JP4402815B2 - Nb3Al superconducting multi-core wire and manufacturing method thereof - Google Patents

Nb3Al superconducting multi-core wire and manufacturing method thereof Download PDF

Info

Publication number
JP4402815B2
JP4402815B2 JP2000216950A JP2000216950A JP4402815B2 JP 4402815 B2 JP4402815 B2 JP 4402815B2 JP 2000216950 A JP2000216950 A JP 2000216950A JP 2000216950 A JP2000216950 A JP 2000216950A JP 4402815 B2 JP4402815 B2 JP 4402815B2
Authority
JP
Japan
Prior art keywords
superconducting
phase
wire
peripheral portion
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000216950A
Other languages
Japanese (ja)
Other versions
JP2002033025A (en
Inventor
孝夫 竹内
信哉 伴野
仁 和田
浩平 田川
英純 森合
和彦 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
National Institute for Materials Science
Original Assignee
Hitachi Cable Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, National Institute for Materials Science filed Critical Hitachi Cable Ltd
Priority to JP2000216950A priority Critical patent/JP4402815B2/en
Publication of JP2002033025A publication Critical patent/JP2002033025A/en
Application granted granted Critical
Publication of JP4402815B2 publication Critical patent/JP4402815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はNb3Al超電導多芯線およびその製造方法に関し、特に、高磁界特性およびコイル等の成形加工性に優れるNb3Al超電導多芯線およびその製造方法に関する。
【0002】
【従来の技術】
Nb3Al化合物系超電導線は、超電導線として一般的なNb3SnおよびNbTiに比較して、高磁界における臨界電流密度特性に優れているため、核融合炉や高エネルギ−加速器などの超電導線自身に大きな電磁力が加わる大型・応用超電導機器への利用が期待されている。
【0003】
従来のNb3Al化合物系超電導線の製造方法として、急熱急冷・変態(RHQT)法がある。このRHQT法では、例えば、ジェリ−ロ−ル(Jelly−Roll;以下、JRとする)法に基づいて形成されたNb/Al多芯複合線を1m/secの速度で移動させつつ通電加熱することにより0.1秒で2000℃まで加熱し、冷媒と電極を兼ねた液体Gaに浸漬することによって体心立方(bcc)相のNbに25at%Alが過飽和に固溶したNb(Al)ssを形成する。そして、このNb(Al)ssに700℃から800℃の変態熱処理を施すことによってbcc相からA15型化合物ヘマッシブ変態させることにより化学量論組成のNb3Al化合物系超電導線を形成する。
【0004】
上記したRHQT法に基づくNb(Al)ssは、冷間加工性に優れることからコイル状に巻いた状態で変態熱処理を施すワインド・アンド・リアクト(Wind and React)法を適用できる。このため、巻き径が小なる高磁界用内層コイルの成形に有効であるが、変態熱処理による積層欠陥の生成が不可避であり臨界温度Tcは17.9K、また臨界磁場Bc2(4.2K)は27Tと超電導特性に限界がある。
【0005】
このような超電導特性を改善するものとして、急熱急冷における到達最大温度を下げる、あるいはCu、Ge、Si等の第3元素を添加することによってA15型化合物が直接生成され、化学量論組成のNb3Al化合物が形成されることが確認されている。このA15型化合物は長範囲規則性が低下した不規則性の特徴を有し、規則化のために700℃から800℃の熱処理を施すことによって臨界温度Tcは18.5K、またBc2(4.2K)は29Tまで向上し、高磁界での臨界電流密度Jcが改善される。
【0006】
【発明が解決しようとする課題】
しかし、従来のA15型化合物が直接生成するNb3Al化合物系超電導線では、熱処理によって不規則A15型化合物を規則化すると高磁界での臨界電流密度Jcが向上する反面、低磁界での臨界電流密度Jcが低下する。また、脆くなってコイル成形時の巻き込み性や撚り線導体化等の成形加工性が低下する。機械的強度は超電導部に対するNbマトリックスの割合を大にすることにより補強できるが、この場合にはoverallJcが大幅に低下するという問題がある。
【0007】
従って、本発明の目的は、高磁界特性に優れ、かつ、コイル成形等の成形加工を阻害しない機械的強度を有するNb3Al超電導多芯線およびその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するため、過飽和固溶体からA15相に変態したNb3Alフィラメントおよび不規則A15相を規則化させたNb3Alフィラメントを同一の断面内に有するNb3Al超電導多芯線を提供する。
【0009】
また、本発明は、上記目的を達成するため、過飽和固溶体から変態したNb3Alが体積比で50%以上のNb3Alフィラメントと、
該Nb3Alフィラメントに不規則A15相から規則化したNb3Alフィラメントを分散・混合した構成を有するNb3Al超電導多芯線を提供する。
【0010】
また、本発明は、上記目的を達成するため、Nbのマトリックスで被覆した複数本のサブマルチ線を内周部と外周部に積層して積層体を形成し、
前記積層体をNbのマトリックスで被覆してマルチ線を形成し、
前記マルチ線を所定の温度で1次加熱し、
1次加熱された前記マルチ線を冷却用金属材で冷却処理して前記外周部に過飽和固溶体フィラメント、前記内周部に不規則A15相を生成させ、
冷却後に所定の温度で2次加熱して前記外周部に過飽和固溶体からA15相に変態したNb3Alフィラメント、前記内周部に不規則A15相を規則化させたNb3Alフィラメントを生成させるNb3Al超電導多芯線の製造方法を提供する。
【0011】
上記したNb3Al超電導多芯線およびその製造方法によると、延性に富む過飽和固溶体からA15相に変態したNb3Alフィラメントと超電導特性の良好な不規則A15相を規則化させたNb3Alフィラメントとを同一の断面内に配置することによって、曲げ等の機械的歪みによる不規則A15相Nb3Alフィラメントの破断を防ぐとともに超電導特性、特に、overallJcを大にできる。
【0012】
過飽和固溶体Nb(Al)ssを生成させるには高温で固溶体を形成する必要がある。外周部のフィラメントがそのような条件を満たすとき、線材・横断面の中心部で不規則A15相フィラメントを生成させるにはNbとAl間の拡散反応が終了していないことが必須で、そのためには、外周部に配されるものと比較してシングル線材のAlあるいはAl合金の厚さ(太さ)を2倍以上大きくする必要がある。一方、その比が100を越えると未反応Nbが大量に残ってNb3Alの体積比が低くなりoverallJcが小になる。また、Nb(Al)ssの固溶限は温度の上昇とともに増加するので、中心部に配置されるサブマルチ線の公称Al濃度を外周部に配されるものと比較して1at%以上高くすることにより、過飽和固溶体フィラメントと不規則A15相フィラメントが共存する加熱温度域が存在する。公称Al濃度が5at%以上高くなるとNb2Al相が大量に生成し、結局、不規則A15相の体積比が低くなりoverallJcは小さくなってしまう。
【0013】
Nb(Al)ssの固溶限は、Cu、Ge、Siの第3元素を添加することにより減少する。中心部に配置されるサブマルチ線にAl合金、また外周部に純Alを用いると不規則A15相フィラメントと過飽和固溶体フィラメントを同時に生成することができる。そのためにはCuを0.5at%、Geを5at%、またSiを5at%以上それぞれAlに添加して過飽和固溶体を不安定化させる必要がある。しかし、添加量がそれぞれ2at%、20at%、15at%を越えるとAl合金が脆くなり、Nb/Al複合体の加工性が低下する。過飽和固溶体と不規則A15相を混合してフィラメントを形成する場合は、過飽和固溶体の体積率を50%以上とすることでフィラメントの最低限の加工性を確保できる。
【0014】
【発明の実施の形態】
表1は、後述する実施例1〜4で形成されるNb3Al超電導多芯線の構成、機械的特性、および超電導特性を示す。
【表1】

Figure 0004402815
本発明のNb3Al超電導多芯線は、サブマルチ線を複数本組み込んでマルチ構造線とすることにより形成される。サブマルチ線の製造方法には多くの方法が存在するが、本発明ではJR法とロッドインチュ−ブ(RIT)法で作製したサブマルチ線について説明する。
【0015】
〔実施例1〕
図1は、Nb3Al超電導多芯線の断面を示し、(a)は本発明の実施の形態にかかるマルチ線、(b)は比較例としての標準試料であるマルチ線である。
(a)のマルチ線は、中心部にNbジャケットで被覆したAg安定化材1を7本配置し、その周囲に内周部としてAl−2at%Cu合金のフィラメント数が7999(421×19)本のNb/Al−2at%Cu・RIT法サブマルチ線2を1層(計12本)配置し、また、その外側に外周部としてNb−25at%Alの組成を有し、Alの層厚が100nmのJRNb/Alサブマルチ線3を3層(計66本)配置してマルチ線4を形成し、このマルチ線4に急熱急冷(RHQ)処理を施した。
【0016】
(b)のマルチ線は、中心部にNbジャケットで被覆したAg安定化材1を7本配置し、その周囲に内周部としてフィラメント状のNb5を配置し、また、その外側に外周部としてNb−25at%Alの組成を有し、Alの層厚が100nmのJRNb/Alサブマルチ線3を3層(計66本)配置しており、急熱急冷条件の異なる標準試料1および2としている。このマルチ線についても同様に急熱急冷処理を施した。
【0017】
図2は、急熱急冷処理のときの通電電流に対する変態熱処理後の臨界温度Tcを示し、(a)は実施例1のマルチ線の臨界温度Tcの変化、(b)は標準試料のマルチ線の臨界温度Tcの変化である。RHQ処理後、定電流電源から供給される電流値による急熱急冷処理条件に基づいて、800℃で10時間の変態熱処理を施したところ、本発明のマルチ線では、外周部に配置されたJRサブマルチ(フィラメント)だけが過飽和固溶体になっており、内周部に配置されたRITサブマルチ(フィラメント)では不規則A15相が生じる。臨界温度Tcも18.2Kを越える値が得られている。表1に示すように、低磁界の臨界電流密度Jcが若干小さくなるが、高磁界での臨界電流密度Jcは改善され、良好な曲げ加工性を保持している。また、高い臨界温度Tcを示すRHQ条件の選択範囲が広い。
【0018】
比較例のマルチ線では、標準試料1について、不規則A15相が生成するRHQ条件では臨界温度Tcが高く、表1に示すように高磁界での臨界電流密度Jcが大きい。しかし、低磁界になっても臨界電流密度Jcは向上せず、急冷後の曲げ加工性が低下する。標準試料2について、過飽和固溶体が生成するRHQ条件では臨界温度Tcが低いが、急冷後は表1に示すように極めて良好な曲げ加工性を有する。磁界が減少すると臨界電流密度Jcは向上するが、高磁界側で臨界電流密度Jcは急速に劣化する。このようにRHQ条件により特性が大きく異なる。
【0019】
〔実施例2〕
中心部にNbジャケットで被覆したAg安定化材を7本配置し、その周囲に内周部としてNb−25at%Alの組成を有し、Alの層厚が1μmのJRNb/Alサブマルチ線を配置し、また、その外側に外周部としてNb−25at%Alの組成を有し、Alの層厚が100nmのJRNb/Alサブマルチ線を配置してマルチ線を形成した。内周部に配置したJRNb/Alサブマルチ線のAlの層厚は外周部の層厚より10倍厚く形成されている。
【0020】
このマルチ線に急熱急冷処理を施したところ、外周部に配置されたJRNb/Alサブマルチ(フィラメント)は過飽和固溶体になっており、内周部に配置されたJRNb/Alサブマルチ(フィラメント)では不規則A15相が生じた。このマルチ線に800℃で10時間の変態熱処理を施したところ、表1に示すように、低磁界の臨界電流密度Jcが若干小さくなるものの高磁界での臨界電流密度Jcは改善され、良好な曲げ加工性が得られた。
【0021】
〔実施例3〕
Nbジャケットで被覆したAg安定化材を中心部に7本配置し、その周囲に内周部としてNb−27.5at%Alの組成を有し、Alの層厚が100nmのJRNb/A1サブマルチ線を配置し、また、その外側に外周部としてNb−25at%Alの組成を有し、Alの層厚が100nmのJRNb/Alサブマルチ線を配置してマルチ線を形成した。内周部に配置したサブマルチ線の公称Al濃度は外周部の公称Al濃度より2.5at%高くした。
【0022】
このマルチ線に急熱急冷処理を施したところ、外周部に配置されたJRNb/Alサブマルチ(フィラメント)は過飽和固溶体になっており、内周部に配置されたJRNb/Alサブマルチ(フィラメント)では不規則A15相が生じた。このマルチ線に800℃で10時間の変態熱処理を施したところ、表1に示すように、低磁界の臨界電流密度Jcが若干小さくなるものの高磁界での臨界電流密度Jcは改善され、良好な曲げ加工性が得られた。
【0023】
〔実施例4〕
Nbジャケットで被覆したAg安定化材を中心部に7本配置し、その周囲に内周部としてNb/Al−2at%CuのRIT法7芯線40本とNb/Al−5at%MgのRIT法7芯線81本を混合して作成したサブマルチ線を配置し、また、その外側に外周部と同一のサブマルチ線を配置してマルチ線を形成した。
【0024】
このマルチ線に急熱急冷処理を施したところ、各フィラメントには過飽和固溶体と不規則A15相が約7:3の割合で混合して生じた。このマルチ線を800℃で10時間の変態熱処理を施したところ、表1に示すように、低磁界の臨界電流密度Jcが若干小さくなるものの高磁界での臨界電流密度Jcは改善される。この場合でも、コイル成形に必要な曲げ加工性は確保されている。
【0025】
上記したNb3Al超電導多芯線によると、断面内での配置あるいは混合比を制御して、不規則A15相と過飽和固溶体を同時に生じさせるようにしたので、過飽和固溶体が不規則A15相を機械的に支持する。このことによって余分なNbマトリックスを増大させることなしに良好な成形加工性を保持しながら高磁界特性が改善される。例えば、Wind and React法に基づく巻き径の小なる1GHzクラスNMR超電導マグネットの最内層コイル等の形成が可能になる。また、撚り線による大電流容量化も可能となり、最大経験磁場が高くなる次世代核融合炉超電導マグネット導体に適する。超電導特性では、実用線材として使用されているNb3Snの2倍以上の臨界電流密度Jcを示し、優れた耐歪み特性を有するので、核融合炉や高エネルギ−加速器などの大型超電導システムの強磁場化を実現するとともにシステム全体のコンパクト化を図ることができ、装置コストを低減することができる。
【0026】
なお、上記した実施の形態で適用した公称Al濃度、NbとAl間の拡散距離、合金添加の有無等の製造パラメ−タは、JR法、RIT法以外の他の製造方法であるクラッドチップ押出し法、粉末押出し法においても同様に適用することができる。
【0027】
【発明の効果】
以上説明した通り、本発明のNb3Al超電導多芯線およびその製造方法によると、延性に富む過飽和固溶体からA15相に変態したNb3Alフィラメントと超電導特性の良好な不規則A15相を規則化させたNb3Alフィラメントを同一の断面内に配置したため、高磁界特性に優れ、かつ、コイル成形等の成形加工を阻害しない機械的強度を付与することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るNb3Al超電導多芯線を示し、
(a)は、本発明のマルチ線の断面図
(b)は、比較例としての標準試料であるマルチ線の断面図
【図2】急熱急冷処理のときの通電電流に対する変態熱処理後の臨界温度Tcを示す説明図
【符号の説明】
1 Ag安定化材
2 Nb/Al−2at%Cu・RIT法サブマルチ線
3 JRNb/Alサブマルチ線
4 マルチ線
5 Nb[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an Nb 3 Al superconducting multicore wire and a method for manufacturing the same, and more particularly to an Nb 3 Al superconducting multicore wire excellent in high magnetic field characteristics and moldability such as a coil and a method for manufacturing the same.
[0002]
[Prior art]
Nb 3 Al compound-based superconducting wires are superior to Nb 3 Sn and NbTi, which are common as superconducting wires, and have superior critical current density characteristics in a high magnetic field. Therefore, superconducting wires such as fusion reactors and high energy accelerators are used. It is expected to be used for large and applied superconducting equipment where large electromagnetic force is applied to itself.
[0003]
As a conventional method for producing a Nb 3 Al compound-based superconducting wire, there is a rapid thermal quenching / transformation (RHQT) method. In this RHQT method, for example, the Nb / Al multi-core composite wire formed based on the Jelly-Roll method (hereinafter referred to as JR) is heated while being moved at a speed of 1 m / sec. Nb (Al) ss in which 25 at% Al is dissolved in supersaturation in Nb of the body-centered cubic (bcc) phase by heating to 2000 ° C. in 0.1 seconds and immersing in liquid Ga that also serves as a refrigerant and an electrode. Form. Then, a Nb 3 Al compound superconducting wire having a stoichiometric composition is formed by subjecting this Nb (Al) ss to a transformation heat treatment from 700 ° C. to 800 ° C. to cause a massive transformation from the bcc phase to the A15 type compound.
[0004]
Since Nb (Al) ss based on the above RHQT method is excellent in cold workability, a Wind and React method in which transformation heat treatment is performed in a coiled state can be applied. Therefore, it is effective for forming a high magnetic field inner layer coil with a small winding diameter, but it is inevitable that a stacking fault is generated by transformation heat treatment, the critical temperature Tc is 17.9K, and the critical magnetic field Bc2 (4.2K) is There is a limit to 27T and superconducting properties.
[0005]
In order to improve such superconducting characteristics, an A15 type compound is directly generated by lowering the maximum temperature reached in rapid thermal quenching or by adding a third element such as Cu, Ge, Si, etc. It has been confirmed that an Nb 3 Al compound is formed. This A15 type compound has the characteristic of irregularity in which long-range regularity is lowered, and the critical temperature Tc is 18.5K and Bc2 (4. 2K) is improved to 29T, and the critical current density Jc in a high magnetic field is improved.
[0006]
[Problems to be solved by the invention]
However, in the conventional Nb 3 Al compound-based superconducting wire directly produced by the A15 type compound, the critical current density Jc in a high magnetic field is improved when the irregular A15 type compound is ordered by heat treatment, but the critical current in a low magnetic field is improved. The density Jc decreases. Moreover, it becomes brittle and the winding workability at the time of coil forming and forming workability such as making a stranded wire conductor are reduced. The mechanical strength can be reinforced by increasing the ratio of the Nb matrix to the superconducting part, but in this case, there is a problem that the overall Jc is greatly reduced.
[0007]
Accordingly, an object of the present invention is to provide an Nb 3 Al superconducting multi-core wire having excellent high magnetic field characteristics and having mechanical strength that does not hinder forming processing such as coil forming, and a method for manufacturing the same.
[0008]
[Means for Solving the Problems]
The present invention, in order to achieve the above object, Nb 3 Al superconducting multifilamentary wire having a Nb 3 Al filaments obtained by ordering the Nb 3 Al filaments and irregular A15 phase was transformed to A15 phase from a supersaturated solid solution within the same section I will provide a.
[0009]
In order to achieve the above object, the present invention provides an Nb 3 Al filament whose Nb 3 Al transformed from a supersaturated solid solution has a volume ratio of 50% or more,
Providing Nb 3 Al superconducting multifilamentary wire having a configuration in which the Nb 3 Al filaments dispersed and mixed Nb 3 Al filaments ordered from a disordered A15 phase.
[0010]
Further, in order to achieve the above object, the present invention forms a laminate by laminating a plurality of sub-multi wires covered with a Nb matrix on the inner peripheral portion and the outer peripheral portion,
The laminated body is covered with a Nb matrix to form a multi-line,
The multi-wire is primarily heated at a predetermined temperature,
The first heated multi-wire is cooled with a cooling metal material to generate a supersaturated solid solution filament on the outer periphery, and an irregular A15 phase on the inner periphery,
After cooling, secondary heating is performed at a predetermined temperature to generate Nb 3 Al filaments transformed from a supersaturated solid solution into an A15 phase in the outer peripheral part, and Nb 3 Al filaments in which irregular A15 phase is ordered in the inner peripheral part. 3 A method for producing an Al superconducting multi-core wire is provided.
[0011]
According to Nb 3 Al superconducting multifilamentary wire and a manufacturing method thereof described above, the Nb 3 Al filaments obtained by ordering a good irregular A15 phase of Nb 3 Al filaments and superconducting properties were transformed into A15 phase from a supersaturated solid solution rich in ductility Are disposed in the same cross section, the breakage of the irregular A15 phase Nb 3 Al filament due to mechanical strain such as bending can be prevented, and the superconducting properties, particularly overall Jc, can be increased.
[0012]
In order to generate the supersaturated solid solution Nb (Al) ss, it is necessary to form the solid solution at a high temperature. When the outer peripheral filament satisfies such a condition, it is essential that the diffusion reaction between Nb and Al is not completed in order to generate an irregular A15 phase filament at the center of the wire / cross section. The thickness (thickness) of the Al or Al alloy of the single wire needs to be increased by at least twice as compared with that disposed on the outer peripheral portion. On the other hand, when the ratio exceeds 100, a large amount of unreacted Nb remains, the volume ratio of Nb 3 Al becomes low, and overallJc becomes small. In addition, since the solid solubility limit of Nb (Al) ss increases as the temperature rises, the nominal Al concentration of the sub-multi line arranged in the center is increased by 1 at% or more compared to that arranged in the outer periphery. Therefore, there exists a heating temperature region where the supersaturated solid solution filament and the irregular A15 phase filament coexist. When the nominal Al concentration is increased by 5 at% or more, a large amount of Nb 2 Al phase is generated, and eventually the volume ratio of the irregular A15 phase is lowered and overallJc becomes small.
[0013]
The solid solubility limit of Nb (Al) ss is reduced by adding the third element of Cu, Ge, and Si. When an Al alloy is used for the sub-multi-wire arranged at the center and pure Al is used for the outer periphery, irregular A15 phase filaments and supersaturated solid solution filaments can be generated simultaneously. For this purpose, it is necessary to destabilize the supersaturated solid solution by adding Cu at 0.5 at%, Ge at 5 at%, and Si at 5 at% or more to Al. However, if the addition amount exceeds 2 at%, 20 at%, and 15 at%, respectively, the Al alloy becomes brittle and the workability of the Nb / Al composite is lowered. When the supersaturated solid solution and the irregular A15 phase are mixed to form a filament, the minimum workability of the filament can be ensured by setting the volume ratio of the supersaturated solid solution to 50% or more.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Table 1 shows the configuration, mechanical characteristics, and superconducting characteristics of Nb 3 Al superconducting multicore wires formed in Examples 1 to 4 described later.
[Table 1]
Figure 0004402815
The Nb 3 Al superconducting multi-core wire of the present invention is formed by incorporating a plurality of sub-multi wires into a multi-structure wire. There are many methods for manufacturing a sub-multi wire. In the present invention, a sub-multi wire produced by a JR method and a rod-in-tube (RIT) method will be described.
[0015]
[Example 1]
FIG. 1 shows a cross section of an Nb 3 Al superconducting multi-core wire, where (a) is a multi-wire according to an embodiment of the present invention, and (b) is a multi-wire that is a standard sample as a comparative example.
In the multi-wire of (a), seven Ag stabilizing materials 1 covered with an Nb jacket are arranged in the center, and the number of filaments of Al-2 at% Cu alloy is 7999 (421 × 19) as the inner periphery. One Nb / Al-2 at% Cu · RIT method sub-multi-wire 2 is arranged (total of 12 lines), and the outer periphery has a composition of Nb-25 at% Al, and the Al layer thickness is Three layers (total 66 lines) of 100 nm JRNb / Al sub-multi wires 3 were arranged to form multi wires 4, and the multi wires 4 were subjected to rapid thermal quenching (RHQ) treatment.
[0016]
In the multi-line of (b), seven Ag stabilizing materials 1 covered with an Nb jacket are arranged at the center, a filamentous Nb5 is arranged as an inner periphery around the Ag stabilizing material 1, and an outer periphery as an outer periphery. Three layers (total 66 lines) of JRNb / Al sub-multi wires 3 having a composition of Nb-25 at% Al and an Al layer thickness of 100 nm are arranged as standard samples 1 and 2 having different rapid heating and quenching conditions. . The multi-wire was also subjected to a rapid heating / cooling treatment.
[0017]
FIG. 2 shows the critical temperature Tc after transformation heat treatment with respect to the energized current during the rapid heating and quenching treatment, (a) shows the change in the critical temperature Tc of the multi-wire of Example 1, and (b) shows the multi-wire of the standard sample. This is a change in the critical temperature Tc. After the RHQ treatment, transformation heat treatment was performed at 800 ° C. for 10 hours based on the rapid heating and quenching treatment conditions based on the current value supplied from the constant current power source. Only the sub-multi (filament) is a supersaturated solid solution, and an irregular A15 phase is generated in the RIT sub-multi (filament) arranged on the inner periphery. The critical temperature Tc is also greater than 18.2K. As shown in Table 1, the critical current density Jc in the low magnetic field is slightly reduced, but the critical current density Jc in the high magnetic field is improved, and good bending workability is maintained. In addition, the selection range of the RHQ condition showing a high critical temperature Tc is wide.
[0018]
In the multi-wire of the comparative example, the critical temperature Tc is high for the standard sample 1 under the RHQ conditions in which the irregular A15 phase is generated, and the critical current density Jc in a high magnetic field is large as shown in Table 1. However, the critical current density Jc does not improve even at a low magnetic field, and the bending workability after rapid cooling is reduced. Regarding the standard sample 2, the critical temperature Tc is low under the RHQ conditions in which a supersaturated solid solution is generated, but after quenching, it has very good bending workability as shown in Table 1. When the magnetic field decreases, the critical current density Jc increases, but the critical current density Jc rapidly deteriorates on the high magnetic field side. In this way, the characteristics vary greatly depending on the RHQ conditions.
[0019]
[Example 2]
Seven Ag stabilizers coated with Nb jacket are arranged at the center, and JRNb / Al sub-multi wires with Nb-25at% Al composition as the inner periphery and Al layer thickness of 1μm are arranged around it. In addition, a JRNb / Al sub-multi line having a composition of Nb-25 at% Al as the outer peripheral portion and an Al layer thickness of 100 nm was disposed on the outer side to form a multi-line. The Al layer thickness of the JRNb / Al sub-multi line arranged in the inner peripheral part is 10 times thicker than the outer peripheral part.
[0020]
When this multi-wire was subjected to rapid heating and quenching treatment, the JRNb / Al sub-multi (filament) disposed on the outer peripheral portion became a supersaturated solid solution, and the JRNb / Al sub-multi (filament) disposed on the inner peripheral portion was not. Rule A15 phase occurred. When this multi-line was subjected to transformation heat treatment at 800 ° C. for 10 hours, as shown in Table 1, although the critical current density Jc in the low magnetic field was slightly reduced, the critical current density Jc in the high magnetic field was improved and improved. Bending workability was obtained.
[0021]
Example 3
7 Ag stabilizers coated with Nb jacket at the center, JRNb / A1 sub-multi wire with a composition of Nb-27.5at% Al as the inner periphery and an Al layer thickness of 100nm Further, a JRNb / Al sub-multi line having a composition of Nb-25 at% Al as the outer peripheral portion and an Al layer thickness of 100 nm was arranged on the outer side to form a multi-line. The nominal Al concentration of the sub-multi wire arranged in the inner peripheral portion was 2.5 at% higher than the nominal Al concentration in the outer peripheral portion.
[0022]
When this multi-wire was subjected to rapid heating and quenching treatment, the JRNb / Al sub-multi (filament) disposed on the outer peripheral portion became a supersaturated solid solution, and the JRNb / Al sub-multi (filament) disposed on the inner peripheral portion was not. Rule A15 phase occurred. When this multi-line was subjected to transformation heat treatment at 800 ° C. for 10 hours, as shown in Table 1, although the critical current density Jc in the low magnetic field was slightly reduced, the critical current density Jc in the high magnetic field was improved and improved. Bending workability was obtained.
[0023]
Example 4
Seven Ag stabilizers coated with an Nb jacket are arranged in the center, and the inner periphery is surrounded by an Nb / Al-2 at% Cu RIT method 7 core wires 40 and an Nb / Al-5 at% Mg RIT method. Sub-multi lines created by mixing 81 seven-core wires were arranged, and the same sub-multi lines as the outer peripheral part were arranged on the outer side to form multi-lines.
[0024]
When this multi-wire was subjected to rapid heating and quenching treatment, supersaturated solid solution and irregular A15 phase were mixed in each filament at a ratio of about 7: 3. When this multi-line was subjected to transformation heat treatment at 800 ° C. for 10 hours, as shown in Table 1, the critical current density Jc in the high magnetic field was improved although the critical current density Jc in the low magnetic field was slightly reduced. Even in this case, the bending workability required for coil forming is ensured.
[0025]
According to the above-described Nb 3 Al superconducting multifilamentary wire, the arrangement or mixing ratio in the cross section is controlled so that an irregular A15 phase and a supersaturated solid solution are generated at the same time. To support. This improves the high magnetic field characteristics while maintaining good moldability without increasing the extra Nb matrix. For example, it becomes possible to form an innermost layer coil of a 1 GHz class NMR superconducting magnet having a small winding diameter based on the Wind and React method. In addition, a large current capacity can be achieved by using a stranded wire, which is suitable for a next-generation nuclear fusion reactor superconducting magnet conductor that increases the maximum empirical magnetic field. The superconducting properties show a critical current density Jc that is more than twice that of Nb 3 Sn used as a practical wire, and have excellent strain resistance, so that the strength of large superconducting systems such as fusion reactors and high energy accelerators is strong. A magnetic field can be realized and the entire system can be made compact, and the apparatus cost can be reduced.
[0026]
The production parameters such as the nominal Al concentration, the diffusion distance between Nb and Al, and the presence or absence of alloy addition applied in the above-described embodiment are clad chip extrusion which is a production method other than the JR method and the RIT method. The same applies to the method and the powder extrusion method.
[0027]
【The invention's effect】
As described above, according to the Nb 3 Al superconducting multifilamentary wire of the present invention and the manufacturing method thereof, the Nb 3 Al filament transformed from the supersaturated solid solution rich in ductility to the A15 phase and the irregular A15 phase having good superconducting properties are ordered. In addition, since the Nb 3 Al filaments are arranged in the same cross section, it is possible to impart mechanical strength that is excellent in high magnetic field characteristics and does not hinder molding processing such as coil molding.
[Brief description of the drawings]
FIG. 1 shows a Nb 3 Al superconducting multicore wire according to an embodiment of the present invention;
(A) is a cross-sectional view of the multi-wire of the present invention (b) is a cross-sectional view of a multi-wire which is a standard sample as a comparative example. FIG. 2 shows the criticality after transformation heat treatment for the energized current during rapid heating and quenching treatment. Explanatory drawing showing temperature Tc 【Explanation of symbols】
1 Ag Stabilizing Material 2 Nb / Al-2 at% Cu · RIT Sub-Multi Line 3 JRNb / Al Sub-Multi Line 4 Multi-Line 5 Nb

Claims (15)

過飽和固溶体からA15相に変態したNb3Alフィラメントおよび不規則A15相を規則化させたNb3Alフィラメントを同一の断面内に有することを特徴とするNb3Al超電導多芯線。Nb 3 Al superconducting multifilamentary wire, characterized in that it comprises a Nb 3 Al filaments transformation was Nb 3 Al filaments and irregular A15 phases were ordered to A15 phase from a supersaturated solid solution within the same section. 前記過飽和固溶体からA15相に変態したNb3Alフィラメントは、前記断面の外周部に配置される構成の請求項第1項記載のNb3Al超電導多芯線。2. The Nb 3 Al superconducting multi-core wire according to claim 1, wherein the Nb 3 Al filament transformed from the supersaturated solid solution into the A15 phase is disposed on an outer peripheral portion of the cross section. 前記不規則A15相を規則化させたNb3Alフィラメントは、前記断面の内周部に配置される構成の請求項第1項記載のNb3Al超電導多芯線。2. The Nb 3 Al superconducting multi-core wire according to claim 1, wherein the Nb 3 Al filament in which the irregular A15 phase is regularized is disposed on an inner peripheral portion of the cross section. 前記過飽和固溶体からA15相に変態したNb3Alフィラメントは、22at%から25at%の公称Al濃度を有する構成の請求項第1項記載のNb3Al超電導多芯線。2. The Nb 3 Al superconducting multi-core wire according to claim 1, wherein the Nb 3 Al filament transformed from the supersaturated solid solution into the A15 phase has a nominal Al concentration of 22 at% to 25 at%. 前記不規則A15相を規則化させたNb3Alフィラメントは、前記過飽和固溶体からA15相に変態したNb3Alフィラメントの公称Al濃度より1at%から5at%大なる公称Al濃度を有する構成の請求項第1項記載のNb3Al超電導多芯線。The Nb 3 Al filament in which the irregular A15 phase is ordered has a nominal Al concentration that is 1 at% to 5 at% higher than the nominal Al concentration of the Nb 3 Al filament transformed from the supersaturated solid solution into the A15 phase. The Nb 3 Al superconducting multicore wire according to item 1. 前記不規則A15相を規則化させたNbAlフィラメントは、元素Mの添加に基づいて組成がNb(Al1−x1−yで表記されるとき、前記元素Mは、元素Cu、元素Ge、元素Siのうちのいずれか1つであり、前記元素Mが前記元素Cuの場合、添加量xが0.005−0.02であり、元素Geの場合、添加量xが0.05−0.2であり、元素Siの場合、添加量xが0.05−0.15である構成の請求項第1項記載のNbAl超電導多芯線。When the composition of the Nb 3 Al filament in which the irregular A15 phase is ordered is expressed as Nb y (Al 1−x M x ) 1−y based on the addition of the element M, the element M is an element When the element M is any one of Cu, element Ge, and element Si and the element M is the element Cu , the addition amount x is 0.005-0.02 , and when the element M is element Ge , the addition amount x is it is 0.05-0.2, if the elements Si, the addition amount x of claim first term of construction is 0.05-0.15 Nb 3 Al superconducting multifilamentary wire. 前記過飽和固溶体からA15相に変態したNbAlフィラメントは、Al、純Al、又は元素Mの添加に基づいて組成がNb(Al1−x1−yで表記されるとき、前記元素Mは元素Mgであり、前記元素Mgの添加量xが0−0.1である構成の請求項第1項記載のNbAl超電導多芯線。 Nb 3 Al filaments transformed into A15 phase from the supersaturated solid solution, Al, when the composition based on the addition of pure Al, or the element M is denoted by Nb y (Al 1-x M x) 1-y, wherein element M is an element Mg, Nb 3 Al superconducting multifilamentary wire amount x is described first of claims configurations are 0-0.1 of the elements Mg. 過飽和固溶体から変態したNb3Alが体積比で50%以上のNb3Alフィラメントと、
該Nb3Alフィラメントに不規則A15相から規則化したNb3Alフィラメントを分散・混合した構成を有することを特徴とするNb3Al超電導多芯線。
An Nb 3 Al filament in which Nb 3 Al transformed from the supersaturated solid solution has a volume ratio of 50% or more;
Nb 3 Al superconducting multifilamentary wire characterized by having a structure obtained by dispersing and mixing a Nb 3 Al filaments ordered from a disordered A15 phase in the Nb 3 Al filaments.
前記断面の任意の位置にNbの拡散バリヤで被覆されたAgが内部安定化材として配置される構成の請求項第1項あるいは第8項記載のNb3Al超電導多芯線。The Nb 3 Al superconducting multi-core wire according to claim 1 or 8, wherein Ag coated with an Nb diffusion barrier is disposed as an internal stabilizer at an arbitrary position in the cross section. Nbのマトリックスで被覆した複数本のサブマルチ線を内周部と外周部に積層して積層体を形成し、
前記積層体をNbのマトリックスで被覆してマルチ線を形成し、
前記マルチ線を所定の温度で1次加熱し、
1次加熱された前記マルチ線を冷却用金属材で冷却処理して前記外周部に過飽和固溶体フィラメント、前記内周部に不規則A15相を生成させ、
冷却後に所定の温度で2次加熱して前記外周部に過飽和固溶体からA15相に変態したNb3Alフィラメント、前記内周部に不規則A15相を規則化させたNb3Alフィラメントを生成させることを特徴とするNb3Al超電導多芯線の製造方法。
A plurality of sub-multi wires covered with a matrix of Nb are laminated on the inner periphery and the outer periphery to form a laminate,
The laminated body is covered with a Nb matrix to form a multi-line,
The multi-wire is primarily heated at a predetermined temperature,
The first heated multi-wire is cooled with a cooling metal material to generate a supersaturated solid solution filament on the outer periphery, and an irregular A15 phase on the inner periphery,
After cooling, secondary heating is performed at a predetermined temperature to generate Nb 3 Al filaments transformed from a supersaturated solid solution into an A15 phase in the outer peripheral portion, and Nb 3 Al filaments in which irregular A15 phases are ordered in the inner peripheral portion. Nb 3 Al superconducting multifilamentary wire manufacturing method according to claim.
前記内周部の前記サブマルチ線のAl層厚が前記外周部のAl層厚より2倍から100倍大である請求項第10項記載のNbAl超電導多芯線の製造方法。The method for producing a Nb 3 Al superconducting multi-core wire according to claim 10, wherein an Al layer thickness of the sub-multi wire in the inner peripheral portion is 2 to 100 times larger than an Al layer thickness in the outer peripheral portion. 前記サブマルチ線のNbシ−スを除いた公称Al濃度が、前記外周部で22at%から25at%の範囲にあり、前記内周部で前記外周部より1at%から5at%大である請求項第10項記載のNb3Al超電導多芯線の製造方法。The nominal Al concentration excluding the Nb sheath of the sub-multi line is in a range of 22 at% to 25 at% at the outer peripheral portion and 1 at% to 5 at% larger than the outer peripheral portion at the inner peripheral portion. Nb 3 Al superconducting multifilamentary wire method according paragraph 10. 前記内周部のNbAlフィラメント部に元素Mが添加されて組成がNb(Al1−x1−yで表記されるとき、前記元素Mは、元素Cu、元素Ge、元素Siのうちのいずれか1つであり、前記元素Mが前記元素Cuの場合、添加量xが0.005−0.02であり、元素Geの場合、添加量xが0.05−0.2であり、元素Siの場合、添加量xが0.05−0.15である請求項第10項記載のNbAl超電導多芯線の製造方法。When the element M is added to the Nb 3 Al filament part in the inner peripheral part and the composition is expressed as Nb y (Al 1-x M x ) 1-y , the element M is the element Cu, element Ge, element When the element M is the element Cu , the addition amount x is 0.005-0.02 , and when the element M is Ge , the addition amount x is 0.05-0. 2, when the elements Si, the addition amount x Nb 3 Al superconducting multifilamentary wire manufacturing method of a is claim 10 claims 0.05-0.15. 前記サブマルチ線を構成するNbとAlから成る複合体がAl層厚、公称Al濃度、元素添加の有無において異なるものの混合物で、前記Al層厚が2倍から100倍小であり、前記公称Al濃度が1at%から5at%小であり、又は元素添加しないものの体積比が50%以上であって、前記内周部と前記外周部とを区別せずに結束する請求項第10項記載のNbAl超電導多芯線の製造方法。The composite composed of Nb and Al constituting the sub multi-line is a mixture of different Al layer thickness , nominal Al concentration, and presence or absence of element addition, and the Al layer thickness is 2 to 100 times smaller, the nominal Al concentration 11. The Nb 3 according to claim 10, wherein the Nb 3 is 1 at% to 5 at% smaller, or the volume ratio of the element not added is 50% or more, and the inner peripheral portion and the outer peripheral portion are bound without being distinguished from each other. Manufacturing method of Al superconducting multi-core wire. Nbの拡散バリヤで被覆されたAgが内部安定化材として前記積層体内の任意の位置に配置される請求項第10項記載のNb3Al超電導多芯線の製造方法。The method for producing a Nb 3 Al superconducting multi-core wire according to claim 10, wherein Ag coated with a diffusion barrier of Nb is disposed as an internal stabilizer at an arbitrary position in the laminate.
JP2000216950A 2000-07-18 2000-07-18 Nb3Al superconducting multi-core wire and manufacturing method thereof Expired - Fee Related JP4402815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000216950A JP4402815B2 (en) 2000-07-18 2000-07-18 Nb3Al superconducting multi-core wire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000216950A JP4402815B2 (en) 2000-07-18 2000-07-18 Nb3Al superconducting multi-core wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002033025A JP2002033025A (en) 2002-01-31
JP4402815B2 true JP4402815B2 (en) 2010-01-20

Family

ID=18712131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000216950A Expired - Fee Related JP4402815B2 (en) 2000-07-18 2000-07-18 Nb3Al superconducting multi-core wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4402815B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3944573B2 (en) 2002-12-25 2007-07-11 独立行政法人物質・材料研究機構 Manufacturing method of Nb3Al superconducting wire and Nb3Al superconducting wire obtained by the method
JP4078420B2 (en) * 2003-07-15 2008-04-23 独立行政法人物質・材料研究機構 Method for producing Ge-doped Nb3Al-based superconducting wire
JP5794560B2 (en) 2011-01-18 2015-10-14 国立研究開発法人物質・材料研究機構 Mixed barrier type Nb3Al superconducting wire
JP5904482B2 (en) * 2011-05-23 2016-04-13 国立研究開発法人物質・材料研究機構 Nb3Al superconducting wire precursor wire, Nb3Al superconducting wire, Nb3Al superconducting wire precursor wire manufacturing method, and Nb3Al superconducting wire manufacturing method
CN109609750B (en) * 2019-01-17 2024-04-12 西南石油大学 Zero-tension synchronous transmission heat treatment system for preparing high-performance superconducting wire

Also Published As

Publication number Publication date
JP2002033025A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
US4195199A (en) Superconducting composite conductor and method of manufacturing same
JP6934878B2 (en) Method for manufacturing multifilament Nb3Sn superconducting wire
Takeuchi Nb/sub 3/Al conductors-rapid-heating, quenching and transformation process
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
JP4402815B2 (en) Nb3Al superconducting multi-core wire and manufacturing method thereof
EP0613192B1 (en) Wire for NB3X superconducting wire
US6583362B2 (en) Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
US20120083415A1 (en) Process of superconducting wire and superconducting wire
JP6704589B2 (en) Precursor wire for Nb3Al superconducting wire and Nb3Al superconducting wire
US4367102A (en) Method for the manufacture of a superconductor containing an intermetallic compounds
US5504984A (en) Methods of manufacturing Nb3 Al superconducting wire and coil
JP3588628B2 (en) Method for producing Nb3Al ultrafine multicore superconducting wire
JP3577506B2 (en) Cu-added Nb3Al ultrafine multi-core superconducting wire and method for producing the same
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JP7148103B2 (en) Precursor for Nb3Sn superconducting wire, method for producing same, and method for producing Nb3Sn superconducting wire using same
US7325293B2 (en) Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
EP0609804B1 (en) Method of preparing a Nb3X superconducting wire
Yoshizaki et al. Nb 3 Sn superconducting cables processed by internal tin diffusion
JP3757141B2 (en) Manufacturing method of Nb (3) Sn superconducting wire
US6810276B1 (en) Method to reduce magnetization in high current density superconductors formed by reaction of multi-component elements in filamentary composite superconductors
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
JP4817094B2 (en) Manufacturing method of superconducting alloy multi-core wire
JP2003045247A (en) Superconductive cable
JPH09147635A (en) Type a15 superconducting wire and its manufacture
Inoue et al. Development of Nb 3 Al Superconductors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees