JP4406694B2 - Method and apparatus for measuring atmospheric gas - Google Patents

Method and apparatus for measuring atmospheric gas Download PDF

Info

Publication number
JP4406694B2
JP4406694B2 JP2005096918A JP2005096918A JP4406694B2 JP 4406694 B2 JP4406694 B2 JP 4406694B2 JP 2005096918 A JP2005096918 A JP 2005096918A JP 2005096918 A JP2005096918 A JP 2005096918A JP 4406694 B2 JP4406694 B2 JP 4406694B2
Authority
JP
Japan
Prior art keywords
gas
fine powder
column containing
column
styrene polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005096918A
Other languages
Japanese (ja)
Other versions
JP2006275844A (en
Inventor
重人 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Agro Environmental Sciences
Original Assignee
National Institute for Agro Environmental Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Agro Environmental Sciences filed Critical National Institute for Agro Environmental Sciences
Priority to JP2005096918A priority Critical patent/JP4406694B2/en
Publication of JP2006275844A publication Critical patent/JP2006275844A/en
Application granted granted Critical
Publication of JP4406694B2 publication Critical patent/JP4406694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、大気ガスの測定方法に関し、詳しくは、ヘリウムガスをキャリヤーガスとするガスクロマトグラフを用いて、試料ガスの一回注入により温室効果ガスの測定を可能とする大気微量ガスの迅速な測定方法及び装置に関する。   The present invention relates to a method for measuring atmospheric gas, and in particular, using a gas chromatograph using helium gas as a carrier gas, rapid measurement of atmospheric trace gas that enables measurement of greenhouse gases by a single injection of sample gas. The present invention relates to a method and an apparatus.

大気中のメタンガス(CH4)、二酸化炭素ガス(CO2)、亜酸化窒素ガス(N2O)は京都議定書で削減目標が定められた温室効果ガスであり、その発生量を推定するための濃度測定、及び大気中濃度の観測には、通常ガスクロマトグラフ乃至赤外線分光器が使用されている。 Methane gas (CH 4 ), carbon dioxide gas (CO 2 ), and nitrous oxide gas (N 2 O) in the atmosphere are greenhouse gases with reduction targets set by the Kyoto Protocol. A gas chromatograph or an infrared spectrometer is usually used for concentration measurement and observation of atmospheric concentration.

しかし、上記の3成分の温室効果ガスは、それぞれ化学的性質が異なることから、ガスクロマトグラフによる検出は、それぞれ異なる方法により行われていた。即ちメタンガスは、炭化水素類としての燃焼特性を活かして水素炎イオン化検出器を使用するのが適当とされ、水素炎イオン化検出器によるメタンガスの検出には、ヘリウムガスがキャリヤーガスとして使用されてきた。   However, since the above three-component greenhouse gases have different chemical properties, detection by gas chromatography has been performed by different methods. In other words, it is appropriate to use a flame ionization detector for methane gas taking advantage of the combustion characteristics as hydrocarbons, and helium gas has been used as a carrier gas for detection of methane gas by a flame ionization detector. .

又、二酸化炭素ガスは、大気中濃度が比較的高い(約370ppm)ことから非選択性の熱伝導度検出器を使用するのが適当とされ、熱伝導度検出器による二酸化炭素ガスの検出にも、ヘリウムガスがキャリヤーガスとして使用されてきた。   Also, since carbon dioxide gas has a relatively high concentration in the atmosphere (about 370 ppm), it is appropriate to use a non-selective thermal conductivity detector. However, helium gas has been used as a carrier gas.

一方、亜酸化窒素ガスは、電子捕獲能を活かした選択的検出器である電子捕獲型検出器を使用するのが適当とされ、電子捕獲型検出器による亜酸化窒素ガスの検出には、アルゴンガスにメタンガスを5%加えたキャリヤーガスが使用され、ヘリウムガスがキャリヤーガスとして用いられることはなかった(非特許文献1、及び2を参照。)。   On the other hand, for nitrous oxide gas, it is appropriate to use an electron capture detector which is a selective detector utilizing the electron capture ability. For detection of nitrous oxide gas by an electron capture detector, argon is used. A carrier gas in which 5% of methane gas was added to the gas was used, and helium gas was never used as the carrier gas (see Non-Patent Documents 1 and 2).

したがって、これらのガスを検出し濃度の定量分析を行うには、用いるキャリヤーガスが異なることから、個々の成分を分離した上で、個々の検出に適した別々の検出器へと目的成分を導入する必要があり、結果を得るまでには多大の労力と時間を要した。   Therefore, in order to detect these gases and perform quantitative analysis of concentration, the carrier gas used is different, so after separating the individual components, the target components are introduced into separate detectors suitable for individual detection. It took a lot of effort and time to get the results.

しかもこれらのガスは大気中で低沸点のガス態であり、特に二酸化炭素と亜酸化窒素は分子量がほぼ同一なことから、ガスクロマトグラム上での溶出時間が互いに近接していて、その完全な分離は容易ではなかった。   Moreover, these gases are in a low-boiling state in the atmosphere, and since carbon dioxide and nitrous oxide have almost the same molecular weight, the elution times on the gas chromatogram are close to each other, and their complete separation. Was not easy.

色摩信義著「アイソトープ便覧」p606丸善 1984年Nobuyoshi Soma “Handbook of Isotope” p606 Maruzen 1984 吉田他「ガス中の超微量不純物の分析法に関する研究(2)」高圧ガスVol.29,No.2(1992)Yoshida et al. “Study on analysis of ultra-trace impurities in gas (2)” High-pressure gas Vol. 29, no. 2 (1992)

本発明は、S/N比が高く、且つ迅速な検出を可能とする大気ガス成分の測定方法及び装置を提供することを課題とする。   It is an object of the present invention to provide a measurement method and apparatus for atmospheric gas components that have a high S / N ratio and that allow rapid detection.

本発明者は、ガス分離管としてスチレンポリマー微細粉末を内包したカラム及び有孔活性炭微細粉末を内包したカラムをこの順に用い、キャリヤーガスとしてヘリウムガスを用い、添加ガスとして窒素ガスとメタンガスを用いることにより、電子捕獲型検出器(Electron Capture Detector、以下ECDという。)を用いた亜酸化窒素ガスの高感度の測定が可能であること見出し、本発明にいたった。
即ち本発明は以下の通りである。
The present inventors, using a column containing the column and perforated activated carbon fine powder was contained styrene polymer fine powder as a gas separation pipe in this order, the helium gas used as the carrier gas, Ru using nitrogen gas and methane gas as an additive gas As a result , it was found that highly sensitive measurement of nitrous oxide gas using an electron capture detector (hereinafter referred to as ECD) was possible, and the present invention was reached.
That is, the present invention is as follows.

本発明は、キャリヤーガスによって搬送される試料ガス中の成分をガスクロマトグラフにより分離し、該ガスクロマトグラフからの流出ガスを検出器に導入するガスの測定方法において、キャリヤーガスとしてヘリウムガスを用い、ガス分離管としてカラム温度が100〜140℃のスチレンポリマー微細粉末を内包したカラム、カラム温度が140〜180℃の有孔活性炭微細粉末を内包したカラム、及び再度のスチレンポリマー微細粉末を内包したカラムをこの順に用い、添加ガスとして窒素ガスと微量のメタンガスを用いることを特徴とする、ECDによる亜酸化窒素ガスの測定方法である。
The present invention relates to a gas measurement method in which components in a sample gas transported by a carrier gas are separated by a gas chromatograph, and an outflow gas from the gas chromatograph is introduced into a detector, using helium gas as the carrier gas, A column containing styrene polymer fine powder having a column temperature of 100 to 140 ° C., a column containing porous activated carbon fine powder having a column temperature of 140 to 180 ° C., and a column containing styrene polymer fine powder again. This is a method for measuring nitrous oxide gas by ECD, characterized in that nitrogen gas and a small amount of methane gas are used as additive gases in this order .

更に前記亜酸化窒素ガスの測定方法において、前記ガス分離管としてスチレンポリマー微細粉末を内包したカラム及び有孔活性炭微細粉末を内包したカラムの後に、再度のスチレンポリマー微細粉末を内包したカラムを用いることが好ましい。 Further, in the method for measuring nitrous oxide gas, a column containing styrene polymer fine powder and a column containing porous activated carbon fine powder after the column containing styrene polymer fine powder are used as the gas separation tube. Is preferred.

更に本発明は、前記亜酸化窒素ガスの測定方法において、前記有孔活性炭微細粉末を内包したカラムを通過した後のガスの経路を異なるものとするスイッチングバルブを備え、再度のスチレンポリマー微細粉末を内包したカラムの出口に設けられた水素炎イオン化検出器によりメタンガスを、前記水素炎イオン化検出器とは異なる経路の再度のスチレンポリマー微細粉末を内包したカラムの出口に設けられた熱伝導度検出器により二酸化炭素ガスを、添加ガスを添加する直後に設けられた電子捕獲型検出器により亜酸化窒素ガスを測定する、試料ガスの一回注入による、大気ガス成分の測定方法である。 Furthermore, the present invention is provided with a switching valve that makes the gas path different after passing through the column containing the porous activated carbon fine powder in the nitrous oxide gas measurement method , A thermal conductivity detector provided at the outlet of the column containing methane gas by a flame ionization detector provided at the outlet of the encapsulated column and a styrene polymer fine powder again in a different path from the flame ionization detector. Is a method for measuring atmospheric gas components by single injection of sample gas, in which carbon dioxide gas is measured and nitrous oxide gas is measured by an electron capture detector provided immediately after addition of the additive gas .

更に本発明は、キャリヤーガス供給部と、試料注入口と、添加ガス供給部と、スイッチングバルブと、スチレンポリマー微細粉末を内包したカラムと、有孔活性炭微細粉末を内包したカラムと、再度のスチレンポリマー微細粉末を内包したカラムとを備えたガスクロマトグラフと、再度のスチレンポリマー微細粉末を内包したカラムの出口に設けられた水素炎イオン化検出器と、前記水素炎イオン化検出器とは異なる経路の再度のスチレンポリマー微細粉末を内包したカラムの出口に設けられた熱伝導度検出器と、添加ガスを添加する直後に設けられた電子捕獲型検出器とを備え、キャリヤーガスとしてヘリウムガスを、添加ガスとして窒素ガスおよびメタンガスを用いる大気ガス成分の測定装置である。 The present invention further includes a carrier gas supply unit, a sample inlet, an additive gas supply unit, a switching valve, a column containing styrene polymer fine powder, a column containing perforated activated carbon fine powder, A gas chromatograph having a column containing fine polymer powder, a flame ionization detector provided at the outlet of the column containing fine styrene polymer fine powder, and a different path from the flame ionization detector again. The thermal conductivity detector provided at the outlet of the column containing the styrene polymer fine powder and the electron capture detector provided immediately after the addition of the additive gas, and helium gas as the carrier gas, the additive gas Is a measurement device for atmospheric gas components using nitrogen gas and methane gas as

本発明の測定方法及び装置は、試料ガスの1回注入により、S/N比の極めて高い大気微量ガス成分の検出を可能とする。   The measurement method and apparatus of the present invention enables detection of atmospheric trace gas components having a very high S / N ratio by a single injection of sample gas.

本発明は、キャリヤーガスによって搬送される試料ガス中の成分を、ガスクロマトグラフにより分離し、該ガスクロマトグラフからの流出ガスをECDに導入する亜酸化窒素ガスの測定方法において、キャリヤーガスとしてヘリウムガスを用い、添加ガスとして窒素ガスを用いることを特徴とし、窒素ガスに加えてメタンガスを添加することが好ましい。   The present invention relates to a method for measuring nitrous oxide gas in which components in a sample gas conveyed by a carrier gas are separated by a gas chromatograph and an effluent gas from the gas chromatograph is introduced into an ECD. Helium gas is used as a carrier gas. It is characterized by using nitrogen gas as an additive gas, and it is preferable to add methane gas in addition to nitrogen gas.

更に本発明は、前記ヘリウムガスをキャリヤーガスとし、窒素ガスを添加する亜酸化窒素の測定方法を用い、従来は試料ガスの一回注入によっては検出が不可能であったメタンガス、二酸化炭素ガス、及び亜酸化窒素ガスの分別測定を可能とする大気微量ガスの測定方法、及び該測定方法を用いた装置である。
以下本発明について、詳細に説明する。
Furthermore, the present invention uses a measurement method of nitrous oxide in which the helium gas is used as a carrier gas and nitrogen gas is added. Conventionally, methane gas, carbon dioxide gas, which could not be detected by a single injection of sample gas, And a measurement method of atmospheric trace gas that enables fractional measurement of nitrous oxide gas, and an apparatus using the measurement method.
The present invention will be described in detail below.

<ヘリウムガスをキャリヤーガスとする亜酸化窒素の測定方法> <Method of measuring nitrous oxide using helium gas as carrier gas>

本発明のガスの測定方法は、市販のガスクロマトグラフを用いることが出来る。本発明のガスの測定方法は、温度の異なる恒温槽を少なくとも2個必要とするために、本発明のガスクロマトグラフとしては、2個以上の恒温槽を有するものであることが好ましい。   A commercially available gas chromatograph can be used for the gas measuring method of the present invention. Since the gas measurement method of the present invention requires at least two thermostats with different temperatures, the gas chromatograph of the present invention preferably has two or more thermostats.

本発明のガスの測定方法はキャリヤーガスとしてヘリウムガスを用い、添加ガスとして窒素ガスを用いることを特徴とし、窒素ガスに加えてメタンガスを添加することが好ましい。前記ヘリウムガス、窒素ガス、及びメタンガスはいずれも、純度が99.99%以上であることが好ましい。   The gas measurement method of the present invention is characterized in that helium gas is used as a carrier gas and nitrogen gas is used as an additive gas, and it is preferable to add methane gas in addition to nitrogen gas. All of the helium gas, nitrogen gas, and methane gas preferably have a purity of 99.99% or more.

ガス分離管(以下カラムという。)としては、スチレンポリマー微細粉末を内包したカラム、及び有孔活性炭微細粉末を内包したカラムを用いる。前記スチレンポリマー微細粉末を内包したカラムとして具体的には、市販のPorapak N、PorapakQ等が好ましく、Porapak Nがより好ましい。前記有孔活性炭微細粉末を内包したカラムとして具体的には、市販のUnibeads Cが好ましい。   As the gas separation tube (hereinafter referred to as a column), a column containing fine styrene polymer powder and a column containing fine porous activated carbon powder are used. Specific examples of the column containing the fine styrene polymer powder include commercially available Porapak N and Porapak Q, and more preferably Porapak N. Specifically, a commercially available Unibeads C is preferable as the column containing the fine porous activated carbon powder.

バイヤル瓶等に採取した試料ガスを、ガスクロマトグラフの注入口より0.5〜3cc注入し、前記キャリヤーガスと混合する(以下混合ガスということがある。)。前記キャリヤーガスの流量は、30〜50ml/minが好ましく、35〜45ml/minがより好ましい。   A sample gas collected in a vial bottle or the like is injected from 0.5 to 3 cc through the inlet of the gas chromatograph and mixed with the carrier gas (hereinafter sometimes referred to as a mixed gas). The flow rate of the carrier gas is preferably 30 to 50 ml / min, and more preferably 35 to 45 ml / min.

前記混合ガスは、前記スチレンポリマー微細粉末を内包したカラムを通過させた後に、前記有孔活性炭微細粉末を内包したカラムを通過させる。該有孔活性炭微細粉末を内包したカラムを通過させた混合ガスは、該カラムの高温により発生する可能性があるブリーズを防止するために、再度スチレンポリマー微細粉末を内包したカラムを通過させることが好ましい。   The mixed gas passes through the column containing the fine powder of styrene polymer, and then passes through the column containing the fine powder of porous activated carbon. The mixed gas that has passed through the column containing the fine porous activated carbon powder may be passed again through the column containing the fine styrene polymer powder in order to prevent breathing that may occur due to the high temperature of the column. preferable.

前記スチレンポリマー微細粉末を内包したカラムの温度は100〜140℃が好ましく、有孔活性炭微細粉末を内包したカラムの温度は140〜180℃が好ましい。前記スチレンポリマー微細粉末を内包したカラムを通すことにより水分が分離され、有孔活性炭微細粉末を内包したカラムを通すことにより炭素化合物分が分離されることにより、ヘリウムガスをキャリヤーガスとする亜酸化窒素の検出が可能となったものと思われる。   The temperature of the column containing the styrene polymer fine powder is preferably 100 to 140 ° C, and the temperature of the column containing the porous activated carbon fine powder is preferably 140 to 180 ° C. Moisture is separated by passing through a column containing the styrene polymer fine powder, and carbon compounds are separated by passing through a column containing fine porous activated carbon fine powder, so that helium gas is used as a carrier gas. It seems that the detection of nitrogen became possible.

前記再度のスチレンポリマー微細粉末を内包したカラムを通過させた混合ガスは、ECD直前に添加ガスが添加される。   An additional gas is added immediately before ECD to the mixed gas that has passed through the column containing the styrene polymer fine powder again.

前記添加ガスとして窒素ガスが用いるが、該添加量はヘリウムガスの流量に対し25〜80体積流量%(以下単に流量%という。)が好ましく、40〜60流量%がより好ましい。前記窒素ガスに加えて、微量のメタンガスを添加することにより、検出感度が高まり、S/N比が高まることから好ましい。メタンガスの添加量はヘリウムガスと窒素ガスの総流量に対し0.001〜3流量%が好ましく、0.001〜2流量%がより好ましい。   Nitrogen gas is used as the additive gas, and the added amount is preferably 25 to 80% by volume flow rate (hereinafter simply referred to as flow rate%), more preferably 40 to 60% flow rate with respect to the flow rate of helium gas. It is preferable to add a small amount of methane gas in addition to the nitrogen gas because the detection sensitivity is increased and the S / N ratio is increased. The amount of methane gas added is preferably 0.001 to 3% by flow, more preferably 0.001 to 2% by flow, with respect to the total flow of helium gas and nitrogen gas.

なお前記添加ガスとして、窒素ガスと該窒素ガスに対して0.002〜5体積%のメタンガスを含有した混合ガスを測定前にあらかじめ製造しておき、該あらかじめ製造されたガスを、添加ガスとして使用することが、検出の効率、及び精度の安定の観点からは好ましい。   As the additive gas, a mixed gas containing nitrogen gas and 0.002 to 5% by volume of methane gas with respect to the nitrogen gas is produced in advance before measurement, and the gas produced in advance is used as the additive gas. Use is preferable from the viewpoint of detection efficiency and stability of accuracy.

前記添加ガスを添加後に、ECDにより亜酸化窒素を検出する。亜酸化窒素の検出は、前記キャリヤーガスの流量が35〜45ml/minの場合で、前記キャリヤーガスの流出開始から4.0〜5.5分の間に測定することができる。   After adding the additive gas, nitrous oxide is detected by ECD. The detection of nitrous oxide can be measured between 4.0 and 5.5 minutes from the start of the outflow of the carrier gas when the flow rate of the carrier gas is 35 to 45 ml / min.

<温室効果ガスの迅速測定方法>
本発明の亜酸化窒素ガスの測定方法を用いることにより、温室効果ガスである二酸化炭素ガス、メタンガス及び亜酸化窒素ガスを、採取ガスをガスクロマトグラフに1回注入することで、以下の手順により迅速に検出することが可能である。
<Rapid measurement method for greenhouse gases>
By using the method for measuring nitrous oxide gas according to the present invention, carbon dioxide gas, methane gas, and nitrous oxide gas, which are greenhouse gases, are injected once into the gas chromatograph, and thus can be quickly performed by the following procedure. Can be detected.

メタンガスの検出は、前記ヘリウムガスをキャリヤーガスとする亜酸化窒素ガスの測定方法と同一の経路により、前記混合ガスは前記有孔活性炭微細粉末を内包したカラムを通過した後に、前記再度のスチレンポリマー微細粉末を内包したカラムを通過し、該カラム出口に設置した水素炎イオン化検出器( Flame Ionization Detector、以下 FIDという。) によって検出することができる。メタンガスの検出は前記キャリヤーガスの流量が35〜45ml/minの場合で、前記キャリヤーガスの流出開始から2.5〜3.0分の間に測定することができる。   The methane gas is detected by the same route as the measurement method of the nitrous oxide gas using the helium gas as a carrier gas. After the mixed gas passes through the column containing the fine porous activated carbon powder, the styrene polymer is reused. It can be detected by a flame ionization detector (hereinafter referred to as FID) that passes through a column containing fine powder and is installed at the outlet of the column. The detection of methane gas is performed when the flow rate of the carrier gas is 35 to 45 ml / min and can be measured between 2.5 and 3.0 minutes from the start of the outflow of the carrier gas.

二酸化炭素ガスの検出は、前記ヘリウムガスをキャリヤーガスとする亜酸化窒素ガスの測定方法と同一の経路により、前記添加ガスとして窒素ガス、又は窒素ガスとメタンガスを添加する直前に、熱伝導度検出器(Thermal ConductivityDetector、以下TCDという。)を設置し二酸化炭素を検出することが出来る。二酸化炭素ガスの検出は前記キャリヤーガスの流量が35〜45ml/minの場合で、前記キャリヤーガスの流出開始から3.5〜4.5分の間に測定することができる。   The carbon dioxide gas is detected by the same route as the measurement method of the nitrous oxide gas using the helium gas as a carrier gas, and immediately before the addition of nitrogen gas or nitrogen gas and methane gas as the additive gas. A device (Thermal ConductivityDetector, hereinafter referred to as TCD) can be installed to detect carbon dioxide. Carbon dioxide gas can be detected when the flow rate of the carrier gas is 35 to 45 ml / min and between 3.5 and 4.5 minutes from the start of the outflow of the carrier gas.

亜酸化窒素ガスの検出は、前記二酸化炭素ガスの検出のためのTCDの直後に、前記添加ガスとして窒素ガス、又は窒素ガスとメタンガスを添加し、前記添加ガスを添加後にECDにより亜酸化窒素を測定することができる。上記の通り亜酸化窒素の検出は、キャリヤーガスの流量が35〜45ml/minの場合で、キャリヤーガスの流出開始から4.0〜5.5分の間に測定することができる。   In the detection of nitrous oxide gas, immediately after the TCD for detection of carbon dioxide gas, nitrogen gas or nitrogen gas and methane gas are added as the additive gas, and after adding the additive gas, nitrous oxide is added by ECD. Can be measured. As described above, nitrous oxide can be detected when the flow rate of the carrier gas is 35 to 45 ml / min and between 4.0 and 5.5 minutes from the start of the outflow of the carrier gas.

前記有孔活性炭微細粉末を内包したカラムを通過した後の混合ガスの経路は、スイッチングバルブの操作により、FIDへの経路とTCD、ECDへの経路とを異なるものとする。該FIDへの経路においても、ECDへの経路と同様に、再度のスチレンポリマー微細粉末を内包したカラムを設けることが好ましい。   The path of the mixed gas after passing through the column containing the fine porous activated carbon powder is made different between the path to the FID and the path to the TCD and ECD by operating the switching valve. Also in the route to the FID, as in the route to the ECD, it is preferable to provide a column containing the styrene polymer fine powder again.

又TCDとFIDの測定のためのレファレンスとして、ヘリウムガスのみを前記混合ガスと同一流量で流出させ、混合ガスに用いたと同一のカラムを通過させて、それぞれの検出をすることが好ましいが、ゼオライト微細粉末を内包したカラムを用いることもできる。前記ゼオライト微細粉末を内包したカラムとしては、市販のMolecularSieve 5Aが好ましい。   In addition, as a reference for measuring TCD and FID, it is preferable that only helium gas is allowed to flow out at the same flow rate as that of the mixed gas and passed through the same column used for the mixed gas to detect each. A column containing fine powder can also be used. The column containing the zeolite fine powder is preferably a commercially available Molecular Sieve 5A.

前記温室効果ガス以外のガスについても、本発明の亜酸化窒素の測定方法を用いることにより、容易に分離し、測定することが可能である。   Gases other than the greenhouse gases can be easily separated and measured by using the nitrous oxide measurement method of the present invention.

(実施例1)
本発明の内容を以下の実施例で更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
本発明の装置は市販のガスクロマトグラフ(島津GC14−B型ガスクロマトグラフ)を2台使用しているが、温度の異なる恒温槽を2個必要とするためであり、恒温槽以外は1台のガスクロマトグラフの機能を用いた。
Example 1
The content of the present invention will be described more specifically in the following examples, but the present invention is not limited to the following examples.
This is because the apparatus of the present invention uses two commercially available gas chromatographs (Shimadzu GC14-B type gas chromatograph), but two thermostats with different temperatures are required. The graph function was used.

図1は本発明の温室効果ガスの測定方法を示す系統図である。ガスの供給系統、スイッチバルブ、8本の分離カラム、及びメタンガスの検出部としてFID、二酸化炭素の検出部としてTCD、亜酸化窒素の検出部としてECDをそれぞれ配置した。   FIG. 1 is a system diagram showing a method for measuring greenhouse gases according to the present invention. A gas supply system, a switch valve, eight separation columns, FID as a methane gas detector, TCD as a carbon dioxide detector, and ECD as a nitrous oxide detector were arranged.

本発明の分析装置に供給するキャリヤーガスの供給系統としては、ヘリウムガス供給部21の下流に、クリーンフィルター61(ヴァリアン社製ガスクリーニングユニット:モレキュラーシーブと、ヴァリアン社製ガスクリーニングユニット:オキシゲントラップを併用)を設け、ガス流量調整器31、32、33、34(島津CFC-114PM型)を備えた。キャリヤーガスは、高純度ヘリウムガス(JFP社製:G2グレード、純度99.999%以上)を用い、ガス流量はいずれのガス流量調整器も40ml/minとした。   As a carrier gas supply system to be supplied to the analyzer of the present invention, a clean filter 61 (Varian gas cleaning unit: molecular sieve and Varian gas cleaning unit: oxygen trap is used in combination downstream of the helium gas supply unit 21. ) And gas flow regulators 31, 32, 33, and 34 (Shimadzu CFC-114PM type). As the carrier gas, high purity helium gas (manufactured by JFP: G2 grade, purity 99.999% or more) was used, and the gas flow rate was 40 ml / min for all gas flow rate regulators.

添加ガスの供給系統としては、窒素ガス供給部23の下流に、ガス流量調整器35(島津CFC-114PM型)、及びクリーンフィルター62(Supelco社OMI-2型)を備え、メタンガス供給部24の下流に、ガス流量調整器36(島津CFC-114PM型)、及びクリーンフィルター63(Supelco社OMI-2型)を備えた。   The additive gas supply system includes a gas flow rate regulator 35 (Shimadzu CFC-114PM type) and a clean filter 62 (Supelco OMI-2 type) downstream of the nitrogen gas supply unit 23 and downstream of the methane gas supply unit 24. And a gas flow regulator 36 (Shimadzu CFC-114PM type) and a clean filter 63 (Supelco OMI-2 type).

本発明の分析装置に用いる分離カラムは、いずれも外径3mmのスチレン鋼製のものを用い、以下の通り8本使用した。
カラム41:Porapak N 60/80 mesh(内径2.0mm、長さ1.0 m、Waters社製)
カラム42:Porapak N 60/80 mesh(内径2.0mm、長さ1.0 m、Waters社製)
カラム43:Unibeads C 80/100 mesh(内径2.0mm、長さ1.5 m、GLサイエンス社製)
カラム44:Shimalite Q 60/80 mesh(内径2.0mm、長さ1.5 m、島津製作所製)
カラム45:Molecular Sieve 5A 60/80mesh(内径2.0mm、長さ1.5 m、Waters社製)
カラム46:Porapak N 60/80 mesh(内径2.0mm、長さ1.0 m、Waters社製)
カラム47:Porapak N 60/80 mesh(内径2.0mm、長さ1.0 m、Waters社製)
カラム48:Molecular Sieve 5A 60/80mesh(内径2.0mm、長さ1.5 m、Waters社製)
The separation columns used in the analyzer of the present invention were all made of styrene steel having an outer diameter of 3 mm, and eight were used as follows.
Column 41: Porapak N 60/80 mesh (inner diameter 2.0 mm, length 1.0 m, manufactured by Waters)
Column 42: Porapak N 60/80 mesh (inner diameter 2.0 mm, length 1.0 m, manufactured by Waters)
Column 43: Unibeads C 80/100 mesh (inner diameter 2.0 mm, length 1.5 m, manufactured by GL Sciences)
Column 44: Shimalite Q 60/80 mesh (inner diameter 2.0 mm, length 1.5 m, manufactured by Shimadzu Corporation)
Column 45: Molecular Sieve 5A 60 / 80mesh (inner diameter 2.0 mm, length 1.5 m, manufactured by Waters)
Column 46: Porapak N 60/80 mesh (inner diameter 2.0 mm, length 1.0 m, manufactured by Waters)
Column 47: Porapak N 60/80 mesh (inner diameter 2.0 mm, length 1.0 m, manufactured by Waters)
Column 48: Molecular Sieve 5A 60 / 80mesh (inner diameter 2.0 mm, length 1.5 m, manufactured by Waters)

本装置は図1に示さない2個の温度の異なる恒温槽を用いた。前記カラム43のみを温度160℃の恒温槽に、その他のカラムは温度110℃の恒温槽に配置した。各機器を接続するガス配管は全てSUS316チューブとし、外径2mmのものを使用した。   This apparatus used two thermostats with different temperatures, not shown in FIG. Only the column 43 was placed in a thermostat at a temperature of 160 ° C., and the other columns were placed in a thermostat at a temperature of 110 ° C. The gas pipes connecting each device were all SUS316 tubes, and those with an outer diameter of 2 mm were used.

バイヤル瓶に採取した試料ガスを、ガスクロマトグラフの試料注入口20より1cc注入し、流量調整弁31から、前記キャリヤーガスを40ml/minの流量で流出させて、試料ガスとキャリヤーガスとの混合ガスを作製した。   The sample gas collected in the vial bottle is injected by 1 cc from the sample inlet 20 of the gas chromatograph, and the carrier gas is caused to flow out from the flow rate adjusting valve 31 at a flow rate of 40 ml / min, thereby mixing the sample gas and the carrier gas. Was made.

前記混合ガスは、流出開始から1.45分が経過するまでは、スイッチバルブ71(島津製作所製、空気圧駆動型10方スイッチングバルブ)の操作により、カラム42、及びカラム43を通過し、カラム43を通過後の前記混合ガスは、スイッチバルブ72(島津製作所製、空気圧駆動型6方スイッチングバルブ)の操作により、カラム47を通過して排出された。前記時間の間に前記経路を混合ガスが通過することにより、検出の目的とするガスよりも低沸点のガスが排出された。   The mixed gas passes through the column 42 and the column 43 by the operation of the switch valve 71 (manufactured by Shimadzu Corporation, pneumatically driven 10-way switching valve) until 1.45 minutes have elapsed from the start of the outflow. The mixed gas after passing through the column 47 was discharged through the column 47 by operating a switch valve 72 (manufactured by Shimadzu Corporation, pneumatically driven six-way switching valve). By passing the mixed gas through the path during the time, a gas having a lower boiling point than the target gas for detection was discharged.

開始から1.45分経過後に、スイッチバルブ71の操作により、混合ガスはバルブ5を経由し、カラム44を経て排出された。該排出により、目的とするガスよりも高沸点のガスが排出された。同時に流量調整弁32から、前記キャリヤーガスを40ml/minの流量でカラム41を経由し、カラム43に流入させた。   After 1.45 minutes from the start, the mixed gas was discharged through the valve 44 and the column 44 by operating the switch valve 71. By this discharge, a gas having a boiling point higher than that of the target gas was discharged. At the same time, the carrier gas was allowed to flow from the flow rate adjustment valve 32 to the column 43 via the column 41 at a flow rate of 40 ml / min.

前記カラム43から流出した混合ガスは、スイッチバルブ72の操作により、開始より3.00分経過までカラム47に流入し、該カラム47からの流出ガスについてFID53によりメタンガスの濃度を検出した。メタンガス濃度の検出のピークは、開始から2.7minであった。メタンガスのクロマトグラムを図2に示す。なお図2〜図4のクロマトグラムにおいて、ピークの下線はピーク面積計算のベースラインを示す。   The mixed gas flowing out from the column 43 flowed into the column 47 until 3.00 minutes from the start by operating the switch valve 72, and the methane gas concentration was detected by the FID 53 with respect to the effluent gas from the column 47. The detection peak of methane gas concentration was 2.7 min from the start. A chromatogram of methane gas is shown in FIG. In the chromatograms of FIGS. 2 to 4, the underline of the peak indicates the baseline for calculating the peak area.

開始より3.00分経過後に、スイッチバルブ72の操作により、前記カラム43から流出したガスは、カラム46の経路に切り替えられ、カラム46の流出ガスについてTCD51により二酸化炭素の濃度を検出した。二酸化炭素ガス濃度の検出のピークは、開始から3.9minであった。二酸化炭素ガスのクロマトグラムを図3に示す。   After 3.00 minutes from the start, the gas flowing out of the column 43 was switched to the path of the column 46 by the operation of the switch valve 72, and the concentration of carbon dioxide was detected by the TCD 51 for the outflowing gas of the column 46. The peak of detection of carbon dioxide gas concentration was 3.9 min from the start. A chromatogram of carbon dioxide gas is shown in FIG.

前記TCD51により二酸化炭素の濃度を検出した後の混合ガスに、添加ガスを添加した。該添加ガスは、窒素ガス供給部23から純度99.999%以上の窒素ガスを20ml/minの流量で、メタンガス供給部24から純度99.999%以上のメタンガスをヘリウムガスと窒素ガスの総流量に対し0.5%の割合で、それぞれガスクリーンフィルタ62,63を通過させた後に添加した。該添加後のガスについてECD55により亜酸化窒素の濃度を検出した。亜酸化窒素ガス濃度の検出のピークは、開始から4.8minであった。亜酸化窒素ガスのクロマトグラムを図4に示す。   The additive gas was added to the mixed gas after the concentration of carbon dioxide was detected by the TCD51. The additive gas includes nitrogen gas having a purity of 99.999% or more from the nitrogen gas supply unit 23 at a flow rate of 20 ml / min, and methane gas having a purity of 99.999% or more from the methane gas supply unit 24 to the total flow rate of helium gas and nitrogen gas. They were added after passing through gas screen filters 62 and 63 at a rate of 5%, respectively. Nitrous oxide concentration was detected by ECD55 in the gas after the addition. The peak of detection of the nitrous oxide gas concentration was 4.8 min from the start. A chromatogram of nitrous oxide gas is shown in FIG.

レファレンスのため、流量調整弁34により40ml/minの流量とした前記キャリヤーガスを、カラム48に流入させ、カラム48からの流出ガスをTCD52、及び FID54により検出した。   For reference, the carrier gas having a flow rate of 40 ml / min was flowed into the column 48 by the flow rate adjusting valve 34, and the outflow gas from the column 48 was detected by the TCD 52 and the FID 54.

前記図2乃至図4のクロマトグラフから、シグナル強度とノイズの波高を求め、S/N比を算出した。結果を表1に示す。   The signal intensity and the noise wave height were obtained from the chromatographs of FIGS. 2 to 4, and the S / N ratio was calculated. The results are shown in Table 1.

Figure 0004406694
Figure 0004406694

表1の結果から、測定対象ガスのS/N比はいずれも、定量限界S/N比の目安値2に対し極めて高い数値となっており、本発明による微量ガスの検出精度が極めて高いことが分る。   From the results in Table 1, the S / N ratio of the gas to be measured is extremely high compared to the standard value 2 of the limit of quantification S / N ratio, and the detection accuracy of the trace gas according to the present invention is extremely high. I understand.

(実施例2)
実施例1に用いたメタンガスの添加率を、キャリヤーガス(ヘリウムガス、窒素ガス、及びメタンガス)の総流量に対し0〜4%の範囲で替えた以外は、実施例と同様にして亜酸化窒素の濃度を検出した。各添加率における亜酸化窒素のピーク面積を表2に示す。
(Example 2)
Nitrous oxide was used in the same manner as in Example 1 except that the addition rate of methane gas used in Example 1 was changed in the range of 0 to 4% with respect to the total flow rate of the carrier gas (helium gas, nitrogen gas, and methane gas). The concentration of was detected. Table 2 shows the peak area of nitrous oxide at each addition rate.

Figure 0004406694
Figure 0004406694

表2の結果から、メタンガスの添加率が0.001%から、亜酸化窒素のピーク面積は急激に上昇し、3%程度まで安定していることが分る。   From the results in Table 2, it can be seen that the methane gas addition rate is 0.001%, and that the peak area of nitrous oxide increases rapidly and is stable to about 3%.

大気ガス、特に温室効果ガスを始めとする大気微量ガスについて、S/N比が極めて高く、且つ迅速な検出を可能とする。   With respect to atmospheric gases, especially atmospheric trace gases including greenhouse gases, the S / N ratio is extremely high, and rapid detection is possible.

本発明の温室効果ガスの測定方法を示す系統図である。It is a systematic diagram which shows the measuring method of the greenhouse gas of this invention. メタンガスのクロマトグラムである。It is a chromatogram of methane gas. 二酸化炭素ガスのクロマトグラムである。It is a chromatogram of carbon dioxide gas. 亜酸化窒素ガスのクロマトグラムである。It is a chromatogram of nitrous oxide gas.

符号の説明Explanation of symbols

1〜16 バルブ
20 試料注入口
21 ヘリウムガス供給部
23 窒素ガス供給部
24 メタンガス供給部
25、26 水素ガス供給部
27、28 空気供給部
31〜36 ガス流量調整器
41〜48 カラム
51、52 TCD
53、54 FID
55 ECD
61〜63 ガスクリーンフィルタ
71、72 スイッチバルブ


1-16 Valve
20 Sample inlet 21 Helium gas supply unit
23 Nitrogen gas supply unit 24 Methane gas supply unit 25, 26 Hydrogen gas supply unit 27, 28 Air supply unit 31-36 Gas flow regulator
41-48 columns
51, 52 TCD
53, 54 FID
55 ECD
61-63 Gas Clean Filter 71, 72 Switch Valve


Claims (6)

キャリヤーガスによって搬送される試料ガス中の成分をガスクロマトグラフにより分離し、該ガスクロマトグラフからの流出ガスを検出器に導入するガスの測定方法において、キャリヤーガスとしてヘリウムガスを用い、ガス分離管としてカラム温度が100〜140℃のスチレンポリマー微細粉末を内包したカラム、カラム温度が140〜180℃の有孔活性炭微細粉末を内包したカラム、及び再度のスチレンポリマー微細粉末を内包したカラムをこの順に用い、添加ガスとして窒素ガスとメタンガスを用いることを特徴とする、電子捕獲型検出器による亜酸化窒素ガスの測定方法。 In a gas measuring method in which components in a sample gas conveyed by a carrier gas are separated by a gas chromatograph and an outflow gas from the gas chromatograph is introduced into a detector, helium gas is used as a carrier gas, and a column as a gas separation pipe A column containing styrene polymer fine powder having a temperature of 100 to 140 ° C., a column containing porous activated carbon fine powder having a column temperature of 140 to 180 ° C., and a column containing styrene polymer fine powder again were used in this order . A method for measuring nitrous oxide gas with an electron capture detector, wherein nitrogen gas and methane gas are used as additive gases. 前記ヘリウムガスの流量が30〜50ml/minである請求項1に記載の亜酸化窒素ガスの測定方法。 2. The method for measuring nitrous oxide gas according to claim 1, wherein the flow rate of the helium gas is 30 to 50 ml / min. 前記添加ガスが、前記ヘリウムガスの流量の25〜80流量%の窒素ガスと、前記ヘリウムガス及び窒素ガスの総流量の0.001〜3流量%のメタンガスであり、電子捕獲型検出器の直前に用いられる請求項1又は請求項2に記載の亜酸化窒素ガスの測定方法。 The additive gas is nitrogen gas having a flow rate of 25 to 80% of the flow rate of the helium gas, and methane gas having a flow rate of 0.001 to 3% of the total flow rate of the helium gas and the nitrogen gas, immediately before the electron capture detector. The measuring method of the nitrous oxide gas of Claim 1 or Claim 2 used for this. 前記添加ガスが、窒素ガスと該窒素ガスに対して0.002〜5体積%のメタンガスとからなる混合ガスである請求項1乃至請求項3のいずれかに記載の亜酸化窒素ガスの測定方法。 The method for measuring nitrous oxide gas according to any one of claims 1 to 3 , wherein the additive gas is a mixed gas composed of nitrogen gas and 0.002 to 5% by volume of methane gas with respect to the nitrogen gas. . 前記請求項1乃至請求項4のいずれかに記載の亜酸化窒素の測定方法において、前記有孔活性炭微細粉末を内包したカラムを通過した後のガスの経路を異なるものとするスイッチングバルブを備え、再度のスチレンポリマー微細粉末を内包したカラムの出口に設けられた水素炎イオン化検出器によりメタンガスを、前記水素炎イオン化検出器とは異なる経路の再度のスチレンポリマー微細粉末を内包したカラムの出口に設けられた熱伝導度検出器により二酸化炭素ガスを、添加ガスを添加する直後に設けられた電子捕獲型検出器により亜酸化窒素ガスを測定する、試料ガスの1回注入による大気ガス成分の測定する方法。 The method for measuring nitrous oxide according to any one of claims 1 to 4 , further comprising a switching valve for different gas paths after passing through the column containing the fine porous activated carbon powder, Methane gas is provided at the outlet of the column containing the styrene polymer fine powder again through a different path from the flame ionization detector by the flame ionization detector provided at the outlet of the column containing the styrene polymer fine powder again. The carbon dioxide gas is measured by the thermal conductivity detector, and the nitrous oxide gas is measured by the electron capture detector provided immediately after the addition of the additive gas. The atmospheric gas component is measured by a single injection of the sample gas. Method. キャリヤーガス供給部と、試料注入口と、添加ガス供給部と、スイッチングバルブと、スチレンポリマー微細粉末を内包したカラムと、有孔活性炭微細粉末を内包したカラムと、再度のスチレンポリマー微細粉末を内包したカラムとを備えたガスクロマトグラフと、再度のスチレンポリマー微細粉末を内包したカラムの出口に設けられた水素炎イオン化検出器と、前記水素炎イオン化検出器とは異なる経路の再度のスチレンポリマー微細粉末を内包したカラムの出口に設けられた熱伝導度検出器と、添加ガスを添加する直後に設けられた電子捕獲型検出器とを備え、キャリヤーガスとしてヘリウムガスを、添加ガスとして窒素ガスおよびメタンガスを用いる大気ガス成分の測定装置。   Carrier gas supply unit, sample inlet, additive gas supply unit, switching valve, column containing styrene polymer fine powder, column containing perforated activated carbon fine powder, and again containing styrene polymer fine powder A gas chromatograph provided with a column, a flame ionization detector provided at the outlet of the column containing the styrene polymer fine powder again, and a styrene polymer fine powder having a different path from the flame ionization detector. A thermal conductivity detector provided at the outlet of the column containing the gas, and an electron capture detector provided immediately after adding the additive gas, helium gas as the carrier gas, nitrogen gas and methane gas as the additive gas A device for measuring atmospheric gas components.
JP2005096918A 2005-03-30 2005-03-30 Method and apparatus for measuring atmospheric gas Active JP4406694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005096918A JP4406694B2 (en) 2005-03-30 2005-03-30 Method and apparatus for measuring atmospheric gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005096918A JP4406694B2 (en) 2005-03-30 2005-03-30 Method and apparatus for measuring atmospheric gas

Publications (2)

Publication Number Publication Date
JP2006275844A JP2006275844A (en) 2006-10-12
JP4406694B2 true JP4406694B2 (en) 2010-02-03

Family

ID=37210763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005096918A Active JP4406694B2 (en) 2005-03-30 2005-03-30 Method and apparatus for measuring atmospheric gas

Country Status (1)

Country Link
JP (1) JP4406694B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730188A (en) * 2015-01-28 2015-06-24 中国农业科学院植物保护研究所 Gas chromatography analysis method for rapidly detecting nitrous oxide greenhouse gas

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318327B2 (en) 2006-11-28 2016-04-19 Cree, Inc. Semiconductor devices having low threading dislocations and improved light extraction and methods of making the same
JP2010054241A (en) * 2008-08-26 2010-03-11 Mitsui Eng & Shipbuild Co Ltd Methods for measurement and generation control of methane
JP6843395B2 (en) * 2016-02-10 2021-03-17 国立研究開発法人農業・食品産業技術総合研究機構 Three-component simultaneous analyzer and three-component simultaneous analysis method
WO2023218694A1 (en) * 2022-05-12 2023-11-16 株式会社島津製作所 Greenhouse gas measuring method and measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730188A (en) * 2015-01-28 2015-06-24 中国农业科学院植物保护研究所 Gas chromatography analysis method for rapidly detecting nitrous oxide greenhouse gas

Also Published As

Publication number Publication date
JP2006275844A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
US6952945B2 (en) Method and apparatus for concentrating samples for analysis
Ras et al. Sampling and preconcentration techniques for determination of volatile organic compounds in air samples
US7621171B2 (en) Method and apparatus for sample analysis
JP4406694B2 (en) Method and apparatus for measuring atmospheric gas
US10823711B2 (en) Micro-device for detecting volatile organic compounds, and method for detecting at least one volatile organic compound contained in a gas sample
JP2021501880A (en) High-speed quasi-ambient temperature multicapillary column preconcentration system for volatile chemical analysis by gas chromatography
JP6843395B2 (en) Three-component simultaneous analyzer and three-component simultaneous analysis method
Liu et al. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2–C12 hydrocarbons
JP5067873B2 (en) Apparatus and method for selectively concentrating and detecting complex gaseous chemical substances
JP7048087B2 (en) Three-component simultaneous analyzer and three-component simultaneous analysis method
GB2389903A (en) Providing a gaseous product for analysis
CN106324170A (en) Sample analysis for signals, quality abundance and ratio of hydrocarbon compound and sulfide in Co2
Maris et al. Development of instrumentation for simultaneous analysis of total non-methane organic carbon and volatile organic compounds in ambient air
US20170173551A1 (en) Device For Evaluation Of At Least One Performance Criterion Of Heterogeneous Catalysts
Harrison et al. Investigation of terpinolene+ ozone or terpinolene+ nitrate radical reaction products using denuder/filter apparatus
JP5838953B2 (en) Method and system for quantitative analysis of sulfur compounds in gas
JP2006023137A (en) Device for separating/analyzing trace hydrogen molecule and hydrogen isotope molecule
Bouchard et al. δ13C and δ37Cl on gas-phase TCE for source identification investigation-innovative solvent-based sampling method
Chavan et al. A SHORT REVIEW ON GAS CHROMATOGRAPHY
JP2004354332A (en) Enrichment analyzer and method for enrichment analysis
RU2255333C1 (en) Method of measuring volume fraction of nitrogen oxide in gaseous mixtures
Yang et al. Construction and validation of an automated spray-and-trap gas chromatograph for the determination of volatile organic compounds in aqueous samples
CN1328582C (en) Method for enriching and trapping gas trace component for chromatograph capillary tube column analysis
CN104267137B (en) The quantitative analysis method of methanthiol in a kind of levetiracetam
Uyanık Gas chromatography in anaesthesia: I. A brief review of analytical methods and gas chromatographic detector and column systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4406694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250