of the plurality of PWM converters. . That is, the control device 6 obtains the phase θ from the load amounts (Ic, L) and the voltage command value Vc of the vehicles 110 to 130, and commands the phase difference of the carrier signal to each PWM converter as described above. is there.
That is, in PWM, a pulse is created by comparing a signal wave (sine wave) and a carrier wave (triangular wave). When a plurality of converters are connected to a common power source, the signal wave is almost determined by the phase of the power source, so that the carrier wave is shifted to reduce the harmonics, as shown in the first embodiment. Further, the method of shifting the carrier wave is shifted by the phase difference of FIG. Therefore, there is an effect that harmonic components can be reduced even when the load power amount of each PWM converter as in the first embodiment is different.

なお、この実施の形態1では、1番目の車両110にのみ制御装置6を設ける例を示したが、各車両に設け、列車編成の都度、使用する制御装置1台を定めるようにしてもよい。   In the first embodiment, the example in which the control device 6 is provided only in the first vehicle 110 has been shown. However, the control device 6 may be provided in each vehicle, and one control device to be used may be determined for each train formation. .

また交流車両システム場合を例に説明したが、同一電源に負荷の大きさの異なる複数のPWMコンバータが接続される鉄鋼圧延システムの分野にも利用できる。   Moreover, although the case of the AC vehicle system has been described as an example, the present invention can also be used in the field of a steel rolling system in which a plurality of PWM converters having different loads are connected to the same power source.

この発明の実施の形態1は、可変電圧可変周波数の交流電力で、可変速駆動される電動機にて推進される交流列車車両システムや、鉄鋼圧延システムのPWMコンバータに利用できる。   Embodiment 1 of the present invention can be used for an AC train vehicle system that is propelled by an electric motor driven at a variable speed with AC power having a variable voltage and variable frequency, and a PWM converter of a steel rolling system.

この発明の実施の形態1の電力変換システムを応用した交流車両システムを示す図である。It is a figure which shows the alternating current vehicle system which applied the power conversion system of Embodiment 1 of this invention. この発明の実施の形態1の1台のモータを駆動するPWMコンバータの電圧指令を表す図である。It is a figure showing the voltage command of the PWM converter which drives one motor of Embodiment 1 of this invention. この発明の実施の形態1の2台のモータを駆動するPWMコンバータの電圧指令を表す図である。It is a figure showing the voltage command of the PWM converter which drives the two motors of Embodiment 1 of this invention. この発明の実施の形態1の各PWMコンバータの変調率の関係を表す図である。It is a figure showing the relationship of the modulation factor of each PWM converter of Embodiment 1 of this invention. この発明の実施の形態1の各PWMコンバータの搬送波信号の位相関係を示す図である。It is a figure which shows the phase relationship of the carrier wave signal of each PWM converter of Embodiment 1 of this invention.

符号の説明Explanation of symbols

2a〜2c PWMコンバータ、5 電源、6 制御装置、
10,20,30 電源ユニット、200 電力変換システム。
2a to 2c PWM converter, 5 power supply, 6 control device,
10, 20, 30 Power supply unit, 200 Power conversion system.

Claims (1)

共通の電力が供給され互いに負荷量が異なる複数の電源ユニットと、この複数の電源ユニットに制御指令信号を出力する制御装置とが設けられた交流列車車両用の電力変換システムにおいて、In a power conversion system for an AC train vehicle provided with a plurality of power supply units that are supplied with common power and have different load amounts, and a control device that outputs a control command signal to the plurality of power supply units,
前記制御装置は、前記電源ユニットに設けられている各PWMコンバータの電圧指令Vcと直流電源VdcとからVk=Vc/Vdcで求まる変調率Vkを算出するとともに、前記変調率Vkの各ベクトルの合成ベクトルの大きさが最小となるような位相差を演算し、この位相差を前記各PWMコンバータの搬送波の位相差として、前記各PWMコンバータを制御することを特徴とする交流列車車両用の電力変換システム。  The control device calculates a modulation rate Vk obtained by Vk = Vc / Vdc from a voltage command Vc and a DC power supply Vdc of each PWM converter provided in the power supply unit, and combines the vectors of the modulation rate Vk. A power conversion for an AC train vehicle, wherein a phase difference that minimizes the magnitude of a vector is calculated, and the PWM converter is controlled using the phase difference as a phase difference of a carrier wave of each PWM converter. system.
JP2006108151A 2006-04-11 2006-04-11 Power conversion system for AC train vehicles Active JP4410769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006108151A JP4410769B2 (en) 2006-04-11 2006-04-11 Power conversion system for AC train vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006108151A JP4410769B2 (en) 2006-04-11 2006-04-11 Power conversion system for AC train vehicles

Publications (2)

Publication Number Publication Date
JP2007282434A JP2007282434A (en) 2007-10-25
JP4410769B2 true JP4410769B2 (en) 2010-02-03

Family

ID=38683296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006108151A Active JP4410769B2 (en) 2006-04-11 2006-04-11 Power conversion system for AC train vehicles

Country Status (1)

Country Link
JP (1) JP4410769B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656590B1 (en) * 2011-12-12 2016-09-09 미쓰비시덴키 가부시키가이샤 Electric power conversion device
JP6025258B2 (en) * 2013-02-22 2016-11-16 理想科学工業株式会社 Drive control device
CN106458045B (en) 2014-06-17 2019-04-16 三菱电机株式会社 The control device of electric car
JP6393643B2 (en) 2015-03-26 2018-09-19 株式会社日立製作所 Vehicle drive system

Also Published As

Publication number Publication date
JP2007282434A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
US8704482B2 (en) Power conversion device
US6469469B1 (en) Variable output induction motor drive system
EP3706309A1 (en) Rotary electric machine control device
JP5466830B2 (en) Multi-phase motor drive
EP2763312B1 (en) Control device and control method for electric motor, and motor and vehicle drive system to which the control device and control method are applied
US10541598B1 (en) DC power generating system with voltage ripple compensation
WO2013046462A1 (en) Power conversion control device, power conversion control method, electric motor and vehicle drive system
JP5593362B2 (en) Multi-phase motor drive
CN102624319A (en) Methods, systems and apparatus for controlling third harmonic voltage
KR20120000524A (en) Method for controlling switches of switching arms, in particular in view of charging accumulation means, and corresponding charging device
CN105765837A (en) Inverter control device
JP4410769B2 (en) Power conversion system for AC train vehicles
EP3800782B1 (en) Rotating electrical machine control device
EP1833151B1 (en) Power conversion apparatus
EP4092900A1 (en) Rotating electrical machine control device
JP4838031B2 (en) Multiple inverter control system
RU2726814C1 (en) Self-propelled machine with electromechanical transmission and power takeoff system
JP5593361B2 (en) Multi-phase motor drive
JP5085408B2 (en) Multi-phase motor drive
EP2849331B1 (en) Method and apparatus for balancing voltages of multi-level inverter DC link
JP2019201444A (en) Inverter controller and inverter control method
JP2017175824A (en) Device and method for inverter control
JP5717902B2 (en) Power conversion control device, electric motor, and vehicle drive system
Saleh et al. Matrix converter based five-phase series-connected two-motor drive system
JP2006352951A (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

R150 Certificate of patent or registration of utility model

Ref document number: 4410769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250