JP4408661B2 - Microbubble generator - Google Patents

Microbubble generator Download PDF

Info

Publication number
JP4408661B2
JP4408661B2 JP2003274849A JP2003274849A JP4408661B2 JP 4408661 B2 JP4408661 B2 JP 4408661B2 JP 2003274849 A JP2003274849 A JP 2003274849A JP 2003274849 A JP2003274849 A JP 2003274849A JP 4408661 B2 JP4408661 B2 JP 4408661B2
Authority
JP
Japan
Prior art keywords
liquid
gas
swirl chamber
introduction path
fine bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003274849A
Other languages
Japanese (ja)
Other versions
JP2005034747A (en
Inventor
久恒 梨子木
辰彦 高瀬
一郎 手柴
博徳 田中
隆明 岩崎
Original Assignee
株式会社 多自然テクノワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 多自然テクノワークス filed Critical 株式会社 多自然テクノワークス
Priority to JP2003274849A priority Critical patent/JP4408661B2/en
Publication of JP2005034747A publication Critical patent/JP2005034747A/en
Application granted granted Critical
Publication of JP4408661B2 publication Critical patent/JP4408661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Jet Pumps And Other Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Nozzles (AREA)

Description

本発明は、水またはその他の液体中に浸漬させた状態で当該液体中へ微細気泡混じりの液体を供給する機能を有する微細気泡発生装置に関する。   The present invention relates to a fine bubble generating device having a function of supplying a liquid mixed with fine bubbles into water in a state where it is immersed in water or other liquid.

水中へ気泡を送り込んで溶存酸素量を高めることによって様々な効能が生じることは、従来から知られており、植物栽培、魚介類養殖、廃水処理などの各種産業分野で応用されている。この場合、気泡化した酸素などの気体を水中へ多量に溶解させるには、気泡径をなるべく小さくして気泡全体の表面積を増大させ、気液接触面積を増大させることが有効であることが分かっている。   It has been conventionally known that various effects are produced by increasing the amount of dissolved oxygen by sending bubbles into water, and it has been applied in various industrial fields such as plant cultivation, seafood culture, and wastewater treatment. In this case, in order to dissolve a large amount of gas such as bubbled oxygen in water, it is effective to reduce the bubble diameter as much as possible to increase the surface area of the entire bubble and increase the gas-liquid contact area. ing.

そこで、水などの液体中へ気泡を供給する機能を有する装置として、液体を吸引および排出する機能を有するポンプと、ポンプが吸引した液体中へ気泡を発生させる気泡発生器とを一体的に連結した構造を備えた微細気泡発生装置が開発されている(例えば、特許文献1,2参照。)。   Therefore, as a device that has the function of supplying bubbles into liquids such as water, a pump that sucks and discharges liquid and a bubble generator that generates bubbles in the liquid sucked by the pump are connected together. A microbubble generator having the above structure has been developed (see, for example, Patent Documents 1 and 2).

特開平5−240154号公報(第3−6頁)JP-A-5-240154 (page 3-6) 特開平6−299984号公報(第2−4頁)JP-A-6-299984 (page 2-4)

特許文献1に記載された気泡ノズル付き水中ポンプの場合、水面から突出した連結ロッドに外力を加えて昇降させなければ作動しないので、水車、電動機あるいはエンジンなどの動力源が必要である。また、連結ロッドを水面から突出させた状態でなければ作動させることができないので、水中深い位置における使用には不向きである。さらに、ピストンの往復移動によって作動させる関係上、気泡発生状態が周期的に変動するため、安定的な気泡供給が困難である。   In the case of the submersible pump with a bubble nozzle described in Patent Document 1, it does not operate unless an external force is applied to the connecting rod protruding from the water surface to raise and lower it, so a power source such as a water turbine, an electric motor or an engine is required. In addition, since the connecting rod cannot be operated unless it protrudes from the surface of the water, it is not suitable for use in a deep water position. Further, since the bubble generation state periodically varies due to the operation by the reciprocating movement of the piston, it is difficult to stably supply the bubbles.

特許文献2に記載された液体ポンプの場合、気泡発生器およびポンプに加え、電動機も備えているため、液中に投入して、電動機を作動させることにより、液中へ大量の気泡を供給することはできる。しかしながら、電動機で回転する翼車で液体を撹拌することによって気泡を発生する方式であるため、微細気泡を発生させることができない。   In the case of the liquid pump described in Patent Document 2, since an electric motor is provided in addition to the bubble generator and the pump, a large amount of bubbles are supplied into the liquid by being put into the liquid and operating the electric motor. I can. However, since bubbles are generated by stirring liquid with an impeller rotated by an electric motor, fine bubbles cannot be generated.

本発明が解決しようとする課題は、自由に移動させることができ、使い方が容易で、液体中へ大量の微細気泡を安定的に供給することのできる微細気泡発生装置を提供することにある。   The problem to be solved by the present invention is to provide a microbubble generator that can be moved freely, is easy to use, and can stably supply a large amount of microbubbles into a liquid.

本発明の微細気泡発生装置は、気液が軸心の周りを旋回可能な筒状の気液旋回室と、前記気液旋回室内へ液体を導入して当該気液旋回室内に気液旋回流を発生させるため前記気液旋回室の軸心とねじれの位置をなす方向へ液体を噴出する液体導入経路と、前記気体旋回室内へ気体を導入するため外部に向かって開口し前記気体旋回室と連通して形成された気体導入経路と、前記気液旋回室の軸心方向の端部に形成された気液吐出口とを備えた微細気泡発生器と、
液体中に浸漬可能な部分に設けられた吸引口から吸い込んだ当該液体を前記液体導入経路へ供給する防液性のポンプと、
前記ポンプを作動させる防液性の電動機と、を一体的に連結し
前記液体導入経路は円筒形であり、その基端には前記ポンプの吐水部との連結部が設けられ、前記液体導入経路の先端は、前記気液旋回室の気液吐出口と反対側の端部において前記気液旋回室内へ突出するように配置されるとともに前記先端部分が閉塞板で閉塞され、前記気液旋回室内に位置する前記液体導入経路の外周には前記気液旋回室の軸心とねじれの位置をなす方向へ液体を噴出するための複数の噴出口が設けられ、前記液体導入経路の先端側内部に基端側の前記連結部の内径より広い部分を設け、
前記気体導入経路は、前記液体導入経路の側面部を貫通してその内部へ進入し、前記軸心方向へ曲がった後、その先端開口部が前記閉塞板の前記気液旋回室側の前記軸心上に開口したことを特徴とする。ここで、防液性とは、水またはその他の液体中に浸漬しても本来の機能が阻害されない性質のことをいう。
The fine bubble generating apparatus of the present invention includes a cylindrical gas-liquid swirl chamber in which gas-liquid can swivel around an axis, and a gas-liquid swirl flow by introducing liquid into the gas-liquid swirl chamber. A liquid introduction path for ejecting liquid in a direction that forms a twist position with respect to the axis of the gas-liquid swirl chamber, and a gas swirl chamber that opens to the outside to introduce gas into the gas swirl chamber. A fine bubble generator comprising a gas introduction path formed in communication and a gas-liquid discharge port formed at an end of the gas-liquid swirl chamber in the axial direction;
A liquid-proof pump that supplies the liquid sucked from a suction port provided in a portion that can be immersed in the liquid to the liquid introduction path;
And a liquid-proof electric motor for operating the pump ,
The liquid introduction path has a cylindrical shape, and a connection part with a water discharge part of the pump is provided at a base end thereof, and a distal end of the liquid introduction path is opposite to a gas liquid discharge port of the gas liquid swirl chamber. An end of the gas-liquid swirl chamber is disposed so as to protrude into the gas-liquid swirl chamber, and the distal end portion is closed by a closing plate, and an axis of the gas-liquid swirl chamber is disposed on the outer periphery of the liquid introduction path located in the gas-liquid swirl chamber. A plurality of jet outlets are provided for jetting liquid in the direction of twisting with the center, and a portion wider than the inner diameter of the connecting portion on the base end side is provided inside the tip end side of the liquid introduction path,
The gas introduction path penetrates through the side surface of the liquid introduction path and enters the inside thereof, and after bending in the axial direction, the tip opening of the shaft on the gas-liquid swirl chamber side of the closing plate It is characterized by opening on the heart . Here, the liquid-proof property means a property that the original function is not inhibited even when immersed in water or other liquids.

本発明に係る微細気泡発生装置を液体中に投入し、浸漬した状態で電動機を作動させると、吸引口から吸い込まれた当該液体が液体導入経路を経由して気液旋回室内へ向かって噴出されるが、その噴出方向は気液旋回室の軸心とねじれの位置をなす方向となるため、気液旋回室内には軸心周りの旋回流が発生するとともに、旋回流の一部は気液吐出口から液中へ排出される。このとき、気液旋回室内の軸心付近には負圧空洞部が発生し、この負圧空洞部の存在によって気液旋回室内が負圧となるため、気液旋回室と連通する気体導入経路の開口から外部の気体が吸い込まれ、気体導入経路を経由して気液旋回室内へ導入される。   When the microbubble generator according to the present invention is put into a liquid and the electric motor is operated in the immersed state, the liquid sucked from the suction port is ejected into the gas-liquid swirl chamber via the liquid introduction path. However, since the direction of jetting is the direction of twisting with the axis of the gas-liquid swirl chamber, a swirl flow around the axis is generated in the gas-liquid swirl chamber, and part of the swirl flow is gas-liquid The liquid is discharged from the discharge port. At this time, a negative pressure cavity is generated in the vicinity of the axial center in the gas-liquid swirl chamber, and the gas-liquid swirl chamber becomes negative pressure due to the presence of this negative pressure cavity, so the gas introduction path communicating with the gas-liquid swirl chamber External gas is sucked from the opening of the gas and introduced into the gas-liquid swirl chamber via the gas introduction path.

気体導入経路を経由して気液旋回室内へ導入された気体は旋回流の剪断作用によって微細化され、気液旋回流となって気液旋回室内を旋回しながら、やがて気液吐出口から微細気泡混じりの液体となって外部(液体中)へ吐出される。すなわち、外部から吸い込んだ気体を微細気泡化して液体中へ供給することができる。   The gas introduced into the gas-liquid swirl chamber via the gas introduction path is refined by the shearing action of the swirl flow, and turns into a gas-liquid swirl flow and swirls in the gas-liquid swirl chamber, and eventually becomes fine from the gas-liquid discharge port. The liquid is mixed with bubbles and discharged to the outside (in the liquid). That is, the gas sucked from the outside can be made into fine bubbles and supplied into the liquid.

このように、本願発明に係る微細気泡発生装置は、微細気泡発生器、ポンプおよび電動機が一体化されているため自由に移動させることが可能であり、装置全体を液中に浸漬した状態で電動機を作動させるだけで当該液中に微細気泡混じりの液体を供給することができるため使い方も容易である。また、電動機により連続的に作動させることができるため、液体中へ大量の微細気泡を安定的に供給することができる。   As described above, the microbubble generator according to the present invention can be moved freely because the microbubble generator, the pump and the electric motor are integrated, and the electric motor is immersed in the liquid as a whole. Since the liquid containing fine bubbles can be supplied to the liquid simply by actuating the, it is easy to use. Moreover, since it can be continuously operated by the electric motor, a large amount of fine bubbles can be stably supplied into the liquid.

ここで、前記液体導入経路の液体噴出口を、気液旋回室の内周面から離れた位置に設けたことにより、負圧空洞部は気液旋回室の軸心上にほぼ直線状に形成され、その位置および形状の安定性が高まるので、キャビテーションエロージョンの発生が防止され、微細気泡発生器の耐久性が向上する。   Here, by providing the liquid jet outlet of the liquid introduction path at a position away from the inner peripheral surface of the gas-liquid swirl chamber, the negative pressure cavity is formed substantially linearly on the axis of the gas-liquid swirl chamber. Since the position and the stability of the shape are increased, the occurrence of cavitation erosion is prevented, and the durability of the fine bubble generator is improved.

また、前記気体導入経路の開口部を、気液旋回室の軸心上に配置すれば、気液旋回室内の旋回流によって軸心付近に発生する負圧空洞部に生じる大きな負圧を利用して、外部の気体を効率良く気液旋回室内へ導入して微細気泡化することが可能となる。   Further, if the opening of the gas introduction path is arranged on the axis of the gas-liquid swirl chamber, a large negative pressure generated in the negative pressure cavity generated near the axis due to the swirling flow in the gas-liquid swirl chamber is used. Thus, an external gas can be efficiently introduced into the gas-liquid swirl chamber to form fine bubbles.

一方、前記気液吐出口と対向する位置に、軸心方向と交差する平面または曲面を有する気液誘導部材を配置することが望ましい。このような気液誘導部材を配置すれば、気液吐出口から旋回しながら吐出された微細気泡混じりの液体は、気液誘導部材の平面または曲面に沿って拡がるように誘導されるようになるため、微細気泡の拡散性が向上する。これによって、気液旋回室内の負圧レベルが高まり、大量の気体が気液旋回室内へ導入されるようになるため、微細気泡の発生量も増大する。また、気液旋回室内に生じている負圧空洞部の負圧により、微細気泡発生器外部の気液吐出口付近の液体が気液吐出口へ誘引されるのを当該気液誘導部材が阻止するので、気液旋回室内への液体の逆流入を防止することもできる。   On the other hand, it is desirable to dispose a gas-liquid guiding member having a plane or curved surface intersecting the axial direction at a position facing the gas-liquid discharge port. If such a gas-liquid guiding member is arranged, the liquid containing fine bubbles discharged while turning from the gas-liquid discharging port is guided to spread along the plane or curved surface of the gas-liquid guiding member. Therefore, the diffusibility of fine bubbles is improved. As a result, the negative pressure level in the gas-liquid swirl chamber is increased and a large amount of gas is introduced into the gas-liquid swirl chamber, so that the amount of fine bubbles generated is also increased. In addition, the gas-liquid guide member prevents the liquid near the gas-liquid discharge port outside the fine bubble generator from being attracted to the gas-liquid discharge port by the negative pressure generated in the gas-liquid swirl chamber. Therefore, it is possible to prevent the reverse flow of the liquid into the gas-liquid swirl chamber.

また、前記気液吐出口に、当該気液吐出口からの気液吐出方向に突出した気液誘導管を連通させた構造とすることもできる。このような気液誘導管を設ければ、気液吐出口から吐出される微細気泡混じりの液体の吐出方向が定まって吐出量も増大し、気液旋回室内の負圧レベルが高まり、大量の気体が気液旋回室内へ導入されるようになるため、微細気泡発生量も増加する。また、気液吐出口から吐出される微細気泡混じりの液体の直進性も向上するため、より離れた領域へ微細気泡を供給することが可能となるほか、吐出される気液混合体が周囲の液体に対する撹拌作用も発揮するようになる。さらに、気液旋回室内に生じている負圧空洞部の負圧により、微細気泡発生器外部の気液吐出口付近の液体が気液吐出口へ誘引されるのを当該気液誘導管が阻止するので、気液旋回室内への液体の逆流入を防止することができる。   The gas-liquid discharge port may have a structure in which a gas-liquid guide tube protruding in the gas-liquid discharge direction from the gas-liquid discharge port is communicated with the gas-liquid discharge port. If such a gas-liquid guide tube is provided, the discharge direction of the liquid mixed with fine bubbles discharged from the gas-liquid discharge port is determined, the discharge amount is increased, the negative pressure level in the gas-liquid swirl chamber is increased, and a large amount of Since gas is introduced into the gas-liquid swirl chamber, the amount of fine bubbles generated also increases. Further, since the straightness of the liquid containing fine bubbles discharged from the gas-liquid discharge port is also improved, it is possible to supply fine bubbles to a more distant area, and the discharged gas-liquid mixture The stirring action on the liquid is also exhibited. Furthermore, the gas-liquid guide tube prevents the liquid near the gas-liquid discharge port outside the microbubble generator from being attracted to the gas-liquid discharge port by the negative pressure generated in the gas-liquid swirl chamber. Therefore, the reverse flow of the liquid into the gas-liquid swirl chamber can be prevented.

本発明により、以下の効果を奏する。 The present invention has the following effects.

(1)気液が軸心の周りを旋回可能な筒状の気液旋回室と、気液旋回室内へ液体を導入して当該気液旋回室内に気液旋回流を発生させるため気液旋回室の軸心とねじれの位置をなす方向へ液体を噴出する液体導入経路と、気体旋回室内へ気体を導入するため外部に向かって開口し気体旋回室と連通して形成された気体導入経路と、気液旋回室の軸心方向の端部に形成された気液吐出口とを備えた微細気泡発生器と、液体中に浸漬可能な部分に設けられた吸引口から吸い込んだ当該液体を液体導入経路へ供給する防液性のポンプと、このポンプを作動させる防液性の電動機と、を一体的に連結し、液体導入経路は円筒形であり、その基端にはポンプの吐水部との連結部が設けられ、液体導入経路の先端は、気液旋回室の気液吐出口と反対側の端部において気液旋回室内へ突出するように配置されるとともに先端部分が閉塞板で閉塞され、気液旋回室内に位置する液体導入経路の外周には前記気液旋回室の軸心とねじれの位置をなす方向へ液体を噴出するための複数の噴出口が設けられ、液体導入経路の先端側内部に基端側の連結部の内径より広い部分を設け、気体導入経路は、液体導入経路の側面部を貫通してその内部へ進入し、軸心方向へ曲がった後、その先端開口部が閉塞板の気液旋回室側の軸心上に開口したことにより、自由に移動させることが可能で、使い方も容易であり、液体中へ大量の微細気泡を安定的に供給することができる。 (1) Cylindrical gas-liquid swirl chamber in which gas-liquid can swivel around the axis, and gas-liquid swirl for introducing liquid into the gas-liquid swirl chamber and generating a gas-liquid swirl flow in the gas-liquid swirl chamber A liquid introduction path that ejects liquid in a direction that forms a twist with the axial center of the chamber, and a gas introduction path that is open to the outside and communicates with the gas swirl chamber to introduce gas into the gas swirl chamber. , A fine bubble generator having a gas-liquid discharge port formed at the end of the gas-liquid swirl chamber in the axial direction, and the liquid sucked from the suction port provided in the part that can be immersed in the liquid A liquid-proof pump for supplying to the introduction path and a liquid-proof electric motor for operating the pump are integrally connected, and the liquid introduction path has a cylindrical shape. The end of the liquid introduction path is the end opposite to the gas-liquid discharge port of the gas-liquid swirl chamber. In the gas-liquid swirl chamber, the tip portion is closed by a closing plate, and the outer periphery of the liquid introduction path located in the gas-liquid swirl chamber has a position of the axis and twist of the gas-liquid swirl chamber. A plurality of jet nozzles for ejecting liquid in the direction to be formed are provided, a portion wider than the inner diameter of the coupling portion on the base end side is provided inside the distal end side of the liquid introduction path, and the gas introduction path is a side portion of the liquid introduction path It is possible to move freely because the front end opening opens on the gas-liquid swirl chamber side axis of the closing plate after entering the inside and bending in the axial direction. It is easy to use and can stably supply a large amount of fine bubbles into the liquid.

(2)前記液体導入経路の液体噴出口を、気液旋回室の内周面から離れた位置に設けたことにより、負圧空洞部の位置および形状の安定性が高まるので、キャビテーションエロージョンの発生が防止され、微細気泡発生器の耐久性が向上する。 (2) Since the liquid outlet of the liquid introduction path is provided at a position away from the inner peripheral surface of the gas-liquid swirl chamber, the stability of the position and shape of the negative pressure cavity is increased, so that cavitation erosion occurs. Is prevented, and the durability of the fine bubble generator is improved.

(3)前記気体導入経路の開口部を、気液旋回室の軸心上に配置すれば、気液旋回室内の負圧空洞部に生じる大きな負圧を利用して、外部の気体を効率良く気液旋回室内へ導入して、微細気泡化することが可能となる。 (3) If the opening of the gas introduction path is arranged on the axial center of the gas-liquid swirl chamber, the external gas can be efficiently discharged by utilizing a large negative pressure generated in the negative pressure cavity in the gas-liquid swirl chamber. It can be introduced into the gas-liquid swirl chamber to make fine bubbles.

(4)前記気液吐出口と対向する位置に、軸心方向と交差する平面または曲面を有する気液誘導部材を配置すれば、気液吐出口から旋回しながら吐出された微細気泡の拡散性を向上させることができ、負圧レベルの向上により微細気泡発生量が増大し、気液旋回室内への液体の逆流入を防止することもできる。 (4) If a gas-liquid guide member having a plane or a curved surface intersecting the axial direction is arranged at a position facing the gas-liquid discharge port, the diffusibility of fine bubbles discharged while turning from the gas-liquid discharge port The amount of fine bubbles generated can be increased by improving the negative pressure level, and the reverse flow of liquid into the gas-liquid swirl chamber can be prevented.

(5)前記気液吐出口に、当該気液吐出口からの気液吐出方向に突出した気液誘導管を連通させれば、気液吐出口から吐出される微細気泡混じりの液体の直進性が向上し、より離れた領域へ微細気泡を供給可能となり、周囲の液体に対する撹拌作用も発揮するほか、負圧レベルの向上により微細気泡発生量が増大し、気液旋回室内への液体の逆流入を防止することもできる。 (5) When a gas-liquid guide tube protruding in the gas-liquid discharge direction from the gas-liquid discharge port is connected to the gas-liquid discharge port, the straightness of the liquid containing fine bubbles discharged from the gas-liquid discharge port In addition to improving the negative pressure level, fine bubbles can be supplied to more distant areas, and the amount of fine bubbles generated is increased by increasing the negative pressure level. It can also prevent entry.

図1は本発明の第1実施形態である微細気泡発生装置の使用状態を示す側面図、図2は図1に示す微細気泡発生装置の平面図、図3は図1に示す微細気泡発生装置を構成する微細気泡発生器を示す一部切欠側面図である。   FIG. 1 is a side view showing a use state of a fine bubble generator according to a first embodiment of the present invention, FIG. 2 is a plan view of the fine bubble generator shown in FIG. 1, and FIG. 3 is a fine bubble generator shown in FIG. It is a partially notched side view which shows the fine bubble generator which comprises.

図1,図2に示すように、本実施形態の微細気泡発生装置1は、防水性のポンプ2と、ポンプ2を作動させる防水性の電動機3と、微細気泡発生器4とを一体的に連結した構造を備えている。電動機3は電源コード5を介して電源(図示せず)に接続され、電源コード5の途中に設けられたスイッチ6によってON−OFFすることができる。ポンプ2は電動機3の回転軸(図示せず)と同軸上に連結され、吸引口2aから吸い込んだ水Wを吐水部8を経由して微細気泡発生器4の液体導入経路15へ供給する。   As shown in FIG. 1 and FIG. 2, the fine bubble generator 1 of the present embodiment integrally includes a waterproof pump 2, a waterproof electric motor 3 that operates the pump 2, and a fine bubble generator 4. It has a connected structure. The electric motor 3 is connected to a power source (not shown) via a power cord 5 and can be turned on and off by a switch 6 provided in the middle of the power cord 5. The pump 2 is coaxially connected to a rotating shaft (not shown) of the electric motor 3, and supplies the water W sucked from the suction port 2 a to the liquid introduction path 15 of the fine bubble generator 4 through the water discharge unit 8.

微細気泡発生器4は概形が円筒形であり、その下部には大気中の空気を導入するための吸気管9の基端部が接続されている。この吸気管9の上端部は、地上に配置された圧力計10、開閉弁11およびエアクリーナ12を介して大気中に開放されている。吸気管9の途中には、水Wが地上に逆流するのを防ぐための逆止弁13が設けられている。   The microbubble generator 4 is generally cylindrical, and a lower end of the microbubble generator 4 is connected to a base end portion of an intake pipe 9 for introducing air in the atmosphere. The upper end portion of the intake pipe 9 is opened to the atmosphere via a pressure gauge 10, an on-off valve 11 and an air cleaner 12 arranged on the ground. A check valve 13 is provided in the middle of the intake pipe 9 to prevent the water W from flowing back to the ground.

図3〜図5に示すように、微細気泡発生器4は、気液(水および空気)が軸心Sの周りを旋回可能な円筒ケーシング4a内に設けられた気液旋回室14と、気液旋回室14内へ液体(水)を導入して気液旋回流Rを発生させるため気液旋回室14内へ液体(水)を噴出する機能を有する液体導入経路15と、気体旋回室14内へ気体(空気)を導入するため気体旋回室14と連通して形成され外部に向かって開口した気体導入経路16と、気液旋回室14の軸心S方向の端部に形成された気液吐出口17とを備えている。   As shown in FIGS. 3 to 5, the fine bubble generator 4 includes a gas-liquid swirl chamber 14 provided in a cylindrical casing 4 a in which gas-liquid (water and air) can swirl around an axis S, and a gas-liquid swirl chamber 14. In order to introduce a liquid (water) into the liquid swirl chamber 14 to generate a gas-liquid swirl flow R, a liquid introduction path 15 having a function of ejecting the liquid (water) into the gas-liquid swirl chamber 14 and the gas swirl chamber 14 In order to introduce gas (air) into the inside, a gas introduction path 16 formed in communication with the gas swirl chamber 14 and opened to the outside, and a gas formed at the end of the gas-liquid swirl chamber 14 in the axial center S direction. And a liquid discharge port 17.

液体導入経路15は円筒形であり、その基端にはポンプ2の吐水部8との連結部15cが設けられ、その先端は、気液旋回室14の気液吐出口17と反対側の端部において気液旋回室14内へ突出するように配置され、その先端部分は閉塞板15aによって閉塞されている。図7に示すように、気液旋回室14内に位置する液体導入経路15の外周には、気液旋回室14の軸心Sとねじれの位置をなす方向へ液体を噴出するための複数の噴出口15bが設けられている。本実施形態では、噴出口15bは軸心Sを中心に等角度間隔で6個配置するとともに、これらの6個の噴出口15bを同じ位相で軸心S方向に2段配置することによって合計12個設けているが、これらの個数に限定するものではない。   The liquid introduction path 15 has a cylindrical shape, and is provided at its base end with a connecting portion 15c connected to the water discharge portion 8 of the pump 2, and its tip is the end opposite to the gas-liquid discharge port 17 of the gas-liquid swirl chamber 14. It is arrange | positioned so that it may protrude in the gas-liquid swirl chamber 14 in a part, and the front-end | tip part is obstruct | occluded with the obstruction | occlusion board 15a. As shown in FIG. 7, on the outer periphery of the liquid introduction path 15 located in the gas-liquid swirl chamber 14, a plurality of liquids for ejecting liquid in a direction that forms a twist position with the axis S of the gas-liquid swirl chamber 14. A spout 15b is provided. In the present embodiment, six jet outlets 15b are arranged at equiangular intervals around the axis S, and a total of 12 jet outlets 15b are arranged in two stages in the direction of the axis S with the same phase. Although the number is provided, it is not limited to these numbers.

図4に示すように、気体導入経路16は、液体導入経路15の側面部を貫通してその内部へ進入し、軸心S方向へ曲がった後、その先端開口部16aが閉塞板15aの表面側(気液旋回室14側)に開口している。液体導入経路15の側面に突出した気体導入経路16に吸気管9の基端部が着脱可能に連結されている。   As shown in FIG. 4, the gas introduction path 16 penetrates the side surface portion of the liquid introduction path 15 and enters the inside thereof, bends in the direction of the axis S, and then the tip opening 16 a is the surface of the blocking plate 15 a. It opens to the side (gas-liquid swirl chamber 14 side). A base end portion of the intake pipe 9 is detachably connected to a gas introduction path 16 protruding from a side surface of the liquid introduction path 15.

図4,図5に示すように、気液旋回室14を内蔵する円筒ケーシング4aの気液吐出口17の外側において、この気液吐出口17と対向する位置に、軸心Sと交差する平面18aを有する円板状の気液誘導部材18が配置されている。気液誘導部材18は、円弧状をした3つの連結部材18a,18bを介して円筒ケーシング4aの先端部分に接合されており、これらの連結部材18a,18bの間に形成された3つの吹き出し口19から、後述する、微細気泡混じりの液体(水)を水中へ吹き出す。なお、これら3つの吹き出し口19は、平面視状態において、電動機3の配置方向を除く3方向へ90度間隔で配置されている。   As shown in FIGS. 4 and 5, a plane that intersects the axis S at a position facing the gas-liquid discharge port 17 outside the gas-liquid discharge port 17 of the cylindrical casing 4 a containing the gas-liquid swirl chamber 14. A disk-shaped gas-liquid induction member 18 having 18a is arranged. The gas-liquid guide member 18 is joined to the tip end portion of the cylindrical casing 4a via three arc-shaped connecting members 18a and 18b, and three outlets formed between the connecting members 18a and 18b. From 19, a liquid (water) mixed with fine bubbles, which will be described later, is blown out into water. Note that these three outlets 19 are arranged at intervals of 90 degrees in three directions excluding the arrangement direction of the electric motor 3 in a plan view.

図1に示すように、本実施形態の微細気泡発生装置1を水W中に投入し、底部Zに起立状態に載置し、スイッチ6を操作して電動機3を作動させると、ポンプ2の吸引口2aから吸い込まれた水Wが吐水部8から液体導入経路15へ流れ込み、噴出口15bを経由して気液旋回室14内へ噴出されるが、その噴出方向は気液旋回室14の軸心Sとねじれの位置をなす方向となっているため、気液旋回室14内には軸心S周りの旋回流が発生するとともに、この旋回流の一部は気液吐出口17から水W中へ排出される。   As shown in FIG. 1, when the fine bubble generating device 1 of this embodiment is put into water W, placed in a standing state on the bottom Z, and the motor 3 is operated by operating the switch 6, The water W sucked from the suction port 2a flows into the liquid introduction path 15 from the water discharge part 8, and is ejected into the gas-liquid swirl chamber 14 through the jet port 15b. Since it is in the direction of twisting with the shaft center S, a swirling flow around the shaft center S is generated in the gas-liquid swirl chamber 14, and a part of this swirling flow is water from the gas-liquid discharge port 17. It is discharged into W.

このとき、図4に示すように、気液旋回室14内の軸心S付近には負圧空洞部Vが発生し、この負圧空洞部Vの存在によって気液旋回室14内が負圧となるため、気液旋回室14と連通する気体導入経路16および吸気管9を経由して気体(大気中の空気)が吸い込まれ、気体導入経路16の先端開口部16aから気液旋回室14内へ導入される。   At this time, as shown in FIG. 4, a negative pressure cavity V is generated in the vicinity of the axis S in the gas-liquid swirl chamber 14, and the presence of this negative pressure cavity V causes the negative pressure in the gas-liquid swirl chamber 14. Therefore, gas (air in the atmosphere) is sucked through the gas introduction path 16 communicating with the gas-liquid swirl chamber 14 and the intake pipe 9, and the gas-liquid swirl chamber 14 is inserted from the tip opening 16 a of the gas introduction path 16. It is introduced in.

気体導入経路16の先端開口部16aを経由して気液旋回室14内へ導入された気体は前述した旋回流の剪断作用によって微細化され、気液旋回流Rとなって気液旋回室14内を旋回しながら、やがて気液吐出口17から微細気泡NB混じりの液体となって水W中へ吐出される。すなわち、大気中から吸い込んだ空気を微細気泡NBに変化させて水W中へ供給することができる。   The gas introduced into the gas-liquid swirl chamber 14 via the tip opening 16a of the gas introduction path 16 is refined by the shearing action of the swirl flow described above to become the gas-liquid swirl flow R, and the gas-liquid swirl chamber 14 While turning inside, it eventually becomes a liquid mixed with fine bubbles NB from the gas-liquid discharge port 17 and is discharged into the water W. That is, the air sucked from the atmosphere can be changed into the fine bubbles NB and supplied into the water W.

本実施形態の微細気泡発生装置1は、ポンプ2、電動機3および微細気泡発生器4が一体化されているため自由に移動させることが可能であり、装置1全体を水W中に浸漬した状態で電動機3を作動させるだけで水W中に微細気泡NB混じりの液体を供給することができるため使い方も容易である。また、電動機3により連続的に作動させることができるため、水W中へ大量の微細気泡NBを安定的に供給することができる。   The fine bubble generator 1 of this embodiment can be moved freely because the pump 2, the electric motor 3, and the fine bubble generator 4 are integrated, and the entire device 1 is immersed in the water W. Thus, since the liquid mixed with the fine bubbles NB can be supplied into the water W simply by operating the electric motor 3, the usage is easy. Moreover, since it can be operated continuously by the electric motor 3, a large amount of fine bubbles NB can be stably supplied into the water W.

微細気泡発生装置1では、液体導入経路15の液体噴出口15bを、気液旋回室14の内周面14aから離れた位置に設けているため、噴出口15bから噴き出す水によって負圧空洞部Vに水圧が加わることがない。したがって、負圧空洞部Vは気液旋回室14の軸心S上にほぼ直線状に形成され、その位置および形状も安定した状態が保たれることとなり、キャビテーションエロージョンの発生が防止されるため、微細気泡発生器4は優れた耐久性を発揮する。   In the microbubble generator 1, since the liquid jet port 15b of the liquid introduction path 15 is provided at a position away from the inner peripheral surface 14a of the gas-liquid swirl chamber 14, the negative pressure cavity V is caused by the water jetted from the jet port 15b. No water pressure is applied to the. Therefore, the negative pressure cavity V is formed substantially linearly on the axis S of the gas-liquid swirl chamber 14, and the position and shape thereof are kept stable, so that cavitation erosion is prevented. The fine bubble generator 4 exhibits excellent durability.

また、気体導入経路16の先端開口部16aを、気液旋回室14の軸心S上に配置しているため、気液旋回室14内の気液旋回流Rによって軸心S付近に発生する負圧空洞部Vに生じる大きな負圧を利用して、大気中の空気を効率良く気液旋回室14内へ導入して微細気泡NBを形成することができる。したがって、気液旋回室14内へ外気を導入するためのエアポンプは不要である。   Further, since the front end opening 16 a of the gas introduction path 16 is disposed on the axis S of the gas-liquid swirl chamber 14, it is generated near the axis S by the gas-liquid swirl flow R in the gas-liquid swirl chamber 14. Using the large negative pressure generated in the negative pressure cavity V, air in the atmosphere can be efficiently introduced into the gas-liquid swirl chamber 14 to form the fine bubbles NB. Therefore, an air pump for introducing outside air into the gas-liquid swirl chamber 14 is unnecessary.

一方、気液吐出口17と対向する位置に、軸心S方向と交差する平面18aを有する気液誘導部材18を配置しているため、気液吐出口17から旋回しながら吐出された微細気泡NB混じりの液体を気液誘導部材18の平面18aに沿って周辺へ拡がるように誘導した後、3つの吹き出し口19から互いに異なる3つの方向へすることが可能であり、微細気泡NBの拡散性も良好である。   On the other hand, since the gas-liquid guide member 18 having the flat surface 18a intersecting the direction of the axis S is disposed at a position facing the gas-liquid discharge port 17, the fine bubbles discharged while turning from the gas-liquid discharge port 17 After the NB-mixed liquid is guided to spread to the periphery along the plane 18a of the gas-liquid guide member 18, it can be directed from the three outlets 19 in three different directions, and the diffusibility of the fine bubbles NB. Is also good.

また、これによって気液旋回室14内の負圧レベルが高まり、大量の空気が気液旋回室14内へ導入されるようになるため、微細気泡NBの発生量も増大する。さらに、気液旋回室14内に生じている負圧空洞部Vの負圧により、微細気泡発生器4外部の気液吐出口17付近の水Wが、気液吐出口17へ誘引されるのを当該気液誘導部材18が阻止するので、気液旋回室14内への水Wの逆流入を防止することができる。   In addition, the negative pressure level in the gas-liquid swirl chamber 14 is thereby increased, and a large amount of air is introduced into the gas-liquid swirl chamber 14, so that the generation amount of the fine bubbles NB is also increased. Further, the water W near the gas-liquid discharge port 17 outside the fine bubble generator 4 is attracted to the gas-liquid discharge port 17 by the negative pressure of the negative pressure cavity V generated in the gas-liquid swirl chamber 14. Is prevented by the gas-liquid guide member 18, so that the reverse flow of the water W into the gas-liquid swirl chamber 14 can be prevented.

本実施形態の微細気泡発生装置1の用途は特に限定するものではないので、様々な技術分野において広く使用することができるが、例えば、農業用水中の溶存酸素量の増大手段、水溶性肥料の溶解および微細化手段として好適に使用することができる。また、微細気泡発生装置1は、比較的小型であるため、容積の小さな水槽や水タンクに投入して使用する場合にも好適である。   The use of the microbubble generator 1 of the present embodiment is not particularly limited, and can be widely used in various technical fields. For example, means for increasing the amount of dissolved oxygen in agricultural water, water-soluble fertilizer It can be suitably used as a dissolution and refinement means. Moreover, since the microbubble generator 1 is comparatively small, it is also suitable when used by putting it in a small-sized water tank or water tank.

次に、図8〜図14を参照して、本発明の第2実施形態である微細気泡発生装置21について説明する。なお、図8〜図14において、図1〜図9と同じ符号を付している部分は第1実施形態の微細気泡発生装置1の場合と同じ機能、効果を発揮する部分であるため説明を省略する。   Next, with reference to FIGS. 8-14, the microbubble generator 21 which is 2nd Embodiment of this invention is demonstrated. 8 to 14, the portions denoted by the same reference numerals as those in FIGS. 1 to 9 are portions exhibiting the same functions and effects as those in the case of the fine bubble generating device 1 of the first embodiment. Omitted.

図8,図9に示すように、微細気泡発生装置は、ポンプ2、電動機3および微細気泡発生器24を一体化した構造を備えている。微細気泡発生器24は、その底面部に設けられた液体導入経路25をポンプ2の吐水部8に接続することによってポンプ2と一体化されている。   As shown in FIGS. 8 and 9, the fine bubble generator has a structure in which the pump 2, the electric motor 3, and the fine bubble generator 24 are integrated. The fine bubble generator 24 is integrated with the pump 2 by connecting a liquid introduction path 25 provided on the bottom surface thereof to the water discharger 8 of the pump 2.

図10〜図12に示すように、微細気泡発生器24は概形が直方体形状であって、その正面部に2つの気液誘導管29が突出状に配置されている。微細気泡発生器24の内部には略円筒形状をした2つの気液旋回室24a,24bが配置されている。液体誘導経路25は、微細気泡発生器24の内部に設けられた直方体形状の液体室25cに連通し、液体室25aの天井部に設けられた2つの液体流路25a,25bを介してそれぞれ気液旋回室24a,24bに連通している。   As shown in FIGS. 10 to 12, the fine bubble generator 24 has a substantially rectangular parallelepiped shape, and two gas-liquid induction tubes 29 are arranged in a protruding manner on the front surface thereof. Two gas-liquid swirl chambers 24 a and 24 b having a substantially cylindrical shape are arranged inside the fine bubble generator 24. The liquid guide path 25 communicates with a rectangular parallelepiped liquid chamber 25c provided inside the fine bubble generator 24, and air is passed through two liquid channels 25a and 25b provided in the ceiling of the liquid chamber 25a. It communicates with the liquid swirl chambers 24a, 24b.

気液旋回室24a,24bの基端部(電動機3寄りの部分)には、それぞれ気体導入経路26の先端開口部26aが位置しており、気液旋回室24a,24bの先端部(電動機3の反対側)には、それぞれ気液吐出口27が設けられ、これらの気液吐出口27とそれぞれ連通するように気液誘導管29が配置されている。   At the base end portions (portions near the electric motor 3) of the gas-liquid swirl chambers 24a and 24b, the distal end opening portions 26a of the gas introduction passages 26 are respectively positioned, and the distal end portions (the electric motor 3) of the gas-liquid swirl chambers 24a and 24b. Gas-liquid discharge ports 27 are provided on the opposite sides of the gas-liquid discharge tube 27, and gas-liquid guide tubes 29 are arranged so as to communicate with the gas-liquid discharge ports 27, respectively.

図8に示すように、本実施形態の微細気泡発生装置21を水W中に投入し、底部Zに起立状態に載置し、スイッチ6を操作して電動機3を作動させると、ポンプ2の吸引口2aから吸い込まれた水Wが吐水部8から液体導入経路25へ流れ込み、液体室25cおよび液体流路25a,25bを経由してそれぞれ気液旋回室24a,24b内へ噴出される。このとき、図13に示すように、液体流路25a,25bからの水の噴出方向は気液旋回室24a,24bの軸心Sとねじれの位置をなす方向となっているため、気液旋回室24a,24b内にはそれぞれ軸心S周りの旋回流が発生し、この旋回流の一部は気液吐出口27から水W中へ排出される。   As shown in FIG. 8, when the fine bubble generating device 21 of this embodiment is poured into the water W, placed in a standing state on the bottom Z, and the motor 3 is operated by operating the switch 6, The water W sucked from the suction port 2a flows into the liquid introduction path 25 from the water discharge section 8, and is jetted into the gas-liquid swirl chambers 24a and 24b via the liquid chamber 25c and the liquid flow paths 25a and 25b, respectively. At this time, as shown in FIG. 13, the direction of water ejection from the liquid flow paths 25a and 25b is the direction of twisting with the axis S of the gas-liquid swirl chambers 24a and 24b. A swirl flow around the axis S is generated in each of the chambers 24a and 24b, and a part of the swirl flow is discharged from the gas-liquid discharge port 27 into the water W.

したがって、気液旋回室24a,24b内の軸心S付近には負圧空洞部Vが発生し、この負圧空洞部Vの存在によって気液旋回室24a、24b内が負圧となるため、気液旋回室24a,24bと連通する気体導入経路26および吸気管9を経由して気体(大気中の空気)が吸い込まれ、気体導入経路26の先端開口部26aから気液旋回室24a,24b内へ導入される。   Accordingly, a negative pressure cavity V is generated near the axis S in the gas-liquid swirl chambers 24a and 24b, and the presence of this negative pressure cavity V causes a negative pressure in the gas-liquid swirl chambers 24a and 24b. Gas (air in the atmosphere) is sucked through the gas introduction path 26 and the intake pipe 9 communicating with the gas-liquid swirl chambers 24a and 24b, and the gas-liquid swirl chambers 24a and 24b are introduced from the front end opening 26a of the gas introduction path 26. It is introduced in.

気体導入経路16の先端開口部16aを経由して気液旋回室24a,24b内へ導入された気体は前述した旋回流の剪断作用によって微細化され、気液旋回流Rとなって気液旋回室24a,24b内を旋回しながら、やがて気液吐出口27から微細気泡NB混じりの液体となって水W中へ吐出される。すなわち、大気中から吸い込んだ空気を微細気泡NBに変化させて水W中へ供給することができる。   The gas introduced into the gas-liquid swirl chambers 24a and 24b via the tip opening 16a of the gas introduction path 16 is refined by the above-described shearing action of the swirl flow to become a gas-liquid swirl flow R, and the gas-liquid swirl While turning in the chambers 24a and 24b, the liquid is eventually mixed into the water W from the gas-liquid discharge port 27 and mixed with the fine bubbles NB. That is, the air sucked from the atmosphere can be changed into the fine bubbles NB and supplied into the water W.

微細気泡発生装置21においては、図14に示すように、液体流路25a,25bの開口部25d,25eを気液旋回室24a,24bの内周面に設けているが、これらの開口部25d,25eのある部分には、気液旋回室24a,24bの内径を広げた形状の予備旋回室24c,24dを設けている。このため、液体流路25a,25bから噴出した水の圧力によって負圧空洞部Vが移動することがなく、その形状および位置の安定性が良好であり、キャビテーションエロージョンが発生せず、耐久性に優れている。   In the microbubble generator 21, as shown in FIG. 14, the openings 25d and 25e of the liquid flow paths 25a and 25b are provided on the inner peripheral surfaces of the gas-liquid swirl chambers 24a and 24b. , 25e are provided with preliminary swirl chambers 24c, 24d each having an enlarged inner diameter of the gas-liquid swirl chambers 24a, 24b. For this reason, the negative pressure cavity V does not move due to the pressure of water ejected from the liquid flow paths 25a and 25b, the shape and position thereof are stable, cavitation erosion does not occur, and durability is improved. Are better.

また、気液吐出口27に、気液吐出口27からの気液吐出方向に突出した気液誘導管29を連通させた構造としているため、気液吐出口27から吐出される微細気泡NB混じりの液体の吐出方向が定まって直進性も良好となり、より離れた領域へ微細気泡NBを供給することが可能であり、吐出される気液混合体が周囲の水Wを撹拌する作用も発揮する。さらに、気液誘導管29を設けたことによって微細気泡NB混じりの液体が効率良く吐出される結果、吐出気液旋回室24c,24d内の負圧レベルが高まり、大量の空気が導入されるようになるため、微細気泡NBの発生量も増大する。   Further, since the gas-liquid discharge port 27 communicates with the gas-liquid guide tube 29 protruding in the gas-liquid discharge direction from the gas-liquid discharge port 27, the fine bubbles NB discharged from the gas-liquid discharge port 27 are mixed. The liquid discharge direction of the liquid is determined, the straightness is also improved, the fine bubbles NB can be supplied to a more distant area, and the discharged gas-liquid mixture also exhibits the action of stirring the surrounding water W . Further, by providing the gas-liquid guide tube 29, the liquid mixed with the fine bubbles NB is efficiently discharged. As a result, the negative pressure level in the discharge gas-liquid swirl chambers 24c and 24d is increased, and a large amount of air is introduced. Therefore, the generation amount of fine bubbles NB also increases.

一方、気液旋回室24a,24b内に生じている負圧空洞部Vの負圧により、微細気泡発生器24外部の気液吐出口27付近の水Wが気液吐出口27へ誘引されるのを当該気液誘導管29が阻止するので、気液旋回室24a,24b内への水Wの逆流入を防止することもできる。   On the other hand, the water W near the gas-liquid discharge port 27 outside the fine bubble generator 24 is attracted to the gas-liquid discharge port 27 by the negative pressure of the negative pressure cavity V generated in the gas-liquid swirl chambers 24a, 24b. Since the gas-liquid guide tube 29 prevents this, the reverse flow of the water W into the gas-liquid swirl chambers 24a and 24b can be prevented.

本実施形態の微細気泡発生装置21の用途は特に限定するものではないので、様々な技術分野において広く使用することができるが、例えば、農業用水の溶存酸素量の増大手段、水溶性肥料の溶解および微細化手段として好適に使用することができる。また、微細気泡発生装置21を構成する微細気泡発生器24は、2つの気液旋回室24a,24bを備え、2本の気液誘導管29から微細気泡NB混じりの水Wを噴出するため、噴出力が強く、遠方まで微細気泡NBを供給することができるほか、撹拌作用も優れている。このため、底部Zの広い水槽や水タンクにおいて好適に使用することができる。その他の構造、機能および効果については前述した微細気泡発生装置1と同様である。   The application of the microbubble generator 21 of the present embodiment is not particularly limited, and can be widely used in various technical fields. For example, means for increasing the dissolved oxygen amount of agricultural water, dissolution of water-soluble fertilizer And it can be suitably used as a means for miniaturization. The fine bubble generator 24 constituting the fine bubble generator 21 includes two gas-liquid swirl chambers 24a and 24b, and jets water W mixed with the fine bubbles NB from the two gas-liquid guide tubes 29. The jet power is strong, the fine bubbles NB can be supplied to a distant place, and the stirring action is also excellent. For this reason, it can be suitably used in a water tank or water tank having a wide bottom Z. Other structures, functions, and effects are the same as those of the fine bubble generator 1 described above.

次に、図15〜図17を参照して、本発明の第3実施形態である微細気泡発生装置31について説明する。なお、図15〜図17において、図1〜図9と同じ符号を付している部分は第1実施形態の微細気泡発生装置1の場合と同じ機能、効果を発揮する部分であるため説明を省略する。   Next, with reference to FIGS. 15-17, the microbubble generator 31 which is 3rd Embodiment of this invention is demonstrated. 15 to 17, the portions denoted by the same reference numerals as those in FIGS. 1 to 9 are portions exhibiting the same functions and effects as those in the case of the fine bubble generating device 1 of the first embodiment. Omitted.

本実施形態の微細気泡発生装置31においては、第1実施形態の微細気泡発生装置1の微細気泡発生器4の代わりに微細気泡発生器34を取り付けたものであり、その他の部分の構造は微細気泡発生装置1と全く同様である。また、微細気泡発生器34は、微細気泡発生装置1を構成する微細気泡発生器4の気液誘導部材18および連結部材18b,18cを取り外し、気液吐出口17に気液誘導管39を連通状に取りつけた構造であり、その他の部分の構造は微細気泡発生器4と全く同様である。   In the fine bubble generator 31 of this embodiment, a fine bubble generator 34 is attached instead of the fine bubble generator 4 of the fine bubble generator 1 of the first embodiment, and the structure of the other parts is fine. This is exactly the same as the bubble generator 1. The fine bubble generator 34 removes the gas-liquid guide member 18 and the connecting members 18 b and 18 c of the fine bubble generator 4 constituting the fine bubble generator 1, and connects the gas-liquid guide tube 39 to the gas-liquid discharge port 17. The structure of the other part is exactly the same as that of the fine bubble generator 4.

図15に示すように、微細気泡発生装置31を水W中に投入し、底部Z上に直立状に載置して、電動機3を作動させると、微細気泡発生器34内に発生する気液旋回流Rおよび負圧空洞部Vの作用により、気液誘導管39から微細気泡NB混じりの液体を水W中へ噴出することができる。気液誘導管39は、微細気泡発生装置21の気液誘導管29と同様の機能を発揮し、微細気泡NBを遠くまで供給することができ、水Wの逆流入も防ぐことができる。また、気液誘導管39から噴出する微細気泡NB混じりの液体の噴出力は比較的大であるため、図15の状態で作動させれば、垂直方向の強い撹拌作用を発揮する。   As shown in FIG. 15, when the fine bubble generator 31 is poured into the water W, placed on the bottom Z in an upright manner, and the electric motor 3 is operated, the gas-liquid generated in the fine bubble generator 34. By the action of the swirl flow R and the negative pressure cavity V, the liquid mixed with the fine bubbles NB can be ejected from the gas-liquid guide tube 39 into the water W. The gas-liquid guide tube 39 exhibits the same function as the gas-liquid guide tube 29 of the fine bubble generating device 21, can supply the fine bubbles NB far, and can prevent reverse inflow of water W. Further, since the jet power of the liquid mixed with the fine bubbles NB ejected from the gas-liquid guide tube 39 is relatively large, if it is operated in the state of FIG. 15, a strong stirring action in the vertical direction is exhibited.

一方、微細気泡発生装置31は、図17に示すように、微細気泡発生装置31全体を横にした状態で底部Zに載置して作動させることも可能であり、このような状態で作動させれば、水平方向の遠い領域まで微細気泡NBを供給することができるほか、水平方向の強い撹拌作用を発揮するので、水W中に大きな循環流を発生させることもできる。   On the other hand, as shown in FIG. 17, the fine bubble generating device 31 can be operated by placing it on the bottom Z in a state where the entire fine bubble generating device 31 is placed sideways. If so, the fine bubbles NB can be supplied to a far region in the horizontal direction, and a strong stirring action in the horizontal direction can be exhibited, so that a large circulating flow can be generated in the water W.

本実施形態の微細気泡発生装置31の用途は特に限定するものではないので、様々な技術分野において広く使用することができるが、図17に示す状態で使用することにより、例えば、水産関係の養殖用水槽や蓄養水槽などのように、浅くて広い水槽における溶存酸素量の増大手段、水溶性肥料の溶解および微細化手段として好適に使用することができる。その他の構造、機能および効果については前述した微細気泡発生装置1と同様である。   The use of the microbubble generator 31 of the present embodiment is not particularly limited and can be widely used in various technical fields. However, when used in the state shown in FIG. 17, for example, aquaculture-related aquaculture It can be suitably used as a means for increasing the amount of dissolved oxygen and a means for dissolving and refining water-soluble fertilizer in a shallow and wide aquarium such as an aquarium or a storage tank. Other structures, functions, and effects are the same as those of the fine bubble generator 1 described above.

次に、図18を参照して、本発明の第4実施形態である微細気泡発生装置41について説明する。なお、図18において、図1〜図9および図15〜図17と同じ符号を付している部分は第1,3実施形態の微細気泡発生装置1,31の場合と同じ機能、効果を発揮する部分であるため説明を省略する。   Next, with reference to FIG. 18, the microbubble generator 41 which is 4th Embodiment of this invention is demonstrated. In FIG. 18, the same reference numerals as those in FIGS. 1 to 9 and FIGS. 15 to 17 show the same functions and effects as those of the fine bubble generators 1 and 31 of the first and third embodiments. Since it is a part to perform, description is abbreviate | omitted.

本実施形態の微細気泡発生装置41においては、第3実施形態の微細気泡発生装置31の微細気泡発生器34をL字状の連結管42を介してポンプ2の吐水部8に取り付けたものであり、その他の部分の構造は微細気泡発生装置31と全く同様である。   In the fine bubble generator 41 of this embodiment, the fine bubble generator 34 of the fine bubble generator 31 of the third embodiment is attached to the water discharge part 8 of the pump 2 via an L-shaped connecting pipe 42. Yes, the structure of other parts is exactly the same as that of the microbubble generator 31.

微細気泡発生装置41の場合、図18に示すように、電動機3およびポンプ2を起立させた状態で底部Zに載置すれば、気液誘導管39が水平方向を向くので、この状態で電動機3を作動させれば、図17で示した微細気泡発生装置31と同様の機能、効果が得られる。この場合、ポンプ2の吸引口2aが底部Zに向いているため、底部Z付近の水Wを漏れなく吸い込むことが可能であり、本来の微細気泡NB供給機能に加え、優れた撹拌作用を得ることができる。   In the case of the fine bubble generating device 41, as shown in FIG. 18, if the electric motor 3 and the pump 2 are placed on the bottom Z in a standing state, the gas-liquid guide tube 39 faces in the horizontal direction. If 3 is operated, the same function and effect as the fine bubble generating device 31 shown in FIG. 17 can be obtained. In this case, since the suction port 2a of the pump 2 faces the bottom Z, the water W near the bottom Z can be sucked in without leakage, and an excellent stirring action is obtained in addition to the original function of supplying fine bubbles NB. be able to.

本発明に係る微細気泡発生装置は、農業用水の溶存酸素量の増大手段、水溶性肥料の溶解および微細化手段、あるいは、水産関係における養殖用水槽や蓄養水槽への酸素供給のほか様々な分野に広く利用可能である。   The fine bubble generator according to the present invention is a means for increasing the amount of dissolved oxygen in agricultural water, a means for dissolving and refining water-soluble fertilizers, or supplying oxygen to aquaculture and storage tanks for aquaculture. Widely available.

本発明の第1実施形態である微細気泡発生装置の使用状態を示す側面図である。It is a side view which shows the use condition of the microbubble generator which is 1st Embodiment of this invention. 図1に示す微細気泡発生装置の平面図である。It is a top view of the microbubble generator shown in FIG. 図1に示す微細気泡発生装置を構成する微細気泡発生器を示す一部切欠側面図である。It is a partially cutaway side view which shows the microbubble generator which comprises the microbubble generator shown in FIG. 図3におけるA−A線断面図である。It is the sectional view on the AA line in FIG. 図3におけるB−B線断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3. 図3におけるC−C線断面図である。It is CC sectional view taken on the line in FIG. 図3におけるD−D線断面図である。It is the DD sectional view taken on the line in FIG. 本発明の第2実施形態である微細気泡発生装置の使用状態を示す側面図である。It is a side view which shows the use condition of the microbubble generator which is 2nd Embodiment of this invention. 図8に示す微細気泡発生装置の平面図である。It is a top view of the fine bubble generator shown in FIG. 図8に示す微細気泡発生装置を構成する微細気泡発生器を示す側面図である。It is a side view which shows the microbubble generator which comprises the microbubble generator shown in FIG. 図10に示す微細気泡発生器の平面図である。It is a top view of the fine bubble generator shown in FIG. 図11に示す微細気泡発生器の一部切欠正面図である。It is a partially cutaway front view of the fine bubble generator shown in FIG. 図12におけるE−E線断面図である。It is the EE sectional view taken on the line in FIG. 図13におけるF−F線断面図である。It is the FF sectional view taken on the line in FIG. 本発明の第3実施形態である微細気泡発生装置の使用状態を示す一部切欠側面図である。It is a partially notched side view which shows the use condition of the microbubble generator which is 3rd Embodiment of this invention. 図15に示す微細気泡発生装置を示す平面図である。It is a top view which shows the microbubble generator shown in FIG. 図15に示す微細気泡発生装置のその他の使用状態を示す側面図である。It is a side view which shows the other use condition of the microbubble generator shown in FIG. 本発明の第4実施形態である微細気泡発生装置を示す側面図である。It is a side view which shows the microbubble generator which is 4th Embodiment of this invention.

符号の説明Explanation of symbols

1,21,31,41 微細気泡発生装置
2 ポンプ
2a 吸引口
3 電動機
4,24,34 微細気泡発生器
4a 円筒ケーシング
5 電源コード
6 スイッチ
8 吐水部
9 吸気管
10 圧力計
11 開閉弁
12 エアクリーナ
13 逆止弁
14,24a,24b 気液旋回室
14a 内周面
15,25 液体導入経路
15a 閉塞板
15b 噴出口
15c 連結部
16,26 気体導入経路
16a,26a 先端開口部
17,27 気液吐出口
18 気液誘導部材
18a 平面
18b,18c 連結部材
19 吹き出し口
25c 液体室
25d,25e 開口部
29,39 気液誘導管
NB 微細気泡
R 旋回流
S 軸心
W 水
Z 底部
1, 2, 31, 41 Fine bubble generator 2 Pump 2a Suction port 3 Electric motor 4, 24, 34 Fine bubble generator 4a Cylindrical casing 5 Power cord 6 Switch 8 Water discharge part 9 Intake pipe 10 Pressure gauge 11 Open / close valve 12 Air cleaner 13 Check valve 14, 24a, 24b Gas-liquid swirl chamber 14a Inner peripheral surface 15, 25 Liquid introduction path 15a Blocking plate 15b Outlet 15c Connecting part 16, 26 Gas introduction path 16a, 26a Front end opening 17, 27 Gas-liquid outlet 18 Gas-liquid guide member 18a Plane 18b, 18c Connecting member 19 Air outlet 25c Liquid chamber 25d, 25e Opening 29, 39 Gas-liquid guide tube NB Fine bubble R Swirling flow S Axis W Water Z Bottom

Claims (5)

気液が軸心の周りを旋回可能な筒状の気液旋回室と、前記気液旋回室内へ液体を導入して当該気液旋回室内に気液旋回流を発生させるため前記気液旋回室の軸心とねじれの位置をなす方向へ液体を噴出する液体導入経路と、前記気体旋回室内へ気体を導入するため外部に向かって開口し前記気体旋回室と連通して形成された気体導入経路と、前記気液旋回室の軸心方向の端部に形成された気液吐出口とを備えた微細気泡発生器と、
液体中に浸漬可能な部分に設けられた吸引口から吸い込んだ当該液体を前記液体導入経路へ供給する防液性のポンプと、
前記ポンプを作動させる防液性の電動機と、を一体的に連結し
前記液体導入経路は円筒形であり、その基端には前記ポンプの吐水部との連結部が設けられ、前記液体導入経路の先端は、前記気液旋回室の気液吐出口と反対側の端部において前記気液旋回室内へ突出するように配置されるとともに前記先端部分が閉塞板で閉塞され、前記気液旋回室内に位置する前記液体導入経路の外周には前記気液旋回室の軸心とねじれの位置をなす方向へ液体を噴出するための複数の噴出口が設けられ、前記液体導入経路の先端側内部に基端側の前記連結部の内径より広い部分を設け、
前記気体導入経路は、前記液体導入経路の側面部を貫通してその内部へ進入し、前記軸心方向へ曲がった後、その先端開口部が前記閉塞板の前記気液旋回室側の前記軸心上に開口したことを特徴とする微細気泡発生装置。
A cylindrical gas-liquid swirl chamber in which gas-liquid can swivel around an axis, and the gas-liquid swirl chamber for introducing liquid into the gas-liquid swirl chamber and generating a gas-liquid swirl flow in the gas-liquid swirl chamber A liquid introduction path for ejecting liquid in a direction that forms a twist position with respect to the axis of the gas, and a gas introduction path formed to communicate with the gas swirl chamber that opens outward to introduce gas into the gas swirl chamber And a fine bubble generator comprising a gas-liquid discharge port formed at an end in the axial direction of the gas-liquid swirl chamber,
A liquid-proof pump that supplies the liquid sucked from a suction port provided in a portion that can be immersed in the liquid to the liquid introduction path;
And a liquid-proof electric motor for operating the pump ,
The liquid introduction path has a cylindrical shape, and a connection part with a water discharge part of the pump is provided at a base end thereof, and a distal end of the liquid introduction path is opposite to a gas liquid discharge port of the gas liquid swirl chamber. An end of the gas-liquid swirl chamber is disposed so as to protrude into the gas-liquid swirl chamber, and the distal end portion is closed by a closing plate, and an axis of the gas-liquid swirl chamber is disposed on the outer periphery of the liquid introduction path located in the gas-liquid swirl chamber. A plurality of jet outlets are provided for jetting liquid in the direction of twisting with the center, and a portion wider than the inner diameter of the connecting portion on the base end side is provided inside the tip end side of the liquid introduction path,
The gas introduction path penetrates through the side surface of the liquid introduction path and enters the inside thereof, and after bending in the axial direction, the tip opening of the shaft on the gas-liquid swirl chamber side of the closing plate A microbubble generator characterized by being opened on the heart .
前記液体導入経路の液体噴出口を、前記気液旋回室の内周面から離れた位置に設けた請求項1記載の微細気泡発生装置。   The fine bubble generating apparatus according to claim 1, wherein a liquid jet port of the liquid introduction path is provided at a position away from an inner peripheral surface of the gas-liquid swirl chamber. 前記気体導入経路の開口部を、前記気液旋回室の軸心上に配置した請求項1または2記載の微細気泡発生装置。   The fine bubble generator according to claim 1 or 2, wherein an opening of the gas introduction path is disposed on an axis of the gas-liquid swirl chamber. 前記気液吐出口と対向する位置に、前記軸心方向と交差する平面または曲面を有する気液誘導部材を配置した請求項1〜3のいずれかに記載の微細気泡発生装置。   The fine bubble generating device according to any one of claims 1 to 3, wherein a gas-liquid guiding member having a plane or a curved surface intersecting with the axial direction is disposed at a position facing the gas-liquid discharge port. 前記気液吐出口に、当該気液吐出口からの気液吐出方向に突出した気液誘導管を連通させた請求項1〜3のいずれかに記載の微細気泡発生装置。   The fine bubble generating device according to any one of claims 1 to 3, wherein a gas-liquid guide tube protruding in a gas-liquid discharge direction from the gas-liquid discharge port is communicated with the gas-liquid discharge port.
JP2003274849A 2003-07-15 2003-07-15 Microbubble generator Expired - Lifetime JP4408661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274849A JP4408661B2 (en) 2003-07-15 2003-07-15 Microbubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003274849A JP4408661B2 (en) 2003-07-15 2003-07-15 Microbubble generator

Publications (2)

Publication Number Publication Date
JP2005034747A JP2005034747A (en) 2005-02-10
JP4408661B2 true JP4408661B2 (en) 2010-02-03

Family

ID=34211691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274849A Expired - Lifetime JP4408661B2 (en) 2003-07-15 2003-07-15 Microbubble generator

Country Status (1)

Country Link
JP (1) JP4408661B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314954A (en) * 2005-05-13 2006-11-24 Tashizen Techno Works:Kk Water area purifying method
JP2007054735A (en) * 2005-08-24 2007-03-08 Kazuhiro Kogure Sludge purification method
JP5132243B2 (en) * 2007-10-17 2013-01-30 株式会社鶴見製作所 Underwater aeration equipment
JP5395627B2 (en) * 2009-11-11 2014-01-22 松江土建株式会社 Gas-liquid dissolving device
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles
JP6321877B1 (en) * 2016-11-17 2018-05-09 丸福水産株式会社 Fluid mixing equipment
JP7390660B2 (en) * 2020-05-11 2023-12-04 株式会社丸山製作所 Pump with bubble generation mechanism
CN115007344B (en) * 2022-04-21 2023-01-17 秦皇岛天大环保研究院有限公司 Be used for river course water treatment liquid bacterial sprinkler

Also Published As

Publication number Publication date
JP2005034747A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
KR101407122B1 (en) Microbubble generating apparatus
KR101483412B1 (en) Micro bubble nozzle
JP4408661B2 (en) Microbubble generator
JP2003145190A (en) Aerator
JP2004313905A (en) Structure of gas-liquid dissolving tank
KR101803071B1 (en) Aeration device for fish farms
JPWO2019026195A1 (en) Fine bubble generator, fine bubble generation method, shower device and oil / water separator having the fine bubble generator
JP2008142592A (en) Micro bubble generator
JP2008272631A (en) Fine bubble generating apparatus
JP2018069213A (en) Fine bubble generation device
JP2005262200A (en) Water cleaning apparatus
JP2005034814A (en) Fine bubble generator
JP6449531B2 (en) Microbubble generator
CN103102021A (en) High oxygen ejector
JP2017136513A (en) Fine air bubble generating device, fine air bubble generating method, and shower device and oil water separating apparatus having the fine air bubble generating device
JP4124956B2 (en) Fine bubble supply method and fine bubble supply device
JP2018030094A (en) Fine bubble generation device
JP2007313465A (en) Gas dissolving apparatus
JP4545564B2 (en) Microbubble generator
JP2006043636A (en) Fine bubble generating apparatus
JP2008272632A (en) Fine bubble generating apparatus and pressure-dissolving method
JP2010115586A (en) Microbubble generator
JP2009226328A (en) Gas dissolving vessel
JP4872459B2 (en) Gas dissolving device
JP4673673B2 (en) Ozone water production device, cleaning device using ozone water production device, and water quality improvement device using ozone water production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

R150 Certificate of patent or registration of utility model

Ref document number: 4408661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term