JP4404320B1 - Slope topsoil displacement calculation method and disaster prevention information system - Google Patents

Slope topsoil displacement calculation method and disaster prevention information system Download PDF

Info

Publication number
JP4404320B1
JP4404320B1 JP2008284245A JP2008284245A JP4404320B1 JP 4404320 B1 JP4404320 B1 JP 4404320B1 JP 2008284245 A JP2008284245 A JP 2008284245A JP 2008284245 A JP2008284245 A JP 2008284245A JP 4404320 B1 JP4404320 B1 JP 4404320B1
Authority
JP
Japan
Prior art keywords
slope
topsoil
rainfall
coefficient
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008284245A
Other languages
Japanese (ja)
Other versions
JP2010112035A (en
Inventor
秋山健一郎
Original Assignee
有限会社秋山調査設計
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社秋山調査設計 filed Critical 有限会社秋山調査設計
Priority to JP2008284245A priority Critical patent/JP4404320B1/en
Application granted granted Critical
Publication of JP4404320B1 publication Critical patent/JP4404320B1/en
Publication of JP2010112035A publication Critical patent/JP2010112035A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Alarm Systems (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

【課題】自宅裏の斜面崩壊予知を一般住民がインターネットを通じて行えるようにする。
【解決手段】
斜面の勾配をθとすると、
K={(断面形状係数α×tanθ)×(緩み層厚D×緩み係数δ×X+平面形状係数β×雨量P×Y)−(樹種係数λ×樹齢係数μ+土塊の摩擦係数τ)}・・・式1で表
せる係数モデルを用いて地質構造係数Xと水文係数Yを、過去2回の降雨履歴を基に、表土変位量算出モデルを作成し、将来の雨量に対する斜面の不安定度Kを二乗して表土変位量ε求める手段をインターネットで提供し、一般住民が雨量情報に対する自宅裏の斜面の表土変位量ε推定することを可能にする。
【選択図】図1
[PROBLEMS] To enable general residents to predict slope collapse behind their homes via the Internet.
[Solution]
If the slope of the slope is θ,
K = {(cross-sectional shape factor α × tan θ) × (relaxation layer thickness D × relaxation factor δ × X + planar shape factor β × rainfall P × Y) − (tree species coefficient λ × age age coefficient μ + clump friction coefficient τ)}.・ ・ Using the coefficient model that can be expressed by Equation 1, based on the geological structure coefficient X and hydrological coefficient Y, based on the past two rainfall histories, a topsoil displacement calculation model was created, and the slope instability K relative to future rainfall Is provided on the Internet to allow the general inhabitants to estimate the topsoil displacement amount ε of the slope on the back of the house with respect to rainfall information.
[Selection] Figure 1

Description

本発明は、膨大な数の一般斜面における急傾斜危険箇所の斜面監視をソフト的に行う斜面の表土変位量算出方法及び防災情報システムに関する。 The present invention relates to a slope topsoil displacement calculation method and a disaster prevention information system for performing software monitoring of a steep slope danger point on a huge number of general slopes.

我が国の急傾斜危険箇所は50万を数え、その対策として、これまで高額な防止工事を多くの箇所で実施してきた。しかし危険個所数は膨大であり、安全策とは言え、際限なく工事を行う現在の対策手法は費用対効果が極めて悪く、少子高齢化が進む今日、財政難により現在の対策手法を継続することは極めて難しいため、今後はソフト的な対応を余儀なくされよう。従い、その受け皿となるソフトによる防災関連技術の開発が急務である。 There are 500,000 steep slope danger points in Japan, and as a countermeasure, expensive prevention work has been carried out in many places. However, the number of dangerous places is enormous, and even though it is a safety measure, the current countermeasure method for endless construction is extremely cost-effective. Is extremely difficult, so we will have to deal with software in the future. Therefore, there is an urgent need to develop disaster prevention technology using software that serves as the receiver.

これまでの技術全般を見ると、斜面の評価を行う上で斜面の安定性の検討は不可欠であり、その検討方法として土質力学的な手法による、式2で表される非特許文献1による静的な検討である分割法が唯一の手段であった。
Σ{c×L+(W×cosα−u×L)×tanφ}/ΣW×sinα=F・・式2
本式は、評価対象斜面の粘着力c×Lと(W×cosα−u)×内部摩擦角φを足したところの全すべり抵抗力をW×sinαの全すべり力で割って求めた安全率Fを算出する力学モデルである。本力学モデルは地質調査により、すべり面位置や地下水位などの情報が判明した地すべり地における検討で一般に使用されるが、諸条件が不明な一般斜面において標記手法は適応できない。
Looking at the overall technology so far, it is indispensable to examine the stability of the slope in order to evaluate the slope. As the examination method, the static method according to Non-Patent Document 1 expressed by Equation 2 is used. The only method was the split method, which is a fundamental study.
Σ {c × L + (W × cos α−u × L) × tan φ} / ΣW × sin α = F ·· Formula 2
This formula is the safety factor obtained by dividing the total slip resistance obtained by adding the adhesive force c × L and (W × cosα−u) × internal friction angle φ of the slope to be evaluated by the total slip force of W × sinα. It is a dynamic model for calculating F. Although this dynamic model is generally used in studies on landslides where information such as the slip surface position and groundwater level has been revealed by geological surveys, the marking method cannot be applied to general slopes where the conditions are unknown.

前記問題を解決する方法として、分割法の一般斜面への適応方法の研究がこれまで行われてきたが、この不確定要素の算定方法は未だに見つからない。また防災カルテなどによる斜面の危険度を点数で表す方法もあるが、おおむね危険度のランク分けが行われるものの、では次回にどの斜面が崩れるかを当てることはできない。またハザードマップも用意されてはいるが、危険斜面を表示したもので、直接の避難情報とはならない。 As a method for solving the above problem, researches have been made on how to apply the division method to general slopes. However, a method for calculating this uncertain factor has not yet been found. In addition, there is a method of expressing the risk of slopes due to disaster prevention charts by points, but it is not possible to guess which slope will collapse next time, although the risk ranking is generally performed. A hazard map is also provided, but it displays dangerous slopes and does not provide direct evacuation information.

不確定要素の問題を統計的な手法で解消しようとする方法が特許文献1に記載されている。本方法はさまざまな土質常数を仮定して、コンピュータで降雨による浸透流解析を行い、土の強度の粘着力cと内部摩擦角φにばらつきを与えて、予測雨量に基づいて破壊確率の時間変化率を算出して、危険度を求めている。本方法の基本式も同じ式2の分割法であり、浸透流解析により地下水位の変化を求めて動的な解析に適用しようとしている。しかし動的な変化は、式2の構成要素自体への影響があり、たとえば、時間的な土塊の緩みや亀裂の形成過程で、透水係数自体が大きく変化し、すべり面の強度自体も変化するために、このような動的な変化が予測精度に与える影響が不明である。 Patent Document 1 discloses a method for solving the problem of uncertain factors by a statistical method. Assuming various soil constants, this method uses a computer to analyze the seepage flow due to rainfall, and gives variation in soil adhesive strength c and internal friction angle φ. The rate is calculated to determine the degree of risk. The basic equation of this method is also the same division method of Equation 2, and the change of groundwater level is obtained by osmotic flow analysis and applied to dynamic analysis. However, the dynamic change has an influence on the component itself of Formula 2, for example, the permeability coefficient itself changes greatly in the process of temporal loosening of the mass and formation of cracks, and the strength of the slip surface itself also changes. Therefore, the effect of such dynamic changes on the prediction accuracy is unknown.

斜面の安定性評価の代わりに情報通信システムの高度化で補って土砂災害の軽減を計ろうとする技術が特許文献2に記載されている。本手法は土砂災害が予想される状況において、住民情報を含む関連情報を一元的に管理して、これらの情報を行政機関及び住民が共有することで、迅速に避難ができるような体制作りを目指している。しかし本方法の問題は緊急時に重要な情報と不必要な情報が混在するので、当事者にとっての情報の重要度を判別する方法が確立されないかぎり信頼できる防災システムとは言えない。 Japanese Patent Application Laid-Open No. 2004-228561 describes a technique for compensating for landslide disasters by compensating for advanced information communication systems instead of slope stability evaluation. This method is designed to create a system that can quickly evacuate by managing related information including resident information in an integrated manner and sharing this information with government agencies and residents in situations where landslides are expected. want to be. However, since the problem of this method is a mixture of important information and unnecessary information in an emergency, it cannot be said to be a reliable disaster prevention system unless a method for determining the importance of information for the parties is established.

当事者にとっての重要な情報は住宅裏の斜面などの崩壊の前兆現象であるが、斜面監視装置で危険を察知し避難する方法がある。しかし現存の斜面監視装置である非特許文献1に記載の伸縮計などは鋭敏すぎて取り扱いが難しく専門家による維持管理が必要であるため、一般の斜面で使用できない。この点を改善するために特許文献3では本願出願人に関わる特許第4006732号に示す簡易な斜面監視装置が考案されたものの、現実の危険斜面数は50万箇所と多いため、設置箇所を1/10の5万箇所程度に絞り込む必要がある。
特開2002−070029 特開2003−247238 特許第4006732号 土質工学会編「土質工学ハンドブック」土質工学会出版1982年版
Important information for the parties is a precursor to the collapse of the slopes on the back of the house, but there is a way to detect danger and evacuate with a slope monitoring device. However, the extensometer described in Non-Patent Document 1, which is an existing slope monitoring device, is too sensitive and difficult to handle and requires maintenance by an expert, so it cannot be used on ordinary slopes. In order to improve this point, although the simple slope monitoring device shown in Japanese Patent No. 4006732 related to the applicant of the present application has been devised in Patent Document 3, since the actual number of dangerous slopes is as many as 500,000, the number of installation places is one. It is necessary to narrow down to about 50,000 locations of / 10.
JP2002-070029 JP 2003-247238 A Patent No. 4006732 Soil Engineering Society "Soil Engineering Handbook" Soil Engineering Society Publication 1982 Edition

従って、本発明が解決しようとする技術的課題は、現状の斜面評価の際のさまざまな不確定な問題を解消し、客観的な斜面評価方法を確立することと、 Therefore, the technical problem to be solved by the present invention is to solve various uncertain problems in the current slope evaluation, and to establish an objective slope evaluation method,

危険斜面数約50万の内、斜面変位量が一定量以上の危険度の高い斜面を抽出して、斜面監視装置を設置する環境を整えることである。 The number of dangerous slopes is about 500,000, and the slope displacement amount is more than a certain amount.

現在使われている非特許文献1による分割法は土質力学的な安定検討であり、十分な地質調査が行われ、地下水位や土質常数が判明した斜面で使用される。従い地質調査が行われない一般斜面の分割法による安定検討には使用できない。そこで本発明は、
斜面の表土の不安定度Kを、
断面形状係数α×斜面の表土底面の傾斜角θ(度)の正接関数で示される地形量Gと、斜面の表土厚さD(m)×緩み係数δ×地質構造に関する調整値Xに、平面形状係数β×雨量P×水文に関する調整値Yで求めた重心移動量Δhを加えた地質量Q、との積からなる不安定総量から、
樹種係数λ×樹齢係数μで表す植生量S+表土を構成する土塊間の摩擦係数τで求めた安定総量を、差し引いた
K={(α×tanθ)×(D×δ×X+β×P×Y)−(λ×μ+τ)}・・・式1で求め、
過去の崩壊事例から不安定度K=斜面の表土変位量ε(cm)として、測定不可能な地質構造に関する調整値Xと水文に関する調整値Yを過去2回の表土変位量ε1、ε2を推定することで、連立式によりX、Yを求め、表土変位量算出モデルを作成することで将来の雨量に対する斜面の表土変位量εを予測することを可能とした。
The division method according to Non-Patent Document 1 currently used is a soil mechanical stability study, and is used on slopes where sufficient ground surveys have been conducted and groundwater levels and soil constants have been found. Therefore, it cannot be used for stability examination by the division method of general slopes where geological survey is not conducted. Therefore, the present invention
Instability K of the topsoil of the slope,
Cross section shape factor α × topography amount G indicated by tangent function of slope top surface slope angle θ (degrees), slope top soil thickness D (m) × loosening factor δ × geological structure adjustment value X From the unstable total amount consisting of the product of the shape factor β × rainfall P × the center of gravity Q obtained by adding the center-of-gravity movement amount Δh obtained by the adjustment value Y regarding hydrology,
The amount of vegetation S expressed by the tree species coefficient λ × age coefficient μ + the stable total amount obtained by the friction coefficient τ between the soil blocks constituting the top soil is subtracted K = {(α × tan θ) × (D × δ × X + β × P × Y ) − (Λ × μ + τ)}
From the past collapse cases, the degree of instability K 2 = the topsoil displacement amount ε (cm) of the slope, the adjustment value X related to the geological structure that cannot be measured and the adjustment value Y related to hydrology are the top soil displacements ε1 and ε2 By estimating, X and Y are obtained by simultaneous equations, and a topsoil displacement calculation model is created, thereby making it possible to predict the topsoil displacement ε of the slope with respect to future rainfall.

前記不確定数X、Yが決定されると、式1に基づき今後の雨量に対する不安定度K並びに表土変位量εが一義的に求まるので、本式を組み込んだプログラムを、インターネット上のウェブサーバ内のメモリーに書き込み、一般利用者がウェブを通じて本ソフトを起動させて、既存の地理情報データベースの上に、評価対象斜面の位置情報並びに地形や植生など斜面の各データを入力しておけば、あとは自動的に近傍の雨量情報を参照して当該斜面の表土変位量εを計算し、その結果をリアルタイムにパソコンやデジタル放送を通じてテレビ画面に表示する。 When the uncertain numbers X and Y are determined, the degree of instability K and the topsoil displacement amount ε with respect to future rainfall are uniquely determined based on Equation 1, so a program incorporating this equation can be executed on a web server on the Internet. If the general user starts this software via the web and inputs the location information of the slope to be evaluated and each slope data such as topography and vegetation on the existing geographic information database, After that, it automatically calculates the topsoil displacement amount ε of the slope by referring to the nearby rainfall information, and displays the result on the TV screen through a personal computer or digital broadcast in real time.

上記に示す方法で個別斜面ごとに表土変位量算出モデルを作成し、あらかじめそれぞれの雨量−表土変位量ε(cm)関係図を出力しておくと、豪雨当日時刻までの雨量に基づいて本図よりその時点の表土変位量εを推定することができる。このため気象庁発表の今後の雨量予測を見て避難時刻も事前におよその見当を付けることができる。 Create a topsoil displacement calculation model for each individual slope using the method described above, and output each rainfall-topsoil displacement ε (cm) relationship diagram in advance. This figure is based on the rainfall up to the time of the heavy rain day. Further, the topsoil displacement amount ε at that time can be estimated. For this reason, it is possible to get an approximate estimate of the evacuation time in advance by looking at future rainfall forecasts announced by the Japan Meteorological Agency.

本技術により雨量に対応した表土変位量εがcm単位で推定できるので同一雨量条件で評価対象斜面の危険度順位を付けて推定5万ヶ所の危険斜面を割り出すことができ、危険斜面の斜面監視装置を設置する環境が整うことになる。 With this technology, the topsoil displacement ε corresponding to rainfall can be estimated in centimeters, so it is possible to determine the estimated 50,000 dangerous slopes by assigning the risk ranking of the slope to be evaluated under the same rainfall conditions, and to monitor the dangerous slope slopes The environment for installing the equipment will be prepared.

上記に基づき推定5万箇所の要監視斜面の判別を行って、これに斜面監視装置を付けた場合は、斜面の変位量が直接分かるので、さらに推定約5千箇所の危険斜面の判別が可能となる。斜面監視装置から得られる点としての実測データは本防災情報システムの検証に使用し、面としての表土変位量算出の精度を向上させる。このように本技術による表土変位量算出モデルと斜面監視装置とを組み合わせることで、点と面の多重的な避難警戒システムが構築され、全体としての安全性を高めることができる。これらの継続的な観測資料はその後の対策のための重要な基礎資料となる。 Based on the above, it is possible to discriminate an estimated 5,000 dangerous slopes by identifying the estimated 50,000 required slopes and attaching the slope monitoring device directly to the displacement amount of the slope. It becomes. The measured data obtained from the slope monitoring device is used for verification of this disaster prevention information system, and the accuracy of the calculation of topsoil displacement as a surface is improved. In this way, by combining the topsoil displacement calculation model and the slope monitoring device according to the present technology, a point-and-surface multiple evacuation warning system is constructed, and the overall safety can be improved. These continuous observation materials will become important basic materials for the subsequent countermeasures.

本発明である表土変位量算出モデルはこれまでの土質力学モデルと異なる、構造モデルを基に構築された係数モデルによる斜面の表土変位量算出方法を発明し、行政と住民との協同下で本係数モデルの使用を可能にするための防災情報システムを提供する。 The topsoil displacement calculation model, which is the present invention, invents a slope topsoil displacement calculation method based on a coefficient model built on the basis of a structural model, which is different from conventional soil mechanics models. A disaster prevention information system is provided to enable the use of coefficient models.

前記構造モデルは図1に示すような角度を変えられる傾斜台(符号1)に、底面にすべり止めの付いた幅1m高さ0.8m〜1.5mの積み木(符号2)を複数並べて乗せて互いに細くて切れやすいひも(符号4)でつないで少しずつ傾けていくと、30°を越えると最も高い積み木2の重心線(符号3)が外れて一部の積み木(符号2)が不安定化し下方に倒れようとするが、初期の段階では倒れようとする力が弱く、ひも(符号4)を介して前後の積み木(符号2)が支えることができる。さらに傾斜を強めると、倒れようとする力は徐々に大きくなり、前後の積み木(符号2・2)も次第に不安定化し複数の積み木(符号2・・)が傾いて不安定部(符号5)を形成し、さらに傾斜させると、倒れようとする力が増大し、積み木(符号2)間をつなぐひも(符号4)は力に耐えきれず切断して、積み木はバラバラになり台からすべり落ちる状況を自然斜面に適用している。 In the structural model, a plurality of blocks (symbol 2) having a width of 1 m and a height of 0.8 m to 1.5 m with a slip stopper on the bottom surface are placed on an inclined base (symbol 1) whose angle can be changed as shown in FIG. If they are tilted little by little by connecting them with thin and easy-to-cut strings (symbol 4), the center of gravity (symbol 3) of the highest building block 2 will deviate beyond 30 °, and some blocks (symbol 2) will be unsatisfactory. Stabilizes and tries to fall down, but at the initial stage, the force to fall is weak, and the front and back blocks (reference 2) can be supported via the string (reference 4). When the inclination is further increased, the force to fall is gradually increased, and the front and rear blocks (reference numerals 2 and 2) gradually become unstable, and a plurality of blocks (reference numerals 2 and) are inclined and unstable parts (reference numeral 5). If you tilt and further tilt, the force to fall will increase, and the string (reference 4) that connects between the blocks (reference 2) will not be able to withstand the force and will cut, and the blocks will fall apart and slide off the table The situation is applied to natural slopes.

Figure 0004404320
Figure 0004404320

前記の構造モデルの各要素は図2に示す係数モデルで数値化することができる。すなわち同図の左側の天秤に乗る不安定総量は、傾斜台(符号1)の角度の正接関数と積み木(符号2)の高さ(m)との積で求まり、一方安定総量は、積み木(符号2)をつなぐひも(符号4)の強さと、積み木(符号2・2)間の摩擦抵抗で決まることになり、これを一般斜面に適用すると、積み木(符号2)の高さは地質量Qで表され、傾斜台(符号1)の角度は緩み層底面の角度θの地形量である。そして、図2の右側の天秤に乗る安定総量は、ひも(符号4)の密度とその強さは表1に示す樹齢係数μと樹種係数λの積で表した植生量Sと、積み木(符号2)の摩擦抵抗は表1に示す土塊周囲の摩擦係数τである。 Each element of the structural model can be quantified by a coefficient model shown in FIG. That is, the unstable total amount on the balance on the left side of the figure is obtained by the product of the tangent function of the angle of the tilting table (reference numeral 1) and the height (m) of the building block (reference numeral 2), while the stable total quantity is calculated by the building block ( It is determined by the strength of the string (reference 4) connecting the reference 2) and the frictional resistance between the blocks (reference 2 and 2). When this is applied to a general slope, the height of the building (reference 2) The angle of the tilt base (reference numeral 1) is represented by Q and is the amount of topography at the angle θ of the bottom surface of the loose layer. The stable total amount on the balance on the right side of FIG. 2 is the density and strength of the string (reference 4), the vegetation amount S expressed by the product of the tree age coefficient μ and the tree species coefficient λ shown in Table 1, and the building blocks (reference sign). The frictional resistance of 2) is the friction coefficient τ around the mass shown in Table 1.

植生と斜面安定との関係は、樹木の根は土塊をつなぎ止める作用として評価され、丈夫な根を広くはるマツ及び広葉樹は抑止力が大きいが、灌木は弱い。植林からなる針葉樹は根の発達が悪いので、広葉樹と灌木の中間に位置している。また根は幹の大きさに比例するので、幹が太くそして高いほど、土塊抑止力が大きいと言える。樹種係数λは、裸地を0として灌木の最大クラスと植林した針葉樹の生育状況の悪い樹種を1とし、広葉樹の最大クラスを3にしている。これらの係数は、過去の樹種の違いによる被害程度の違いを参考に決定した。 The relationship between vegetation and slope stability is evaluated as the action of tree roots to keep the soil clumps, and pine and broadleaf trees that spread strong roots have a great deterrent, but shrubs are weak. Since conifers made from plantations have poor root development, they are located between hardwoods and shrubs. In addition, since the root is proportional to the size of the trunk, it can be said that the thicker and taller the trunk, the greater the debris deterrence. The tree species coefficient λ is set to 1 for the largest class of shrubs and 1 for the poor growth of conifers planted with bare trees, and to 3 for the broadleaf trees. These factors were determined with reference to the difference in damage due to differences in past tree species.

摩擦抵抗τの値は、過去の崩壊事例から土質の違いによる被害程度の違いを参考にして決定し、表1で示すように表土が2で、風化土が3、軟岩が5と考えて良い。 The value of the frictional resistance τ is determined by referring to the difference in the degree of damage due to the difference in soil quality from past collapse cases. As shown in Table 1, the topsoil is 2, the weathered soil is 3, and the soft rock is 5 .

以上の係数モデルで斜面のバランスを表現している。降雨に伴いΔhの増加により、天秤が左側に傾き、バネが破壊して天秤が左に傾倒した状態が表土の崩壊である。このような係数モデルでの斜面崩壊機構は一般の人にも理解しやすく、必要なデータも容易に集めることができるので住民参加型の斜面防災システムとし適している。 The above coefficient model expresses the slope balance. The topsoil collapses when the balance tilts to the left side due to an increase in Δh due to rainfall, the spring breaks, and the balance tilts to the left. The slope failure mechanism with such a coefficient model is easy to understand for ordinary people and can easily collect necessary data, so it is suitable as a slope disaster prevention system with participation by residents.

上記各要素を詳しく説明するならば、このため植物による表土崩壊抑止力としての植生量Sは、樹種係数λと樹齢係数μの積で表すことができる。 If each said element is demonstrated in detail, the vegetation amount S as a topsoil collapse inhibitory force by a plant can be represented by the product of a tree species coefficient (lambda) and a tree age coefficient (mu) for this reason.

前記表土(符号15)の安定性は、評価対象斜面の形状と、表土(符号15)などの土性や物性に基づく摩擦係数τで決まる。地形の影響については凸型の地形は孤立し不安定であり、凹型は力が周囲に分散しやすく安定しているので、地形量Gは表1に示す断面形状係数αと表土底面の傾斜角θの正接関数の積で表すことができる。 The stability of the topsoil (symbol 15) is determined by the shape of the slope to be evaluated and the friction coefficient τ based on the soil properties and physical properties of the topsoil (symbol 15). Concerning the influence of topography, the convex topography is isolated and unstable, and the concave top is easy to disperse the force around it, and the topography amount G is the cross-sectional shape factor α shown in Table 1 and the slope angle of the topsoil bottom It can be expressed as the product of the tangent function of θ.

雨量Pによる斜面への影響は、表土の重心位置を高める作用として働くが、水の集まり具合は、地形や水文構造の影響を受けるので、表1に示す平面形状係数βや、地下水供給などの水文に関する調整値Yで、雨量Pを補正する必要がある。 The effect of rainfall P on the slope works as an action to increase the gravity center position of the topsoil, but the water gathering is affected by the topography and hydrological structure, so the plane shape factor β shown in Table 1 and the groundwater supply etc. It is necessary to correct the rainfall P with the adjustment value Y related to hydrology.

上記の係数は、斜面の体質とも言える地形・地質要素であり植生量Sを除いて数十年程度では変化しない。 The above coefficient is a topographical and geological element that can be said to be the constitution of the slope, and does not change in several decades except for the amount of vegetation S.

これに対して豪雨などで表土変位が増大し地層が緩み、崩れやすくなる場合がある。このような地層の緩み程度は、豪雨によるダメージの程度や、その後の圧密作用による強度の回復具合で変化するので体調的な要素であると言える。基盤岩が緩んで表土が形成されるのであるが、その緩みの程度の違いが斜面安定に与える影響は大きく、このため、緩み度すなわち緩み係数δを適切に設定する作業は重要であり、その目安として表1に示す値が考えられる。 On the other hand, topsoil displacement increases due to heavy rain, etc., and the strata may loosen and become easy to collapse. Such looseness of the strata can be said to be a physical condition because it changes depending on the degree of damage caused by heavy rain and the recovery of strength due to the subsequent compaction action. Although the base rock is loosened and topsoil is formed, the difference in the degree of looseness has a great influence on slope stability, so it is important to appropriately set the degree of looseness, that is, the loosening coefficient δ. The values shown in Table 1 can be considered as a guide.

緩み係数δは、岩盤の場合は0.1、風化土の場合は0.5、斜面の傾斜に相応の表土が形成され、表土変位はないかもしくは数cm以下の場合は、標準と考えて緩み係数δは1とする。そして表土変位量が5cm前後の根曲がりが目立つ場合は、1.5とし、さらに表土変位量が7cmを越える地表に段差などを生じたり、樹木の倒れや枯死などの場合は最大の2に設定する。初期設定としてはある程度大まかでよい。表土変位が累積するような場合は表土変位量に応じて細かく調整することが望ましい。表1はこれまでの崩壊地の現地調査を参考に決定した。本表に基づいて簡易貫入試験などで決定することもできる。 The looseness factor δ is 0.1 for rock, 0.5 for weathered soil, and topsoil corresponding to the slope slope is formed. The looseness coefficient δ is assumed to be 1. And if the root bend with a topsoil displacement of about 5 cm is conspicuous, set it to 1.5, and if the topsoil displacement exceeds 7 cm, set a maximum of 2 if there is a step or the like, or if the tree falls down or dies. To do. The initial setting may be rough to some extent. When topsoil displacement accumulates, it is desirable to make fine adjustments according to the topsoil displacement. Table 1 was decided based on the field survey of the collapsed area. It can be determined by a simple penetration test based on this table.

このような地層の緩みはさらに地層を緩める要因となるので、表土変位量εは不安定度の二乗になることが予想されるが、これまでの崩壊事例の数値検証から得られたデータではおおむね正しい。従い不安定度K=表土変位量εと考えてよい。 Such loosening of the strata causes further loosening of the strata, so the topsoil displacement ε is expected to be the square of the degree of instability, but the data obtained from numerical verifications of previous collapse cases are generally correct. Therefore, the degree of instability K 2 = the topsoil displacement amount ε may be considered.

平均的な体質の場合、一度ダメージを受けると地表付近の土砂が徐々に下方に移動する表土変位現象を生じ、表土に緩みを生じ、斜面の体力が低下する。緩み度すなわち体力が回復するのに数年かかり、数年以内に再び豪雨に見舞われたりすると、ダメージは累積し、加速度的な体力の低下に比例して表土変位が増大する結果、危険斜面が形成される。表土変位の程度は斜面の亀裂の拡大度合いや、新しい段差の形成度合いや、樹木の生育度合いに比例している。 In the case of an average constitution, once the damage is received, the topsoil displacement phenomenon in which the earth and sand near the ground surface gradually moves downward, loosens the topsoil, and the physical strength of the slope decreases. If the degree of looseness, or physical strength, takes several years to recover and heavy rain falls again within a few years, the damage accumulates and the topsoil displacement increases in proportion to the acceleration of physical strength. It is formed. The degree of topsoil displacement is proportional to the degree of expansion of cracks on the slope, the degree of formation of new steps, and the degree of growth of trees.

前記表土変位を生じている斜面は急傾斜地全体のおよそ十分の一程度の+斜面(符号7)と推定され、さらに表土変位量が大きい全国で5万箇所の++斜面(符号8)の一群内から出現する(符号9)。そして毎年崩壊するのは全国約5千箇所の+++で示す危険斜面内から毎年約5百箇所出現すると考えられる。このように斜面の病状と体力を指標として斜面を分類したのが、図3の急傾斜地崩壊危険個所の階層分布モデルである。 The slope causing the topsoil displacement is estimated to be approximately one-tenth plus slope (symbol 7) of the entire steep slope, and within a group of 50,000 slopes (symbol 8) in the whole country where the topsoil displacement is large. (Symbol 9). And it is thought that about 500 places appear every year from within the dangerous slopes indicated by ++ in about 5,000 places nationwide. In this way, the slopes are classified using the pathological condition and physical strength of the slopes as an index, and the hierarchical distribution model of the places where the steep slope collapse risk is shown in FIG.

前記斜面の体力の低下は表土変位を引き起こし、表土変位が原因で樹木の生育障害を生じる。表土変位量が毎年数cm以下の++斜面では、樹木は根曲がりを生じながらも少しずつ成長できるが、表土変位量が毎年数5cmを越える+++斜面になると、根が切断されて樹木は成長できず灌木林や多年草しか生育できなかったり、地表に段差や亀裂などを生じたりする。 The decrease in the physical strength of the slope causes a topsoil displacement, and the topsoil displacement causes a tree growth disorder. On the ++ slope where the topsoil displacement is less than several centimeters every year, the trees can grow little by little while generating root bends. However, if the topsoil displacement exceeds several centimeters every year, the roots are cut and the trees can grow. Only shrub forests and perennials can grow, and there are steps and cracks in the ground.

雨量が少ない年が続いて緩み度が次第に減少すれば、+や++の斜面ではその後、樹木の生長が再開して斜面の体調は徐々に改善する場合もある。数十年間豪雨が無い場合は、樹木の補強効果により斜面は安定化に向かう。ただし一度+++に陥った場合は少ない降雨量でも不安定化するので、回復は難しく、そのような斜面は数年先に崩壊する可能性が大となる。 If years of low rainfall continue and the degree of looseness gradually decreases, then the growth of trees may resume on the + and ++ slopes and the physical condition of the slopes may gradually improve. If there is no heavy rain for several decades, the slope will be stabilized by the reinforcement effect of the trees. However, once it falls into ++, it becomes unstable even with a small amount of rainfall, so it is difficult to recover, and such slopes are likely to collapse several years away.

前記斜面の状況をモデル化したのが図2であるが、モデル化の際に目に見えない地質構造に関する調整値Xや同じく降雨の影響程度を決める水文に関する調整値Yの決定方法が問題である。本案件の解決方法として、式1の右辺である表土変位量εを上記の樹木の生育状況などで、過去の豪雨履歴と通年雨量との2回の降雨条件におけるε1、ε2を推定して、式1を連立させてXとYを決定することで解決した。 FIG. 2 shows a model of the slope condition, but the problem is how to determine the adjustment value X related to the invisible geological structure and the adjustment value Y related to hydrology that determines the degree of influence of rainfall. is there. As a solution of this case, the top soil displacement amount ε, which is the right side of Equation 1, is estimated by estimating the ε1, ε2 in the two rainfall conditions of the past heavy rainfall history and year-round rainfall in the growth situation of the above tree, etc. The problem was solved by determining X and Y by simultaneous equations (1).

係数モデルに使用する表土厚さD(m)は簡易貫入試験で求めることが望ましいが、簡易な方法としてバールなどで探ってもよく、また重心位置を考慮して1/tanθ(m)と仮定してもよい。Dの誤差はXの値で調整されるので予測精度に与える影響はさほど大きくはないことが理由である。以上で評価対象斜面の式1の右辺はすべて既知となり、雨量Pに対する表土変位量εが計算できる。 The topsoil thickness D (m) used for the coefficient model is preferably obtained by a simple penetration test, but it may be searched by a simple method such as a bar, and it is assumed that 1 / tan θ (m) in consideration of the position of the center of gravity. May be. This is because the error on D is adjusted by the value of X, so the influence on the prediction accuracy is not so great. Thus, the right side of Equation 1 of the slope to be evaluated is all known, and the topsoil displacement amount ε with respect to the rainfall P can be calculated.

要因が複雑に絡み合う自然現象を取り扱う近似的な手法として本係数モデルは有効である。目に見える要因を計数化して、基本的な斜面の体質とも言える評価をまず求め、植生や地表の様子から体調を求め、あと解明不可能な様々な自然現象をX、Y二つのブラックボックス化にて調整し、実際の斜面を係数モデルで再現している。本手法によりこれまで不可能であった、一般斜面の不確定問題を解決した。 This coefficient model is effective as an approximate method for handling natural phenomena in which factors are intricately intertwined. Counting the visible factors, first obtaining an evaluation that can be said to be the basic structure of the slope, obtaining the physical condition from the state of vegetation and the ground surface, and then making various black and white black boxes of various natural phenomena that cannot be clarified The actual slope is reproduced with a coefficient model. This method solved the uncertain problem of general slopes, which was impossible until now.

本係数モデルを使用して斜面の表土変位量を算出し、雨量Pに対する表土変位量εの関係をグラフ化して、その年の警戒に当たる。ただし初期の推定値は、過去のデータに基づくものでその結果算出された変位量はある程度の誤差を持っている。しかしその後の降雨に対しては、評価対象斜面に設置した簡易な三角測量杭間の長さを測定するなどにより表土変位量εが検証できるので、地質構造に関する調整値X、水文に関する調整値Yを現状に合うように修正することで、その後の予測精度は向上しよう。 Using this coefficient model, the amount of topsoil displacement on the slope is calculated, the relationship between the amount of topsoil displacement ε and the amount of rainfall P is graphed, and this is a warning for the year. However, the initial estimated value is based on past data, and the displacement amount calculated as a result has a certain amount of error. However, for subsequent rainfall, the topsoil displacement ε can be verified by measuring the length between simple triangulation piles installed on the evaluation slope, so adjustment value X for geological structure, adjustment value Y for hydrology The accuracy of future predictions will be improved by modifying to match the current situation.

上記作業分担については図4に示すように、前記符号10に示す航空測量や机上での基礎調査から雨量−変位量図出力まで県、市町村など行政が担当し、一方符号11に示す現地調査は行政の委託を受けた研究者や専門家の指導の下、国・県の経済支援の基、原則として住民側が行う。この中心となるのが自主防災組織であり、同組織は、現地調査に基づいて緩み度や表土変位量εの推定を行い、地質構造に関する調整値Xと水文に関する調整値Yを推算して評価対象斜面の表土変位量算出モデルの作成をコンサルタントや大学の指導を受け行政と住民が協同で行う。 As shown in FIG. 4, the above-mentioned work sharing is carried out by the governments such as prefectures, municipalities, etc. from the aerial survey shown on the above-mentioned reference 10 and the basic survey on the desk to the output of the rainfall-displacement map. Under the guidance of government-sponsored researchers and specialists, the basics of the national / prefectural economic support, in principle, are carried out by the residents. At the heart of this is the voluntary disaster prevention organization, which estimates the degree of looseness and topsoil displacement ε based on the field survey, and estimates and evaluates the adjustment value X related to geological structure and the adjustment value Y related to hydrology. The government and residents will collaborate with a consultant or university to create a model for calculating the amount of topsoil displacement on the target slope.

本防災情報システムは、急傾斜対策だけでなく汎用斜面防災システムとして、土石流発生危険渓流、道路鉄道などの路線、ダム湖周辺の斜面や、ODA事業などでも使用できる。このような全国の様々な斜面情報は評価対象斜面の緯度経度情報(符号13)や範囲情報(符号14)ともに、インターネット上のウェブサーバ内のデータベースに既存の地理情報データベースとともに入力しておくと、評価対象斜面の近傍の雨量情報(符号12)を自動的に参照してリアルタイムで表土変位量εが算出される。これらの処理された斜面情報は色別の危険度地図情報とともにインターネットや家庭用デジタル放送で画面上に表示され、自宅にいながら全国の被害予想図をモニターできる。ウエーブサイト上の危険度別の地図情報は、任意の年数を経た将来の降雨状況を予測することにも利用し、インターネットで接続されたパソコン画面から入力すると、大まかではあるが即座に将来の表土変位量予測図が表示される総合的な防災情報システムの構築が可能となる。 This disaster prevention information system can be used not only for measures against steep slopes but also as a general slope disaster prevention system for debris flow-prone mountain streams, road railways, slopes around dam lakes, and ODA projects. Such various slope information in the country is input to the database in the web server on the Internet together with the existing geographic information database together with the latitude / longitude information (reference numeral 13) and the range information (reference numeral 14) of the evaluation target slope. The topsoil displacement amount ε is calculated in real time by automatically referring to the rainfall information (symbol 12) in the vicinity of the evaluation target slope. These processed slope information is displayed on the screen on the Internet and digital home broadcasting together with the risk map information for each color, so that you can monitor the predicted damage map throughout the country while you are at home. The map information by risk level on the web site is also used to predict the future rainfall situation after an arbitrary number of years. It is possible to construct a comprehensive disaster prevention information system that displays a displacement prediction diagram.

斜面の表土変位量算出方法及び防災情報システムは住民参加型の急傾斜地避難警戒システムを構築する場合、その効果を最大限に発揮する。以下に急傾斜地での実施例を示す。 The slope topsoil displacement calculation method and disaster prevention information system will maximize their effects when constructing a resident evacuation warning system for steep slopes. Examples of steep slopes are shown below.

これまで一律の工事対象となっていた全国の50万の危険箇所を対象にして、レーザーなど航空測量などの電磁波の反射率の違いから、植生を比較分析し、また地理情報システム(GIS)により地形を分析して自動で基本データを作成する。GISが未整備な地域においては通常の地形図を用い、検討単位となる斜面は地形と植生の違いから任意の形状に区分し、図5示す基準点Oの緯度経度情報(符号13)と、N、NE、E、SE、S、SW、W、NWの八方位線と中心からの距離の検討斜面の範囲情報(符号14)などで範囲を表す。 Targeting 500,000 hazardous locations nationwide that have been the subject of uniform construction so far, comparative analysis of vegetation is made based on the difference in the reflectivity of electromagnetic waves such as laser aerial surveys, etc., and the Geographic Information System (GIS) Analyzing the terrain and automatically creating basic data. In an area where GIS is not yet developed, a normal topographic map is used, and the slope as the examination unit is divided into arbitrary shapes based on the difference between the topography and vegetation, and latitude and longitude information (reference numeral 13) of the reference point O shown in FIG. N, NE, E, SE, S, SW, W, NW The range is expressed by the range information (reference numeral 14) of the examination slope of the distance from the eight azimuth lines and the center.

通常の監視体制としては、本表土変位量算出モデルにより表土変位を生じている推定5万箇所を+の不安定斜面(符号7)に選定して、警戒レベルを1ランク上げて斜面監視装置を設置する。この5万箇所への対応策として、重点監視と里山や植林の手入れや管理を積極的に行って樹木の生育を早めることである。さらに斜面監視装置の観測結果に基づいて、百分の一の約5千箇所の表土変位量が5cmを越える++の危険斜面(符号8)箇所を絞り込み、この5千箇所を対象として警戒レベルをさらに1ランク上げて、データロガーを設置し、変動記録に応じて表土変位量が5cmを越え、増加している+++の特別危険斜面(符号9)を特定する。この+++の特別危険斜面(符号9)に対して順次地質調査や対策工事を行う。 As a normal monitoring system, an estimated 50,000 locations where topsoil displacement is generated by this topsoil displacement calculation model is selected as a + unstable slope (symbol 7), and the warning level is increased by one rank. Install. As countermeasures for these 50,000 locations, it is important to speed up the growth of trees by actively monitoring and managing satoyama and afforestation. Furthermore, based on the observation results of the slope monitoring device, the critical soil level (symbol 8) where the topsoil displacement amount of about 1 in 5,000 exceeds 5 cm is narrowed down, and the warning level is targeted for these 5,000 locations. Further up by one rank, a data logger is installed, and a special danger slope (reference numeral 9) of +++ whose topsoil displacement exceeds 5 cm and increases according to the fluctuation record is specified. Geological surveys and countermeasures will be carried out sequentially on this special danger slope (symbol 9).

図4に示す監視体制における参照雨量(符号12)は、連続雨量もしくは有効雨量のいずれかを選び、降雨量数十mmから数百mmの間で、雨量に対する降雨量−表土変位量εグラフと、戸別の入力データと避難場所や知人の電話番号及び避難上の注意事項などを1枚の用紙に各戸別に出力し、これを透明の防水ビニールシートなどに入れ、居間や寝室のわかりやすい場所に懐中電灯とともに置いて警戒に当たる。 The reference rainfall (symbol 12) in the monitoring system shown in FIG. 4 selects either continuous rainfall or effective rainfall, and the rainfall versus topsoil displacement ε graph between rainfalls of several tens to several hundreds of mm. , Door-to-door input data, evacuation location, acquaintance's phone number, evacuation precautions, etc. are output on a single sheet for each door, put in a transparent waterproof vinyl sheet, etc., and stored in an easy-to-understand place in the living room or bedroom Put it with a light to be vigilant.

戸別の降雨量−表土変位量εグラフは、自主防災組織の各斑でも同じものを保管し、班長及び補助者は班内の状況を把握するとともに、あらかじめ班員で決定しておいた基準変位量に基づいて、自主防災班として住民支援を行う。その際、各戸の人員構成や、災害弱者の有無により避難場所及び避難経路を、住民間の協議であらかじめ決めておき、緊急時には各戸は自主的に避難する。また自主防災組織は、インターネット等である程度の広域雨量や他地区の状況も把握し、自治体との連絡や必要な支援を要請するなど、自治体との連絡調整を行う。 The rainfall-to-soil displacement ε graph for each door is the same for each spot of the voluntary disaster prevention organization, and the team leader and assistants grasp the situation within the team and the standard displacement determined by the team members in advance. Based on the amount, support the residents as a voluntary disaster prevention team. At that time, the evacuation site and route will be determined in advance by consultation between the residents depending on the personnel composition of each house and the presence or absence of disaster victims, and each house will evacuate voluntarily in an emergency. In addition, the voluntary disaster prevention organization grasps a certain amount of rainfall over the Internet and the situation in other areas, and coordinates with the local government, such as contacting the local government and requesting necessary support.

一つの表土の崩壊が発生した場合、崩壊が周囲へと波及することは普通に見られる。一つの表土(符号15)の崩壊が縦断的に及ぼす影響を判定し、崩壊範囲を決定する手順を示すのが図6である。表土の崩壊の判定は各単位斜面の表土変位量εが10cmを越えた場合に崩壊と判定し、下方土塊への影響を表土変位量εの値が9cmを越えたセンチ数を下部の表土変位量εに加算して、次々と下側に崩壊区域の判定を行う。図6は地形の平面形状が直線型の標準地形の場合であり、この場合だとdの表土の崩壊に伴い、10cm−9cm=1cmをeへの影響値としてeのε1の9cmにプラスするとeのε2は10cmとなるので図中eで示す表土は崩壊と判定される。さらにfへの影響値は同じく10cm−9cm=1cmとなり、fのε1である8cmにプラスするとfのε2は9cmとなり崩壊しない。また上部への影響は予想した崩壊層厚dmの数値d(m)を1、2、3のようにそのままcmにして、上部の表土変位量に加算して同様に検討していく。 When one topsoil collapse occurs, it is normal to see the collapse spreading to the surroundings. FIG. 6 shows a procedure for determining the longitudinal influence of the collapse of one topsoil (reference numeral 15) and determining the collapse range. Judgment of the topsoil collapse is determined when the topsoil displacement ε of each unit slope exceeds 10 cm, and the influence on the lower soil mass is expressed as centimeters where the topsoil displacement ε value exceeds 9 cm. In addition to the quantity ε, the collapse area is determined one after the other. FIG. 6 shows a case where the topography of the terrain is a straight standard terrain. In this case, when the top soil of d is collapsed, 10 cm−9 cm = 1 cm is added to 9 cm of ε1 of e as an influence value on e. Since ε2 of e is 10 cm, the topsoil indicated by e in the figure is determined to be collapsed. Further, the influence value on f is similarly 10 cm−9 cm = 1 cm, and if it is added to 8 cm which is ε1 of f, ε2 of f becomes 9 cm and does not collapse. In addition, the influence on the upper part is examined in the same manner by setting the numerical value d (m) of the predicted collapsed layer thickness dm to cm as it is as 1, 2, and 3, and adding it to the upper surface soil displacement.

前記、崩壊の波及は図7に示す平面形状係数β(符号16)で修正を行うこととし、前項の表土の崩壊が周囲に及ぼす影響値を計算する場合に、直線型斜面の場合は平面形状係数β(符号16)の1/2すなわち1を縦断に及ぼす影響値にかける。尾根型斜面の場合の平面形状係数β(符号17)の1/2である0.5を、縦断的に及ぼす影響値にかける。また同様に谷型斜面の場合は、平面形状係数β(符号18)の1/2である1.5を縦断的に及ぼす影響値にかける。一例として表土層厚を2mと仮定すれば、cへの影響は2cmとなり、5cm+2cm=7cmとなり図7中の表土cは崩壊しない。 The spread of the collapse is corrected by the plane shape factor β (symbol 16) shown in FIG. 7, and when calculating the influence value of the topsoil collapse on the surroundings in the previous section, in the case of a straight slope, the plane shape 1/2 of coefficient β (symbol 16), that is, 1 is multiplied by the influence value on the longitudinal section. In the case of a ridge-type slope, 0.5, which is 1/2 of the plane shape factor β (reference numeral 17), is applied to the longitudinal influence value. Similarly, in the case of a valley-shaped slope, 1.5, which is ½ of the plane shape factor β (reference numeral 18), is multiplied by the longitudinal influence value. As an example, if the topsoil layer thickness is assumed to be 2 m, the influence on c is 2 cm, and 5 cm + 2 cm = 7 cm, so that the topsoil c in FIG. 7 does not collapse.

尾根型斜面の場合を図8に示すが、各尾根型斜面の表土(符号24)うちdのε1は10cmであり尾根型斜面の表土eへの影響値は{10cm−9cm}×平面形状係数β(符号17)の0.5=0.5cmとなり、従って表土eのε2は9cm+0.5cm=9.5cmとなり、判定基準の10cmを越えないからeの表土は崩壊しない。また図7同様に図8中の表土d上部のcも崩壊しない。 FIG. 8 shows the case of a ridge-type slope. Among the top soils (reference numeral 24) of each ridge-type slope, ε1 of d is 10 cm, and the influence value of the ridge-type slope on the top soil e is {10 cm−9 cm} × planar shape factor β (reference numeral 17) is 0.5 = 0.5 cm, and therefore, ε2 of the top soil e is 9 cm + 0.5 cm = 9.5 cm, and the top soil of e does not collapse because it does not exceed the criterion 10 cm. Similarly to FIG. 7, c in the upper part of topsoil d in FIG. 8 does not collapse.

谷型斜面の場合についても同様に検討し、図9に示すように、その平面形状係数β(符号18)は3であるので、3×0.5=1.5をaからiまでの各谷型斜面の表土(符号25)の影響値を補正すると、図9に示すように、d〜fまでの斜線部分の表土が崩壊する。なお図7同様に図9中の表土d上部のcは崩壊しない。 The case of the valley-shaped slope is examined in the same manner. As shown in FIG. 9, since the plane shape factor β (reference numeral 18) is 3, 3 × 0.5 = 1.5 is set to each of a to i. When the influence value of the topsoil (reference numeral 25) on the valley slope is corrected, as shown in FIG. As in FIG. 7, c in the upper part of topsoil d in FIG. 9 does not collapse.

崩壊地側方への影響は、側方の表土変位量ε1に、上方への影響の2/3程度を加算し、同様に崩壊経路(符号19)に沿って崩壊判定を行って崩壊範囲の決定を行ない、防護対象物件(符号20)への被害を予測する。なお(符号31a)は直線型斜面を表し、(符号31b、31c)はそれぞれ尾根型斜面と谷型斜面を表す。 As for the impact on the side of the collapsed land, add about 2/3 of the upward impact to the lateral topsoil displacement amount ε1, and similarly determine the collapse along the collapse path (symbol 19) and Make a decision and predict the damage to the property to be protected (symbol 20). In addition, (code | symbol 31a) represents a linear slope, (code | symbol 31b, 31c) represents a ridge-type slope and a valley-type slope, respectively.

単位斜面の取り方は様々であるが、基本的には表土厚さDmの7倍程度とし、幅はその2/3程度とする。また層厚を無視して地形と植生を合わせて単位斜面に分ける方法も考えられるが、1単位の長さが数十mに及ぶ場合は、各影響度を1/3程度に低減する。また長さが百mを越えると、周囲への拡大は通常、考慮しない。細かく分けることは、実際の崩壊形態に近づくが、後の追跡調査が大変なので、そのあたりは状況に応じて単位斜面の規模を使い分ける。大きく分けた場合は、確率的な予想となる。この場合、表土底面の傾斜角θのばらつきを考慮して斜面の表土変位量を算出する。 There are various ways of taking unit slopes, but basically the surface soil thickness is about 7 times the thickness Dm, and the width is about 2/3 of that. A method of ignoring the layer thickness and dividing the terrain and vegetation into unit slopes is also conceivable, but when the length of one unit reaches several tens of meters, the degree of influence is reduced to about 1/3. If the length exceeds 100 m, expansion to the surroundings is not usually considered. Subdividing is close to the actual collapse mode, but the follow-up survey is difficult, so the scale of the unit slope is properly used depending on the situation. When divided roughly, it becomes a probabilistic forecast. In this case, the topsoil displacement amount of the slope is calculated in consideration of the variation in the slope angle θ of the topsoil bottom surface.

以上の計算は雨量Pを参照した時点で自動的に行われ、降雨量に応じたほぼリアルタイムでの被災範囲予測図がインターネット上のパソコンの画面に表示される。この際に崩壊と判定された斜面の崩積土塊の体積と、雨量から求まる推定含水比により土石流発生を自動的に判定して、その到達予想範囲も画面上に表示する。 The above calculation is automatically performed when the rainfall P is referred to, and a near real-time damage range prediction map corresponding to the rainfall is displayed on the screen of a personal computer on the Internet. At this time, the occurrence of debris flow is automatically determined on the basis of the volume of the collapsed mass of the slope determined to be collapsed and the estimated water content ratio obtained from the rainfall, and the predicted reach is also displayed on the screen.

豪雨後に安全を確認した後、自主防災組織を中心とした調査チームは、崩壊跡地の有無や樹木の転倒など地表変位に伴う兆候を観察し、バールなどを地面に押し込んで緩み度を調べ、簡易な三角測量杭間の距離を計測するなどで斜面の状況を調べる。これらの調査結果に基づき、データを修正して、次の降雨に備える。緩み度が大きいと斜面は少しの雨でも崩壊するために本作業は重要である。 After confirming safety after heavy rain, a research team led by a voluntary disaster prevention organization observes signs of surface displacement, such as the presence or absence of a ruined site or a fall of a tree, and checks the degree of looseness by pushing a bar or the like into the ground. The situation of the slope is examined by measuring the distance between various triangulation piles. Based on these survey results, the data will be revised to prepare for the next rainfall. This work is important because the slope will collapse even with a little rain if the degree of looseness is large.

その後、降雨によるダメージが無ければ、緩み度は1年で半分、数年で8割方自動的に回復するシステムとする。新たに表土変位量ε等が生じた場合は、自動的に当初の緩み係数に新たな変位量(ε)/3.33333(ただし1以上)の値をかけて、新しい緩み量とし、これで求めた緩み量を次回の変位量の算定に使用する。ε=4cmの場合は、1.2倍、ε=5cmの場合は、1.5倍、ε=6cmの場合は、1.8倍、7cm以上はすべて最大の2倍とする。なおこれらの緩み量の算出は自動で行われるが、現状に合わないと判断された場合は手動で修正する必要がある。このとき同時にX、Yの設定も見直す必要がある。 After that, if there is no damage due to rain, the system will automatically recover half the looseness in one year and 80% in several years. When topsoil displacement amount ε, etc. is newly generated, the new looseness amount is automatically multiplied by the new displacement amount (ε) /33.3333 (however, 1 or more) to the initial looseness coefficient. The obtained amount of looseness is used for the next calculation of displacement. When ε = 4 cm, 1.2 times; when ε = 5 cm, 1.5 times; when ε = 6 cm, 1.8 times; Although the calculation of the amount of looseness is performed automatically, if it is determined that it does not match the current situation, it must be corrected manually. At this time, it is necessary to review the X and Y settings at the same time.

また新たな表層土塊の表土変位量εが数cm以上生じた場合、自動的に樹木の成長率は半分程度になり、4〜5cm以上の場合は成長を停止させる。そして変位量が数cm以内に収まった場合、所定の樹木成長率を用いて樹齢係数μが自動的に更新されるようにする。ただしこのような緩み程度は個々の斜面で異なるので、地元による毎年最低1回は住民が簡易な三角測量杭間の距離を計測するなどで緩みの回復状況や樹齢が適正かどうかを確認する必要がある。 Further, when the surface soil displacement amount ε of the new surface soil block is several cm or more, the growth rate of the tree is automatically reduced to about half, and when it is 4 to 5 cm or more, the growth is stopped. When the amount of displacement falls within a few centimeters, the tree age coefficient μ is automatically updated using a predetermined tree growth rate. However, since the degree of such looseness varies from one slope to another, it is necessary for the locals to check the loosening recovery status and whether the tree age is appropriate by measuring the distance between simple triangulation piles at least once a year by the local community. There is.

各係数の取り方を表1に示す。データは10b 3u30 L1 などで表し、電算内部で数値処理を行う。植生はc型や複数のbsなどと表記する。地形は2i(ニイ・アイ)型など、摩擦係数τの値はL1(エル・イチ)型など、大きく緩んでいる場合はL2(エル・ニイ)型などと呼ぶ。なおこれらの係数は、今後の調査や、地形区や地質区や気候区によっては多少変更する場合がある。 Table 1 shows how to take each coefficient. Data is expressed as 10b 3u30 L1, etc., and numerical processing is performed inside the computer. Vegetation is expressed as c-type or multiple bs. The topography is called the 2i type, and the friction coefficient τ is called the L1 type, and when it is very loose, it is called the L2 type. These coefficients may change slightly depending on future surveys, topographic zones, geological zones, and climate zones.

このようにして毎回データを自動または手動で更新していくことで、将来予測精度を向上させることが可能になる。すなわちパソコン画面上で今後の経過年数と将来予測雨量Pを入力すれば、瞬時に樹齢など修正されて経過年数後の危険度予測図が得られる。本機能は防災計画を目的とした植生評価システムとして利用できる。これにより樹木の評価が数値で表されるので、里山の管理を行った場合の費用対効果判定も簡単にできる。このため行政側の対応は地元住民への減免や助成などの経済支援を講じることで効率の良い住民参加型の急傾斜対策を講じることが可能となる。 In this way, it is possible to improve future prediction accuracy by automatically or manually updating the data every time. That is, if a future elapsed year and a predicted rainfall amount P are input on the personal computer screen, the tree age and the like are instantaneously corrected, and a risk prediction diagram after the elapsed years can be obtained. This function can be used as a vegetation evaluation system for disaster prevention planning. As a result, the evaluation of trees is expressed numerically, so it is possible to easily determine the cost-effectiveness when managing satoyama. For this reason, the administrative side can take effective measures for steep slopes involving the participation of residents by providing economic support such as subsidies and subsidies for local residents.

斜面の表土変位量算出方法及び防災情報システムは住民参加型のみならず、広がりを持った土石流監視用や、同じく路線の斜面監視システムとしても有効である。以下に路線監視用としての実施例を示す。 The slope topsoil displacement calculation method and disaster prevention information system are effective not only for residents' participation, but also for wide debris flow monitoring and also for slope monitoring systems on routes. Examples for route monitoring are shown below.

道路管理システムでの実施例としては路線単位及び土木事務所など管轄区域全体の路線を一元的に管理する方法が考えられる。まず路線単位に地形図と航空写真を基に机上調査を実施し、予察図を作成する。予察図に基づき、第一次現地調査を実施し、本斜面変位量算出システムのデータを入力する。単位斜面ごとの降雨量−表土変位量εグラフを作成し、第二次現地調査を行い、全体の調整及び部分的なデータ修正を行う。このときに注意箇所を指摘し、必要であれば、簡易貫入試験など第三次現地調査計画を立案し、必要な個所に斜面警報装置の設置計画を提案する。基本的に毎年1回、データの見直しを行い、多量の降雨に見舞われた要注意箇所の点検を行い、推定変位量の検証を行う。斜面監視装置を適切に配置した後は、道路面付近の巡視のみで、変位量の検証が可能になり、調査費など人件費の大幅な削減につながる。この斜面監視装置が設置された段階で危険な斜面が把握されるので、その部分を雨量通行規制の対象としたり、地質調査を行ったりして、後日対策工事のための基礎資料とする。 As an embodiment in the road management system, a method of centrally managing the route of the entire jurisdiction area such as a route unit and a civil engineering office can be considered. First, a preliminary survey is created by conducting a desktop survey based on topographic maps and aerial photographs for each route. Based on the preliminary map, the first field survey will be conducted and the data of the slope displacement calculation system will be input. Create a rainfall-soil displacement ε graph for each unit slope, conduct a secondary field survey, and make overall adjustments and partial data corrections. At this time, point out the points of caution, and if necessary, develop a third field survey plan such as a simple penetration test, and propose a plan to install a slope alarm device at the necessary location. Basically, the data is reviewed once a year, the point of caution that has been hit by a large amount of rainfall is checked, and the estimated displacement is verified. After properly arranging the slope monitoring device, it becomes possible to verify the amount of displacement only by patrol around the road surface, leading to a significant reduction in labor costs such as survey costs. When this slope monitoring device is installed, dangerous slopes are grasped, so that part will be subject to rainfall traffic regulation and geological surveys will be used as basic data for countermeasure construction at a later date.

本斜面変位量算出方法により樹木が健全に生育できる環境を人工的に作ることが可能となり、その植生による斜面崩壊防止効果により、将来に向けてハード対策経費を大きく削減することができる。 This slope displacement calculation method makes it possible to artificially create an environment in which trees can grow soundly, and the vegetation can prevent the slope from collapsing, which can greatly reduce the cost of hardware measures for the future.

森林の育成は防災対策だけでなく環境対策としても優れ、CO2削減や森林資源の有効活用が可能となり、地域産業の振興に役立つ。海面上昇による臨界平野の水没危機が言われる今、山間部に安全で快適な生活空間確保され、将来省エネ型の自立した産業立地の基盤が形成される。 Forest development is excellent not only as a disaster prevention measure but also as an environmental measure, enabling CO2 reduction and effective use of forest resources, which is useful for the promotion of local industries. Now that the critical plains have been submerged due to sea level rise, a safe and comfortable living space is secured in the mountainous area, and a foundation for energy-saving independent industrial locations will be formed in the future.

世界的に温暖化対策や環境保護が言われる今、森林を育てる本斜面変位量算出方法は世界にも受け入れられると考えられ、特に我が国同様に、豪雨災害は深刻なアジアモンスーン各国やヨーロッパ山岳地帯における警戒システムとして使用される可能性があり、今後の我が国の一技術輸出型産業としての展開が期待される。 Now that global warming countermeasures and environmental protection are said globally, this slope displacement calculation method for nurturing forests is considered to be accepted by the world. Especially, as in Japan, heavy rain disasters are serious in Asian monsoon countries and European mountainous areas. It is likely to be used as a warning system in Japan and is expected to be developed as a technology export industry in Japan in the future.

表土変位量算出の基本的な概念を示す構造モデル図である。It is a structural model figure which shows the basic concept of topsoil displacement amount calculation. 構造モデルを数値化した係数モデル図である。It is the coefficient model figure which digitized the structure model. 急傾斜地崩壊危険個所の階層分布モデル図である。It is a hierarchy distribution model figure of the steep slope collapse danger part. 基本的な作業の流れを示す図である。It is a figure which shows the flow of basic work. 検討斜面の位置及び範囲の表し方を示す図である。It is a figure which shows how to express the position and range of an examination slope. 直線型平面形状の崩壊拡大の断面検討図を示す。A cross-sectional view of the collapse and expansion of a straight planar shape is shown. 周囲への崩壊拡大の平面検討図を示す。A plan view of the expansion of collapse to the surroundings is shown. 尾根型斜面の崩壊拡大の断面検討図を示す。A cross-sectional study of the collapse and expansion of the ridge slope is shown. 谷型斜面の崩壊拡大の断面検討図を示す。A cross-sectional study of the expansion of the valley slope is shown.

1 傾斜台
2 積み木
3 重心線
4 ひも
5 不安定部
6 安定斜面
7 一降雨期間に数cmの表土変位を生じる不安定斜面
8 一降雨期間の表土変位量が5cmを越える危険斜面
9 一降雨期間の表土変位量が5cmを越え増加している特別危険斜面
10 行政が担当
11 地元が担当
12 参照雨量
13 緯度経度情報
14 範囲情報
15 直線型斜面の表土
16 直線型斜面の平面形状係数β
17 尾根型斜面の平面形状係数β
18 谷型斜面の平面形状係数β
19 崩壊経路
20 防護対象物件
21 a 直線型斜面
22 b 尾根型斜面
23 c 谷型斜面
24 尾根型斜面の表土
25 谷型斜面の表土
D 表土の厚さ
D×δ×X 緩み係数と地質構造係数Xで調整した換算表土高さ
G 地形量
Δh 降雨による表土の重心移動量
K 不安定度
P 雨量
Q 地質量
S 植生量
X 地質構造に関する調整値
Y 水文に関する調整値
a 断面形状係数
β 平面形状係数
δ 緩み係数
ε 表土変位量
θ 表土面の傾斜角
λ 樹種係数
μ 樹齢係数
τ 摩擦係数
DESCRIPTION OF SYMBOLS 1 Inclination stand 2 Building block 3 Center of gravity line 4 String 5 Unstable part 6 Stable slope 7 Unstable slope which produces topsoil displacement of several centimeters in one rainy season 8 Danger slope whose topsoil displacement amount in one rainy season exceeds 5cm 9 One rainy season Specially hazardous slope 10 where the amount of topsoil displacement increases by more than 5 cm 11 The government is responsible 11 The local is responsible 12 Reference rainfall 13 Latitude and longitude information 14 Range information 15 Straight slope topsoil 16 Straight slope shape factor β
17 Plane shape factor β of ridge type slope
18 Planar shape factor β of valley-shaped slope
19 Collapse path 20 Property to be protected 21 a Straight slope 22 b Ridge slope 23 c Valley slope 24 Top soil on ridge slope 25 Top soil on valley slope D Top soil thickness D × δ × X Looseness coefficient and geological structure factor Converted topsoil height G adjusted by X Topography amount Δh Topsoil center of gravity movement due to rainfall K Instability P Rainfall Q Ground mass S Vegetation amount X Adjustment value related to geological structure Y Hydrological adjustment value a Sectional shape factor β Plane shape factor inclination angle λ species coefficient δ slack coefficient ε topsoil displacement θ topsoil bottom surface μ old coefficient τ coefficient of friction

Claims (5)

斜面の表土の不安定度Kを、
断面形状係数α×斜面の表土底面の傾斜角θ(度)の正接関数で示される地形量Gと、斜面の表土厚さD(m)×緩み係数δ×地質構造に関する調整値Xに、平面形状係数β×雨量P×水文に関する調整値Yで求めた重心移動量Δhを加えた地質量Q、との積からなる不安定総量から、
樹種係数λ×樹齢係数μで表す植生量S+表土を構成する土塊間の摩擦係数τで求めた安定総量を差し引いて不安定Kを求める
K={(α×tanθ)×(D×δ×X+β×P×Y)−(λ×μ+τ)}式1と、不安定度Kの二乗が斜面の表土変位量εとなり、連続雨量に基づく表土変位量εが5cm〜10cmになると危険な状況になり、やがて崩壊に至る状況を、これまでの崩壊事例をできる限り同時に説明できるよう試行により決定された植生、地形、地質などの係数を式1に代入することを特徴とする斜面の表土変位量算出方法。
Instability K of the topsoil of the slope,
Cross section shape factor α × topography amount G indicated by tangent function of slope top surface slope angle θ (degrees), slope top soil thickness D (m) × loosening factor δ × geological structure adjustment value X From the unstable total amount consisting of the product of the shape factor β × rainfall P × the center of gravity Q obtained by adding the center-of-gravity movement amount Δh obtained by the adjustment value Y regarding hydrology,
Determining the degree of instability K by subtracting the total amount of vegetation S expressed by the tree species coefficient λ × the age coefficient μ + the friction coefficient τ between the soil blocks constituting the top soil K = {(α × tan θ) × (D × δ × X + β × P × Y) − (λ × μ + τ)} Equation 1 and the square of the degree of instability K becomes the topsoil displacement amount ε of the slope, and if the topsoil displacement amount ε based on continuous rainfall becomes 5 cm to 10 cm, the situation becomes dangerous. Slope topsoil displacement characterized by substituting coefficients such as vegetation, topography, geology, etc., determined by trials into Equation 1 so that the situation leading to collapse can be explained at the same time as much as possible. Calculation method.
前記表土の不安定総量は、斜面の表土底面の傾斜角θ(度)が大であるほど大きく、また斜面の表土厚さが大であるほど大きく、そして表土がいくら厚くても、斜面の表土底面の傾斜角がゼロであれば、不安定総量はゼロなので、斜面の表土の不安定総量を(α×tanθ)×(D×δ×X+β×P×Y)で表す斜面の表土の不安定性の判別方法を特徴とする請求項1に記載の斜面の表土変位量算出方法。 The total amount of instability of the topsoil increases as the slope angle θ (degree) of the topsoil bottom of the slope increases, increases as the topsoil thickness increases, and no matter how thick the topsoil is, If the slope of the bottom surface is zero, the total amount of instability is zero. Therefore, the instability of the topsoil on the slope is expressed as (α × tanθ) × (D × δ × X + β × P × Y). The method for calculating the amount of displacement of a topsoil on a slope according to claim 1, characterized in that: 前記斜面表土の安定総量は、植生量Sと表土を構成する土塊間の摩擦係数τの和で表されるが、植生量Sに関して考えると、樹木が成長するに従い、根が深く進入して表土を縛り、土を補強するので、その補強度合いは、広葉樹で大きく、草本類で小さく、従い植物による斜面の表土の補強効果を、樹種係数λと樹齢係数μの積からなる植生量Sと、表土を構成する土塊間の摩擦係数τの和(λ×μ+τ)で表す斜面の表土の安定性算出方法を特徴とする請求項1に記載の斜面の表土変位量算出方法。 The stable total amount of the slope top soil is represented by the sum of the vegetation amount S and the friction coefficient τ between the soil blocks constituting the top soil. Considering the vegetation amount S, as the tree grows, the roots deeply enter and the top soil , And the soil is reinforced, the degree of reinforcement is large in broad-leaved trees, small in herbs, and the vegetation amount S consisting of the product of the tree species coefficient λ and the age coefficient μ The slope topsoil displacement calculation method according to claim 1, characterized by a slope topsoil stability calculation method represented by a sum of friction coefficients τ between soil blocks constituting the topsoil (λ × μ + τ). 前記斜面の表土の不安定総量は、測定可能な斜面の表土の厚さDを基本とするが、緩み係数δや測定不可能な地質構造に関する調整値Xからなるその他の要因で補正する必要がある一方、雨量Pに基づく重心移動量Δhも同じく測定不能な水文に関する調整値Yで補正する必要があるが、これら測定不能なXとYを求める方法として、条件の異なる過去2回の降雨イベントにおける樹木の根曲がり亀裂の有無やその程度から、過去2回の表土変位量ε1、ε2を、植生、地形、地質などの係数に基づいて推定して、2つの式から連立によりX、Yを求める不確定値の算出方法を特徴とする請求項1〜2のいずれか1項に記載の斜面の表土変位量算出方法。 The total amount of instability of the topsoil on the slope is based on the thickness D of the topsoil on the slope that can be measured, but it must be corrected by other factors including the looseness coefficient δ and the adjustment value X on the geological structure that cannot be measured. On the other hand, the center-of-gravity movement amount Δh based on the rainfall P also needs to be corrected with the adjustment value Y related to the hydrological unmeasurable, but as a method of obtaining these unmeasurable X and Y, the past two rainfall events with different conditions Based on the presence or degree of cracks at the roots of trees in Japan, the past two topsoil displacements ε1 and ε2 are estimated based on coefficients such as vegetation, topography, and geology, and X and Y are obtained by simultaneous equations from the two equations The slope topsoil displacement calculation method according to any one of claims 1 to 2, characterized in that an uncertain value is calculated. 一般利用者が請求項1に記載の式1の雨量を除く、表土層厚、地形、地質、植生に関する各係数、及び調整値X、Yに関する評価斜面の現地データを、ウェブサーバ内のデータベースに入力し、同データを毎年半自動で更新することにより、リアルタイム雨量を自動的に参照して現時点での雨量に対する表土変位量εを請求項1記載の斜面の表土変位量算出方法で求め、既存の地理情報データベース使用して、インターネットや地上デジタル放送を通じて、一般利用者や自主防災組織並びに地方自治体のパソコンや、テレビ画面に表示する防災情報システム。
General users exclude the rainfall of Formula 1 according to claim 1 and the local data of the evaluation slope regarding the topsoil layer thickness, topography, geology, vegetation coefficients, and adjustment values X and Y in the database in the web server By inputting and updating the data semi-automatically every year, the real-time rainfall is automatically referred to determine the topsoil displacement amount ε relative to the current rainfall by the slope topsoil displacement calculation method according to claim 1 , A disaster prevention information system that uses a geographic information database to display to general users, voluntary disaster prevention organizations, local government computers, and TV screens via the Internet and digital terrestrial broadcasting.
JP2008284245A 2008-11-05 2008-11-05 Slope topsoil displacement calculation method and disaster prevention information system Expired - Fee Related JP4404320B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284245A JP4404320B1 (en) 2008-11-05 2008-11-05 Slope topsoil displacement calculation method and disaster prevention information system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284245A JP4404320B1 (en) 2008-11-05 2008-11-05 Slope topsoil displacement calculation method and disaster prevention information system

Publications (2)

Publication Number Publication Date
JP4404320B1 true JP4404320B1 (en) 2010-01-27
JP2010112035A JP2010112035A (en) 2010-05-20

Family

ID=41706593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284245A Expired - Fee Related JP4404320B1 (en) 2008-11-05 2008-11-05 Slope topsoil displacement calculation method and disaster prevention information system

Country Status (1)

Country Link
JP (1) JP4404320B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105372702A (en) * 2014-08-11 2016-03-02 中国石油化工股份有限公司 Quantitative description method for torsional/tensional geological structure
CN105512443A (en) * 2016-01-28 2016-04-20 成都理工大学 Method for judging dangerousness of shallow soil landslide
CN108385644A (en) * 2018-01-31 2018-08-10 北京城建勘测设计研究院有限责任公司 A kind of ground coefficient of volumetric expansion test method
CN111651901A (en) * 2020-06-29 2020-09-11 中国有色金属工业昆明勘察设计研究院有限公司 Time course analysis method for Xigeda stratum rock slope dynamic stability
CN113033108A (en) * 2021-04-19 2021-06-25 昆明理工大学 Side slope reliability judgment method based on AdaBoost algorithm
CN115238850A (en) * 2022-06-30 2022-10-25 西南交通大学 Mountain slope displacement prediction method based on MI-GRA and improved PSO-LSTM
CN115684545A (en) * 2022-10-25 2023-02-03 水利部海河水利委员会海河流域水土保持监测中心站 Water and soil instability warning device and system for abandoned slag yard

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6701839B2 (en) * 2016-03-15 2020-05-27 日本電気株式会社 Sensor installation support device, data processing device, sensor installation support method and program
WO2018027332A1 (en) * 2016-08-08 2018-02-15 Comercial E Industrial Gesecology Limitada Method and system for the analysis and generation of early or predictive alerts concerning the stability of slopes in open-pit mines
JP7153330B2 (en) * 2018-01-22 2022-10-14 国立大学法人京都大学 Sediment disaster prediction device, computer program, sediment disaster prediction method and map information

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105372702A (en) * 2014-08-11 2016-03-02 中国石油化工股份有限公司 Quantitative description method for torsional/tensional geological structure
CN105372702B (en) * 2014-08-11 2017-09-12 中国石油化工股份有限公司 Turn round the quantitative description method of a geologic structure
CN105512443A (en) * 2016-01-28 2016-04-20 成都理工大学 Method for judging dangerousness of shallow soil landslide
CN105512443B (en) * 2016-01-28 2018-07-13 成都理工大学 The dangerous judgment method of shallow-layer landslide o earth slope
CN108385644A (en) * 2018-01-31 2018-08-10 北京城建勘测设计研究院有限责任公司 A kind of ground coefficient of volumetric expansion test method
CN111651901A (en) * 2020-06-29 2020-09-11 中国有色金属工业昆明勘察设计研究院有限公司 Time course analysis method for Xigeda stratum rock slope dynamic stability
CN111651901B (en) * 2020-06-29 2023-03-07 中国有色金属工业昆明勘察设计研究院有限公司 Time course analysis method for Xigeda stratum rock slope dynamic stability
CN113033108A (en) * 2021-04-19 2021-06-25 昆明理工大学 Side slope reliability judgment method based on AdaBoost algorithm
CN113033108B (en) * 2021-04-19 2022-05-27 昆明理工大学 Side slope reliability judging method based on AdaBoost algorithm
CN115238850A (en) * 2022-06-30 2022-10-25 西南交通大学 Mountain slope displacement prediction method based on MI-GRA and improved PSO-LSTM
CN115684545A (en) * 2022-10-25 2023-02-03 水利部海河水利委员会海河流域水土保持监测中心站 Water and soil instability warning device and system for abandoned slag yard
CN115684545B (en) * 2022-10-25 2024-04-02 水利部海河水利委员会海河流域水土保持监测中心站 Water and soil instability warning device and system for waste slag field

Also Published As

Publication number Publication date
JP2010112035A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP4404320B1 (en) Slope topsoil displacement calculation method and disaster prevention information system
Martín-Fernández et al. An empirical approach to estimate soil erosion risk in Spain
Karamesouti et al. Erosion rate predictions from PESERA and RUSLE at a Mediterranean site before and after a wildfire: Comparison & implications
Day et al. Measuring bluff erosion part 2: pairing aerial photographs and terrestrial laser scanning to create a watershed scale sediment budget
Claessens et al. Modelling landslide hazard, soil redistribution and sediment yield of landslides on the Ugandan footslopes of Mount Elgon
Silva et al. Assessment of physical vulnerability and potential losses of buildings due to shallow slides
MARTINEZ et al. Water and wind erosion risk in natural parks-A case study in “Las Batuecas-Sierra de Francia” and “Quilamas” protected parks (Central System, Spain)
CN111415065A (en) Mountain disaster ecological damage risk evaluation method based on action process
Svajda et al. Trail impact monitoring in rocky mountain national park, USA
CN113470333A (en) Risk assessment and monitoring early warning system for shallow landslide of line engineering corridor
Shaban et al. Assessment of road instability along a typical mountainous road using GIS and aerial photos, Lebanon–eastern Mediterranean
Campbell et al. A LiDAR-based analysis of the effects of slope, vegetation density, and ground surface roughness on travel rates for wildland firefighter escape route mapping
Svoray et al. Catchment scale analysis of the effect of topography, tillage direction and unpaved roads on ephemeral gully incision
Lin et al. Evaluation of soil erosion risk for watershed management in Shenmu watershed, central Taiwan using USLE model parameters
Singh et al. A modified approach for semi-quantitative estimation of physical vulnerability of buildings exposed to different landslide intensity scenarios
Wahono Applications of statistical and heuristic methods for landslide susceptibility assessments: A case study in Wadas Lintang Sub District, Wonosobo Regency, Central Java Province, Indonesia
Bernardie et al. Estimation of landslides activities evolution due to land–use and climate change in a Pyrenean valley
Odhiambo et al. The use of remote sensing to map landslide prone areas in Makhado Municipality of Limpopo Province, South Africa
Alford et al. Monitoring of glaciers, climate, and runoff in the Hindu Kush-Himalaya Mountains
Shaviraachin Flood simulation: a case study in the lower Limpopo valley, Mozambique using the SOBEK flood model
Heck Development of Multi-Catchment Rating Curves for Streams of Appalachian Mixed-Land-Use Watersheds: Preliminary Results
Teguh et al. Landslide disaster mitigation plan in Karang Tengah Village, Bantul district, Yogyakarta
Miller et al. Unprecedented winter rainfall initiates large snow avalanche and mass movement cycle in New Zealand's Southern Alps/Kā Tiritiri o te Moana
Douglas et al. Addressing the Impacts of Climate Change on US Army Alaska with Decision Support Tools Developed Through Field Work and Modeling
Shahandashti et al. Slope Repair and Maintenance Management System Final Report

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4404320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141113

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees