JP4406550B2 - Method for producing arylamine - Google Patents

Method for producing arylamine Download PDF

Info

Publication number
JP4406550B2
JP4406550B2 JP2003337868A JP2003337868A JP4406550B2 JP 4406550 B2 JP4406550 B2 JP 4406550B2 JP 2003337868 A JP2003337868 A JP 2003337868A JP 2003337868 A JP2003337868 A JP 2003337868A JP 4406550 B2 JP4406550 B2 JP 4406550B2
Authority
JP
Japan
Prior art keywords
group
atom
ring
compound
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003337868A
Other languages
Japanese (ja)
Other versions
JP2005104872A (en
Inventor
哲 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Finechemicals Co Ltd
Original Assignee
Fujifilm Finechemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Finechemicals Co Ltd filed Critical Fujifilm Finechemicals Co Ltd
Priority to JP2003337868A priority Critical patent/JP4406550B2/en
Publication of JP2005104872A publication Critical patent/JP2005104872A/en
Application granted granted Critical
Publication of JP4406550B2 publication Critical patent/JP4406550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は有機半導体素子における正電荷輸送材料、又はその中間体として有用なアリールアミン、特にトリアリールアミン又はジアリールアミンを高純度且つ低コストで製造する方法を提供するものである。   The present invention provides a method for producing an arylamine, particularly a triarylamine or diarylamine, useful as a positive charge transport material in an organic semiconductor element, or an intermediate thereof, with high purity and low cost.

本発明はアリールアミン化合物を合成する際のウルマン縮合反応として分類される反応の範疇に含まれる。
ウルマン縮合反応は芳香族アミンを芳香族ハロゲン化合物、好ましくは芳香族ヨウ化化合物とを塩基及び銅触媒の存在下に反応させてアリールアミンを合成する方法であり、F.Ullmannによって発見された(非特許文献1参照)。この反応は一般的に反応時間が長く、しかも実用的なアリール化速度を達成するためには通常200℃以上の高温を必要とするため、原料の分解や生成物の酸化、不均化、二量化反応等によって副生成物が多く生成する。
The present invention falls within the category of reactions classified as Ullmann condensation reactions when synthesizing arylamine compounds.
The Ullmann condensation reaction is a method of synthesizing an arylamine by reacting an aromatic amine with an aromatic halogen compound, preferably an aromatic iodide compound, in the presence of a base and a copper catalyst. Discovered by Ullmann (see Non-Patent Document 1). This reaction generally takes a long reaction time, and usually requires a high temperature of 200 ° C. or higher to achieve a practical arylation rate. Therefore, decomposition of the raw material, oxidation of the product, disproportionation, A large amount of by-products are generated by the quantification reaction or the like.

これらの副生成物は目的化合物とイオン化電位やフロンティア軌道の電子密度分布が異なり、有機半導体素子における電気特性の低下を招くため、使用されるアリールアミン化合物は極めて高純度のものが要求される。例えば、正孔輸送材料の移動度に対する不純物の影響について、イオン化電位の小さな不純物の添加によりその正孔移動度が低下することが報告されている(非特許文献2〜4参照)。これは不純物が正孔トラップを形成することが原因と指摘されており、少なくとも生成物の酸化や2量化によって副生するイオン化電位の小さな不純物は可能な限り含まないことが高移動度を得るための条件となる。また、アリールアミン誘導体について中性ならびにカチオンラジカル状態でのフロンティア軌道の電子密度分布に偏りが小さい場合に高い移動度を示すという報告がされており(非特許文献5参照)、酸化によって生成した極性基を有する着色性不純物の存在は電気特性低下の原因となる。そのため電子材料用素材中のこれらの副生成物は出来るだけ排除する必要があるが、その分離精製が非常に困難であり、再結晶やカラムクロマト法で繰り返し精製しなければならずコスト高となる課題があった。   These by-products are different from the target compound in ionization potential and electron density distribution in the frontier orbitals, leading to a decrease in the electrical characteristics of the organic semiconductor device, so that the arylamine compound used is required to have a very high purity. For example, regarding the influence of impurities on the mobility of a hole transport material, it has been reported that the hole mobility is lowered by the addition of an impurity having a small ionization potential (see Non-Patent Documents 2 to 4). In order to obtain high mobility, it is pointed out that impurities form hole traps, and at least impurities with a small ionization potential by-produced by oxidation or dimerization of the product are not included as much as possible. It becomes the condition of. In addition, it has been reported that arylamine derivatives exhibit high mobility when the electron density distribution of the frontier orbitals in neutral and cation radical states is small (see Non-Patent Document 5), and the polarity generated by oxidation The presence of a coloring impurity having a group causes a decrease in electrical characteristics. For this reason, it is necessary to eliminate these by-products in the materials for electronic materials as much as possible, but their separation and purification is very difficult, and they must be repeatedly purified by recrystallization or column chromatography, resulting in high costs. There was a problem.

ウルマン反応において、電気特性に悪影響を及ぼす副生成物を抑制する方法は従来報告されている。例えば、ハロゲン化芳香族化合物と大過剰の芳香族アミン化合物とを反応させてスチリル化合物、アリールアミン化合物を合成する方法(特許文献1,特許文献2参照)、ハロゲン化芳香族化合物と芳香族アミン化合物とを反応させてフルオレン骨格を有するアリールアミン化合物を合成する際に、銅触媒の使用量を減量して副生成物を抑制する方法(特許文献3参照)、ハロゲン化芳香族化合物と芳香族アミン化合物とを銅紛触媒及び塩基の存在下で反応させてトリアリールアミン誘導体を合成する際に、不活性気体雰囲気と無機亜硫酸塩の併用により副生成物を抑制する方法(特許文献4参照)などが提案されているが、いずれの場合も副生成物は抑制されるものの依然として着色性不純物や酸化物、分解物などが生成し、電子材料用素材又はその中間体として使用するには高度に精製する必要があった。   In the Ullmann reaction, a method for suppressing a by-product that adversely affects electrical characteristics has been reported. For example, a method of synthesizing a styryl compound and an arylamine compound by reacting a halogenated aromatic compound with a large excess of an aromatic amine compound (see Patent Document 1 and Patent Document 2), a halogenated aromatic compound and an aromatic amine When synthesizing an arylamine compound having a fluorene skeleton by reacting with a compound, a method of reducing the amount of copper catalyst used to suppress by-products (see Patent Document 3), halogenated aromatic compounds and aromatics A method of suppressing a by-product by using an inert gas atmosphere and an inorganic sulfite together when a triarylamine derivative is synthesized by reacting an amine compound with a copper powder catalyst and a base (see Patent Document 4) In each case, by-products are suppressed, but coloring impurities, oxides, decomposition products, etc. are still produced, and the materials for electronic materials are used. Or had to be highly purified for use as intermediates.

高純度のアリールアミン化合物を製造するためには、より低温で反応させることが好ましく、芳香族アミン化合物とヨウ素化芳香族化合物とを芳香族溶媒中、銅触媒と水酸化カリウムと第三級アミン化合物の共存下に120〜150℃で反応するトリアリールアミン化合物の製造方法が提案されている(特許文献6〜9参照)。しかし、これらの方法は低温においても反応は効率よく進行するが、収率と純度共に満足のいくものではなく、上記の課題は解決できない。   In order to produce a high purity arylamine compound, it is preferable to react at a lower temperature. An aromatic amine compound and an iodinated aromatic compound are mixed in an aromatic solvent, a copper catalyst, potassium hydroxide, and a tertiary amine. A method for producing a triarylamine compound that reacts at 120 to 150 ° C. in the presence of the compound has been proposed (see Patent Documents 6 to 9). However, in these methods, the reaction proceeds efficiently even at low temperatures, but the yield and purity are not satisfactory, and the above problems cannot be solved.

また、低温でアリールアミン化合物を合成する別法としてはパラジウム触媒、ホスフィン化合物、塩基の共存下に塩素化芳香族化合物や臭素化芳香族化合物と、芳香族アミン化合物とを芳香族溶媒中、20〜140℃で反応させる方法(特許文献11〜15、非特許文献5〜10参照)が提案されているが、パラジウム化合物は非常に高価であり、反応後の分離回収にも難点があるため工業的に有利な製造方法とは言えず、また収率や純度も満足のいくものではなかった。   As another method for synthesizing an arylamine compound at a low temperature, a chlorinated aromatic compound or a brominated aromatic compound and an aromatic amine compound in an aromatic solvent in the presence of a palladium catalyst, a phosphine compound, and a base, Although a method of reacting at ~ 140 ° C (see Patent Documents 11 to 15 and Non-Patent Documents 5 to 10) has been proposed, a palladium compound is very expensive and is difficult to separate and recover after the reaction. The production method is not particularly advantageous, and the yield and purity are not satisfactory.

特開平9−258465号JP-A-9-258465 特開平11−282180号JP-A-11-282180 特開2000−178237号JP 2000-178237 A 特開2000−239235号JP 2000-239235 A 特開平9−323958号JP-A-9-323958 特開平9−323959号JP-A-9-323959 特開平10−212267号JP-A-10-212267 特開平10−212268号JP 10-212268 A 特開平10−212269号JP-A-10-212269 特開平10−312073号JP 10-312073 A 特開平10−139742号JP-A-10-139742 特開平10−195031号JP-A-10-195031 特開平10−310561号JP 10-310561 A 特開平11−5769号Japanese Patent Laid-Open No. 11-5769 特開2002−275130等JP 2002-275130 etc. “ヘミシェ べリッヒテ(Chemische Berichte)” 、1920年、36巻 p.2382“Hemiche Berichte”, 1920, 36 p. 2382 “ジャーナル オブ アプライド フィジックス(The Journal of Applied Physics)”、1972年 43巻 p.5033“The Journal of Applied Physics”, 1972, 43, p. 5033 “フィジカル レビュー レターズ(Physical Review Letters)”1976年 37巻 p.1360“Physical Review Letters”, 1976, 37, p. 1360 “ジャーナル オブ フィジカル ケミストリー (The Journal of Physical Chemistry)” 、1984年 88巻 p.4714f“The Journal of Physical Chemistry”, 1984, 88, p. 4714f 電子写真学会誌、1990年 29巻 4号 p.366Journal of Electrophotographic Society, 1990, 29, 4 p. 366 “アンゲバンテ ヘミィ インターナショナル イングリッシュ エディション(Angewante Chemie International English Ed.)”、1998年 37巻 p.2046“Angevante Chemie International English Ed.”, Vol. 37, 1998, p. 2046 “ジャーナル オブ アメリカン ケミカル ソサエティ (Journal of TheAmerican Chemical Society)” 、1998年 120巻、p.9722“Journal of The American Chemical Society”, 1998, 120, p. 9722 “ジャーナル オブ オーガニック ケミストリー(The Journal of Organic Chemistry)” 、1996年 61巻 p.1133“The Journal of Organic Chemistry”, 1996, 61 p. 1133 “テトラヘドロン レターズ(Tetrahedron Letters)” 、1995年 36巻21号 p.3609“Tetrahedron Letters”, 1995, Vol. 36, No. 21, p. 3609

本発明はウルマン反応においてアリールアミン化合物を合成する際に電気特性に悪影響を及ぼす不純物を抑制することで、極めて高純度のアリールアミン、特にトリアリールアミン又はジアリールアミンを合成することができ、電子材料用又はその中間体としての使用に適する素材を低コストに製造する方法を提供するものである。   The present invention can synthesize very high purity arylamines, particularly triarylamines or diarylamines, by suppressing impurities that adversely affect electrical properties when synthesizing arylamine compounds in the Ullmann reaction. The present invention provides a method for producing a material suitable for use as an intermediate or an intermediate thereof at low cost.

すなわち、上記の目的は、下記構成により達成される。
(1)
銅触媒および塩基存在下、芳香族アミン化合物と芳香族ハロゲン化合物とを、80kPa以下の減圧下で反応させることを特徴とするアリールアミンの製造方法であって、
前記銅触媒が、銅粉、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、沃化銅、酸化第一銅、酸化第二銅、硫酸銅、硝酸銅、炭酸銅または水酸化第二銅から選択される少なくとも1種であり、
前記塩基が、アルカリ金属水酸化物、アルカリ金属炭酸化物、アルカリ金属燐酸化物またはアルカリ金属アルコキシドから選択される少なくとも1種であり、
前記芳香族ハロゲン化合物が下記一般式(I)または(II)で表わされる化合物であり、
前記芳香族アミン化合物が下記一般式(III)または(IV)で表わされる化合物である、アリールアミンの製造方法。

Figure 0004406550

式(I)および(II)中、
Qは塩素原子、臭素原子またはヨウ素原子を表す。
Xは−C(R15)(R16)−、酸素原子、硫黄原子、−N(R17)−、シクロアルキレン基、アリーレン基、フリレン基、チエニレン基、ピリジレン基、−N=N−、または−C(R15)=C(R16)−を表す。n2は0〜3の整数を表し、n2が0の場合には単結合を表す。n2が2以上の場合にはXは同じでも異なっていてもよい。
R1〜R16は各々独立して水素原子、アルキル基、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、ジメチルアミノ基、N−エチル−N−フェニルアミノ基、ジフェニルアミノ基、N−フェニル−N−ナフチルアミノ基、ニトロ基、またはハロゲン原子を表す。
R17はアルキル基、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、ジメチルアミノ基、N−エチル−N−フェニルアミノ基、ジフェニルアミノ基、N−フェニル−N−ナフチルアミノ基、ニトロ基、またはハロゲン原子を表す。
R1〜R5もしくはR6〜R17における2つの基によって更に飽和環、シクロペンテン環、シクロヘキセン環、シクロオクテン環、または、芳香環を形成してもよい
R6〜R17において、炭素数1〜10のアルキレン基、3〜10員のシクロアルキレ
ン基、6〜10員のアリーレン基、フリレン基、チエニレン基、またはピリジレン基を介
して式(II)で表わされる構造をもう1つ有していてもよい
R1〜R17におけるアルキル基、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、ジメチルアミノ基、N−エチル−N−フェニルアミノ基、ジフェニルアミノ基、およびN−フェニル−N−ナフチルアミノ基は、更にアルキル基、単環式または二〜四環式アリール基、アルコキシ基、アリールオキシ基、ニトロ基、またはハロゲン原子から選択される置換基を有していてもよい。
Figure 0004406550

式(III)および(IV)中、
Yは−C(R34)(R35)−、酸素原子、硫黄原子、シクロアルキレン基、アリーレン基、フリレン基、チエニレン基、ピリジレン基、−N=N−、または−C(R34)=C(R35)−を表す。
n4は0〜3の整数を表し、n4が0の場合は単結合を表す。n4が2以上の場合はYは同じでも異なっても良い。
R18〜R35は水素原子、アルキル基、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、またはニトロ基を表す。
また、R18〜R23もしくはR24〜R35において2つの基によって飽和環、シクロペンテン環、シクロヘキセン環、シクロオクテン環、または、芳香環、または複素環を形成してもよい
R24〜R35において、炭素数1〜10のアルキレン基、3〜10員のシクロアルキ
レン基、6〜10員のアリーレン基、フリレン基、チエニレン基、またはピリジレン基を
介して式(IV)で表される構造をもう1つ有していてもよい
R18〜R35におけるアルキル基、アルケニル基、アリール基、アルコキシ基、およびアリールオキシ基は、更にアルキル基、アルケニル基、単環式または二〜四環式アリール基、アルコキシ基、アリールオキシ基、ニトロ基、から選択される置換基を有していてもよい。
(2)
前記の減圧度が70〜10kPaであることを特徴とする上記(1)に記載のアリールアミンの製造方法。
(3)
不活性ガスを導入しながら反応させることを特徴とする上記(1)または(2)に記載のアリールアミンの製造方法。 That is, the above object is achieved by the following configuration.
(1)
A process for producing an arylamine, comprising reacting an aromatic amine compound and an aromatic halogen compound under reduced pressure of 80 kPa or less in the presence of a copper catalyst and a base,
The copper catalyst is copper powder, cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, copper iodide, cuprous oxide, cupric oxide, copper sulfate, copper nitrate, At least one selected from copper carbonate or cupric hydroxide,
The base is at least one selected from alkali metal hydroxides, alkali metal carbonates, alkali metal phosphates or alkali metal alkoxides;
The aromatic halogen compound is a compound represented by the following general formula (I) or (II):
A method for producing an arylamine, wherein the aromatic amine compound is a compound represented by the following general formula (III) or (IV).
Figure 0004406550

In formulas (I) and (II)
Q represents a chlorine atom, a bromine atom or an iodine atom.
X is -C (R15) (R16)-, oxygen atom, sulfur atom, -N (R17)-, cycloalkylene group, arylene group, furylene group, thienylene group, pyridylene group, -N = N-, or -C. (R15) = C (R16)-is represented. n2 represents an integer of 0 to 3, and when n2 is 0, it represents a single bond. When n2 is 2 or more, X may be the same or different.
R1 to R16 are each independently a hydrogen atom, alkyl group, alkenyl group, aryl group, alkoxy group, aryloxy group, dimethylamino group, N-ethyl-N-phenylamino group, diphenylamino group, N-phenyl-N. -Represents a naphthylamino group , a nitro group, or a halogen atom.
R17 is an alkyl group, alkenyl group, aryl group, alkoxy group, aryloxy group, dimethylamino group, N-ethyl-N-phenylamino group, diphenylamino group, N-phenyl-N-naphthylamino group , nitro group, or Represents a halogen atom.
A saturated ring, a cyclopentene ring, a cyclohexene ring, a cyclooctene ring, or an aromatic ring may be further formed by two groups in R1 to R5 or R6 to R17 .
R6 to R17 are represented by the formula (II) via an alkylene group having 1 to 10 carbon atoms, a 3 to 10 membered cycloalkylene group, a 6 to 10 membered arylene group, a furylene group, a thienylene group, or a pyridylene group. You may have another structure .
The alkyl group, alkenyl group, aryl group, alkoxy group, aryloxy group, dimethylamino group, N-ethyl-N-phenylamino group, diphenylamino group, and N-phenyl-N-naphthylamino group in R1 to R17 are: Further, it may have a substituent selected from an alkyl group, a monocyclic or bicyclic to tetracyclic aryl group, an alkoxy group, an aryloxy group, a nitro group, or a halogen atom.
Figure 0004406550

In formulas (III) and (IV),
Y is -C (R34) (R35)-, oxygen atom, sulfur atom, cycloalkylene group, arylene group, furylene group, thienylene group, pyridylene group, -N = N-, or -C (R34) = C (R35 )-.
n4 represents an integer of 0 to 3, and when n4 is 0, it represents a single bond. When n4 is 2 or more, Y may be the same or different.
R18 to R35 each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an alkoxy group, an aryloxy group, or a nitro group.
In addition, a saturated ring, a cyclopentene ring, a cyclohexene ring, a cyclooctene ring, an aromatic ring, or a heterocyclic ring may be formed by two groups in R18 to R23 or R24 to R35 .
R24 to R35 are represented by the formula (IV) via an alkylene group having 1 to 10 carbon atoms, a 3 to 10 membered cycloalkylene group, a 6 to 10 membered arylene group, a furylene group, a thienylene group, or a pyridylene group. Another structure may be included .
The alkyl group, alkenyl group, aryl group, alkoxy group and aryloxy group in R18 to R35 are further an alkyl group, alkenyl group, monocyclic or bicyclic to tetracyclic aryl group, alkoxy group, aryloxy group, nitro group And may have a substituent selected from
(2)
Said pressure reduction degree is 70-10kPa, The manufacturing method of the arylamine as described in said (1) characterized by the above-mentioned.
(3)
The method for producing an arylamine according to the above (1) or (2), wherein the reaction is carried out while introducing an inert gas.

本発明により、電子材料用素材、又はその中間体として有用なアリールアミン、特にトリアリールアミン又はジアリールアミン化合物を極めて容易な操作で低コストで製造することができ、高い実用性を有するものである。   According to the present invention, an arylamine, particularly a triarylamine or diarylamine compound useful as an electronic material or an intermediate thereof can be produced at a low cost by an extremely easy operation, and has high practicality. .

本発明を更に詳細に説明する。
尚、本発明は特許請求の範囲に記載の構成を有するものであるが、以下、その他についても参考のため記載した。
本発明はアリールアミン、特に電子材料用素材又はその中間体として有用な一群のトリアリールアミンもしくはジアリールアミンを銅触媒と塩基の共存下でウルマン縮合反応を用いて製造する際に、反応器内の圧力が1気圧未満の減圧下で反応を行う製造方法である。本発明の製造方法では従来提案されているアリールアミン合成法と比較して着色性の酸化生成物、分解物、二量化生成物などの副生成物を極めて高度に抑制することができ、高純度なアリールアミン化合物を製造することができる。ここで合成されたアリールアミン化合物は着色がなく、電気特性の低下を招く極性基を有する不純物やイオン化電位の低い不純物をほとんど含まないので、極めて容易な精製で電子材料用素材またはその中間体として使用することが出来る。
The present invention will be described in further detail.
In addition, although this invention has a structure as described in a claim, it described below also for reference below.
The present invention provides an arylamine, particularly a group of triarylamines or diarylamines useful as a material for electronic materials or intermediates thereof, in the presence of a copper catalyst and a base using an Ullmann condensation reaction. In this production method, the reaction is carried out under a reduced pressure of less than 1 atm. In the production method of the present invention, by-products such as coloring oxidation products, decomposition products, and dimerization products can be suppressed to a very high degree as compared with the conventionally proposed arylamine synthesis methods, and high purity. Arylamine compounds can be prepared. The arylamine compound synthesized here is not colored and contains almost no impurities having polar groups or low ionization potentials that cause a decrease in electrical properties, so it can be used as a material for electronic materials or an intermediate thereof with extremely easy purification. Can be used.

本発明における反応中の減圧度は微減圧でも不純物抑制効果は得られるが、通常80kPa以下で行われる。より高い不純物抑制効果を得るために、減圧度は高い方が好ましく、使用原料により適切な減圧状態が選択される。無溶媒反応の場合は通常、使用原料が反応温度において反応系より除去されない減圧度が選択されるが、高い減圧度で反応系より留去された使用原料を反応系内に戻しながら反応させることも可能である。反応溶媒を用いる場合には反応溶媒が留去しない減圧度が選択されるか、または溶媒を還流させながら反応がおこなわれる減圧度が選択される。   In the present invention, the degree of reduced pressure during the reaction is usually 80 kPa or less, although an impurity suppressing effect can be obtained even if the pressure is reduced slightly. In order to obtain a higher impurity suppressing effect, the degree of reduced pressure is preferably higher, and an appropriate reduced pressure state is selected depending on the raw materials used. In the case of solventless reaction, the degree of vacuum is usually selected so that the raw materials used are not removed from the reaction system at the reaction temperature, but the reaction is carried out while returning the raw materials distilled from the reaction system at a high degree of vacuum. Is also possible. When a reaction solvent is used, the degree of vacuum at which the reaction solvent is not distilled off is selected, or the degree of vacuum at which the reaction is performed while refluxing the solvent is selected.

減圧度が過度に高くないことが反応中に留出してくる使用原料を捕捉する上で好ましく、反応中の減圧度は5kPa以上あることが好ましい。反応中の減圧度の好ましい範囲は70〜10kPaであり、更に好ましくは60〜10kPaである。減圧度を上記範囲とすることは、比較的容易な設備や安価なコストで充分な不純物抑制効果を得て、かつ反応中に留出してくる使用原料の捕捉が容易であることからも好ましい。   It is preferable that the degree of vacuum is not excessively high in order to capture raw materials distilled during the reaction, and the degree of vacuum during the reaction is preferably 5 kPa or more. A preferable range of the degree of vacuum during the reaction is 70 to 10 kPa, and more preferably 60 to 10 kPa. It is preferable that the degree of vacuum is in the above range because a sufficient impurity suppression effect can be obtained with relatively easy equipment and low cost, and the used raw material distilled during the reaction can be easily captured.

また本発明では、反応時に不活性ガスを導入することが、副生成物の生成を防止するので好ましい。不活性ガスは例えば、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン等を用いることが出来るが、この中でも安価な窒素ガスが好ましい。不活性ガスを導入する際には常温において反応系内を不活性ガスで十分に置換した後、不活性ガスを導入しながら減圧下で反応を行うことが好ましい。反応系内の不活性ガスによる置換は、通常反応系内を8kPa以下、より好ましくは4kPa以下、更に好ましくは2kPa以下に減圧した後、不活性ガスで常圧まで戻す操作を繰り返して行われる。不活性ガスは反応器の下部より導入しながら反応させることがより好ましい。
反応器内の残留酸素は5%以下、好ましくは1%以下、更に好ましくは0.1%以下で反応させることが好ましい。
Further, in the present invention, it is preferable to introduce an inert gas during the reaction, because the formation of by-products is prevented. For example, nitrogen, helium, neon, argon, krypton, xenon, or the like can be used as the inert gas, but among these, inexpensive nitrogen gas is preferable. When introducing the inert gas, it is preferable to perform the reaction under reduced pressure while introducing the inert gas after sufficiently replacing the inside of the reaction system with the inert gas at room temperature. Substitution with an inert gas in the reaction system is usually performed by repeatedly reducing the pressure in the reaction system to 8 kPa or less, more preferably 4 kPa or less, and even more preferably 2 kPa or less, and then returning to normal pressure with an inert gas. It is more preferable to react while introducing the inert gas from the lower part of the reactor.
It is preferable to carry out the reaction at a residual oxygen in the reactor of 5% or less, preferably 1% or less, more preferably 0.1% or less.

本発明で使用する芳香族ハロゲン化合物は好ましくは下記一般式(A)で表わされる化合物である。   The aromatic halogen compound used in the present invention is preferably a compound represented by the following general formula (A).

Figure 0004406550
Figure 0004406550

式(A)中、
Qは塩素原子、臭素原子またはヨウ素原子を表わす。
n1は0〜5の整数を表す。
Raは複数ある場合は各々独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基、ジ置換アミノ基、ニトロ基、ヘテロ環残基、ハロゲン原子または−L1−Rbで表される基を表わす。L1は二価の連結基を表わす。Rbはアルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基、ジ置換アミノ基、ニトロ基、ヘテロ環残基、またはハロゲン原子を表す。
Ra、Rb、L1で表される基は各々置換基を有していてもよい。
複数のRaによって更に環を形成してもよい。
In formula (A),
Q represents a chlorine atom, a bromine atom or an iodine atom.
n1 represents the integer of 0-5.
When there are a plurality of Ras, each is independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, alkoxy group, aryloxy group, disubstituted amino group, nitro group, heterocyclic residue, halogen atom or -L1. Represents a group represented by -Rb. L1 represents a divalent linking group. Rb represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, a disubstituted amino group, a nitro group, a heterocyclic residue, or a halogen atom.
The groups represented by Ra, Rb and L1 may each have a substituent.
A plurality of Ras may form a ring.

式(A)で表される芳香族ハロゲン化合物は、より好ましくは下記一般式(I)または(II)で表わされる化合物である。   The aromatic halogen compound represented by the formula (A) is more preferably a compound represented by the following general formula (I) or (II).

Figure 0004406550
Figure 0004406550

式(I)および(II)中、
Qは塩素原子、臭素原子またはヨウ素原子を表わす。
Xは二価の連結基を表わし、n2が2以上の場合にはXは同じでも異なっていてもよい。Xは好ましくは−C(R15)(R16)−、酸素原子、硫黄原子、−N(R17)−、シクロアルキレン基、アリーレン基、二価のヘテロ環残基、−N=N−、または−C(R15)=C(R16)−であり、更に好ましくは3〜10員のシクロアルキレン基、6〜10員の単環式または二環式のアリーレン基、フリレン基、チエニレン基、ピリジレン基である。
n2は0〜3の整数を表わし、n2が0の場合には単結合を表す。
R1〜R17は各々独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基、ジ置換アミノ基、ニトロ基、ヘテロ環残基、またはハロゲン原子を表わす。
R1〜R5もしくはR6〜R17における2つの基によって更に環を形成してもよい。
In formulas (I) and (II),
Q represents a chlorine atom, a bromine atom or an iodine atom.
X represents a divalent linking group, and when n2 is 2 or more, X may be the same or different. X is preferably -C (R15) (R16)-, an oxygen atom, a sulfur atom, -N (R17)-, a cycloalkylene group, an arylene group, a divalent heterocyclic residue, -N = N-, or- C (R15) = C (R16)-, more preferably a 3-10 membered cycloalkylene group, a 6-10 membered monocyclic or bicyclic arylene group, a furylene group, a thienylene group, a pyridylene group. is there.
n2 represents an integer of 0 to 3, and when n2 is 0, it represents a single bond.
R1 to R17 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, a disubstituted amino group, a nitro group, a heterocyclic residue, or a halogen atom.
A ring may be further formed by two groups in R1 to R5 or R6 to R17.

R6〜R17において、二価の連結基を介して式(II)で表わされる構造をもう1つ有していてもよい。この場合、複数の式(II)で表わされる構造において、両者の連結部位は同一でも異なっても良い。   R6 to R17 may have another structure represented by the formula (II) through a divalent linking group. In this case, in the structure represented by a plurality of formulas (II), the connecting sites may be the same or different.

一般式(I)、(II)において、R1〜R17は具体的には水素原子;メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、イコシル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシルなどの直鎖、分岐または環状の炭素数1〜20のアルキル基;ビニル、アリル、プロペニル、ブテニル、ペンテニル、ヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル、トリデセニル、テトラデセニル、ペンタデセニル、ヘキサデセニル、ヘプタデセニル、オクタデセニル、ノナデセニル、イコセニル、ヘキサジエニル、ドデカトリエニル等の直鎖、分岐、または環状の炭素数2〜20のアルケニル基;エチニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ノニニル、シクロオクチニル、シクロノニニル、シクロデシニル等の直鎖、分岐または環状の炭素数2〜20のアルキニル基;フェニル、ナフチル、フェナントリル、アントリル等の単環式またはニ〜四環式アリール基;メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ドデシルオキシ、オクタデシルオキシ等の炭素数1〜20のアルコキシ基;フェノキシ、ナフチルオキシ等のアリールオキシ基;ジメチルアミノ、N−エチル−N−フェニルアミノ、ジフェニルアミノ、N−フェニル−N−ナフチルアミノ等のジ置換アミノ基;ニトロ基;フリル、チエニル、ピリジル等のヘテロ環残基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子を表わす。好ましくは水素原子、アルキル基、アルコキシ基、アリール基、ジ置換アミノ基、ニトロ基、ヘテロ環残基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アルコキシ基、アリール基、ニトロ基である。また、二価の連結基としては、アルキレン基(好ましくは炭素数1〜10)、シクロアルキレン基(好ましくは3〜10員)、アリーレン基(好ましくは6〜10員)、二価のヘテロ環残基が好ましく挙げられ、この中でもシクロアルキレン基、アリーレン基、フリレン基、チエニレン基、ピリジレン基が特に好ましい。   In the general formulas (I) and (II), R1 to R17 are specifically hydrogen atoms; methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, Linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms such as pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl; vinyl, Allyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, o Linear, branched, or cyclic C2-C20 alkenyl groups such as tadecenyl, nonadecenyl, icocenyl, hexadienyl, dodecatrienyl, etc .; ethynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, cyclooctynyl, cyclononynyl, cyclodecynyl, etc. A linear, branched or cyclic alkynyl group having 2 to 20 carbon atoms; a monocyclic or di- to tetracyclic aryl group such as phenyl, naphthyl, phenanthryl, anthryl; methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyl C1-C20 alkoxy groups such as oxy, heptyloxy, octyloxy, nonyloxy, decyloxy, dodecyloxy, octadecyloxy; aryloxy groups such as phenoxy, naphthyloxy; dimethylamino, N- Di-substituted amino groups such as til-N-phenylamino, diphenylamino, N-phenyl-N-naphthylamino; nitro groups; heterocyclic residues such as furyl, thienyl, pyridyl; fluorine atoms, chlorine atoms, bromine atoms, iodine Represents a halogen atom such as an atom. Preferably a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, a disubstituted amino group, a nitro group, a heterocyclic residue, and a halogen atom, more preferably a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, and a nitro group. is there. Examples of the divalent linking group include an alkylene group (preferably having 1 to 10 carbon atoms), a cycloalkylene group (preferably 3 to 10 members), an arylene group (preferably 6 to 10 members), and a divalent heterocycle. A residue is mentioned preferably, Among these, a cycloalkylene group, an arylene group, a furylene group, a thienylene group, and a pyridylene group are particularly preferable.

一般式(A)、(I)、(II)において、Ra、Rb、L1、R1〜R17は更に置換基を有してもよく、反応に関与しないものであれば特に制限されない。具体的にはメチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル等のアルキル基;ビニル、アリル、プロペニル、ブテニル、ペンテニル、ヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル、トリデセニル、テトラデセニル、ペンタデセニル、ヘキサデセニル、ヘプタデセニル、オクタデセニル、ノナデセニル、イコセニル、ヘキサジエニル、ドデカトリエニル等のアルケニル基;エチニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ノニニル、シクロオクチニル、シクロノニニル、シクロデシニル等のアルキニル基;フェニル、ナフチル、フェナントリル、アントリル等の単環式またはニ〜四環式アリール基;メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ等のアルコキシ基;フェノキシ、ナフチルオキシ等のアリールオキシ基;ジメチルアミノ、N−エチル−N−フェニルアミノ、ジフェニルアミノ、N−フェニル−N−ナフチルアミノ等のジ置換アミノ基;ニトロ基;フリル、チエニル、ピリジル等のヘテロ環残基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。好ましくは水素原子、アルキル基、アルコキシ基、アリール基、ジ置換アミノ基、ニトロ基、ヘテロ環残基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アルコキシ基、アリール基、ニトロ基である。   In the general formulas (A), (I), and (II), Ra, Rb, L1, R1 to R17 may further have a substituent and are not particularly limited as long as they do not participate in the reaction. Specifically, alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl; vinyl, allyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, Alkenyl groups such as dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, icocenyl, hexadienyl, dodecatrienyl, etc .; ethynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, cyclooctyl, cyclodecyl Groups: monocyclic or di- to tetracyclic aryl groups such as phenyl, naphthyl, phenanthryl, anthryl, etc .; methoxy, ethoxy, Alkoxy groups such as poxy, butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy; aryloxy groups such as phenoxy, naphthyloxy; dimethylamino, N-ethyl-N-phenylamino, diphenylamino, N -Disubstituted amino groups such as phenyl-N-naphthylamino; nitro groups; heterocyclic residues such as furyl, thienyl, pyridyl; halogen atoms such as fluorine atom, chlorine atom, bromine atom, iodine atom and the like. Preferably a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, a disubstituted amino group, a nitro group, a heterocyclic residue, and a halogen atom, more preferably a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, and a nitro group. is there.

また、複数のRa、R1〜R5もしくはR6〜R17における2つの基によって更に環を形成してもよい。具体的にはシクロブタン、シクロペンタン、シクロヘキサンなどの飽和環;シクロペンテン、シクロヘキセン、シクロオクテンなどの部分飽和環;ベンゼン、ナフタレンなどの芳香環;ピロリジン、ピリジン、ピラン、オキソラン、チオラン、オキサン、チアンなどのヘテロ環が挙げられる。好ましくは飽和環、芳香環が挙げられる。   Moreover, you may form a ring further by two groups in several Ra, R1-R5, or R6-R17. Specifically, saturated rings such as cyclobutane, cyclopentane, and cyclohexane; partially saturated rings such as cyclopentene, cyclohexene, and cyclooctene; aromatic rings such as benzene and naphthalene; pyrrolidine, pyridine, pyran, oxolane, thiolane, oxane, thiane, and the like A heterocycle is mentioned. A saturated ring and an aromatic ring are preferable.

一般式(II)のXにおけるシクロアルキレン基とは具体的にはシクロペンチレン、シクロヘキシレン、シクロヘプチレン等を表わす。またアリーレン基とは具体的にはフェニレン、ナフチレン、アントリレン、フェナントリレン、ピレニレン等を表わす。   The cycloalkylene group in X of the general formula (II) specifically represents cyclopentylene, cyclohexylene, cycloheptylene and the like. The arylene group specifically represents phenylene, naphthylene, anthrylene, phenanthrylene, pyrenylene and the like.

Qは塩素原子、臭素原子またはヨウ素原子を表わし、好ましくは臭素原子、ヨウ素原子である。   Q represents a chlorine atom, a bromine atom or an iodine atom, preferably a bromine atom or an iodine atom.

本発明で使用する芳香族アミン化合物は好ましくは下記一般式(B)で表わされる化合物である。   The aromatic amine compound used in the present invention is preferably a compound represented by the following general formula (B).

Figure 0004406550
Figure 0004406550

式(B)中、
n3は0〜5の整数を表す。
Rcは複数ある場合は各々独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基、ジ置換アミノ基、ニトロ基、ヘテロ環残基、ハロゲン原子または−L2−Reで表される基を表わす。Rdは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基、ジ置換アミノ基、ニトロ基、ヘテロ環残基、ハロゲン原子または−L2−Reで表される基を表わす。L2は二価の連結基を表わす。Reはアルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基、ジ置換アミノ基、ニトロ基、ヘテロ環残基、ハロゲン原子を表す。
Rc、Rd、Re、L2で表される基は各々置換基を有していてもよい。
複数のRcによって更に環を形成してもよい。
In formula (B),
n3 represents an integer of 0 to 5.
When there are a plurality of Rc, each independently represents a hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, alkoxy group, aryloxy group, disubstituted amino group, nitro group, heterocyclic residue, halogen atom or -L2. Represents a group represented by -Re; Rd represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, a disubstituted amino group, a nitro group, a heterocyclic residue, a halogen atom or a group represented by -L2-Re. Represent. L2 represents a divalent linking group. Re represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, a disubstituted amino group, a nitro group, a heterocyclic residue, or a halogen atom.
The groups represented by Rc, Rd, Re, and L2 may each have a substituent.
A plurality of Rc may further form a ring.

本発明において使用される芳香族アミン化合物は、より好ましくは下記一般式(III)もしくは(IV)で表わされる化合物である。   The aromatic amine compound used in the present invention is more preferably a compound represented by the following general formula (III) or (IV).

Figure 0004406550
Figure 0004406550

式(III)および(IV)中、
Yは二価の連結基を表わし、n4が2以上の場合はYは同じでも異なっても良い。Yは好ましくは−C(R34)(R35)−、酸素原子、硫黄原子シクロアルキレン基、アリーレン基、二価のヘテロ環残基、−N=N−、または−C(R34)=C(R35)−であり、更に好ましくは3〜10員のシクロアルキレン基、6〜10員の単環式または二環式のアリーレン基、フリレン基、チエニレン基、ピリジレン基である。
n4は0〜3の整数を表わし、n4が0の場合は単結合を表わす。
R18〜R35は水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基、アミノ基、ニトロ基、ヘテロ環残基、またはハロゲン原子を表わす。
また、R18〜R23もしくはR24〜R35において2つの基によって飽和環、不飽和環、複素環を形成してもよい。
R24〜R35において、二価の連結基を介して式(IV)で表わされる構造をもう1つ有していてもよい。この場合、複数の式(IV)で表わされる構造において、両者の連結部位は同一でも異なっても良い。
In formulas (III) and (IV),
Y represents a divalent linking group. When n4 is 2 or more, Y may be the same or different. Y is preferably -C (R34) (R35)-, oxygen atom, sulfur atom , cycloalkylene group, arylene group, divalent heterocyclic residue, -N = N-, or -C (R34) = C ( R35)-, more preferably a 3 to 10-membered cycloalkylene group, a 6 to 10-membered monocyclic or bicyclic arylene group, a furylene group, a thienylene group, and a pyridylene group.
n4 represents an integer of 0 to 3, and when n4 is 0, it represents a single bond.
R18 to R35 each represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group, a nitro group, a heterocyclic residue, or a halogen atom.
Moreover, you may form a saturated ring, an unsaturated ring, and a heterocyclic ring by two groups in R18-R23 or R24- R35 .
R24 to R35 may have another structure represented by the formula (IV) through a divalent linking group. In this case, in the structure represented by a plurality of formulas (IV), both of the connecting sites may be the same or different.

一般式(III)、(IV)において、R18〜R35は具体的には水素原子;メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、イコシル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシルなどの直鎖、分岐または環状の炭素数1〜20のアルキル基;ビニル、アリル、プロペニル、ブテニル、ペンテニル、ヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル、トリデセニル、テトラデセニル、ペンタデセニル、ヘキサデセニル、ヘプタデセニル、オクタデセニル、ノナデセニル、イコセニル、ヘキサジエニル、ドデカトリエニル等の直鎖、分岐、または環状の炭素数2〜20のアルケニル基;エチニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ノニニル、シクロオクチニル、シクロノニニル、シクロデシニル等の直鎖、分岐または環状の炭素数2〜20のアルキニル基;フェニル、ナフチル等の単環式またはニ環式アリール基;メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ドデシルオキシ、オクタデシルオキシ等の炭素数1〜20のアルコキシ基;フェノキシ、ナフチルオキシ等のアリールオキシ基;アミノ基;メチルアミノ、n−ヘキシルアミノ、フェニルアミノ、ジメチルアミノ、N−エチル−N−フェニルアミノ、ジフェニルアミノ、N−フェニル−N−ナフチルアミノ等の置換アミノ基;ニトロ基;フリル、チエニル、ピリジル等のヘテロ環残基を表わす。好ましくは水素原子、アルキル基、アルコキシ基、アリール基、アミノ基、置換アミノ基、ニトロ基、ヘテロ環残基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アルコキシ基、アリール基、アミノ基、置換アミノ基である。 In the general formulas (III) and (IV), R18 to R35 are specifically hydrogen atoms; methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, Linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms such as pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl; vinyl, Allyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl Linear, branched, or cyclic C2-C20 alkenyl groups such as octadecenyl, nonadecenyl, icocenyl, hexadienyl, dodecatrienyl, etc .; ethynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, cyclooctynyl, cyclononynyl, cyclodecynyl, etc. A linear, branched or cyclic alkynyl group having 2 to 20 carbon atoms; a monocyclic or bicyclic aryl group such as phenyl or naphthyl; methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, heptyloxy, octyl C1-C20 alkoxy groups such as oxy, nonyloxy, decyloxy, dodecyloxy, octadecyloxy; aryloxy groups such as phenoxy, naphthyloxy; amino groups; methylamino, n-hexylamino, phenoxy It represents furyl, thienyl, a heterocyclic residue such as pyridyl; arylamino, dimethylamino, N- ethyl -N- phenylamino, diphenylamino, N- phenyl--N--substituted amino groups such naphthylamino; nitro group. Preferred are a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an amino group, a substituted amino group, a nitro group, a heterocyclic residue, and a halogen atom, and more preferred are a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, amino Group, a substituted amino group.

一般式(B)、(III)、(IV)において、Rc、Rd、Re、L2、R18〜R35は更に置換基を有してもよく、反応に関与しないものであれば特に制限されない。具体的にはメチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル等のアルキル基;ビニル、アリル、プロペニル、ブテニル、ペンテニル、ヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル、トリデセニル、テトラデセニル、ペンタデセニル、ヘキサデセニル、ヘプタデセニル、オクタデセニル、ノナデセニル、イコセニル、ヘキサジエニル、ドデカトリエニル等のアルケニル基;エチニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ノニニル、シクロオクチニル、シクロノニニル、シクロデシニル等のアルキニル基;フェニル、ナフチル、フェナントレン、アントラセン等の単環式またはニ〜四環式アリール基;メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ等のアルコキシ基;フェノキシ、ナフチルオキシ等のアリールオキシ基;アミノ基;メチルアミノ、n−ヘキシルアミノ、フェニルアミノ、ジメチルアミノ、N−エチル−N−フェニルアミノ、ジフェニルアミノ、N−フェニル−N−ナフチルアミノ等の置換アミノ基;ニトロ基;フリル、チエニル、ピリジル等のヘテロ環残基が挙げられる。好ましくは水素原子、アルキル基、アルコキシ基、アリール基、アミノ基、置換アミノ基、ニトロ基、ヘテロ環残基であり、より好ましくは水素原子、アルキル基、アルコキシ基、アリール基、アミノ基、置換アミノ基である。また、二価の連結基としては、アルキレン基(好ましくは炭素数1〜10)、シクロアルキレン基(好ましくは3〜10員)、アリーレン基(好ましくは6〜10員)、二価のヘテロ環残基が好ましく挙げられ、この中でもシクロアルキレン基、アリーレン基、フリレン基、チエニレン基、ピリジレン基が特に好ましい。 In the general formulas (B), (III), and (IV), Rc, Rd, Re, L2, and R18 to R35 may further have a substituent and are not particularly limited as long as they do not participate in the reaction. Specifically, alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl; vinyl, allyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, Alkenyl groups such as dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, icocenyl, hexadienyl, dodecatrienyl, etc .; ethynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, cyclooctyl, cyclodecyl Groups; monocyclic or di- to tetracyclic aryl groups such as phenyl, naphthyl, phenanthrene and anthracene; methoxy, ethoxy, Roxy, butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy and other alkoxy groups; phenoxy, naphthyloxy and other aryloxy groups; amino groups; methylamino, n-hexylamino, phenylamino, dimethylamino N-ethyl-N-phenylamino, diphenylamino, substituted amino groups such as N-phenyl-N-naphthylamino; nitro groups; heterocyclic residues such as furyl, thienyl, pyridyl and the like. Preferred are a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an amino group, a substituted amino group, a nitro group, and a heterocyclic residue, and more preferred are a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an amino group, and a substituent. It is an amino group. Examples of the divalent linking group include an alkylene group (preferably having 1 to 10 carbon atoms), a cycloalkylene group (preferably 3 to 10 members), an arylene group (preferably 6 to 10 members), and a divalent heterocycle. Residues are preferred, and among them, a cycloalkylene group, an arylene group, a furylene group, a thienylene group, and a pyridylene group are particularly preferred.

また、複数のRc、R18〜R23もしくはR24〜R35における2つの基によって更に環を形成してもよい。具体的にはシクロブタン、シクロペンタン、シクロヘキサンなどの飽和環;シクロペンテン、シクロヘキセン、シクロオクテンなどの部分飽和環;ベンゼン、ナフタレンなどの芳香環;ピロリジン、ピロール、ピペリジン、ピリジン、モルホリン、チオモルホリン、ピペラジン、アザシクロヘプタン、アザシクロヘプテン、アザシクロヘプタトリエン等、オキソラン、チオラン、オキサン、チアンなどのヘテロ環が挙げられる。好ましくは飽和環、芳香環が挙げられる。 Moreover, you may form a ring further by two groups in several Rc, R18-R23, or R24- R35 . Specifically, saturated rings such as cyclobutane, cyclopentane and cyclohexane; partially saturated rings such as cyclopentene, cyclohexene and cyclooctene; aromatic rings such as benzene and naphthalene; pyrrolidine, pyrrole, piperidine, pyridine, morpholine, thiomorpholine, piperazine, Examples include heterocycles such as azacycloheptane, azacycloheptene, azacycloheptatriene, oxolane, thiolane, oxane, thiane. A saturated ring and an aromatic ring are preferable.

一般式(IV)のYにおけるシクロアルキレン基とは具体的にはシクロペンチレン、シクロヘキシレン、シクロヘプチレン等を表わす。またアリーレン基とは具体的にはフェニレン、ナフチレン、アントリレン、フェナントリレン、ピレニレン等を表わす。
芳香族アミン化合物の使用量は、芳香族アミン化合物および芳香族ハロゲン化合物の反応部位の数、反応温度、また芳香族ハロゲン化合物を基質兼溶媒として用いる場合等、個々の反応によって異なる。ハロゲン化合物1モルに対し、通常0.1〜20倍モル、好ましくは0.3〜10倍モルである。
Specific examples of the cycloalkylene group represented by Y in the general formula (IV) include cyclopentylene, cyclohexylene, cycloheptylene and the like. The arylene group specifically represents phenylene, naphthylene, anthrylene, phenanthrylene, pyrenylene and the like.
The amount of the aromatic amine compound used varies depending on the individual reaction, such as the number of reaction sites of the aromatic amine compound and the aromatic halogen compound, the reaction temperature, and when the aromatic halogen compound is used as a substrate and solvent. It is 0.1-20 times mole normally with respect to 1 mol of halogen compounds, Preferably it is 0.3-10 times mole.

本発明で使用される銅触媒としては、特に制限されるものではなく、ウルマン縮合反応で通常使用される触媒を用いることができる。例えば銅粉、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、沃化銅、酸化第一銅、酸化第二銅、硫酸銅、硝酸銅、炭酸銅、水酸化第二銅等が挙げられ、好ましくは塩化銅、臭化銅、沃化銅である。これらの銅触媒の使用量は芳香族ハロゲン化合物1モルに対して通常0.001〜0.4モル、好ましくは0.005〜0.3モル、更に好ましくは0.01〜0.2モルである。   The copper catalyst used in the present invention is not particularly limited, and a catalyst usually used in the Ullmann condensation reaction can be used. For example, copper powder, cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, copper iodide, cuprous oxide, cupric oxide, copper sulfate, copper nitrate, copper carbonate, water Examples include cupric oxide, and copper chloride, copper bromide, and copper iodide are preferable. The amount of these copper catalysts used is usually 0.001 to 0.4 mol, preferably 0.005 to 0.3 mol, more preferably 0.01 to 0.2 mol, per mol of the aromatic halogen compound. is there.

また必要に応じてヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化ルビジウム、ヨウ化セシウム等の助触媒を添加することもできる。これらの助触媒を添加する場合、その使用量は芳香族ハロゲン化合物1モルに対して0.001〜0.4モル、好ましくは0.005〜0.3モル、更に好ましくは0.01〜0.2モルである。   If necessary, a promoter such as lithium iodide, sodium iodide, potassium iodide, rubidium iodide, cesium iodide or the like can be added. When these promoters are added, the amount used is 0.001 to 0.4 mol, preferably 0.005 to 0.3 mol, more preferably 0.01 to 0 mol, per mol of the aromatic halogen compound. .2 moles.

本発明において使用される塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等のアルカリ金属水酸化物、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム等のアルカリ金属炭酸化物、燐酸三リチウム、燐酸三ナトリウム、燐酸三カリウム等のアルカリ金属燐酸化物、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシド、リチウム−tert−ブトキシド、ナトリウム−tert−ブトキシド、カリウム−tert−ブトキシド等のアルカリ金属アルコキシドが挙げられる。上記中アルカリ金属アルコキシドは反応系にそのまま添加するか、またはアルカリ金属、水素化アルカリ金属、水酸化アルカリ金属等とアルコールから調製して使用してもよい。これらの塩基のなかで好ましくはアルカリ金属炭酸化物、アルカリ金属水酸化物である。
これらの塩基は芳香族アミン化合物に対して1.0〜4.0等量、好ましくは1.1〜3.0等量、更に好ましくは1.2〜2.0等量使用される。
Examples of the base used in the present invention include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide and other alkali metal hydroxides, lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, carbonate Alkali metal carbonates such as cesium, alkali metal phosphates such as trilithium phosphate, trisodium phosphate, tripotassium phosphate, sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide, lithium-tert-butoxide, sodium- Examples thereof include alkali metal alkoxides such as tert-butoxide and potassium-tert-butoxide. Among the above, the alkali metal alkoxide may be added to the reaction system as it is, or prepared from an alkali metal, an alkali metal hydride, an alkali metal hydroxide, etc. and an alcohol. Of these bases, alkali metal carbonates and alkali metal hydroxides are preferred.
These bases are used in an amount of 1.0 to 4.0 equivalents, preferably 1.1 to 3.0 equivalents, more preferably 1.2 to 2.0 equivalents, relative to the aromatic amine compound.

本発明の製造方法においては、反応溶媒を使用しなくても良いが、必要に応じて芳香族化合物もしくは脂肪族化合物を反応溶媒として用いることができる。具体的には1気圧において100℃以上の沸点を有する以下の溶媒が挙げられる。
(i)ハロゲン化されてもよい芳香族炭化水素化合物:トルエン、キシレン、メシチレン、デュレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、ジイソプロピルベンゼン、ジフェニルメタン、クロロベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼン等。
(ii)環骨格がジヒドロ化、テトラヒドロ化、ヘキサヒドロ化、オクタヒドロ化、デカヒドロ化等、部分的に水素添加された水素化芳香族炭化水素化合物:1,4−ジヒドロナフタレン、1,2,3,4−テトラヒドロナフタレン、9,10−ジヒドロアントラセン、9,10−ジヒドロフェナントレン、4,5,9,10−テトラヒドロピレン、1,2,3,6,7,8−ヘキサヒドロピレン、ドデカヒドロトリフェニレン等。
(iii)飽和脂肪族化合物:オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、2−メチルドデカン、4−エチルウンデカン、テトラデカン、ペンタデカン、3,3−ジメチルトリデカン、ヘキサデカン、ヘプタデカン、2−メチル−4−エチルテトラデカン等。
(iv)不飽和脂肪族化合物:2−ヘプチン、3−ヘプチン、2−オクテン、3−ノネン、1−デシン、1−ウンデセン、4−ドデセン、3,3−ジメチル−1−デセン、1,3,5−ドデカトリエン、5−トリデセン、3−メチル−4−エチル−2−デセン、1−ドデシン、3−ドデセン−1−イン、1−トリデシン、5,5−ジメチル−3−ウンデセン−1−イン、5−エチニル−1,3−ドデカジエン等や、オシメン、ミルセン、スクアレン等。
(v)飽和脂環式化合物:ジシクロヘキシル、デカヒドロナフタレン、ドデカヒドロフルオレン等。
(vi)不飽和脂環式化合物:α−テルピネン、β−テルピネン、γ−テルピネン、テルピノレン、(+)−α−フェランドレン、(−)−β−フェランドレン、(−)−1−p−メンテン、(+)−3−メンテン、ジペンテン、(+)−リモネン、(+)−サビネン、(+)−α−ピネン、(+)−β−ピネン、(−)−β−カジネン、(−)−β−カリオフィレン、(−)−β−サンタレン、(−)−α−セドレン、(+)−β−セリネン、(−)−β−ビサボレン、α−フムレン等。
In the production method of the present invention, a reaction solvent may not be used, but an aromatic compound or an aliphatic compound can be used as a reaction solvent as necessary. Specific examples include the following solvents having a boiling point of 100 ° C. or higher at 1 atmosphere.
(I) Aromatic hydrocarbon compounds that may be halogenated: toluene, xylene, mesitylene, durene, ethylbenzene, diethylbenzene, isopropylbenzene, diisopropylbenzene, diphenylmethane, chlorobenzene, 1,2-dichlorobenzene, 1,2,4- Trichlorobenzene and the like.
(Ii) Hydrogenated aromatic hydrocarbon compounds in which the ring skeleton is partially hydrogenated, such as dihydro, tetrahydro, hexahydro, octahydro, decahydro, etc .: 1,4-dihydronaphthalene, 1,2,3, 4-tetrahydronaphthalene, 9,10-dihydroanthracene, 9,10-dihydrophenanthrene, 4,5,9,10-tetrahydropyrene, 1,2,3,6,7,8-hexahydropyrene, dodecahydrotriphenylene, etc. .
(Iii) saturated aliphatic compounds: octane, nonane, decane, undecane, dodecane, tridecane, 2-methyldodecane, 4-ethylundecane, tetradecane, pentadecane, 3,3-dimethyltridecane, hexadecane, heptadecane, 2-methyl- 4-ethyltetradecane and the like.
(Iv) Unsaturated aliphatic compounds: 2-heptin, 3-heptin, 2-octene, 3-nonene, 1-decyne, 1-undecene, 4-dodecene, 3,3-dimethyl-1-decene, 1,3 , 5-dodecatriene, 5-tridecene, 3-methyl-4-ethyl-2-decene, 1-dodecyne, 3-dodecene-1-yne, 1-tridecyne, 5,5-dimethyl-3-undecene-1- In, 5-ethynyl-1,3-dodecadiene and the like, ocimene, myrcene, squalene and the like.
(V) Saturated alicyclic compounds: dicyclohexyl, decahydronaphthalene, dodecahydrofluorene and the like.
(Vi) Unsaturated alicyclic compound: α-terpinene, β-terpinene, γ-terpinene, terpinolene, (+)-α-ferrandolene, (−)-β-ferrandolene, (−)-1-p- Menten, (+)-3-Mentene, Dipentene, (+)-Limonene, (+)-Sabinene, (+)-α-Pinene, (+)-β-Pinene, (-)-β-Cadinene, (- )-[Beta] -caryophyllene, (-)-[beta] -santalene, (-)-[alpha] -cedrene, (+)-[beta] -selinene, (-)-[beta] -bisabolene, [alpha] -humulene and the like.

上記の溶媒のなかでも、トルエン、キシレン、ジエチルベンゼン、ジイソプロピルベンゼン等のアルキルベンゼンや、α−テルピネン、β−テルピネン、γ−テルピネン、フェランドレン、テルピノレン等のテルペンが好ましい。これらの溶媒を用いた場合は不純物生成の抑制効果が向上し、高収率で高純度なアリールアミンを製造することができる。
これら芳香族化合物及び脂肪族化合物は、1種単独で又は2種以上を組み合わせて溶媒として使用することができる。これらの反応溶媒を使用する場合は、通常原料の芳香族ハロゲン化合物1モルに対して100〜1000mlの割合で使用される。
Among the above solvents, alkylbenzenes such as toluene, xylene, diethylbenzene, and diisopropylbenzene, and terpenes such as α-terpinene, β-terpinene, γ-terpinene, ferrandrene, and terpinolene are preferable. When these solvents are used, the effect of suppressing the generation of impurities is improved, and a high yield and high purity arylamine can be produced.
These aromatic compounds and aliphatic compounds can be used as a solvent singly or in combination of two or more. When these reaction solvents are used, they are usually used in a proportion of 100 to 1000 ml with respect to 1 mol of the aromatic halogen compound as a raw material.

本発明における反応温度は80〜280℃の範囲である。使用する芳香族ハロゲン化物が塩素化合物、臭素化合物の場合には、反応時間は反応条件より異なるが、通常1〜12時間程度である。使用する芳香族ハロゲン化物がヨウ素化合物の場合には、80〜130℃の反応温度で非常に効率良く反応が進行し、その場合の反応時間は使用する原料と添加する有機塩により異なるが、通常1〜3時間程度である。   The reaction temperature in this invention is the range of 80-280 degreeC. When the aromatic halide to be used is a chlorine compound or a bromine compound, the reaction time varies depending on the reaction conditions, but is usually about 1 to 12 hours. When the aromatic halide used is an iodine compound, the reaction proceeds very efficiently at a reaction temperature of 80 to 130 ° C., and the reaction time in this case varies depending on the raw material used and the organic salt to be added. About 1 to 3 hours.

本発明で合成され得るアリールアミン類の具体例を下記に示すが、本発明はこれに限定されない。   Specific examples of arylamines that can be synthesized in the present invention are shown below, but the present invention is not limited thereto.

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

Figure 0004406550
Figure 0004406550

次に本発明を実施例により更に具体的に説明するが、本発明はこれらに限定されるものではない。なお純度の評価は高速液体クロマトグラフィー(以下、HPLCと略記する)によった。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to these. The purity was evaluated by high performance liquid chromatography (hereinafter abbreviated as HPLC).

実施例1
N,N’−ジフェニル− N,N’ −ビス(3−メチルフェニル)−(p−ターフェニル)−4,4’−ジアミン(I−13)の合成
N−(3−メチルフェニル)−N−フェニルアミン13.54g(73.89mmol)、4,4’’−ジヨード−1,1’:4’,1’’−ターフェニル11.87g(24.63mmol)、炭酸カリウム27.23g(197.0mmol)、硫酸銅5水和物1.00g(4.0mmol)を混合し反応系内を窒素置換した。その後、窒素を導入しながら50kPaの減圧下において230〜240℃で2時間反応した。反応後、トルエン25mlと水50mlを添加し分液後、水洗して有機層を無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、トルエンを減圧濃縮して酢酸エチル28ml添加し冷却晶析後濾別して、白色粗結晶として目的化合物(I−13)を13.7g(収率94.0%)得た。融点189〜190℃。HPLC含量(カラム:GL Science Inertsil ODS−3)、溶離液:アセトニトリル/水(V/V=80/20)、検出UV:300nm、流量:1.0ml/min)は99.2%であった。また不純物は、極性基を有する酸化生成物Aが0.011%、及び酸化生成物Bが0%、イオン化電位の小さな酸化生成物Cが0.004%、イオン化電位の小さな二量化生成物Dが0.016%、及び二量化生成物Eが0.009%であった。
Example 1
Synthesis of N, N′-diphenyl-N, N′-bis (3-methylphenyl)-(p-terphenyl) -4,4′-diamine (I-13) N- (3-methylphenyl) -N -Phenylamine 13.54 g (73.89 mmol), 4,4 ″ -diiodo-1,1 ′: 4 ′, 1 ″ -terphenyl 11.87 g (24.63 mmol), potassium carbonate 27.23 g (197 0.0 mmol) and copper sulfate pentahydrate 1.00 g (4.0 mmol) were mixed, and the reaction system was purged with nitrogen. Then, it reacted at 230-240 degreeC under reduced pressure of 50 kPa, introducing nitrogen, for 2 hours. After the reaction, 25 ml of toluene and 50 ml of water were added and separated, washed with water, and the organic layer was dried over anhydrous sodium sulfate. After the desiccant was filtered off, toluene was concentrated under reduced pressure and 28 ml of ethyl acetate was added. After cooling and crystallization, it was filtered off to obtain 13.7 g (yield 94.0%) of the target compound (I-13) as white crude crystals. . Mp 189-190 ° C. HPLC content (column: GL Science Inertsil ODS-3), eluent: acetonitrile / water (V / V = 80/20), detection UV: 300 nm, flow rate: 1.0 ml / min) was 99.2%. . The impurities are 0.011% oxidation product A having a polar group, 0% oxidation product B, 0.004% oxidation product C having a small ionization potential, and dimerization product D having a small ionization potential. Was 0.016% and dimerized product E was 0.009%.

実施例2〜5
実施例1の反応系内の圧力を変えた以外は実施例1と同様の方法で合成を行った。その結果を表1に示す。
Examples 2-5
The synthesis was performed in the same manner as in Example 1 except that the pressure in the reaction system of Example 1 was changed. The results are shown in Table 1.

実施例6
実施例1において、減圧度を66.6kPa、および窒素導入を行わなかった以外は実施例1と同様の方法で合成を行った。その結果を表1に示す。
Example 6
In Example 1, the synthesis was performed in the same manner as in Example 1 except that the degree of vacuum was 66.6 kPa and nitrogen was not introduced. The results are shown in Table 1.

比較例1
実施例1において反応中の減圧操作を行わない以外は実施例1と同様の方法で合成を行った。その結果を表1に示す。
Comparative Example 1
The synthesis was performed in the same manner as in Example 1 except that the decompression operation during the reaction was not performed in Example 1. The results are shown in Table 1.

Figure 0004406550
Figure 0004406550

実施例7
N,N,N’,N’−テトラ(3−メチルフェニル)−9,10−ジアミノフェナントレン(例示化合物I−32)の合成
9,10−ビス(3−メチルアニリノ)フェナントレン6.6g(17.0mmol)、m−ヨードトルエン14.8g(68.0mmol)、水酸化カリウム3.82g(68mmol)、臭化第一銅0.98g(6.8mmol)、テルピノレン10mlを混合し窒素気流下、80kPaの減圧下において115〜125℃で2時間反応させた。反応後、減圧濃縮にて反応溶媒を留去しトルエン5ml、酢酸エチル67ml、水22ml添加して分液した。有機層にメタノール71mlを添加して冷却晶析し、淡黄色粗結晶として目的化合物(I−32)を9.0g(収率93.0%)得た。融点223〜224℃。HPLC含量(カラム:YMC−A−312、溶離液:メタノール/テトラヒドロフラン(V/V=99/1)、検出UV:254nm、流量:1.0ml/min)は99.6%であった。また不純物は、極性基を有する酸化生成物Fが0.006%、及び酸化生成物Gが0.001%、イオン化電位の小さな二量化生成物Hが0.020%、及び二量化生成物Iが0.005%であった。
Example 7
Synthesis of N, N, N ′, N′-tetra (3-methylphenyl) -9,10-diaminophenanthrene (Exemplary Compound I-32) 9,10-bis (3-methylanilino) phenanthrene 6.6 g (17. 0 mmol), 14.8 g (68.0 mmol) of m-iodotoluene, 3.82 g (68 mmol) of potassium hydroxide, 0.98 g (6.8 mmol) of cuprous bromide and 10 ml of terpinolene, and 80 kPa under a nitrogen stream. For 2 hours at 115 to 125 ° C. After the reaction, the reaction solvent was distilled off by concentration under reduced pressure, and 5 ml of toluene, 67 ml of ethyl acetate and 22 ml of water were added for liquid separation. 71 ml of methanol was added to the organic layer and cooled and crystallized to obtain 9.0 g (yield 93.0%) of the target compound (I-32) as pale yellow crude crystals. 223-224 ° C. The HPLC content (column: YMC-A-312, eluent: methanol / tetrahydrofuran (V / V = 99/1), detection UV: 254 nm, flow rate: 1.0 ml / min) was 99.6%. Further, the impurities include 0.006% oxidation product F having a polar group, 0.001% oxidation product G, 0.020% dimerization product H having a small ionization potential, and dimerization product I. Was 0.005%.

比較例2
実施例7において減圧操作を行わない以外は実施例7と同様の方法で合成を行った。その結果を表2に示す。
Comparative Example 2
The synthesis was performed in the same manner as in Example 7 except that the decompression operation was not performed in Example 7. The results are shown in Table 2.

Figure 0004406550
Figure 0004406550

実施例8
9−フェニルカルバゾール(例示化合物II−1)の合成
カルバゾール16.47g(98.52mmol)、ブロモベンゼン31.0g(197.04mmol)、水酸化カリウム5.53g(98.52mmol)、塩化第一銅0.4g(8.0mmol)を混合し、窒素気流下、33kPaの減圧下において115〜125℃で留出してくるブロモベンゼンを反応系内に戻しながら4時間反応した。反応後、トルエン50mlと水100mlを添加し分液後、水洗して有機層を無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、トルエンを減圧濃縮してメタノール352ml添加し晶析し、白色粗結晶として目的化合物(II−1)を22.7g(収率94.8%)得た。融点96〜97℃。HPLC含量(カラム:ODS−80TM、溶離液:アセトニトリル/水(V/V=65/35)、緩衝剤:トリエチルアミン、酢酸各0.1%、検出UV:254nm、流量:1.0ml/min)は99.8%であった。また含有する不純物は、イオン化電位の小さな二量化生成物Jが0.008%、及び二量化生成物Kが0%であった。
Example 8
Synthesis of 9-phenylcarbazole (Exemplary Compound II-1) 16.47 g (98.52 mmol) of carbazole, 31.0 g (197.04 mmol) of bromobenzene, 5.53 g (98.52 mmol) of potassium hydroxide, cuprous chloride 0.4 g (8.0 mmol) was mixed and reacted for 4 hours while returning bromobenzene distilled off at 115 to 125 ° C. under a reduced pressure of 33 kPa under a nitrogen stream. After the reaction, toluene (50 ml) and water (100 ml) were added, followed by liquid separation, washing with water, and drying the organic layer over anhydrous sodium sulfate. After the desiccant was filtered off, toluene was concentrated under reduced pressure and 352 ml of methanol was added and crystallized to obtain 22.7 g (yield 94.8%) of the desired compound (II-1) as white crude crystals. Melting point 96-97 ° C. HPLC content (column: ODS-80TM, eluent: acetonitrile / water (V / V = 65/35), buffer: triethylamine, acetic acid 0.1% each, detection UV: 254 nm, flow rate: 1.0 ml / min) Was 99.8%. The impurities contained were 0.008% for the dimerization product J having a small ionization potential and 0% for the dimerization product K.

比較例3
実施例8において減圧操作を行わない以外は実施例8と同様の方法で合成を行った。その結果を表3に示す。
Comparative Example 3
The synthesis was performed in the same manner as in Example 8 except that the decompression operation was not performed in Example 8. The results are shown in Table 3.

Figure 0004406550
Figure 0004406550

表1〜表3の結果より、減圧下で反応を行った場合には電気特性の低下を招く電子密度分布の異なる副生成物やイオン化電位の小さな副生成物が高度に抑制され、極めて高純度なアリールアミンを合成できることが判る。また、表1から反応系内の減圧度が高いほど不純物の抑制効果は高く、不純物抑制効果は反応系内の減圧度と密接に関係していることが判る。   From the results of Tables 1 to 3, when the reaction is carried out under reduced pressure, by-products with different electron density distributions and by-products with small ionization potentials that cause deterioration of electrical properties are highly suppressed, and extremely high purity. It can be seen that a novel arylamine can be synthesized. Moreover, it can be seen from Table 1 that the higher the degree of vacuum in the reaction system, the higher the effect of suppressing impurities, and the impurity suppression effect is closely related to the degree of vacuum in the reaction system.

Claims (3)

銅触媒および塩基存在下、芳香族アミン化合物と芳香族ハロゲン化合物とを、80kPa以下の減圧下で反応させることを特徴とするアリールアミンの製造方法であって、
前記銅触媒が、銅粉、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、沃化銅、酸化第一銅、酸化第二銅、硫酸銅、硝酸銅、炭酸銅または水酸化第二銅から選択される少なくとも1種であり、
前記塩基が、アルカリ金属水酸化物、アルカリ金属炭酸化物、アルカリ金属燐酸化物またはアルカリ金属アルコキシドから選択される少なくとも1種であり、
前記芳香族ハロゲン化合物が下記一般式(I)または(II)で表わされる化合物であり、
前記芳香族アミン化合物が下記一般式(III)または(IV)で表わされる化合物である、アリールアミンの製造方法。
Figure 0004406550

式(I)および(II)中、
Qは塩素原子、臭素原子またはヨウ素原子を表す。
Xは−C(R15)(R16)−、酸素原子、硫黄原子、−N(R17)−、シクロアルキレン基、アリーレン基、フリレン基、チエニレン基、ピリジレン基、−N=N−、または−C(R15)=C(R16)−を表す。n2は0〜3の整数を表し、n2が0の場合には単結合を表す。n2が2以上の場合にはXは同じでも異なっていてもよい。
R1〜R16は各々独立して水素原子、アルキル基、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、ジメチルアミノ基、N−エチル−N−フェニルアミノ基、ジフェニルアミノ基、N−フェニル−N−ナフチルアミノ基、ニトロ基、またはハロゲン原子を表す。
R17はアルキル基、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、ジメチルアミノ基、N−エチル−N−フェニルアミノ基、ジフェニルアミノ基、N−フェニル−N−ナフチルアミノ基、ニトロ基、またはハロゲン原子を表す。
R1〜R5もしくはR6〜R17における2つの基によって更に飽和環、シクロペンテン環、シクロヘキセン環、シクロオクテン環、または、芳香環を形成してもよい
R6〜R17において、炭素数1〜10のアルキレン基、3〜10員のシクロアルキレ
ン基、6〜10員のアリーレン基、フリレン基、チエニレン基、またはピリジレン基を介
して式(II)で表わされる構造をもう1つ有していてもよい
R1〜R17におけるアルキル基、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、ジメチルアミノ基、N−エチル−N−フェニルアミノ基、ジフェニルアミノ基、およびN−フェニル−N−ナフチルアミノ基は、更にアルキル基、単環式または二〜四環式アリール基、アルコキシ基、アリールオキシ基、ニトロ基、またはハロゲン原子から選択される置換基を有していてもよい。
Figure 0004406550

式(III)および(IV)中、
Yは−C(R34)(R35)−、酸素原子、硫黄原子、シクロアルキレン基、アリーレン基、フリレン基、チエニレン基、ピリジレン基、−N=N−、または−C(R34)=C(R35)−を表す。
n4は0〜3の整数を表し、n4が0の場合は単結合を表す。n4が2以上の場合はYは同じでも異なっても良い。
R18〜R35は水素原子、アルキル基、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、またはニトロ基を表す。
また、R18〜R23もしくはR24〜R35において2つの基によって飽和環、シクロペンテン環、シクロヘキセン環、シクロオクテン環、または、芳香環、または複素環を形成してもよい
R24〜R35において、炭素数1〜10のアルキレン基、3〜10員のシクロアルキ
レン基、6〜10員のアリーレン基、フリレン基、チエニレン基、またはピリジレン基を
介して式(IV)で表される構造をもう1つ有していてもよい
R18〜R35におけるアルキル基、アルケニル基、アリール基、アルコキシ基、およびアリールオキシ基は、更にアルキル基、アルケニル基、単環式または二〜四環式アリール基、アルコキシ基、アリールオキシ基、ニトロ基、から選択される置換基を有していてもよい。
A process for producing an arylamine, comprising reacting an aromatic amine compound and an aromatic halogen compound under reduced pressure of 80 kPa or less in the presence of a copper catalyst and a base,
The copper catalyst is copper powder, cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, copper iodide, cuprous oxide, cupric oxide, copper sulfate, copper nitrate, At least one selected from copper carbonate or cupric hydroxide,
The base is at least one selected from alkali metal hydroxides, alkali metal carbonates, alkali metal phosphates or alkali metal alkoxides;
The aromatic halogen compound is a compound represented by the following general formula (I) or (II):
A method for producing an arylamine, wherein the aromatic amine compound is a compound represented by the following general formula (III) or (IV).
Figure 0004406550

In formulas (I) and (II)
Q represents a chlorine atom, a bromine atom or an iodine atom.
X is -C (R15) (R16)-, oxygen atom, sulfur atom, -N (R17)-, cycloalkylene group, arylene group, furylene group, thienylene group, pyridylene group, -N = N-, or -C. (R15) = C (R16)-is represented. n2 represents an integer of 0 to 3, and when n2 is 0, it represents a single bond. When n2 is 2 or more, X may be the same or different.
R1 to R16 are each independently a hydrogen atom, alkyl group, alkenyl group, aryl group, alkoxy group, aryloxy group, dimethylamino group, N-ethyl-N-phenylamino group, diphenylamino group, N-phenyl-N. -Represents a naphthylamino group , a nitro group, or a halogen atom.
R17 is an alkyl group, alkenyl group, aryl group, alkoxy group, aryloxy group, dimethylamino group, N-ethyl-N-phenylamino group, diphenylamino group, N-phenyl-N-naphthylamino group , nitro group, or Represents a halogen atom.
A saturated ring, a cyclopentene ring, a cyclohexene ring, a cyclooctene ring, or an aromatic ring may be further formed by two groups in R1 to R5 or R6 to R17 .
R6 to R17 are represented by the formula (II) via an alkylene group having 1 to 10 carbon atoms, a 3 to 10 membered cycloalkylene group, a 6 to 10 membered arylene group, a furylene group, a thienylene group, or a pyridylene group. You may have another structure .
The alkyl group, alkenyl group, aryl group, alkoxy group, aryloxy group, dimethylamino group, N-ethyl-N-phenylamino group, diphenylamino group, and N-phenyl-N-naphthylamino group in R1 to R17 are: Further, it may have a substituent selected from an alkyl group, a monocyclic or bicyclic to tetracyclic aryl group, an alkoxy group, an aryloxy group, a nitro group, or a halogen atom.
Figure 0004406550

In formulas (III) and (IV),
Y is -C (R34) (R35)-, oxygen atom, sulfur atom, cycloalkylene group, arylene group, furylene group, thienylene group, pyridylene group, -N = N-, or -C (R34) = C (R35 )-.
n4 represents an integer of 0 to 3, and when n4 is 0, it represents a single bond. When n4 is 2 or more, Y may be the same or different.
R18 to R35 each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an alkoxy group, an aryloxy group, or a nitro group.
In addition, a saturated ring, a cyclopentene ring, a cyclohexene ring, a cyclooctene ring, an aromatic ring, or a heterocyclic ring may be formed by two groups in R18 to R23 or R24 to R35 .
R24 to R35 are represented by the formula (IV) via an alkylene group having 1 to 10 carbon atoms, a 3 to 10 membered cycloalkylene group, a 6 to 10 membered arylene group, a furylene group, a thienylene group, or a pyridylene group. Another structure may be included .
The alkyl group, alkenyl group, aryl group, alkoxy group and aryloxy group in R18 to R35 are further an alkyl group, alkenyl group, monocyclic or bicyclic to tetracyclic aryl group, alkoxy group, aryloxy group, nitro group And may have a substituent selected from
前記の減圧度が70〜10kPaであることを特徴とする請求項1に記載のアリールアミンの製造方法。 The method for producing an arylamine according to claim 1, wherein the degree of vacuum is 70 to 10 kPa . 不活性ガスを導入しながら反応させることを特徴とする請求項1または2に記載のアリールアミンの製造方法。   The method for producing an arylamine according to claim 1 or 2, wherein the reaction is carried out while introducing an inert gas.
JP2003337868A 2003-09-29 2003-09-29 Method for producing arylamine Expired - Fee Related JP4406550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337868A JP4406550B2 (en) 2003-09-29 2003-09-29 Method for producing arylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003337868A JP4406550B2 (en) 2003-09-29 2003-09-29 Method for producing arylamine

Publications (2)

Publication Number Publication Date
JP2005104872A JP2005104872A (en) 2005-04-21
JP4406550B2 true JP4406550B2 (en) 2010-01-27

Family

ID=34533565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337868A Expired - Fee Related JP4406550B2 (en) 2003-09-29 2003-09-29 Method for producing arylamine

Country Status (1)

Country Link
JP (1) JP4406550B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4871547B2 (en) * 2005-08-26 2012-02-08 キヤノン株式会社 Amine compound, electrophotographic photoreceptor having amine compound, process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor

Also Published As

Publication number Publication date
JP2005104872A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP6855083B2 (en) Intermediates of deuterated aromatic compounds and methods for preparing deuterated aromatic compounds using them
WO2020071479A1 (en) Organic electroluminescent element and electronic device using same
JP4524186B2 (en) Method for producing arylamine
WO2019240251A1 (en) Organic electroluminescent element and electronic equipment using same
EP2206716A1 (en) Host material for light-emitting diodes
WO2020116562A1 (en) Organic electroluminescence element and electronic device
CN112789269A (en) Novel compound, organic electroluminescent element, and electronic device
CN115093332B (en) Spiro compound and application thereof
US20200365808A1 (en) Organic electroluminescense device and electronic apparatus
CN112789270A (en) Novel compound, organic electroluminescent element, and electronic device
EP4257657A1 (en) Compound, organic electroluminescent element and electronic device
WO2020027323A1 (en) Organic electroluminescent element and electronic device
US20220059775A1 (en) Organic electroluminescence device and electronic apparatus using the same
KR20050099995A (en) Method for producing aromatic diamine derivative
JP4406550B2 (en) Method for producing arylamine
US20230309380A1 (en) Compound, material for organic electroluminescence device, organic electroluminescence device, and electronic apparatus
EP3998322B1 (en) Organic electroluminescence element, composition, powder, electronic equipment, and novel compound
EP4011884A1 (en) Compounds and organic electroluminescent element
WO2014203540A1 (en) Metal complex composition and method for producing metal complex
EP3998323A1 (en) Organic electroluminescent element and electronic device
JP4547163B2 (en) Method for producing arylamine
JP4810134B2 (en) Method for producing arylamine
CN116057031A (en) Method for producing deuterated aromatic compound
JP4542831B2 (en) Method for producing arylamine
US20230045583A1 (en) Organic electroluminescence device, electronic apparatus, and method for fabricating organic electroluminescence device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees