JP4405102B2 - Common rail for diesel engines - Google Patents

Common rail for diesel engines Download PDF

Info

Publication number
JP4405102B2
JP4405102B2 JP2001112237A JP2001112237A JP4405102B2 JP 4405102 B2 JP4405102 B2 JP 4405102B2 JP 2001112237 A JP2001112237 A JP 2001112237A JP 2001112237 A JP2001112237 A JP 2001112237A JP 4405102 B2 JP4405102 B2 JP 4405102B2
Authority
JP
Japan
Prior art keywords
rail
branch hole
main rail
common rail
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001112237A
Other languages
Japanese (ja)
Other versions
JP2002310034A (en
Inventor
正佳 臼井
菊雄 浅田
輝久 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP2001112237A priority Critical patent/JP4405102B2/en
Publication of JP2002310034A publication Critical patent/JP2002310034A/en
Application granted granted Critical
Publication of JP4405102B2 publication Critical patent/JP4405102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般にディーゼル内燃機関の蓄圧燃料噴射システムにおける高圧燃料多岐管あるいはブロックレールなどのようなコモンレールに係り、特に内圧疲労強度を高めたディーゼルエンジン用コモンレールに関するものである。
【0002】
【従来の技術】
従来、この種のコモンレールとしては、例えば図1に示すごとくコモンレールの本管レール1に該本管レール1と一体のボス3cを形成し、分岐枝管2の接続頭部2−2のなす押圧座面2−3を本管レール1側の受圧座面1−3に当接係合せしめ、前記ボス3cの外周面に設けた螺子部3−2に螺合する袋ナット6を締着して接続する方式のものや、図2に示すごとく本管レール1側の周壁部に設けた内部の断面円形の流通路1−1に通ずる分岐孔1−2部を外方に開口する受圧座面1−3となし、該受圧座面附近の本管レール1の外周部を囲繞するリング状の継手金具3を使用し、端部に例えば先細円錐状の挫屈成形による拡径した分岐接続体としての分岐枝管2側の接続頭部2−2のなす押圧座面2−3を当接係合せしめ、前記本管レール1の径方向に突出するよう該継手金具に設けた本管レール1の外方に突出する螺子壁3−1部と予め分岐枝管2側にスリーブワッシャー5を介して組込んだナット4の螺合による前記接続頭部2−2首下での押圧に伴って締着して接続する方式のもの、あるいは図3、図4に示すごとくリング状の継手金具3に替えて、筒状のスリーブニップル3a、3bを本管レール1の径方向で外方に突出するようそれぞれ凹凸嵌合螺着方式、溶接などにより直接本管レール1の外周壁に取着し、分岐枝管2側の接続頭部2−2のなす押圧座面2−3を本管レール1側の受圧座面1−3に当接係合せしめ、前記スリーブニップル3a、3bに螺合するナット4を締着して接続する方式のものや、ブロックレール型コモンレール(図面省略)なども知られている。
【0003】
【発明が解決しようとする課題】
しかるに、上記した従来のコモンレールはいずれも、本管レール1の内圧と、分岐枝管2のような分岐接続体の接続頭部2−2の押圧に伴って受圧座面1−3にかかる軸力により分岐孔1−2の下端内周縁部Pに大きな応力が発生し、当該下端内周縁部Pが起点となって亀裂が生じ易く、燃料の洩れを招く可能性があった。また、つぎに亀裂の生じやすいのは本管レールの内表面である。本管レールは厚肉円筒ではあるが、内径が大きいため内表面に大きな円周方向の引張り応力が生じるためである。
【0004】
本発明は従来技術の有する前記問題に鑑みてなされたものであり、変態誘起塑性型強度鋼を用い、本管レールおよび分岐孔の内圧疲労強度を高めると共に、前記した分岐孔の本管レールとの下端内周縁部を含む分岐孔と本管レール側流通路との交差部に発生する応力の集中する度合いを下げて内圧疲労強度をより向上させることが可能なディーゼルエンジン用コモンレールを提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明に係るディーゼルエンジン用コモンレールは、その軸芯方向内部に流通路を有する本管レールの軸方向の周壁部に前記流通路に通じる分岐孔を設け、本管レールと一体もしくは別体の継手部材を介して前記分岐孔に分岐接続体を接続して構成されるディーゼルエンジン用コモンレールにおいて、前記本管レールを変態誘起塑性型強度鋼製とし、該本管レールに加工を施した後、熱処理により残留オーステナイトを生ぜしめ、前記分岐孔と本管レール側流通路交差部の応力集中の低減加工を施すことにより、内表面の加工硬化と圧縮残留応力を残したことを特徴とし、また変態誘起塑性型強度鋼製の本管レールに熱処理により残留オーステナイトを生ぜしめた後、該本管レールに加工を施し、前記分岐孔と本管レール側流通路交差部の応力集中の低減加工を施すことにより内表面の加工硬化と圧縮残留応力を残したことを特徴とし、さらに前記分岐孔と本管レール側流通路交差部の応力集中の低減加工を施した後、オートフレッテージ加工により内表面に誘導塑性変態を生ぜしめると共に圧縮残留応力を残したことを特徴とするものである。
【0006】
【発明の実施の形態】
本発明における変態誘起塑性型強度鋼は、近年、乗用車の足回りプレス成形部品の軽量化を目的として開発されたもので、残留オーステナイト(γ)のひずみ誘起変態(TRIP)を利用してプレス成形性を著しく改善したフェライト(α)+ベイナイト(α)+γ複合組織鋼[TRIP型Dual−Phase鋼、TDP鋼]、およびベイニティックフェライト(αbf)+γ鋼[TRIP型ベイナイト鋼、TB鋼]である。
ここで変態誘起塑性とは、科学的に不安定な状態で存在するオーステナイト(γ)層が、力学的エネルギーの付加によりマルテンサイトへと変態する際に相伴う大きな伸びのことである。
すなわち、TRIP鋼とは、ある限定された組成の鋼において特定な熱処理を施すことにより、α層の粒界を中心に残留オーステナイトやベイナイト組織の混在した金属組織を得た鋼のことである。このような金属組織を有するTRIP鋼の特徴としては、塑性変形能が高いこと、塑性加工によりマルテンサイト組織となるため強度が高くかつ硬くなることなどがあげられる。
【0007】
本発明に係るディーゼルエンジン用コモンレールは、このような特性を有する変態誘起塑性型強度鋼製であるので、鍛造時においては加工性が良く、所望の形状が得やすい。一方、特定の熱処理を行なわない場合(残留オーステナイト、ベイナイトが少ない場合)は、伸び、引張り強度共低く、容易に切削加工ができる。またパイプを使用するコモンレールの場合は、伸管時のリダクションが大きくとれるので伸管回数を減らすことができ、さらに同じリダクションであれば小さな伸管機、小さなダイスで加工が可能である。
また、変態誘起塑性型強度鋼は、局部的に変形した部分のオーステナイトが硬質なマルテンサイトに変態し、その部分を強化するという特性(TRIP現象)を有するので、この変態誘起塑性型強度鋼製のコモンレールの場合は、内圧疲労が進んでも、前記特性によりその疲労部分が強化されてレールの破壊を阻止する抵抗力が生じるため高寿命である。
さらに、応力集中低減加工は、分岐孔と本管レール側流通路交差部を押圧するので分岐孔周辺に圧縮残留応力が残ると共に、変形部分は加工誘起マルテンサイトの析出により硬さ、引張り強さ共に向上しているので耐疲労特性が優れている。
【0008】
本発明における熱処理は、本管レールを950℃に加熱し所定の時間保持してオーステナイト化し、その後350℃〜500℃の間で所定の時間保持してオーステンパー処理を施す。このオーステンパー処理を施すことにより、α層の粒界を中心に残留オーステナイト(γ)層やベイナイト組織の混在した金属組織となる。
【0009】
本発明における分岐孔と本管レール側流通路交差部の応力集中の低減加工方法としては、押圧方式により圧縮残留応力を残す方法が知られている。その方法としては、例えば本出願人が提案した特開平10−318081号公報等に記載されている、(1)外圧方式にて押圧力を付与して分岐孔の本管レール流通路開口端部周辺に圧縮残留応力を発生させる方法、(2)分岐孔付近の本管レール内周面に内圧方式にて押圧力を付与して分岐孔の本管レール流通路開口端部周辺に圧縮残留応力を発生させる方法、(3)分岐孔付近の本管レール内周面に本管レール内部より管径方向に押圧力を付与する拡管方式にて押圧力を付与して分岐孔の本管レール流通路開口端部周辺に圧縮残留応力を発生させる方法、(4)分岐孔内周面に当該分岐孔の内部より径方向に押圧力を付与する拡径方式にて押圧力を付与して分岐孔の本管レール流通路開口端部周辺に圧縮残留応力を発生させる方法等がある。
なお、鋼としての疲労強度を高めるために熱処理により硬くし過ぎると(強度大、伸び小)、前記押圧方式による押し加工が強すぎた場合亀裂を生じることがあり、また押し圧のための工具(プレスピン)が破損しやすいなどの問題があったが、変態誘起塑性型強度鋼(TRIP鋼)の場合は強度が高いのみならず、伸びが大きいためにそのような問題は皆無である。
【0010】
本発明におけるオートフレッテージ加工は、内圧をかけて内周表面のみ塑性変形させる方法であり、このオートフレッテージ加工により全内表面部分での塑性変形で加工硬化(加工誘起マルテンサイトの析出により、硬さ、引張り強さ共に向上)させると共に、全内表面部分に更に圧縮応力を残留させて次に弱点となる本管流路の耐久性向上もはかられる。
【0011】
本発明は上記のごとく、TRIP鋼を機械加工後に熱処理と押圧加工を、好ましくはさらにオートフレッテージ加工を施すことにより、オーステナイト(γ)組織であったものが加工誘起マルテンサイトの析出により、硬さ、引張り強さ共に向上し、さらに圧縮応力を残留させることにより分岐孔と本管レール側流通路交差部はもとより全内表面部分も耐内圧疲労特性が向上して本管流路の耐久性が優れたものとなる。
【0012】
【実施例】
実施例1
表1に示す成分を有するTRIP型ベイナイト鋼(TB鋼)製の鍛造用丸棒を所定寸法に切断、熱間鍛造温度まで加熱、型鍛造にてボス一体型のコモンレール素材(管状部の外径34mmφ)を鍛造し、次いで切削などにより内径10mmφ、ボス部分岐孔径3mmφ、シート面、ネジ部など所望個所を加工し、これを950℃×20分間のオーステナイト化後、400℃×3分間保持のオーステンパー処理を施し、α層の粒界を中心に残留オーステナイト(γ)層やベイナイト組織の混在した組織を有するボス一体型のコモンレールとし、しかる後、このコモンレールの各ボスの分岐孔部に特開平10−318081号公報に記載の外圧方式にて押圧力を付与して分岐孔の本管レール流通路開口端部周辺に圧縮残留応力を発生させた。なお、切削加工時には、残留オーステナイト層やベイナイト組織が少ないので引張り強度が低く伸びも小さいので加工が極めて容易であった。 このコモンレールを繰返し圧力試験機にかけて疲労限界を調べた結果、比較材として用いた通常の高強度鋼(SCM435)(C0.33〜0.38mass%、Si0.15〜0.35mass%、Mn0.60〜0.85mass%、P0.030mass%以下、S0.030mass%以下、Cr0.90〜1.20mass%、Mo0.15〜0.30mass%)製の同一サイズのコモンレールの場合は、180〜1500Barの油圧による繰返し試験において80万回で破損したのに対して、本発明に係るコモンレールは、2200Barで1000万回の繰返し試験でも破損することがなく、優れた耐内圧疲労特性を示した。
【0013】
実施例2
表1に示す成分を有するTRIP型ベイナイト鋼(TB鋼)製の鍛造用丸棒を所定寸法に切断、これを950℃×20分間のオーステナイト化後、350〜475℃の範囲で3分間保持のオーステンパー処理を施し、α層の粒界を中心に残留オーステナイト(γ)層やベイナイト組織の混在した組織とし、これを型鍛造にてボス一体型のコモンレール(管状部の外径34mmφ)を鍛造し、次いで切削などにより内径10.6mmφ、ボス部分岐孔径3mmφ、シート面、ネジ部など所望個所を加工し、ボス一体型のコモンレールとし、しかる後、このコモンレールの各ボスの分岐孔部に特開平10−318081号公報に記載の外圧方式にて押圧力を付与して分岐孔の本管レール流通路開口端部周辺に圧縮残留応力を発生させた。なお、鍛造時には、残留オーステナイト層やベイナイト組織が存在するが、引張り強度が高いものの伸びが大きいために鍛造加工は可能であった。さらに管状部の肉厚の50%程度を降伏させることができる内圧を作用させてオートフレッテージ加工を施した。
このコモンレールを繰返し圧力試験機にかけて疲労限界を調べた結果、2400Barで1000万回の繰返し試験でも破損することがなく、より優れた耐内圧疲労特性耐久性を示した。
【0014】
実施例3
表1に示す成分を有するTRIP型ベイナイト鋼(TB鋼)製のシームレス鋼管を所定寸法に切断したコモンレール素材(管の外径36mmφ、内径10mmφ)に、切削などにより分岐孔径3mmφ、シート面、ネジ部など所望加工を施し、これを950℃×20分間のオーステナイト化後、350℃〜475℃の範囲で3分間保持のオーステンパー処理を施し、α層の粒界を中心に残留オーステナイト(γ)層やベイナイト組織の混在した組織を有するコモンレールとし、しかるのち、このコモンレールの分岐孔部に特開平10−318081号公報に記載の外圧方式にて押圧力を付与して分岐孔の本管レール流通路開口端部周辺に圧縮残留応力を発生させた。なお、切削加工時には、残留オーステナイト層やベイナイト組織が少ないので引張り強度が低く伸びも小さいので加工は極めて容易であった。
このコモンレールを繰返し圧力試験機にかけて疲労限界を調べた結果、本実施例においても、2200Barで1000万回の繰返し試験でも破損することがなく、優れた耐内圧疲労特性耐久性を示した。
【0015】
なお、TRIP型ベイナイト鋼(TB鋼)製のブロックレールの場合も同様の効果が得られることはいうまでもない。
【0016】
【表1】

Figure 0004405102
【0017】
【発明の効果】
以上説明したごとく、本発明に係るディーゼルエンジン用コモンレールは、分岐孔と本管レール側流通路との交差部や分岐孔の内周縁部に析出させた硬さ、引張り強さ共に向上した加工誘起マルテンサイトと、圧縮残留応力により優れた耐内圧疲労特性を有し、さらにオートフレッテージ加工を施すことにより、分岐孔と本管レール側流通路との交差部や分岐孔の内周縁部のみならず、コモンレールの全内表面にわたり優れた耐内圧疲労特性を有するので、超高圧での耐久性を確保することができる。また、優れた耐内圧疲労特性に加え、耐振動疲労特性、耐キャビテンション性、シート面の耐疵付き性に優れ、かつ薄肉軽量化も可能であるなどの効果も奏する。
【図面の簡単な説明】
【図1】本発明の対象とするボス一体型のコモンレールの一例を示す縦断正面図である。
【図2】同じくリング状の継手金具を使用したコモンレールの一例を示す要部縦断側面図である。
【図3】同じく筒状のスリーブニップルを凹凸嵌合螺着方式にて本管レールに取着した構成のコモンレールの一例を示す縦断側面図である。
【図4】同じく筒状のスリーブニップルを溶接にて本管レールに取着した構成のコモンレールの一例を示す縦断側面図である。
【符号の説明】
1 本管レール
1−1 流通路
1−2 分岐孔
1−3 受圧座面
1−2a R面取部
2 分岐枝管
2−2 接続頭部
2−3 押圧座面
3 継手金具
4、6 ナット
5 スリーブワッシャー[0001]
BACKGROUND OF THE INVENTION
The present invention generally relates to a common rail such as a high-pressure fuel manifold or a block rail in a pressure accumulation fuel injection system of a diesel internal combustion engine, and more particularly to a common rail for a diesel engine having increased internal pressure fatigue strength.
[0002]
[Prior art]
Conventionally, as this type of common rail, for example, as shown in FIG. 1, a boss 3 c integrated with the main rail 1 is formed on the main rail 1 of the common rail, and the press formed by the connection head 2-2 of the branch branch pipe 2. The seat surface 2-3 is brought into contact with and engaged with the pressure-receiving seat surface 1-3 on the main rail 1 side, and a cap nut 6 that is screwed into a screw portion 3-2 provided on the outer peripheral surface of the boss 3c is fastened. 2 and a pressure receiving seat that opens outwardly at a branch hole 1-2 portion communicating with a circular cross-sectional flow passage 1-1 provided in a peripheral wall portion on the main rail 1 side as shown in FIG. A ring-shaped joint fitting 3 that surrounds the outer periphery of the main rail 1 near the pressure-receiving seat surface is formed as a surface 1-3, and the diameter of the branch connection is increased by, for example, tapered conical buckling. The pressing seat surface 2-3 formed by the connection head 2-2 on the side of the branch branch pipe 2 as a body is brought into contact with and engaged, The screw wall 3-1 projecting outward from the main rail 1 provided in the joint fitting so as to project in the radial direction of 1, and the nut 4 assembled in advance via the sleeve washer 5 on the branch branch pipe 2 side. The connection head 2-2 is tightened and connected in accordance with the press under the neck of the connection head 2-2 or is replaced with a ring-shaped joint fitting 3 as shown in FIGS. The sleeve nipples 3a and 3b are directly attached to the outer peripheral wall of the main rail 1 by an uneven fitting screwing method, welding or the like so as to protrude outward in the radial direction of the main rail 1, and The pressing seat surface 2-3 formed by the connecting head 2-2 is brought into contact with and engaged with the pressure receiving seat surface 1-3 on the main rail 1 side, and the nut 4 screwed into the sleeve nipples 3a and 3b is fastened. Are also known, such as those that connect to each other and block rail type common rails (not shown) There.
[0003]
[Problems to be solved by the invention]
However, any of the above-described conventional common rails has a shaft applied to the pressure receiving seat surface 1-3 in accordance with the internal pressure of the main rail 1 and the pressing of the connection head 2-2 of the branch connection body such as the branch branch pipe 2. Due to the force, a large stress is generated at the inner peripheral edge portion P of the lower end of the branch hole 1-2, and cracks are likely to occur from the inner peripheral edge portion P of the lower end, which may cause fuel leakage. Further, it is the inner surface of the main rail that is likely to crack next. This is because the main rail is a thick-walled cylinder but has a large inner diameter, which causes a large circumferential tensile stress on the inner surface.
[0004]
The present invention has been made in view of the above-mentioned problems of the prior art, and uses transformation-induced plastic-type strength steel to increase the internal pressure fatigue strength of the main rail and the branch hole, To provide a common rail for a diesel engine capable of further improving internal pressure fatigue strength by lowering the degree of concentration of stress generated at the intersection of the branch hole including the inner peripheral edge of the lower end of the pipe and the main rail side flow passage It is intended.
[0005]
[Means for Solving the Problems]
A common rail for a diesel engine according to the present invention is provided with a branch hole that communicates with the flow passage in an axial peripheral wall portion of a main rail having a flow passage in the axial center thereof, and is a joint that is integral with or separate from the main rail. In a common rail for a diesel engine configured by connecting a branch connector to the branch hole via a member, the main rail is made of transformation-induced plastic type strength steel, and the main rail is processed after heat treatment This is characterized by the fact that residual austenite is generated by the above process, and the work concentration and compressive residual stress remain on the inner surface by reducing the stress concentration at the intersection of the branch hole and the main rail side flow passage. Residual austenite is produced by heat treatment in the main rail made of plastic-type strength steel, and then the main rail is processed to accommodate the branch hole and the intersection of the main rail side flow passage. It is characterized in that the inner surface work hardening and compressive residual stress remain by applying concentration reduction processing, and after applying reduction processing of stress concentration at the intersection of the branch hole and main rail side flow passage, It is characterized by inducing induced plastic transformation on the inner surface by fretting and leaving compressive residual stress.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The transformation-induced plastic type strength steel in the present invention has been developed in recent years for the purpose of reducing the weight of undercarriage press-formed parts of passenger cars, and presses using strain-induced transformation (TRIP) of retained austenite (γ R ). Ferritic (α f ) + bainite (α b ) + γ R composite structure steel [TRIP type Dual-Phase steel, TDP steel] and bainitic ferrite (α bf ) + γ R steel [TRIP type bainite] Steel, TB steel].
Here, the transformation-induced plasticity is a large elongation accompanying the transformation of an austenite (γ) layer that exists in a scientifically unstable state into martensite by the addition of mechanical energy.
That is, the TRIP steel is a steel obtained by performing a specific heat treatment on a steel having a limited composition to obtain a metal structure in which retained austenite and bainite structure are mixed around the grain boundary of the α layer. The characteristics of TRIP steel having such a metal structure include high plastic deformability and high strength and hardness because it becomes a martensite structure by plastic working.
[0007]
Since the common rail for diesel engines according to the present invention is made of transformation-induced plastic-type strength steel having such characteristics, workability is good during forging and a desired shape is easily obtained. On the other hand, when specific heat treatment is not performed (when there is little retained austenite and bainite), the elongation and tensile strength are low, and cutting can be easily performed. In the case of a common rail that uses pipes, the reduction during drawing can be greatly reduced, so that the number of times of drawing can be reduced. Further, if the same reduction is performed, processing can be performed with a small drawing machine and a small die.
In addition, transformation induced plasticity strength steel has the property that the locally deformed austenite transforms into hard martensite and strengthens that portion (TRIP phenomenon). In the case of the common rail, even if the internal pressure fatigue progresses, the fatigue portion is strengthened by the above characteristics, and a resistance force that prevents the rail from being broken is generated, so that the life is long.
Furthermore, stress concentration reduction processing presses the intersection of the branch hole and the main rail side flow passage, so that compressive residual stress remains around the branch hole, and the deformed part has hardness and tensile strength due to precipitation of work-induced martensite. Since both are improved, fatigue resistance is excellent.
[0008]
In the heat treatment in the present invention, the main rail is heated to 950 ° C. and held for a predetermined time to be austenitized, and then held at a temperature between 350 ° C. and 500 ° C. for a predetermined time to perform austempering. By performing this austempering treatment, a metal structure in which a retained austenite (γ) layer and a bainite structure are mixed around the grain boundary of the α layer is obtained.
[0009]
As a method for reducing the stress concentration at the intersection of the branch hole and the main rail side flow passage in the present invention, a method of leaving compressive residual stress by a pressing method is known. The method is described in, for example, Japanese Patent Application Laid- Open No. 10-318081 proposed by the applicant of the present application. (1) A main rail flow passage opening end portion of a branch hole by applying a pressing force by an external pressure method. (2) Applying a pressing force to the inner peripheral surface of the main rail near the branch hole by the internal pressure method to compress the residual stress around the opening end of the main rail flow passage in the branch hole (3) Flow through the main rail of the branch hole by applying a pressing force to the inner peripheral surface of the main rail near the branch hole by a pipe expansion method that applies a pressing force from the inside of the main rail to the pipe radial direction. A method of generating compressive residual stress around the end of the road opening, (4) A branch hole by applying a pressing force to the inner peripheral surface of the branch hole by a diameter expansion method that applies a pressing force in the radial direction from the inside of the branch hole. There is a method of generating compressive residual stress around the opening end of the main rail flow passage.
In addition, if it is hardened too much by heat treatment (high strength, low elongation) to increase the fatigue strength as steel, cracking may occur if the pressing by the pressing method is too strong, and a tool for pressing pressure However, the transformation-induced plastic-type strength steel (TRIP steel) has not only such a high strength but also a large elongation, so there is no such problem.
[0010]
Autofrettage processing in the present invention is a method in which only the inner peripheral surface is plastically deformed by applying internal pressure, and the work is hardened by plastic deformation in the entire inner surface portion by this autofrettage processing (by precipitation of work-induced martensite, Both the hardness and the tensile strength are improved), and the compressive stress is further left on the entire inner surface portion to improve the durability of the main flow path which becomes the next weak point.
[0011]
In the present invention, as described above, the TRIP steel is subjected to heat treatment and pressing after machine processing, preferably further autofrettage processing, so that the austenite (γ) structure is hardened due to the precipitation of work-induced martensite. In addition, by improving both the tensile strength and residual compressive stress, the internal pressure fatigue resistance of the entire inner surface as well as the branch hole and the main rail side flow passage intersection is improved, and the durability of the main flow path Will be excellent.
[0012]
【Example】
Example 1
TRIP type bainitic steel (TB steel) forging round bar having the components shown in Table 1 is cut to a predetermined size, heated to hot forging temperature, and boss integrated common rail material (outer diameter of tubular part) 34mmφ) forged, and then machining the desired parts such as the inner diameter 10mmφ, boss part branch hole diameter 3mmφ, sheet surface, screw part by cutting, etc., this is austenitized at 950 ° C × 20 minutes, then held at 400 ° C × 3 minutes austempering alms, and a boss integrated common rail with mixed tissue of the residual austenite (gamma) layer or bainite structure around the grain boundaries of the α layer, thereafter, especially in the branch hole of the bosses of the rail A compressive residual stress was generated in the vicinity of the opening end portion of the main rail flow passage of the branch hole by applying a pressing force by the external pressure method described in Kaihei 10-318081. In addition, since there was little residual austenite layer and bainite structure at the time of cutting, the tensile strength was low and the elongation was small, so the processing was extremely easy. As a result of investigating the fatigue limit by applying this common rail to a repeated pressure tester, normal high strength steel (SCM435) used as a comparative material (C0.33-0.38 mass%, Si0.15-0.35 mass%, Mn0.60) ~ 0.85mass%, P0.030mass% or less, S0.030mass% or less, Cr0.90 to 1.20mass%, Mo0.15 to 0.30mass%) common rail of the same size, 180-1500Bar Whereas the common rail according to the present invention was damaged in a repeated test by hydraulic pressure at 800,000 times, the common rail according to the present invention was not damaged even at a repeated test of 10 million times at 2200 Bar, and exhibited excellent internal pressure fatigue resistance.
[0013]
Example 2
A forged round bar made of TRIP-type bainite steel (TB steel) having the components shown in Table 1 was cut into a predetermined size, and this was austenitized at 950 ° C. for 20 minutes, and then held at 350 to 475 ° C. for 3 minutes. Austempering is applied to form a mixed structure of residual austenite (γ) layer and bainite structure around the grain boundary of α layer, and this is forged into a boss-integrated common rail (outside diameter 34mmφ of tubular part) by die forging , and then the inner diameter by cutting or the like 10.6Mmfai, boss branch hole diameter 3 mm.phi, sheet surface, and processing the desired location such as a screw portion, and a boss integrated common rail, thereafter, especially in the branch hole of the bosses of the rail A compressive residual stress was generated in the vicinity of the opening end portion of the main rail flow passage of the branch hole by applying a pressing force by the external pressure method described in Kaihei 10-318081. In addition, at the time of forging, a retained austenite layer and a bainite structure are present, but forging can be performed because of high elongation although tensile strength is high. Furthermore, an auto-frettage process was performed by applying an internal pressure capable of yielding about 50% of the wall thickness of the tubular portion.
As a result of examining the fatigue limit by applying this common rail to a repetitive pressure test machine, it was not damaged even at a repetitive test of 10 million times at 2400 Bar, and showed superior internal pressure fatigue resistance durability.
[0014]
Example 3
A common rail material (outer diameter of pipe 36 mmφ, inner diameter 10 mmφ) made by cutting seamless steel pipes made of TRIP-type bainite steel (TB steel) having the components shown in Table 1 into predetermined dimensions, by cutting or the like, branch hole diameter 3 mmφ, sheet surface, screw The austenite is processed at 950 ° C. for 20 minutes, then austempered for 3 minutes at 350 ° C. to 475 ° C., and retained austenite (γ) centering on the grain boundary of the α layer. A common rail having a structure in which layers and bainite structures are mixed, and then the main rail circulation of the branch hole by applying a pressing force to the branch hole portion of this common rail by the external pressure method described in Japanese Patent Laid- Open No. 10-318081 Compressive residual stress was generated around the edge of the road opening. In addition, at the time of cutting, since the retained austenite layer and the bainite structure were small, the tensile strength was low and the elongation was small, so the processing was extremely easy.
As a result of examining the fatigue limit by applying this common rail to a repetitive pressure test machine, in this example as well, even in a repetitive test of 10 million times at 2200 Bar, it was not damaged and showed excellent internal pressure fatigue resistance durability.
[0015]
Needless to say, the same effect can be obtained with a block rail made of TRIP-type bainite steel (TB steel).
[0016]
[Table 1]
Figure 0004405102
[0017]
【The invention's effect】
As described above, the diesel engine common rail according to the present invention has improved machining induction with improved hardness and tensile strength deposited at the intersection of the branch hole and the main rail side flow passage and at the inner peripheral edge of the branch hole. It has excellent internal pressure fatigue resistance due to martensite and compressive residual stress. Furthermore, by applying auto-frettage processing, if only the intersection of the branch hole and the main rail side flow passage or the inner peripheral edge of the branch hole, In addition, since it has excellent internal pressure fatigue resistance over the entire inner surface of the common rail, durability at ultra-high pressure can be ensured. Further, in addition to excellent internal pressure fatigue resistance, it has excellent effects such as vibration fatigue resistance, cavitation resistance, and scratch resistance on the sheet surface, and can be reduced in thickness and weight.
[Brief description of the drawings]
FIG. 1 is a longitudinal front view showing an example of a boss-integrated common rail targeted by the present invention.
FIG. 2 is a longitudinal sectional side view of an essential part showing an example of a common rail that similarly uses a ring-shaped joint fitting.
FIG. 3 is a longitudinal side view showing an example of a common rail having a configuration in which a cylindrical sleeve nipple is similarly attached to a main rail by an uneven fitting screwing method.
FIG. 4 is a longitudinal side view showing an example of a common rail having a configuration in which a cylindrical sleeve nipple is similarly attached to a main rail by welding.
[Explanation of symbols]
1 Main rail 1-1 Flow path 1-2 Branch hole 1-3 Pressure receiving seat surface 1-2a R chamfered portion 2 Branch branch tube 2-2 Connection head 2-3 Pressing seat surface 3 Joint fittings 4 and 6 Nut 5 Sleeve washer

Claims (2)

その軸芯方向内部に流通路を有する本管レールの軸方向の周壁部に前記流通路に通じる分岐孔を設け、本管レールと一体もしくは別体の継手部材を介して前記分岐孔に分岐接続体を接続して構成されるディーゼルエンジン用コモンレールにおいて、前記本管レールを変態誘起塑性型強度鋼製とし、該本管レールに熱処理により残留オーステナイトを生ぜしめた後、該本管レールに加工を施し、前記分岐孔と本管レール側流通路交差部の応力集中の低減加工を施すことにより内表面の加工硬化と圧縮残留応力を残したディーゼルエンジン用コモンレール。  A branch hole leading to the flow path is provided in the axial peripheral wall portion of the main rail having a flow path inside the axial direction, and branch connection is made to the branch hole through a joint member that is integral with or separate from the main rail. In a diesel engine common rail constructed by connecting bodies, the main rail is made of transformation-induced plastic-type strength steel. A common rail for a diesel engine that has left the work hardening and compressive residual stress of the inner surface by applying a process of reducing stress concentration at the intersection of the branch hole and the main rail side flow passage. 前記分岐孔と本管レール側流通路交差部の応力集中の低減加工を施した後、さらにオートフレッテージ加工により内表面に誘導塑性変態を生ぜしめると共に圧縮残留応力を残した請求項1記載のディーゼルエンジン用コモンレール。The branch hole and was subjected to a reduction processing of the stress concentration of the main pipe rail side flow passage cross section, further claim 1 Symbol placement left compressive residual stress with causing a induced plasticity transformation on the inner surface by autofrettage processing Common rail for diesel engines.
JP2001112237A 2001-04-11 2001-04-11 Common rail for diesel engines Expired - Fee Related JP4405102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001112237A JP4405102B2 (en) 2001-04-11 2001-04-11 Common rail for diesel engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001112237A JP4405102B2 (en) 2001-04-11 2001-04-11 Common rail for diesel engines

Publications (2)

Publication Number Publication Date
JP2002310034A JP2002310034A (en) 2002-10-23
JP4405102B2 true JP4405102B2 (en) 2010-01-27

Family

ID=18963690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001112237A Expired - Fee Related JP4405102B2 (en) 2001-04-11 2001-04-11 Common rail for diesel engines

Country Status (1)

Country Link
JP (1) JP4405102B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7125051B2 (en) 2003-07-10 2006-10-24 Usui Kokusai Sangyo Kaisha Limited Common-rail injection system for diesel engine
JP2005201254A (en) * 2003-12-16 2005-07-28 Usui Kokusai Sangyo Kaisha Ltd High pressure fuel piping for diesel engine
JP2007085245A (en) * 2005-09-21 2007-04-05 Usui Kokusai Sangyo Kaisha Ltd Common rail
JP4849468B2 (en) * 2006-03-14 2012-01-11 臼井国際産業株式会社 High-pressure fuel injection pipe having a connecting head and a bent portion and method for manufacturing the same
JP4849469B2 (en) * 2006-03-14 2012-01-11 臼井国際産業株式会社 Method for manufacturing high-pressure fuel injection pipe having connecting head and bent portion
JP4998975B2 (en) * 2006-04-20 2012-08-15 臼井国際産業株式会社 High pressure fuel injection pipe for diesel engine
JP5078443B2 (en) * 2007-05-30 2012-11-21 臼井国際産業株式会社 High-tensile steel pipe for automobile high-pressure piping
ATE527444T1 (en) * 2007-11-13 2011-10-15 Delphi Tech Holding Sarl FUEL LANCE
DE102009046437B4 (en) 2009-11-05 2018-04-19 Man Diesel & Turbo Se Method for processing an injection nozzle
JP5527312B2 (en) * 2011-12-05 2014-06-18 株式会社デンソー Auto fretage processing equipment
JP6070617B2 (en) * 2014-04-03 2017-02-01 Jfeスチール株式会社 Seamless steel pipe for fuel injection pipes with excellent internal pressure fatigue resistance
WO2017007709A1 (en) * 2015-07-08 2017-01-12 Entegris, Inc. High pressure filter

Also Published As

Publication number Publication date
JP2002310034A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
KR100611092B1 (en) High-pressure fuel pipe for diesel engines
US7431781B2 (en) Method for forming a common-rail injection system for diesel engine
JP4405102B2 (en) Common rail for diesel engines
US6494183B2 (en) Common rail for diesel engine
KR100290973B1 (en) High pressure fuel injection tube and its manufacturing method
KR100591970B1 (en) High pressure fuel injection tube
US7987569B2 (en) Method of surface densification of a powder metal component
US20100107808A1 (en) Method for increasing torsional fatigue strength in crankshafts
US6918378B2 (en) High-pressure fuel injection pipe
US8918982B2 (en) Method for the production of a high-pressure accumulator pipe of steel for fuel injection systems and high-pressure accumulator pipe produced according to this method
JP2004092551A (en) Diesel common rail for engine
JPH02247085A (en) Thick-walled fine diameter fuel injection pipe and its manufacture
JP4753368B2 (en) High-tensile steel pipe for automobile high-pressure piping
JP2007085245A (en) Common rail
WO2007105660A1 (en) High-pressure fuel injection tube having connecting head portion and bend portion, and method for producing the same
CN101389851B (en) Structure for connecting head portion of high-pressure fuel injection tube
JP3424035B2 (en) Outer ring of constant velocity ball joint
JP4998975B2 (en) High pressure fuel injection pipe for diesel engine
JP4405101B2 (en) High pressure fuel injection pipe
JP2005226623A (en) Fuel pressure accumulating vessel having branch connector
JP3882960B2 (en) Manufacturing method of high-pressure fuel injection pipe and high-pressure fuel injection pipe obtained by the method
JPH021583Y2 (en)
JP3862790B2 (en) High pressure fuel injection pipe material and method for manufacturing the same
DE50301765D1 (en) PROCESS FOR MACHINING A WORKPIECE FOR A FUEL HIGH PRESSURE MEMORY AND WORKPIECE FOR USING THE METHOD
JP3906942B2 (en) High pressure fuel injection pipe for diesel internal combustion engine.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees