JP4404898B2 - Method for producing curved mold having fine concavo-convex structure and method for producing optical element using this mold - Google Patents

Method for producing curved mold having fine concavo-convex structure and method for producing optical element using this mold Download PDF

Info

Publication number
JP4404898B2
JP4404898B2 JP2006511450A JP2006511450A JP4404898B2 JP 4404898 B2 JP4404898 B2 JP 4404898B2 JP 2006511450 A JP2006511450 A JP 2006511450A JP 2006511450 A JP2006511450 A JP 2006511450A JP 4404898 B2 JP4404898 B2 JP 4404898B2
Authority
JP
Japan
Prior art keywords
mold
film
curved
silicon
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006511450A
Other languages
Japanese (ja)
Other versions
JPWO2005092588A1 (en
Inventor
伸二 小林
山口  淳
聡 鷲見
政廣 樋口
良昭 前納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of JPWO2005092588A1 publication Critical patent/JPWO2005092588A1/en
Application granted granted Critical
Publication of JP4404898B2 publication Critical patent/JP4404898B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2245Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies having walls provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/061Materials which make up the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • B29C33/3857Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts
    • B29C33/3878Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts used as masters for making successive impressions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Description

この発明は、反射防止構造などの微細凹凸構造を有する曲面金型の製造方法に係り、曲面加工が容易な部材を用いて微細凹凸構造を有する曲面金型を製造する方法並びにこの金型を用いて光学素子を製造する方法に関するものである。   The present invention relates to a method for manufacturing a curved mold having a fine concavo-convex structure such as an antireflection structure, and a method for manufacturing a curved mold having a fine concavo-convex structure using a member that can be easily curved and used. The present invention relates to a method for manufacturing an optical element.

従来より、ガラス、プラスチックなどの透光性材料を用いた光学ピックアップ、非球面レンズ等の光学素子においては、基板の光入射面に反射を防止するための表面処理が施されている。この表面処理としては、薄膜の誘電体膜を重畳させた多層膜を透光性基板表面に真空蒸着等により成膜する方法や、光学素子表面に微細で且つ緻密な凹凸を設ける方法がある。 Conventionally, in an optical element such as an optical pickup using a light-transmitting material such as glass or plastic, an aspherical lens or the like, a surface treatment for preventing reflection is performed on a light incident surface of a substrate. As the surface treatment, there are a method of forming a multilayer film on which a thin dielectric film is superposed on the surface of the light-transmitting substrate by vacuum deposition or the like, and a method of providing fine and dense irregularities on the surface of the optical element.

光学素子表面に微細で且つ緻密な凹凸形状からなる反射防止構造は、金型を用いてプラスチック成形で形成することが知られている(例えば、特許文献1参照)。   It has been known that an antireflection structure having a fine and dense concavo-convex shape on the surface of an optical element is formed by plastic molding using a mold (see, for example, Patent Document 1).

微細で緻密な凹凸形状からなる反射防止構造を有する光学素子を成形するための金型は、石英やシリコンを基材として用いて、この基材に所定の反射防止構造をエッチング加工により形成し、この基材にメッキを施して作成している。   A mold for molding an optical element having an antireflection structure composed of fine and dense irregularities uses quartz or silicon as a base material, and a predetermined antireflection structure is formed on this base material by etching, This base material is made by plating.

ところで、光学ピックアップのレンズなどのように、レンズとして所定の曲率を有するものに上記した反射防止構造を設けるためには、基材となる石英やシリコンに所定の曲面加工を施す必要がある。
特開昭62−96902号公報
By the way, in order to provide the above-described antireflection structure in a lens having a predetermined curvature such as a lens of an optical pickup, it is necessary to perform a predetermined curved surface processing on quartz or silicon as a base material.
JP-A-62-96902

非球面レンズなど複雑な表面形状を持つレンズなどの場合、金型の形成のための基材の加工が困難である。すなわち、基材として石英やシリコンなどを用いる場合、これら基材の加工が難しく、形成の際に割れ、欠けなどが発生することが多く、金型を製造するのに、時間と費用が嵩むという問題があった。   In the case of a lens having a complicated surface shape such as an aspheric lens, it is difficult to process the base material for forming a mold. That is, when quartz, silicon, or the like is used as a base material, it is difficult to process these base materials, and cracks, chips, etc. often occur during formation, and it takes time and money to manufacture a mold. There was a problem.

この発明は、上記した従来の問題点を解決するためになされたものにして、非球面レンズなど複雑な表面形状を持つレンズなどに微細で且つ緻密な凹凸形状を付加できる金型を容易に製造できる方法を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and easily manufactures a mold capable of adding a fine and precise uneven shape to a lens having a complicated surface shape such as an aspherical lens. It aims to provide a possible method.

また、この発明は、微細で且つ緻密な凹凸形状を表面に設けた非球面レンズなど複雑な表面形状を持つレンズなどの光学素子を容易に製造できる方法を提供することを目的とする。   Another object of the present invention is to provide a method by which an optical element such as a lens having a complicated surface shape such as an aspherical lens having a fine and dense uneven surface formed thereon can be easily manufactured.

この発明の微細凹凸構造を有する曲面金型の製造方法は、所定形状に形成された曲面母材上にシリコン系膜を形成し、このシリコン系膜にマスクを用いて所定形状の微細な凹凸構造のパターンをエッチングを施して形成し、この微細な凹凸構造のパターンが形成されたシリコン系膜上に金型用金属を被着させ、この金型用金属に微細な凹凸構造のパターンを転写した後シリコン系膜を取り除き、曲面に微細凹凸構造を有する金型を形成する、微細凹凸構造を有する曲面金型の製造方法において、前記マスクはフォトレジストからなり、前記曲面母材上とシリコン系膜との間に反射防止膜を形成することを特徴とする。   The method for manufacturing a curved mold having a fine concavo-convex structure according to the present invention includes forming a silicon-based film on a curved base material formed in a predetermined shape, and using the mask on the silicon-based film, a fine concavo-convex structure having a predetermined shape This pattern was formed by etching, and a metal for mold was deposited on the silicon-based film on which this fine concavo-convex structure pattern was formed, and the fine concavo-convex structure pattern was transferred to this metal for mold In the method of manufacturing a curved surface mold having a fine concavo-convex structure by removing a post-silicon-based film and forming a mold having a fine concavo-convex structure on a curved surface, the mask is made of a photoresist, and the silicon-based film is formed on the curved base material. An antireflection film is formed between the two.

前記曲面母材上とシリコン系膜との間に離型材膜を形成するとよい。   A release material film may be formed between the curved base material and the silicon-based film.

また、この発明の微細凹凸構造を有する金型の製造方法は、所定形状に形成された曲面母材上にシリコン系膜を形成し、このシリコン系膜上に有効領域部分は所定形状の微細な凹凸からなるパターンを有し、その外側に行くほど凹凸パターンの体積比率が変化したマスクを設け、このマスクを用いて前記シリコン系膜に外周から内周に向かって、徐々に微細な凹凸の深さが深くなり、有効領域で所定の深さ、形状の凹凸が形成された微細なパターンをエッチングを施して形成し、この凹凸パターンが形成された基板上に金型用金属を被着させ、この金型用金属に凹凸パターンを転写した後、前記基板と金型用金属を分離して金型を形成することを特徴とする。   Further, according to the method of manufacturing a mold having a fine concavo-convex structure according to the present invention, a silicon-based film is formed on a curved base material formed in a predetermined shape, and an effective region portion is fine in a predetermined shape on the silicon-based film. A mask having a concavo-convex pattern, with the volume ratio of the concavo-convex pattern changing toward the outside, is provided. Using this mask, the depth of the fine concavo-convex is gradually increased in the silicon-based film from the outer periphery toward the inner periphery. The depth is increased, and a fine pattern in which unevenness of a predetermined depth and shape is formed in an effective region is formed by etching, and a metal for a mold is deposited on the substrate on which the unevenness pattern is formed, After the concave / convex pattern is transferred to the mold metal, the substrate and the mold metal are separated to form a mold.

また、この発明の光学素子の製造方法は、所定形状に形成された曲面母材上にシリコン系膜を形成し、このシリコン系膜にマスクを用いて所定形状の微細な凹凸構造のパターンをエッチングを施して形成し、この微細な凹凸構造のパターンが形成されたシリコン系膜上に金型用金属を被着させ、この金型用金属に微細な凹凸構造のパターンを転写した後シリコン系膜を取り除き、曲面に微細凹凸構造を有する金型を形成し、この金型を固定金型、可動金型の少なくとも一方に取り付け、前記固定金型と可動金型とを用いた射出成形により、少なくとも一方の面に微細凹凸構造を有する光学素子を製造することを特徴とする。   In the method of manufacturing an optical element according to the present invention, a silicon-based film is formed on a curved base material formed in a predetermined shape, and a fine concavo-convex structure pattern having a predetermined shape is etched using the mask on the silicon-based film. The metal film for metal mold is deposited on the silicon film on which the pattern of the fine concavo-convex structure is formed, and the silicon film is transferred to the metal for mold after transferring the pattern of the fine concavo-convex structure And forming a mold having a fine concavo-convex structure on the curved surface, attaching the mold to at least one of a fixed mold and a movable mold, and performing injection molding using the fixed mold and the movable mold, at least An optical element having a fine concavo-convex structure on one surface is manufactured.

以上説明したように、この発明によれば、球面、軸対象非球面など複雑な形状であっても所定の曲面形状を有する曲面母材を容易に形成でき、そして、この曲面母材の曲面に基づいて、球面、軸対象非球面など複雑な形状であっても所定の曲面を有し、そして、微細で緻密な凹凸形状構造を有する曲面金型を形成することができる。   As described above, according to the present invention, it is possible to easily form a curved base material having a predetermined curved surface shape even if it is a complicated shape such as a spherical surface or an aspherical object, and the curved surface of the curved base material. Based on this, it is possible to form a curved surface mold having a predetermined curved surface and having a fine and dense concavo-convex shape structure even if it is a complicated shape such as a spherical surface or an aspherical object.

また、反射防止膜を設けることで、レジストのパターニングをより緻密に行えるので、より微細で緻密な凹凸形状からなる反射防止構造を有する曲面金型を形成することができる。   In addition, since the resist patterning can be performed more precisely by providing the antireflection film, it is possible to form a curved mold having an antireflection structure having a finer and dense uneven shape.

離型材膜を用いることで、金型側と母材側の分離が容易に行える。   By using the release material film, the mold side and the base material side can be easily separated.

また、外周から内周に向かって、徐々に反射防止機能の深さが深くなり、有効領域では所定のピッチで円錐状の凹凸が形成された反射防止構造を有する曲面金型を用いることで、樹脂を充填したときに外周側から剥がれやすくなり、金型(スタンパ)や成型品が破損する虞がなくなる。   In addition, the depth of the antireflection function gradually increases from the outer periphery toward the inner periphery, and by using a curved mold having an antireflection structure in which conical irregularities are formed at a predetermined pitch in the effective region, When the resin is filled, it becomes easy to peel off from the outer peripheral side, and there is no possibility that the mold (stamper) or the molded product is damaged.

この発明の第1の実施形態にかかる反射防止構造を有する曲面金型の製造を工程別に示す断面図である。It is sectional drawing which shows manufacture of the curved surface mold | die which has an antireflection structure concerning 1st Embodiment of this invention according to a process. この発明の第2の実施形態にかかる反射防止構造を有する曲面金型の製造を工程別に示す断面図である。It is sectional drawing which shows manufacture of the curved-surface metal mold | die which has an antireflection structure concerning 2nd Embodiment of this invention according to process. この発明の第3の実施形態にかかる反射防止構造を有する曲面金型の製造を工程別に示す断面図である。It is sectional drawing which shows manufacture of the curved-surface metal mold | die which has an antireflection structure concerning 3rd Embodiment of this invention according to process. この発明の第4の実施形態にかかる反射防止構造を有する曲面金型の製造を工程別に示す断面図である。It is sectional drawing which shows manufacture of the curved-surface metal mold | die which has an antireflection structure concerning 4th Embodiment of this invention according to process. 光学素子の外周から内周に向かって、徐々に光学素子の反射防止機能の深さを深くするための露光工程を示す平面図である。It is a top view which shows the exposure process for deepening the depth of the reflection preventing function of an optical element gradually toward the inner periphery from the outer periphery of an optical element. この発明により製造される光学素子の各領域の金型と成型品との付着力との関係を示す図である。It is a figure which shows the relationship between the metal mold | die of each area | region of the optical element manufactured by this invention, and the adhesive force of a molded article. この発明にかかる光学素子の製造方法に用いられる成形型の形状及び構造を示す側方断面図である。It is side sectional drawing which shows the shape and structure of a shaping | molding die used for the manufacturing method of the optical element concerning this invention.

符号の説明Explanation of symbols

1 曲面部材
2 二酸化シリコン膜(SiO2)膜
3 レジスト膜
4 金属層
4a、4b 金型(スタンパ)
1 curved member 2 the silicon dioxide film (SiO 2) film 3 resist film 4 metal layers 4a, 4b mold (stamper)

以下、この発明の実施の形態につき、図面を参照して説明する。図1は、この発明の第1の実施形態にかかる緻密で且つ微細な凹凸からなる反射防止構造を有する曲面金型の製造を工程別に示す断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the manufacturing process of a curved mold having an antireflection structure composed of dense and fine irregularities according to the first embodiment of the present invention.

図1(a)に示すように、光学ピックアップ用対物レンズ、コリメータレンズなど球面、軸対象非球面など所定の曲面形状を有する曲面母材1を用意する。この曲面母材1は、曲面加工の容易な金属基材、またはその金属金型から成形した樹脂基材、あるいはガラス基材を用いる。この実施形態においては、被切削性の良好なアルミ合金や無炭素銅などに対してダイヤモンド工具を回転させる超精密マイクロ加工機により、球面、軸対象非球面など所定の曲面に鏡面加工されて形成されている。   As shown in FIG. 1A, a curved base material 1 having a predetermined curved surface shape such as a spherical surface such as an objective lens for an optical pickup or a collimator lens, or an aspherical surface for an axis is prepared. As the curved base material 1, a metal base material that can be easily processed into a curved surface, a resin base material formed from the metal mold, or a glass base material is used. In this embodiment, it is formed by mirror finishing to a predetermined curved surface such as a spherical surface or an aspherical surface of an axis by an ultra-precision micro-machining machine that rotates a diamond tool against an aluminum alloy or carbon-free copper having good machinability. Has been.

続いて、図1(b)に示すように、曲面母材1の所定の曲面が形成された表面上に、スパッタ法により、シリコン系膜として二酸化シリコン膜(SiO2)膜2を500nmから1μm程度成膜する。この実施形態においては、SiO2ターゲットを用いたRFマグネトロンスパッタにより、膜厚900nmの二酸化シリコン膜(SiO2)膜2を成膜した。この時の成膜条件は、SiO2ターゲットを用いて、基板温度が200℃、アルゴン(Ar)ガス流量が20sccm、圧力が1.36Paである。Subsequently, as shown in FIG. 1B, a silicon dioxide film (SiO 2 ) film 2 is formed as a silicon-based film on the surface of the curved base material 1 on which a predetermined curved surface is formed by a sputtering method from 500 nm to 1 μm. About a film is formed. In this embodiment, a silicon dioxide film (SiO 2 ) film 2 having a thickness of 900 nm is formed by RF magnetron sputtering using a SiO 2 target. Film formation conditions at this time are as follows: a substrate temperature is 200 ° C., an argon (Ar) gas flow rate is 20 sccm, and a pressure is 1.36 Pa using a SiO 2 target.

そして、図1(c)に示すように、二酸化シリコン膜(SiO2)膜2上にレジストを塗布する。このレジスト塗布は、レジストとして、例えば、東京応化工業株式会社製の商品名「TDUR−P009」を用いて、回転数4000rpmでスピンコート塗布し、膜厚600nmのレジスト膜3を形成した。Then, a resist is applied on the silicon dioxide film (SiO 2 ) film 2 as shown in FIG. The resist coating was performed by spin coating at a rotational speed of 4000 rpm using, for example, a trade name “TDUR-P009” manufactured by Tokyo Ohka Kogyo Co., Ltd. as a resist to form a resist film 3 having a thickness of 600 nm.

続いて、図1(d)に示すように、塗布したレジスト膜3に対して露光、現像を行いレジストパターン30を形成する。この実施形態においては、露光装置として、2光束干渉露光装置(波長λ=266nm)を用い、露光パワー750mJで1回目の露光を行い、基板を90度回転させて露光パワー750mJで多重露光した。そして、東京応化工業株式会社製の商品名「NMD−W」で現像し、250nmピッチで円錐状の突起が多数形成されたレジストパターン30を形成した。   Subsequently, as shown in FIG. 1D, the applied resist film 3 is exposed and developed to form a resist pattern 30. In this embodiment, a two-beam interference exposure apparatus (wavelength λ = 266 nm) was used as an exposure apparatus, the first exposure was performed with an exposure power of 750 mJ, the substrate was rotated 90 degrees, and multiple exposure was performed with an exposure power of 750 mJ. And it developed with the brand name "NMD-W" by Tokyo Ohka Kogyo Co., Ltd., and formed the resist pattern 30 in which many conical protrusions were formed with a pitch of 250 nm.

次に、図1(e)に示すように、上記レジストパターン30をマスクとして反応性イオンエッチング(RIE)により、二酸化シリコン膜(SiO2)膜2をパターニングする。この実施形態では、RIEエッチング装置として、アルバック(ULVAC)株式会社製の商品名「NLD−800」を用いた。エッチングガスとしては、C48とCH22の混合ガスを用い、アンテナ電源を1500W、バイアス電源を400W、二酸化シリコン膜(SiO2)のエッチングレートを12nm/secとして、加工深さが500nmの円錐状の溝21を形成した。Next, as shown in FIG. 1E, the silicon dioxide film (SiO 2 ) film 2 is patterned by reactive ion etching (RIE) using the resist pattern 30 as a mask. In this embodiment, the trade name “NLD-800” manufactured by ULVAC, Inc. was used as the RIE etching apparatus. As the etching gas, a mixed gas of C 4 F 8 and CH 2 F 2 is used, the antenna power source is 1500 W, the bias power source is 400 W, the etching rate of the silicon dioxide film (SiO 2 ) is 12 nm / sec, and the processing depth is A 500 nm conical groove 21 was formed.

その後、図1(f)に示すように、酸素プラズマアッシングでレジストパターン30が形成されたレジスト膜を除去すると、所定の曲面を有して、表面に円錐状の微細且つ緻密な凹凸が設けられた二酸化シリコン膜(SiO2)からなる反射防止構造2aが形成されることになる。Thereafter, as shown in FIG. 1 (f), when the resist film on which the resist pattern 30 is formed is removed by oxygen plasma ashing, the surface has a predetermined curved surface, and conical fine and dense irregularities are provided on the surface. Thus, the antireflection structure 2a made of the silicon dioxide film (SiO 2 ) is formed.

そして、図1(g)に示すように、金型(スタンパ)となる金属層4を二酸化シリコン膜(SiO2)からなる反射防止構造2a上に形成する。金属層4は、まずニッケル(Ni)シード層をスパッタで形成した後、その上に電界メッキでニッケル層を形成し、裏面を研磨して所定の厚さの金型(スタンパ)となる金属層4を形成する。Then, as shown in FIG. 1G, a metal layer 4 to be a mold (stamper) is formed on the antireflection structure 2a made of a silicon dioxide film (SiO 2 ). The metal layer 4 is formed by first forming a nickel (Ni) seed layer by sputtering, forming a nickel layer thereon by electroplating, and polishing the back surface to form a mold (stamper) having a predetermined thickness. 4 is formed.

最後に、図1(h)に示すように、二酸化シリコン膜(SiO2)と金属層4との境界から機械的に金型(スタンパ)4aを剥離させることにより、この実施形態による250nmピッチで円錐状の微細且つ緻密な凹凸が形成された反射防止構造を有する曲面金型4aが得られる。Finally, as shown in FIG. 1 (h), the metal mold (stamper) 4a is mechanically peeled off from the boundary between the silicon dioxide film (SiO 2 ) and the metal layer 4 to obtain a pitch of 250 nm according to this embodiment. A curved mold 4a having an antireflection structure in which conical fine and dense irregularities are formed is obtained.

上記の実施形態おいては、球面、軸対象非球面など複雑な形状であっても所定の曲面形状を有する曲面母材1を超精密マイクロ加工機により容易に形成できる。そして、この曲面母材1の曲面に基づいて、上記(b)から(h)の工程を経ることにより、球面、軸対象非球面など複雑な形状であっても所定の曲面を有し、そして、微細で緻密な凹凸形状からなる反射防止構造を有する曲面金型4aを形成することができる。   In the above-described embodiment, the curved base material 1 having a predetermined curved surface shape can be easily formed by an ultra-precise micro-machining machine even if the shape is a complicated shape such as a spherical surface or an aspherical object. Then, based on the curved surface of the curved base material 1, by passing through the steps (b) to (h), the curved base material 1 has a predetermined curved surface even if it has a complicated shape such as a spherical surface or an aspherical surface for an axis. Thus, it is possible to form the curved mold 4a having an antireflection structure having a fine and dense uneven shape.

次に、この発明の第2実施の形態につき、図2を参照して説明する。図2は、この発明の第2の実施形態にかかる反射防止構造を有する曲面金型の製造を工程別に示す断面図である。尚、第1の実施形態と同一部分には同一符号を付し、重複を避けるために、その詳細な説明は割愛する。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional view showing the production of a curved mold having an antireflection structure according to the second embodiment of the present invention by process. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted to avoid duplication.

図2(a)に示すように、第1の実施形態と同様に、光学ピックアップ用対物レンズ、コリメータレンズなど球面、軸対象非球面など所定の曲面形状を有する曲面母材1を用意する。   As shown in FIG. 2A, similarly to the first embodiment, a curved base material 1 having a predetermined curved surface shape such as a spherical surface such as an objective lens for an optical pickup, a collimator lens, and an aspherical surface for an axis is prepared.

続いて、図2(b)に示すように、曲面母材1の所定の曲面が形成された表面上に、反射防止材料11を設ける。この第2の実施形態においては、反射防止材料11として、スパッタ法により、クロム(Cr)を100nm、その上に酸化クロム(CrO)を100nm成膜する。反射防止材料11としては、上記以外に、Al23、CeO2、LaF3、MgF3、TiO2、TiN、ZnS、ZrO2などの材料を用いることができる。Subsequently, as shown in FIG. 2B, an antireflection material 11 is provided on the surface of the curved base material 1 on which a predetermined curved surface is formed. In the second embodiment, as the antireflection material 11, a chromium (Cr) film having a thickness of 100 nm and a chromium oxide (CrO) film having a thickness of 100 nm are formed by sputtering. In addition to the above, the antireflection material 11 may be made of materials such as Al 2 O 3 , CeO 2 , LaF 3 , MgF 3 , TiO 2 , TiN, ZnS, and ZrO 2 .

その後、図2(c)に示すように、曲面母材1に形成された反射防止材料11上に、スパッタ法により、二酸化シリコン膜(SiO2)膜2を500nmから1μm程度成膜する。この実施形態においては、膜厚900nmの二酸化シリコン膜(SiO2)膜2を成膜した。この二酸化シリコン膜(SiO2)膜2は、第1の実施形態と同様の条件で形成した。Thereafter, as shown in FIG. 2C, a silicon dioxide film (SiO 2 ) film 2 is formed on the antireflection material 11 formed on the curved base material 1 by a sputtering method to a thickness of about 500 nm to 1 μm. In this embodiment, a silicon dioxide film (SiO 2 ) film 2 having a thickness of 900 nm is formed. This silicon dioxide film (SiO 2 ) film 2 was formed under the same conditions as in the first embodiment.

そして、図2(d)に示すように、二酸化シリコン膜(SiO2)膜2上に膜厚600nmのレジスト膜3を形成する。このレジスト膜3も第1の実施形態と同じものを用いた。Then, as shown in FIG. 2D, a resist film 3 having a thickness of 600 nm is formed on the silicon dioxide film (SiO 2 ) film 2. The resist film 3 is also the same as that in the first embodiment.

続いて、図2(e)に示すように、塗布したレジスト膜3に対して、第1の実施形態と同様に、露光、現像を行い250nmピッチで円錐状の突起が多数形成されたレジストパターン30を形成した。   Subsequently, as shown in FIG. 2E, the applied resist film 3 is exposed and developed in the same manner as in the first embodiment, and a resist pattern in which many conical projections are formed at a pitch of 250 nm. 30 was formed.

次に、図2(f)に示すように、上記レジストパターン30をマスクとして、第1の実施形態と同様に、反応性イオンエッチング(RIE)により、二酸化シリコン膜(SiO2)膜2をパターニングする。このパターニングにより加工深さ500nmの円錐状の溝21を形成した。このパターニングも第1の実施形態と同様の条件で行った。Next, as shown in FIG. 2F, the silicon dioxide film (SiO 2 ) film 2 is patterned by reactive ion etching (RIE) as in the first embodiment using the resist pattern 30 as a mask. To do. By this patterning, a conical groove 21 having a processing depth of 500 nm was formed. This patterning was also performed under the same conditions as in the first embodiment.

その後、図2(g)に示すように、酸素プラズマアッシングでレジスト30を除去すると、所定の曲面を有して、表面に円錐状の微細且つ緻密な凹凸が設けられた二酸化シリコン膜(SiO2)からなる反射防止構造2aが形成されることになる。Thereafter, as shown in FIG. 2G, when the resist 30 is removed by oxygen plasma ashing, a silicon dioxide film (SiO 2 ) having a predetermined curved surface and having conical fine and dense irregularities on the surface. ) Is formed.

そして、図2(h)に示すように、金型(スタンパ)となる金属層4を二酸化シリコン膜(SiO2)からなる反射防止構造2a上に形成する。Then, as shown in FIG. 2H, a metal layer 4 to be a mold (stamper) is formed on the antireflection structure 2a made of a silicon dioxide film (SiO 2 ).

最後に、図2(i)に示すように、二酸化シリコン膜(SiO2)と金属層4との境界から機械的に金型(スタンパ)4aを剥離させることにより、この実施形態による250nmピッチで円錐状の凹凸が形成された反射防止構造を有する曲面金型4aが得られる。Finally, as shown in FIG. 2 (i), the mold (stamper) 4a is mechanically peeled off from the boundary between the silicon dioxide film (SiO 2 ) and the metal layer 4 to obtain a pitch of 250 nm according to this embodiment. A curved mold 4a having an antireflection structure in which conical irregularities are formed is obtained.

上記の第2の実施形態おいては、第1の実施形態の効果に加え、反射防止材料11により、レジストのパターニングをより緻密に行えるので、より微細で緻密な凹凸形状からなる反射防止構造を有する曲面金型4aを形成することができる。   In the second embodiment, in addition to the effects of the first embodiment, the resist patterning can be performed more precisely by the antireflection material 11, so that the antireflection structure having a finer and more precise uneven shape can be obtained. It is possible to form the curved mold 4a having the same.

次に、この発明の第3実施の形態につき、図3を参照して説明する。図3は、この発明の第3の実施形態にかかる反射防止構造を有する曲面金型の製造を工程別に示す断面図である。尚、第1、第2の実施形態と同一部分には同一符号を付し、重複を避けるために、その詳細な説明は割愛する。   Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view showing the production of a curved mold having an antireflection structure according to a third embodiment of the present invention by process. In addition, the same code | symbol is attached | subjected to the same part as 1st, 2nd embodiment, and the detailed description is omitted in order to avoid duplication.

図3(a)に示すように、第1の実施形態と同様に、光学ピックアップ用対物レンズ、コリメータレンズなど球面、軸対象非球面など所定の曲面形状を有する曲面母材1を用意する。   As shown in FIG. 3A, similarly to the first embodiment, a curved base material 1 having a predetermined curved shape such as a spherical surface such as an optical pickup objective lens and a collimator lens, and an axial aspheric surface is prepared.

続いて、図3(b)に示すように、曲面母材1の所定の曲面が形成された表面上に、反射防止機能を有する離型材料12を設ける。この第3の実施形態においては、離型材料12として、紫外線対応の反射防止機能を有するレジストを塗布し、ハードべークしたものを用いた。この実施形態では、レジストとして、東京応化工業株式会社製の商品名「SWK−248DTr」を用い、180℃でハードベークした。   Subsequently, as shown in FIG. 3B, a release material 12 having an antireflection function is provided on the surface of the curved base material 1 on which a predetermined curved surface is formed. In the third embodiment, the mold release material 12 is applied with a resist having an antireflection function corresponding to ultraviolet rays and hard-baked. In this embodiment, the product name “SWK-248DTr” manufactured by Tokyo Ohka Kogyo Co., Ltd. was used as the resist and hard-baked at 180 ° C.

その後、図3(c)に示すように、曲面母材1に形成された離型材料12上に、スパッタ法により、二酸化シリコン膜(SiO2)膜2を500nmから1μm程度成膜する。この実施形態においては、膜厚900nmの二酸化シリコン膜(SiO2)膜2を成膜した。この二酸化シリコン膜(SiO2)膜2は、第1の実施形態と同様の条件で形成した。Thereafter, as shown in FIG. 3C, a silicon dioxide film (SiO 2 ) film 2 is formed on the mold release material 12 formed on the curved base material 1 by a sputtering method to a thickness of about 500 nm to 1 μm. In this embodiment, a silicon dioxide film (SiO 2 ) film 2 having a thickness of 900 nm is formed. This silicon dioxide film (SiO 2 ) film 2 was formed under the same conditions as in the first embodiment.

そして、図3(d)に示すように、二酸化シリコン膜(SiO2)膜2上に膜厚600nmのレジスト膜3を形成する。このレジスト膜3も第1の実施形態と同じものを用いた。Then, as shown in FIG. 3D, a resist film 3 having a thickness of 600 nm is formed on the silicon dioxide film (SiO 2 ) film 2. The resist film 3 is also the same as that in the first embodiment.

続いて、図3(e)に示すように、塗布したレジスト膜3に対して、第1の実施形態と同様に、露光、現像を行い250nmピッチで円錐状の突起が多数形成されたレジストパターン30を形成した。   Subsequently, as shown in FIG. 3E, a resist pattern in which a plurality of conical protrusions are formed at a pitch of 250 nm by exposing and developing the applied resist film 3 in the same manner as in the first embodiment. 30 was formed.

次に、図3(f)に示すように、上記レジストパターン30をマスクとして、第1の実施形態と同様に、反応性イオンエッチング(RIE)により、二酸化シリコン膜(SiO)膜2をパターニングする。このパターニングにより加工深さ500nmの円錐状の溝21を形成した。このパターニングも第1の実施形態と同様の条件で行った。Next, as shown in FIG. 3F, using the resist pattern 30 as a mask, the silicon dioxide film (SiO 2 ) film 2 is patterned by reactive ion etching (RIE) as in the first embodiment. To do. By this patterning, a conical groove 21 having a processing depth of 500 nm was formed. This patterning was also performed under the same conditions as in the first embodiment.

その後、図3(g)に示すように、酸素プラズマアッシングでレジスト30を除去すると、所定の曲面を有して、表面に円錐状の微細且つ緻密な凹凸が設けられた二酸化シリコン膜(SiO2)からなる反射防止構造2aが形成されることになる。Thereafter, as shown in FIG. 3G, when the resist 30 is removed by oxygen plasma ashing, a silicon dioxide film (SiO 2 ) having a predetermined curved surface and having conical fine and dense irregularities on the surface. ) Is formed.

そして、図3(h)に示すように、金型(スタンパ)となる金属層4を二酸化シリコン膜(SiO2)からなる反射防止構造2a上に形成する。Then, as shown in FIG. 3H, a metal layer 4 to be a mold (stamper) is formed on the antireflection structure 2a made of a silicon dioxide film (SiO 2 ).

その後、図3(i)に示すように、離型材12と二酸化シリコン膜(SiO2)との境界から機械的に二酸化シリコン膜(SiO2)と一体に金型(スタンパ)4aを剥離させる。Thereafter, as shown in FIG. 3 (i), integrally to separate the mold (stamper) 4a and a releasing member 12 and the silicon dioxide film mechanically silicon dioxide film from the boundary between the (SiO 2) (SiO 2) .

続いて、図3(j)に示すように、酸素プラズマにより、金型(スタンパ)側に付着した離型材用のレジストを除去し、反応性イオンエッチング(RIE)により、二酸化シリコン膜(SiO2)2aのみ除去する。この時のエッチングガスは、CHF3を用いた。このようにして、この実施形態による250nmピッチで円錐状の凹凸が形成された反射防止構造を有する曲面金型4aが得られる。Subsequently, as shown in FIG. 3J, the release material resist adhered to the mold (stamper) side is removed by oxygen plasma, and a silicon dioxide film (SiO 2 ) is formed by reactive ion etching (RIE). ) Remove only 2a. At this time, CHF 3 was used as an etching gas. In this way, the curved surface mold 4a having the antireflection structure in which conical irregularities are formed at a pitch of 250 nm according to this embodiment is obtained.

上記の第3の実施形態おいては、金型(スタンパ)側と母材1側の分離が容易に行える。   In the third embodiment, the mold (stamper) side and the base material 1 side can be easily separated.

ところで、上記した微細な凹凸からなる反射防止機能を形成した金型を用いて樹脂充填により、光学素子を形成するときに、樹脂が高アスペクトの微細パターンに充填されることになる。このため、樹脂と金型を剥離するときの負荷が大きくなる。特に、パターンのない領域とパターン領域の境界において付着力が急激に増すため、スタンパや成型品が破損する虞がある。そこで、この第4の実施形態は、剥離時の負荷を少なくするものである。このため、光学素子の外周から内周に向かって、徐々に光学素子の反射防止機能の凹凸の深さを深くして行き、剥離時の負荷を徐々に増加するようにして、樹脂を充填したときに外周側から剥がれやすくしたものである。以下、この第4の実施形態を図4及び図5に従い説明する。   By the way, when an optical element is formed by resin filling using a mold having an antireflection function composed of the above-described fine irregularities, the resin is filled into a high aspect fine pattern. For this reason, the load when peeling resin and a metal mold | die becomes large. In particular, since the adhesive force increases sharply at the boundary between the patternless region and the pattern region, the stamper and the molded product may be damaged. Therefore, this fourth embodiment reduces the load during peeling. Therefore, from the outer periphery to the inner periphery of the optical element, the depth of the unevenness of the antireflection function of the optical element is gradually increased, and the load at the time of peeling is gradually increased, and the resin is filled. Sometimes it is easy to peel off from the outer peripheral side. Hereinafter, the fourth embodiment will be described with reference to FIGS.

図4は、この発明の第4の実施形態にかかる反射防止構造を有する曲面金型の製造を工程別に示す断面図、図5は、光学素子の外周から内周に向かって、徐々に光学素子の反射防止機能の凹凸の深さを深くするための露光工程を示す平面図である。尚、第1、第2、第3の実施形態と同一部分には同一符号を付し、重複を避けるために、その詳細な説明は割愛する。   FIG. 4 is a cross-sectional view showing the production of a curved mold having an antireflection structure according to a fourth embodiment of the present invention by process, and FIG. 5 gradually shows the optical element from the outer periphery toward the inner periphery. It is a top view which shows the exposure process for deepening the depth of the unevenness | corrugation of this antireflection function. In addition, the same code | symbol is attached | subjected to the same part as 1st, 2nd, 3rd embodiment, and in order to avoid duplication, the detailed description is omitted.

図4(a)に示すように、光学ピックアップ用対物レンズ、コリメータレンズなど球面、軸対象非球面など所定の曲面形状を有する曲面母材1を用意する。   As shown in FIG. 4A, a curved base material 1 having a predetermined curved surface shape such as a spherical surface such as an optical pickup objective lens and a collimator lens, and an axial target aspherical surface is prepared.

続いて、図4(b)に示すように、曲面母材1の所定の曲面が形成された表面上に、RFマグネトロンスパッタにより膜厚900nmの二酸化シリコン膜(SiO2)膜2を成膜した。この二酸化シリコン膜(SiO2)膜2は、第1の実施形態と同様の条件で形成した。Subsequently, as shown in FIG. 4B, a silicon dioxide film (SiO 2 ) film 2 having a thickness of 900 nm is formed on the surface of the curved base material 1 on which a predetermined curved surface is formed by RF magnetron sputtering. . This silicon dioxide film (SiO 2 ) film 2 was formed under the same conditions as in the first embodiment.

そして、図4(c)に示すように、二酸化シリコン膜(SiO2)膜2上にレジストを塗布する。このレジスト塗布は、レジストとして、例えば、住友化学工業株式会社製の商品名「NEB22」の電子線用ネガ型レジストを用いて、回転数3000rpmでスピンコート塗布し、膜厚600nmのレジスト膜3aを形成した。Then, as shown in FIG. 4C, a resist is applied on the silicon dioxide film (SiO 2 ) film 2. For example, a resist coating 3a having a film thickness of 600 nm is formed by spin coating at a rotation speed of 3000 rpm using a negative resist for electron beam having a trade name “NEB22” manufactured by Sumitomo Chemical Co., Ltd. as a resist. Formed.

続いて、図4(d)、図5に示すように、塗布したレジスト膜3aに対してEB描画装置を用いて照射する。照射は外周に行くほど照射エネルギーを高くした。例えば、図5に示すように、100μm角で照射して描画するが、有効領域30aは、10μC/cm2のエネルギーで照射し、その外側にあたる領域30b1は、12μC/cm2のエネルギーで照射し、その外側にあたる領域30b2は、14μC/cm2のエネルギーで照射し、最外周にあたる領域30b3は16μC/cm2のエネルギーで照射した。そして、EB描画後、110℃のホットプレートで2分露光後ベーク(PEB)した後、シブレイ・ファーイースト株式会社製の現像液型番「MF CD−26」で2分間現像した。その結果、有効領域30a部分は250nmピッチで円錐状の突起が多数形成され、その外側に行くほど突起が太くなる領域30bのレジストパターン31を形成した。このレジストパターン31は、有効領域から外側に行くほど凹凸パターンの体積比率が変化したマスクとなる。Subsequently, as shown in FIGS. 4D and 5, the applied resist film 3a is irradiated using an EB drawing apparatus. Irradiation increased the irradiation energy toward the outer periphery. For example, as shown in FIG. 5, to draw irradiated with 100μm square, the effective area 30a is irradiated at an energy of 10 [mu] C / cm 2, an outer region corresponding 30b1 thereof is irradiated with energy of 12μC / cm 2 The outer region 30b2 was irradiated with an energy of 14 μC / cm 2 , and the outermost region 30b3 was irradiated with an energy of 16 μC / cm 2 . Then, after EB drawing, after a 2-minute exposure bake (PEB) on a hot plate at 110 ° C., development was performed for 2 minutes with a developer model “MF CD-26” manufactured by Shibley Far East Co., Ltd. As a result, a large number of conical protrusions were formed at a pitch of 250 nm in the effective area 30a, and the resist pattern 31 of the area 30b where the protrusions became thicker toward the outside was formed. The resist pattern 31 becomes a mask in which the volume ratio of the concavo-convex pattern changes from the effective region to the outside.

次に、図4(e)に示すように、上記レジストパターン31をマスクとして反応性イオンエッチング(RIE)により、二酸化シリコン膜(SiO2)膜2をパターニングする。この実施形態では、RIEエッチング装置として、アルバック(ULVAC)株式会社製の商品名「NLD−800」を用い、エッチングガスとして、CとCHの混合ガスを用い、アンテナ電源を1500W、バイアス電源を400W、二酸化シリコン膜(SiO2)のエッチングレートを12nm/secとして、有効領域に加工深さが500nmの溝21が形成されるようにエッチングした。この結果、有効領域30aの外側に位置する領域は、外周から内周に向かって、徐々に反射防止機能の溝の深さが深くなるパターンが形成された。Next, as shown in FIG. 4E, the silicon dioxide film (SiO 2 ) film 2 is patterned by reactive ion etching (RIE) using the resist pattern 31 as a mask. In this embodiment, the product name “NLD-800” manufactured by ULVAC, Inc. is used as the RIE etching apparatus, the mixed gas of C 4 F 8 and CH 2 F 2 is used as the etching gas, and the antenna power supply is used. Etching was performed so that a groove 21 having a processing depth of 500 nm was formed in the effective region at 1500 W, a bias power source of 400 W, and an etching rate of the silicon dioxide film (SiO 2 ) of 12 nm / sec. As a result, in the region located outside the effective region 30a, a pattern was formed in which the depth of the antireflection function groove gradually increased from the outer periphery toward the inner periphery.

その後、図4(f)に示すように、酸素プラズマアッシングでレジスト30を除去すると、所定の曲面を有して、有効領域30aの外側に位置する領域は、外周から内周に向かって、徐々に反射防止機能の深さが深くなり、有効領域30aは所定の微細で且つ緻密な凹凸形状の二酸化シリコン膜(SiO2)からなる反射防止構造2bが形成されることになる。Thereafter, as shown in FIG. 4 (f), when the resist 30 is removed by oxygen plasma ashing, a region having a predetermined curved surface and located outside the effective region 30a gradually increases from the outer periphery toward the inner periphery. Accordingly, the depth of the antireflection function is deepened, and the antireflection structure 2b made of a predetermined fine and dense silicon dioxide film (SiO 2 ) is formed in the effective region 30a.

そして、図4(g)に示すように、金型(スタンパ)となる金属層4を二酸化シリコン膜(SiO2)からなる反射防止構造2bに形成する。金属層4は、まずニッケル(Ni)シード層をスパッタで形成した後、その上に電界メッキでニッケル層を形成し、裏面を研磨して所定の厚さの金型(スタンパ)となる金属層4を形成する。Then, as shown in FIG. 4G, a metal layer 4 to be a mold (stamper) is formed on the antireflection structure 2b made of a silicon dioxide film (SiO 2 ). The metal layer 4 is formed by first forming a nickel (Ni) seed layer by sputtering, forming a nickel layer thereon by electroplating, and polishing the back surface to form a mold (stamper) having a predetermined thickness. 4 is formed.

最後に、図4(f)に示すように、二酸化シリコン膜(SiO2)と金属層4との境界から機械的に金型(スタンパ)4aを剥離させることにより、この実施形態による有効領域30aの外側に位置する領域は、外周から内周に向かって、徐々に反射防止機能の溝の深さが深くなり、有効領域30aでは250nmピッチで円錐状の凹凸が形成された反射防止構造を有する曲面金型4bが得られる。Finally, as shown in FIG. 4 (f), the effective area 30a according to this embodiment is removed by mechanically peeling the mold (stamper) 4a from the boundary between the silicon dioxide film (SiO 2 ) and the metal layer 4. The region located outside the region has an antireflection structure in which the groove of the antireflection function gradually increases in depth from the outer periphery toward the inner periphery, and the effective region 30a has an antireflection structure in which conical irregularities are formed at a pitch of 250 nm. A curved mold 4b is obtained.

このように、有効領域30aの外側に位置する領域は、外周から内周に向かって、徐々に反射防止機能の深さが深くなり、有効領域30aでは所定のピッチで円錐状の凹凸が形成された反射防止構造を有する曲面金型4b用いることで、樹脂を充填したときに外周側から剥がれやすくなり、スタンパや成型品が破損する虞がなくなる。   As described above, in the region located outside the effective region 30a, the depth of the antireflection function gradually increases from the outer periphery toward the inner periphery, and conical irregularities are formed at a predetermined pitch in the effective region 30a. By using the curved metal mold 4b having the antireflection structure, it is easy to peel off from the outer peripheral side when the resin is filled, and there is no possibility that the stamper or the molded product is damaged.

図1に示す全て同じ深さの反射防止構造が形成された金型を用いて成型品を作成する。また、図4に示す金型を用いて成型品を作成する。この図1の金型を用いた際と図4の金型を用いた際の付着力を比較する。この結果、図6に示すように、この発明によれば、外周部分から外周に向かう領域11bでの付着力が小さくなる。この結果、この発明の第4の実施例によれば、樹脂を充填したときに外周側から剥がれやすくなり、スタンパや成型品が破損する虞がなくなる。   A molded product is created using a mold in which all of the antireflection structures having the same depth shown in FIG. 1 are formed. Moreover, a molded product is created using the mold shown in FIG. The adhesion force when the mold of FIG. 1 is used and when the mold of FIG. 4 is used will be compared. As a result, as shown in FIG. 6, according to the present invention, the adhesion force in the region 11b from the outer peripheral portion toward the outer periphery is reduced. As a result, according to the fourth embodiment of the present invention, when the resin is filled, it is easy to peel off from the outer peripheral side, and there is no possibility that the stamper or the molded product is damaged.

この第4の実施形態の構造は、上記した第2、第3の実施形態に適用しても同様の効果が得られる。   Even if the structure of the fourth embodiment is applied to the second and third embodiments, the same effect can be obtained.

また、上記した実施形態では、シリコン系膜として二酸化シリコン膜(SiO2)膜を用いているが、シリコン(Si)膜、シリコン(SiN)窒化膜などを用いることもできる。さらに、有機シラン等を用いてスピンコートにより形成したSOG膜をシリコン系膜として用いることもできる。In the above-described embodiment, a silicon dioxide film (SiO 2 ) film is used as the silicon-based film, but a silicon (Si) film, a silicon (SiN) nitride film, or the like can also be used. Further, an SOG film formed by spin coating using organosilane or the like can be used as a silicon-based film.

次に、上記したこの発明にかかる金型を用いて光学素子を製造する場合につき、図7を参照して説明する。図7は、この発明かかる光学素子の製造方法に用いられる成形型の形状及び構造を示す側方断面図である。この成形型は、固定型60と可動型70とを備る。固定型60に対して可動型70を突き合わせて、両型60、70間にキャビティ80が形成され、その周囲の一部には、キャビティ80に連なるゲート81が形成される。このキャビティ80には、ゲート81を介して溶融プラスチック樹脂が供給され、内部に樹脂が充填される。   Next, a case where an optical element is manufactured using the above-described mold according to the present invention will be described with reference to FIG. FIG. 7 is a side sectional view showing the shape and structure of a mold used in the method of manufacturing an optical element according to the present invention. This mold includes a fixed mold 60 and a movable mold 70. A movable mold 70 is abutted against the fixed mold 60 to form a cavity 80 between the two molds 60, 70, and a gate 81 connected to the cavity 80 is formed around a part of the cavity 80. Molten plastic resin is supplied to the cavity 80 through the gate 81, and the inside is filled with the resin.

固定型60は、中央部の第1部材61と周辺側の第2部材62とからなり、両部材61、62は、鋼材で形成されており、相互に一体的に固定されている。第1部材61には、可動型70に対向する滑らかな凹面の成型面61aが形成され、第2部材61には、成型面61aの周囲に配置される環状溝の成型面61bが形成されている。第1部材61の成型面61aは、成型品であるレンズ(図示せず)の一方のレンズ面に対応し、第2部材62の成型面62aは、レンズの周囲に設けたフランジに対応する。   The fixed mold 60 includes a first member 61 at the center and a second member 62 on the peripheral side. Both the members 61 and 62 are made of steel and are integrally fixed to each other. The first member 61 is formed with a smooth concave molding surface 61a facing the movable mold 70, and the second member 61 is formed with a molding surface 61b of an annular groove disposed around the molding surface 61a. Yes. The molding surface 61a of the first member 61 corresponds to one lens surface of a lens (not shown) that is a molded product, and the molding surface 62a of the second member 62 corresponds to a flange provided around the lens.

可動型70は、中央側の型部材である突き出し部71と、この突き出し部71を周囲から支持する本体部72とからなる。突き出し部71の先端には、上記したこの発明の第1乃至4の実施形態のいずれかによる方法により製造された金型(スタンパ)4aが取り付けられている。金型4aは、レンズの他方のレンズ面に対応した凹面に形成され、その凹面表面には、微細で且つ緻密な凹凸面からなる反射防止構造40aが形成されている。本体部72によって形成される周囲の成型面72aは、周囲のフランジに対応する。   The movable mold 70 includes a protruding portion 71 that is a mold member on the center side, and a main body portion 72 that supports the protruding portion 71 from the periphery. A die (stamper) 4a manufactured by the method according to any one of the first to fourth embodiments of the present invention described above is attached to the tip of the protruding portion 71. The mold 4a is formed in a concave surface corresponding to the other lens surface of the lens, and an antireflection structure 40a formed of a fine and dense uneven surface is formed on the concave surface. A peripheral molding surface 72a formed by the main body 72 corresponds to a peripheral flange.

突き出し部71は、本体部72に設けられた孔72b中に嵌め合わされた状態で軸(X)方向に摺動可能に取り付けられている。両型60、70を離間させる型開き後において、この突き出し部71を本体部72に対して固定型60側に移動させることにより、可動型70側に残るレンズを離型させる。   The protruding portion 71 is attached so as to be slidable in the axial (X) direction in a state of being fitted into a hole 72 b provided in the main body portion 72. After the mold opening for separating the two molds 60 and 70, the protrusion 71 is moved toward the fixed mold 60 with respect to the main body 72, thereby releasing the lens remaining on the movable mold 70 side.

次に、図7に示す成形型を用いたレンズの成形について簡単に説明する。まず、可動型70を固定型60に接合することによって型閉じを行う。この際、固定型60と可動型70は、図示を省略した嵌合ピン等のアライメント機構を利用して互いに位置合わせされた状態で固定される。このような型閉じによって、固定型60の成形面61a、61bと可動型70の成形面40a、72aとを閉じ合わせた形状のキャビティ80が両型60、70間に形成される。   Next, molding of a lens using the mold shown in FIG. 7 will be briefly described. First, the mold is closed by joining the movable mold 70 to the fixed mold 60. At this time, the fixed mold 60 and the movable mold 70 are fixed in a state of being aligned with each other using an alignment mechanism such as a fitting pin (not shown). By such mold closing, a cavity 80 having a shape in which the molding surfaces 61 a and 61 b of the fixed mold 60 and the molding surfaces 40 a and 72 a of the movable mold 70 are closed is formed between both the molds 60 and 70.

次に、両型60、70間に形成されたキャビティ80中に溶融プラスチック樹脂を射出する。溶融プラスチック樹脂は、ゲート81を介して両型60、70間のキャビティ80中に導入され、キャビティ80が溶融プラスチック樹脂で充填される。   Next, molten plastic resin is injected into the cavity 80 formed between the two molds 60 and 70. The molten plastic resin is introduced into the cavity 80 between the two molds 60 and 70 through the gate 81, and the cavity 80 is filled with the molten plastic resin.

続いて、キャビティ80中に充填された溶融プラスチック樹脂を放熱・冷却する。キャビティ80中に射出された溶融プラスチック樹脂の温度は、通常200〜300℃であり、通常100〜180℃に保持された両型60、70の成形面40a、72a、61a、61bに接すると、溶融プラスチック樹脂が冷却されて硬化する。この際、突き出し部71の成形面40aに形成された微細凹凸パターンに溶融プラスチック樹脂がほぼ完全に入り込む。   Subsequently, the molten plastic resin filled in the cavity 80 is radiated and cooled. The temperature of the molten plastic resin injected into the cavity 80 is normally 200 to 300 ° C., and is in contact with the molding surfaces 40 a, 72 a, 61 a and 61 b of both molds 60 and 70 which are normally held at 100 to 180 ° C. The molten plastic resin is cooled and cured. At this time, the molten plastic resin almost completely enters the fine uneven pattern formed on the molding surface 40 a of the protruding portion 71.

次に、キャビティ80中に充填された溶融プラスチック樹脂が完全に硬化するまで待つ。これにより、キャビティ80の形状に対応するレンズが得られる。このレンズの一方の面は、成形面61aに対応して滑らかな凸面となっており、レンズの他方の面は、成形面40aに対応して反射防止構造を有する凸面となっている。また、レンズの周囲には、成形面61b、72aに対応してフランジが形成されている。   Next, it waits until the molten plastic resin filled in the cavity 80 is completely cured. Thereby, a lens corresponding to the shape of the cavity 80 is obtained. One surface of the lens is a smooth convex surface corresponding to the molding surface 61a, and the other surface of the lens is a convex surface having an antireflection structure corresponding to the molding surface 40a. A flange is formed around the lens corresponding to the molding surfaces 61b and 72a.

その後、可動型70を固定型60から離間させる型開きを行う。この結果、成形品は、可動型70側に残り、固定型60から離型した状態となる。   Thereafter, mold opening for separating the movable mold 70 from the fixed mold 60 is performed. As a result, the molded product remains on the movable mold 70 side and is released from the fixed mold 60.

そして、図示しない駆動装置を用いて、突き出し部71を、本体部72に収納された状態から固定型60側に駆動する。これにより、レンズを可動型71から完全に離型すなわち分離させることができる。   And the protrusion part 71 is driven to the stationary mold | type 60 side from the state accommodated in the main-body part 72 using the drive device which is not shown in figure. Thus, the lens can be completely released from the movable mold 71, that is, separated.

このようにして得たレンズは、光ピックアップ装置になど適用することができる。なお、上記した実施形態では、可動金型70に微細凹凸パターンを有する金型を取り付けているが固定金型60側に取り付けたり、可動金型70と固定金型60の双方に取り付けたり、製造する光学素子の設計に応じて適宜この発明による金型を可動金型70と固定金型60に用いればよい。   The lens thus obtained can be applied to an optical pickup device. In the embodiment described above, a mold having a fine concavo-convex pattern is attached to the movable mold 70, but it is attached to the fixed mold 60 side, attached to both the movable mold 70 and the fixed mold 60, or manufactured. The mold according to the present invention may be used as the movable mold 70 and the fixed mold 60 as appropriate according to the design of the optical element to be performed.

なお、上記した実施形態においては、微細で且つ緻密な凹凸形状の例として、反射防止構造を挙げているが、微細で且つ緻密な凹凸形状であれば他の機能の光学素子パターンの構造を製造する場合にも本発明は適用できる。例えば、位相差板を構成する微細パターンや回折格子を構成する微細パターンなどを製造する場合にも適用できる。   In the above-described embodiment, an antireflection structure is given as an example of a fine and dense concavo-convex shape. However, if the concavo-convex shape is fine and dense, an optical element pattern structure having other functions is manufactured. In this case, the present invention can be applied. For example, the present invention can be applied to manufacturing a fine pattern constituting a retardation plate, a fine pattern constituting a diffraction grating, and the like.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include meanings equivalent to the scope of claims for patent and all modifications within the scope.

この発明は、光ピックアップ用回折格子、光ピックアップ用位相差板、光ピックアップ用レンズ、携帯電話用ディスプレイカバーなどを製造する方法に適用でき、これら部材の表面に反射防止構造を設ける場合に利用できる。   The present invention can be applied to a method of manufacturing a diffraction grating for an optical pickup, a retardation plate for an optical pickup, an optical pickup lens, a display cover for a mobile phone, and the like, and can be used when an antireflection structure is provided on the surface of these members. .

Claims (3)

所定形状に形成された曲面母材上にシリコン系膜を形成し、このシリコン系膜にマスクを用いて所定形状の微細な凹凸構造のパターンをエッチングを施して形成し、この微細な凹凸構造のパターンが形成されたシリコン系膜上に金型用金属を被着させ、この金型用金属に微細な凹凸構造のパターンを転写した後シリコン系膜を取り除き、曲面に微細凹凸構造を有する金型を形成する微細凹凸構造を有する曲面金型の製造方法において、
前記マスクはフォトレジストからなり、前記曲面母材上とシリコン系膜との間に反射防止膜を形成することを特徴とする微細凹凸構造を有する曲面金型の製造方法。
A silicon-based film is formed on a curved base material formed in a predetermined shape, and a pattern of a fine concavo-convex structure of a predetermined shape is formed by etching the silicon-based film using a mask. A metal mold is deposited on a silicon-based film on which a pattern is formed, a pattern with a fine concavo-convex structure is transferred to the metal for the mold, the silicon-based film is removed, and a mold having a fine concavo-convex structure on a curved surface In the method of manufacturing a curved mold having a fine relief structure,
The method of manufacturing a curved mold having a fine concavo-convex structure, wherein the mask is made of a photoresist, and an antireflection film is formed between the curved base material and a silicon-based film .
前記曲面母材上とシリコン系膜との間に離型材膜を形成することを特徴とする請求項1に記載の微細凹凸構造を有する曲面金型の製造方法。  2. The method for producing a curved mold having a fine concavo-convex structure according to claim 1, wherein a release material film is formed between the curved base material and the silicon-based film. 所定形状に形成された曲面母材上にシリコン系膜を形成し、このシリコン系膜上に有効領域部分は所定形状の微細な凹凸からなるパターンを有し、その外側に行くほど凹凸パターンの体積比率が変化したマスクを設け、このマスクを用いて前記シリコン系膜に外周から内周に向かって、徐々に微細な凹凸の深さが深くなり、有効領域で所定の深さ、形状の凹凸が形成された微細なパターンをエッチングを施して形成し、この凹凸パターンが形成された基板上に金型用金属を被着させ、この金型用金属に凹凸パターンを転写した後、前記基板と金型用金属を分離して金型を形成することを特徴とする微細凹凸構造を有する金型の製造方法。  A silicon-based film is formed on a curved base material formed in a predetermined shape, and the effective area portion has a pattern of fine irregularities of a predetermined shape on the silicon-based film, and the volume of the irregular pattern increases toward the outside. A mask having a changed ratio is provided, and using this mask, the depth of fine unevenness gradually increases from the outer periphery to the inner periphery, and the unevenness of a predetermined depth and shape is increased in the effective region. The formed fine pattern is formed by etching, a metal for a mold is deposited on the substrate on which the concave / convex pattern is formed, and after the concave / convex pattern is transferred to the metal for the mold, the substrate and the metal A method for producing a mold having a fine concavo-convex structure, wherein a mold is formed by separating a mold metal.
JP2006511450A 2004-03-25 2005-03-18 Method for producing curved mold having fine concavo-convex structure and method for producing optical element using this mold Expired - Fee Related JP4404898B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004089859 2004-03-25
JP2004089859 2004-03-25
PCT/JP2005/005012 WO2005092588A1 (en) 2004-03-25 2005-03-18 Production method of curved-surface metal mold having fine uneven structure and production method of optical element using this metal mold

Publications (2)

Publication Number Publication Date
JPWO2005092588A1 JPWO2005092588A1 (en) 2008-02-07
JP4404898B2 true JP4404898B2 (en) 2010-01-27

Family

ID=35056056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006511450A Expired - Fee Related JP4404898B2 (en) 2004-03-25 2005-03-18 Method for producing curved mold having fine concavo-convex structure and method for producing optical element using this mold

Country Status (4)

Country Link
US (1) US20070144700A1 (en)
JP (1) JP4404898B2 (en)
CN (1) CN1956829A (en)
WO (1) WO2005092588A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833569B2 (en) * 2005-03-24 2011-12-07 パナソニック株式会社 Optical lens having antireflection structure
JP4539657B2 (en) * 2007-01-18 2010-09-08 ソニー株式会社 Anti-reflection optical element
JP2009000834A (en) * 2007-06-19 2009-01-08 Fujitsu Component Ltd Decorative casing and its manufacturing method
FI121061B (en) * 2007-07-04 2010-06-30 Reate Oy Method and apparatus for manufacturing an optical object
JP4945460B2 (en) * 2008-01-04 2012-06-06 株式会社東芝 Method for forming antireflection structure and antireflection structure
GB2465607A (en) * 2008-11-25 2010-05-26 St Microelectronics CMOS imager structures
JP4596072B2 (en) * 2008-12-26 2010-12-08 ソニー株式会社 Manufacturing method of fine processed body and etching apparatus
JP2010152411A (en) * 2010-04-05 2010-07-08 Sony Corp Optical element and its manufacturing method, and replicate substrate for manufacturing optical element and its manufacturing method
CN101949518A (en) * 2010-09-29 2011-01-19 上海铭源光源发展有限公司 Manufacturing method for fly lens structure
JP5352010B2 (en) * 2011-02-22 2013-11-27 パナソニック株式会社 Optical member
WO2013118488A1 (en) * 2012-02-06 2013-08-15 パナソニック株式会社 Optical element, imaging device provided with same, and method for producing optical element
WO2015016685A1 (en) 2013-08-01 2015-02-05 주식회사 엘지화학 Oriented film for liquid crystal lens, and mould for forming same
KR102260184B1 (en) * 2014-02-26 2021-06-04 삼성디스플레이 주식회사 Cover window and display device having the same
EP3178632A1 (en) * 2014-08-04 2017-06-14 JX Nippon Oil & Energy Corporation Method for manufacturing member having irregular pattern
CN110612184A (en) * 2017-05-08 2019-12-24 Ykk株式会社 Plastic molded article
CN113106403B (en) * 2020-01-09 2023-02-28 昆山微电子技术研究院 Coating method for inner curved surface of optical device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2531472B2 (en) * 1992-08-07 1996-09-04 株式会社ニコン Method for manufacturing plastic molding mold
US5390412A (en) * 1993-04-08 1995-02-21 Gregoire; George D. Method for making printed circuit boards
US20030080471A1 (en) * 2001-10-29 2003-05-01 Chou Stephen Y. Lithographic method for molding pattern with nanoscale features
JP4183101B2 (en) * 1996-03-26 2008-11-19 株式会社エンプラス Mold fine processing method, mold and molded product
JP2000057638A (en) * 1998-08-04 2000-02-25 Matsushita Electric Ind Co Ltd Exposure method, exposure device and manufacture of metallic mold
US6969472B2 (en) * 2001-04-19 2005-11-29 Lsi Logic Corporation Method of fabricating sub-micron hemispherical and hemicylidrical structures from non-spherically shaped templates
AU2002349665A1 (en) * 2001-11-30 2003-06-10 Tdk Corporation Information medium master manufacturing method, information medium stamper manufacturing method, information medium master manufacturing apparatus, and information medium stamper manufacturing apparatus
JP4270806B2 (en) * 2002-05-24 2009-06-03 大日本印刷株式会社 Method for producing antireflection article by sol-gel method
JP2004012856A (en) * 2002-06-07 2004-01-15 Nippon Sheet Glass Co Ltd Optical element, mold for optical element, and method for manufacturing optical element
JP4218372B2 (en) * 2003-03-06 2009-02-04 コニカミノルタオプト株式会社 Manufacturing method of mold for optical element
WO2004101248A1 (en) * 2003-05-13 2004-11-25 Kuraray Co., Ltd. Resin forming mold and production method for the resin forming mold

Also Published As

Publication number Publication date
CN1956829A (en) 2007-05-02
US20070144700A1 (en) 2007-06-28
JPWO2005092588A1 (en) 2008-02-07
WO2005092588A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4404898B2 (en) Method for producing curved mold having fine concavo-convex structure and method for producing optical element using this mold
JP5024047B2 (en) Manufacturing method of microstructure
US6304384B1 (en) Optical substrate, a manufacturing method therefor, and a display device using the same
US20050162733A1 (en) Method of fabricating diffractive lens array and UV dispenser used therein
JP2006519711A (en) Structured device manufacturing
JP2008074043A (en) Mold for fine molding and its regeneration method
US20070194472A1 (en) Process of fabricating microlens mold
US20030112515A1 (en) Diffractive optical element and method for producing the same
JPH1158401A (en) Manufacture of mold for producing resin plate and production of resin plate
JP4714627B2 (en) Method for producing structure having fine uneven structure on surface
JP2006235195A (en) Method for manufacturing member with antireflective structure
JP2006261265A (en) Phase shifter optical element, manufacturing method thereof, and element obtained with the same method
JP2006251318A (en) Manufacturing method of member having antireflective structure
JPH07174902A (en) Microlens array and its production
JP2005017408A (en) Polarizing optical element and manufacturing method thereof
JP2006243633A (en) Manufacturing method of member having antireflection structure body
JPH11160510A (en) Manufacture of multistage staircase-like element and manufacture of mold for manufacturing the element
JP2005283814A (en) Optical element after being subjected antireflection processing and metal mold therefof, and method for manufacturing the metal mold
JPH1130711A (en) Diffraction optical element and its manufacture, and optical equipment
JP4820871B2 (en) Antireflection structure and manufacturing method thereof
JP5671843B2 (en) Tray for dry etching, dry etching method using the same, method for producing tray, and method for producing mold
JP4108722B2 (en) Optical element and optical element manufacturing method
US20060073273A1 (en) Method for manufacturing optical elements
JP4814938B2 (en) Antireflection structure and manufacturing method thereof
JP2012009776A (en) Method of manufacturing substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees