JP4401674B2 - Helical tooth pair meshing rigidity calculation device - Google Patents

Helical tooth pair meshing rigidity calculation device Download PDF

Info

Publication number
JP4401674B2
JP4401674B2 JP2003113138A JP2003113138A JP4401674B2 JP 4401674 B2 JP4401674 B2 JP 4401674B2 JP 2003113138 A JP2003113138 A JP 2003113138A JP 2003113138 A JP2003113138 A JP 2003113138A JP 4401674 B2 JP4401674 B2 JP 4401674B2
Authority
JP
Japan
Prior art keywords
meshing
rigidity
approximate expression
pair
helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003113138A
Other languages
Japanese (ja)
Other versions
JP2004318608A (en
Inventor
慶和 三好
康平 斎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2003113138A priority Critical patent/JP4401674B2/en
Publication of JP2004318608A publication Critical patent/JP2004318608A/en
Application granted granted Critical
Publication of JP4401674B2 publication Critical patent/JP4401674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Description

【0001】
【発明の属する技術分野】
本発明は、はすば歯対の噛合開始から噛合終了までの噛合剛性値を演算するはすば歯対の噛合剛性演算装置に関する。
【0002】
【従来の技術】
従来より、自動車、トラック、鉄道車両等の車両や、建設機械等に広く採用されるはすば歯車対においては、静粛性の向上や強度の最適化等を図ることを目的として、噛合固有振動数や回転方向振動等の各種解析が行われている。
【0003】
このような解析には、はすば歯対の噛合開始から噛合終了までの噛合剛性の変動を正確に把握することが要求され、はすば歯対の噛合剛性値の演算は、一般に、はすば歯対の曲げ及び接触撓みの影響関数を用いた積分方程式を、計算機を用いて解くことによって行われる。
【0004】
しかしながら、上述の積分方程式を用いた噛合剛性値の演算は、非常に難解なものであり、ある程度の計算精度を要求する場合には計算時間が膨大なものとなる他、入力計算条件(負荷、歯面形状等)によっては計算値が収束しない等の問題がある。
【0005】
これに対処し、例えば、非特許文献1には、圧力角20°の並歯において噛合開始から噛合終了までのばねこわさ変動を表示できるインボリュートはすば歯対の噛合剛性近似式を用いて、はすば歯対の噛合剛性の変動を演算する技術が開示されている。
【0006】
【非特許文献1】
梅澤・他2名「動力伝達用はすば歯車の振動特性(ばねこわさ近似式)」、日本機械学会論文集(C編)51巻469号(昭60−9)、P2316〜P2322
【0007】
【発明が解決しようとする課題】
しかしながら、上述の非特許文献1に開示された近似式から求められる噛合剛性値は、必ずしも実際の噛合剛性値に十分対応しているものとはいえず、さらに、圧力角20°の並の歯丈に特化したものであるため、種々の圧力角と歯丈を持つ実用歯車には十分に対応できない虞がある。
【0008】
本発明は上記事情に鑑みてなされたもので、広範囲な歯車諸元に対し、簡単な演算処理で精度よく、はすば歯対の噛合剛性値を把握することのできるはすば歯対の噛合剛性演算装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、互いに噛み合うはすば歯対の諸元に基づいて噛合剛性曲線の近似式を設定し、上記近似式に基づいて噛合開始点から噛合終了点までの間の各噛合剛性値を演算するはすば歯対の噛合剛性演算装置であって、上記はすば歯対の噛合剛性曲線の第1,第2の分岐点を演算する分岐点演算手段と、上記第1の分岐点から上記第2の分岐点までの区間の上記噛合剛性曲線の近似式を設定する第1の近似式設定手段と、上記噛合開始点から上記第1の分岐点まで及び上記第2の分岐点から上記噛合終了点までの区間の上記噛合剛性曲線の近似式を設定する第2の近似式設定手段と、上記はすば歯対の正面噛合率と重なり噛合率との大小関係を比較する噛合率比較手段とを備え、上記第1,第2の近似式設定手段は、上記正面噛合率と上記重なり噛合率との比較結果に応じて、上記各区間での上記噛合剛性曲線の近似式を異なる関数に設定することを特徴とする。
【0013】
また、請求項記載の発明によるはすば歯対の噛合剛性演算装置は、請求項記載の発明において、上記第1の近似式設定手段は、上記近似式を、上記はすば歯対の等価作用線上の座標を変数とする関数であって、2次と4次の項を備えた関数に設定することを特徴とする。
【0014】
また、請求項記載の発明いよるはすば歯対の噛合構成演算装置は、請求項1または2に記載の発明において、上記噛合率比較手段で上記正面噛合率が上記重なり噛合率よりも小さいと判定した際に、上記第1の近似式設定手段は、所定の歯幅歯丈比の噛合剛性曲線に基づいて作成した近似関数を上記分岐点の座標に基づいて変形することで上記近似式を設定することを特徴とする。
【0015】
また、請求項記載の発明によるはすば歯対の噛合剛性演算装置は、請求項1乃至3の何れか1項に記載の発明において、上記噛合率比較手段で上記正面噛合率が上記重なり噛合率よりも大きいと判定した際に、上記はすば歯対のねじれ角と予め設定した設定ねじれ角との大小関係を比較するねじれ角比較手段を有し、上記第2の近似式設定手段は、上記ねじれ角比較手段の比較結果に応じて、上記近似式を異なる関数に設定することを特徴とする。
【0016】
また、請求項記載の発明によるはすば歯対の噛合剛性演算装置は、請求項記載の発明において、上記ねじれ角比較手段は、所定の歯幅歯丈比で等価変換したねじれ角を用いて、上記設定ねじれ角との大小関係を比較することを特徴とする。
【0017】
また、請求項記載の発明によるはすば歯対の噛合剛性演算装置は、請求項4または請求項5に記載の発明において、上記ねじれ角比較手段で上記ねじれ角が上記設定ねじれ角よりも小さいと判定した際に、上記第2の近似式設定手段は、上記近似式を、上記はすば歯対の等価作用線上の座標を変数とする1次関数に設定することを特徴とする。
【0018】
また、請求項記載の発明によるはすば歯対の噛合剛性演算装置は、請求項4または5に記載の発明において、上記ねじれ角比較手段で上記ねじれ角が上記設定ねじれ角よりも大きいと判定した際に、上記第2の近似式設定手段は、上記近似式を、上記はすば歯対の等価作用線上の座標を変数とする関数であって、上記ねじれ角に基づいて規定される所定次数の指数関数であって上記ねじれ角に基づいて規定される所定次数の関数に設定することを特徴とする。
【0019】
また、請求項記載の発明によるはすば歯対の噛合剛性演算装置は、請求項記載の発明において、上記第2の近似式設定手段は、所定の歯幅歯丈比で等価変換したねじれ角を用いて上記次数を規定することを特徴とする。
【0020】
また、請求項記載の発明によるはすば歯対の噛合剛性演算装置は、請求項1乃至請求項8の何れか1項に記載の発明において、上記噛合率比較手段で上記正面噛合率が上記重なり噛合率よりも小さいと判定した際に、上記第2の近似式設定手段は、上記近似式を、上記はすば歯対の等価作用線上の座標を変数とする関数であって、上記ねじれ角に基づいて規定される所定次数の指数関数であって上記ねじれ角に基づいて規定される所定次数の関数に設定することを特徴とする。
【0021】
また、請求項10記載の発明によるはすば歯対の噛合剛性演算装置は、請求項記載の発明において、上記第2の近似式設定手段は、所定の歯幅歯丈比で等価変換したねじれ角を用いて上記次数を規定することを特徴とする。
【0022】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。図面は本発明の実施の一形態に係わり、図1ははすば歯対の噛合剛性演算ルーチンを示すフローチャート、図2ははすば歯対の噛合剛性演算装置の概略構成図、図3ははすば歯対の噛合剛性演算装置を実現するためのコンピュータの一例を示す概略図、図4ははすば歯車対の作用平面を示す説明図、図5は各ケースでのはすば歯対の噛合剛性曲線を示す図表、図6は正面噛合率が重なり噛合率よりも大きいケース(ケース1)での噛合分岐点を示す説明図、図7は正面噛合率が重なり噛合率と等しいケース(ケース2)での噛合分岐点を示す説明図、図8は正面噛合率が重なり噛合率よりも小さいケース(ケース3)での噛合分岐点を示す説明図、図9はケース1での分岐点間の噛合剛性曲線を示す図表、図10はケース3での分岐点間の噛合剛性曲線を示す図表、図11は図10の各噛合剛性曲線を座標変換して示す図表、図12は分岐点が噛合開始点及び噛合終了点寄りにある場合におけるケース1での分岐点外の噛合剛性曲線を示す図表、図13は分岐点が噛合中心点寄りにある場合におけるケース1での分岐点外の噛合剛性曲線を示す図表、図14はケース2での分岐点外の噛合剛性曲線を示す図表、図15はケース1での噛合剛性曲線の理論値と近似値との比較結果を示す図表、図16はケース2での噛合剛性曲線の理論値と近似値との比較結果を示す図表、図17はケース3での噛合剛性曲線の理論値と近似値との比較結果を示す図表である。
【0023】
ここで、本実施の形態に係るはすば歯対の噛合剛性演算装置の構成を説明するに先立ち、本出願人らによる、はすば歯対の各諸元での噛合剛性値の解析結果について説明する。
【0024】
図4において、符号100は、はすば歯車対を構成する駆動側歯車101と被動側歯車102との作用平面を示す。図4に示すように、はすば歯対の噛合接触線CCは歯車軸に対してねじれているため、これらの噛合は、平歯車と異なって点接触から始まる。すなわち、はすば歯対の噛合は、S点から始まり、斜めの噛合接触線CCが長さを変えながら作用平面100上を平行に進行し、最後にE点で終わる。
【0025】
先ず、本出願人らは、様々な歯車諸元のはすば歯対に対し、以下の歯の曲げ撓みと歯面接触撓みの積分方程式を解くことで、噛合開始から噛合終了までの各噛合接触線CCにおける撓み量δx を求め、この撓み量δxから噛合剛性値K(X)を求めた。
【0026】
δx=∫Kb(x,ξ)・P(ξ)dξ+∫Kc(x=ξ)・P(ξ)dξ…(1)
s=∫P(ξ)dξ …(2)
K(X)=Ps/δx …(3)
【0027】
ここで、(1)式において、面接触撓みの影響関数であるKcは、鈴木ら(鈴木・梅澤、「片当りする歯車の歯面接触による近寄り」、日本機械学会論文集(C編)52巻481号(1986)、P2449 参照)によって提案されている自由端荷重分布の影響を考慮したローラ同士の理論式を使用した。
【0028】
c[x=ξ,y=η=fuc(x)]
=25・(1−γ2)・∫(1−x41/4dx
/π・E・ΔB・(1−x41/4(但し、積分範囲は0〜1)…(4)
【0029】
また、歯の曲げ撓み影響関数であるKbは、狩野ら(狩野・斎木、「歯車用ラックの新しい曲げ撓み影響関数」、日本機械学会2002年度年次大会講演論文集(V)2314号、P27 参照)によって提案されている歯幅方向と歯丈方向の違った撓み特性を考慮した高精度な式を使用した。
【0030】
b(x,y,ξ,η)
=U・G(η)・〔ν(r)/ν(η)〕
・[〔F(x)・F(ξ)〕/F(|x−ξ|)]1/2 …(5)
r=η+[〔λ・(x−ξ)〕2+(y−η)21/2 …(6)
【0031】
なお、式(1)〜(6)中の変数は以下の通りである。
【0032】
(x,y):撓み観測点の座標値
(ξ,η):単位集中荷重点の座標値
P(ξ):噛合接触線上の荷重分布
E:ヤング率[2.068×1011Nm2
γ:ポアソン比[0.3]
ΔB:各噛合接触線上の計算分割幅
X:接触歯幅中央を0とするはすば歯対の等価作用線(図4参照)上の座標値
U:原点集中荷重時の原点での撓みの絶対値
λ:撓み楕円状分布の同心円分布への座標変換係数
r:歯先を原点とする撓み同心円分布の半径
ν(r):等価同心円分布の撓み特性関数
G(η):歯丈方向の集中荷重点直下の撓み特性関数
F(ξ):歯幅方向の集中荷重点直下の撓み特性関数
【0033】
以上の計算式を用い、様々な歯車諸元によるはすば歯対の噛合開始から噛合終了までの各噛合剛性の理論値を演算し解析した結果、本出願人らは、はすば歯対の噛合開始点から噛合中心点までの間に噛合剛性曲線の挙動が変化する分岐点(以下、第1の分岐点と称す)が存在するとともに、噛合中心点から噛合終了点までの間に同様の分岐点(以下、第2の分岐点と称す)が存在することを知見した。そして、この分岐点についてさらに詳細に調べた結果、その位置は正面噛合率εαと重なり噛合率εβの大小関係で決まる上、例えば図5の各例に示すような3つのケース(ケース1〜ケース3)に分類できることを知見した。なお、図5において、ケース1に示す例は、BH〔歯幅と歯丈の比(歯幅/歯丈)〕=2,Hk(歯丈比)=2.35,αn(圧力角)=20.5°,β0(ピッチ円筒上のねじれ角)=4°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kp(K(0))で規格化した噛合剛性曲線であり、ケース2に示す例は、BH=3,Hk=2.35,αn=20.5°,β0=36°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線であり、ケース3に示す例は、BH=6,Hk=2.35,αn=20.5°,β0=36°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線である。
【0034】
ケース1は、正面噛合率εαが重なり噛合率εβよりも大きいケースである。この場合、図6に示すように、作用平面100上を噛合開始点Sから噛合終了点Eへと平行移動する噛合接触線CCの長さは、当該噛合接触線CCが作用平面100上を歯幅方向に横切った状態で最長となる。そして、このケースでは、噛合接触線CCの長さが最長となった瞬間に第1の分岐点が存在するとともに、その長さが最長でなくなる瞬間に第2の分岐点が存在する。
【0035】
また、ケース2は、正面噛合率εαが重なり噛合率εβと等しいケースである。この場合、図7に示すように、作用平面100上を噛合開始点Sから噛合終了点Eへと平行移動する噛合接触線CCの長さは、当該噛合接触線CCが作用平面100上を歯幅方向及び歯丈方向に横切った瞬間に最長となる。そして、このケースでは、噛合接触線CCの長さが最長となった瞬間に第1,第2の分岐点が同時に存在する。
【0036】
また、ケース3は、正面噛合率εαが重なり噛合率εβよりも小さいケースである。この場合、図8に示すように、作用平面100上を噛合開始点Sから噛合終了点Eへと平行移動する噛合接触線CCの長さは、当該噛合接触線CCが作用平面100上を歯丈方向に横切った状態で最長となる。そして、このケースでは、噛合接触線CCの長さが最長となった瞬間に第1の分岐点が存在するとともに、その長さが最長でなくなる瞬間に第2の分岐点が存在する。
【0037】
このように、各噛合剛性曲線は、分岐点位置の違いによって大きく影響される。また、各分岐点の位置は歯車諸元のみに依存して上記3つのケースの何れかとなる。ここで、噛合開始点、噛合終了点、及び第1,第2の分岐点の作用線上の座標、すなわちXs、Xe、Xd1、Xd2はそれぞれ以下の通り算出される。
【0038】
s=−(εα+εβ)/〔(εα/mn)・H〕 …(7)
e=(εα+εβ)/〔(εα/mn)・H〕 …(8)
d1=−|(εα−εβ)/〔(εα/mn)・H〕| …(9)
d2=|(εα−εβ)/〔(εα/mn)・H〕| …(10)
【0039】
ここで、式(7)〜(10)中の変数は以下の通りである。
【0040】
n:歯直角モジュール
H:歯丈
なお、式(9),(10)からも明らかなように、第1,第2の分岐点のX座標は、噛合中心点Xpに対称であるため、これらを代表してXd2を単にXdとも称す。
【0041】
以上の点に基づき、先ず、第1,第2の分岐点間(Xd1≦X≦Xd2)での各噛合剛性値の近似関数について検討する。
【0042】
図9に、ケース1に分類される各種諸元のはすば歯対の噛合剛性曲線を示す。なお、図9には、BH=2,Hk=2.35,αn=20.5°,β0=20°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線、BH=4,Hk=2.35,αn=20.5°,β0=20°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線、及び、BH=6,Hk=2.35,αn=20.5°,β0=20°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線がそれぞれ例示されている。図9からも明らかなように、ケース1において、各噛合剛性曲線は、歯幅歯丈比BHによらず、略同一の放物線上にあることがわかる。
【0043】
また、図10に、ケース3に分類される各種諸元のはすば歯対の噛合剛性曲線を示す。なお、図10には、BH=4,Hk=2.35,αn=20.5°,β0=36°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線、BH=5,Hk=2.35,αn=20.5°,β0=36°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線、及び、BH=6,Hk=2.35,αn=20.5°,β0=36°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線がそれぞれ例示されている。この場合、図10に示すように、各はすば歯対の噛合剛性値K(X)は、歯幅Bの影響を受けるため、歯幅歯丈比BHに応じて挙動が異なる。その一方で、各はすば歯対の噛合剛性値曲線は、図11に示すように、各分岐点位置を一致させる座標変換を行った場合、同一の放物線上で略一致することがわかる。なお、図11には、BH=4及び5の第1,第2の分岐点位置を、座標変換によってBH=6の第1,第2の分岐点位置にそれぞれ一致させた例を示す。
【0044】
以上のことからも分かるように、分岐点間の各噛合剛性曲線は、2次項と4次項とを備えた、噛合中心点を頂点とする左右対称の放物線関数で近似できる。この場合、ケース1の放物線形状は歯幅歯丈比BHによらず一定であるが、ケース3の放物線形状は歯幅歯丈比BHに依存して変化する。そこで、これらを考慮し、本出願人らは、分岐点間(−Xd1≦X≦Xd2)での近似関数を以下のように作成した。
【0045】
ケース1(εα>εβ)の場合
K(X)/Kp=1+a2・X2+a4・X4 …(11)
2=f1(β0
=−1.40846+0.00726・(β0−4)
−0.00111・(β0−4)2 …(12)
4=f2(β0
=−2.35761−0.12962・(β0−4)
+0.00470・(β0−4)2 …(13)
【0046】
ケース3(εα<εβ)の場合
K(X)/Kp=2+a2・XN 2+a4・XN 4−YN …(14)
N=X+Xd(BH=6)−Xd …(15)
N=1+a2・(Xd(BH=6)−Xd2+a4・(Xd(BH=6)−Xd4 …(16)
2=f6(β0
=−0.51970・exp〔−0.36190・(β0−28)〕…(17)
4=f7(β0
=−16.9460・exp〔−0.34700・(β0−28)〕…(18)
ここで、式(14)〜(18)で規定される近似関数は、歯幅歯丈比BH=6の噛合剛性曲線を基準とし、分岐点Xdに基づく座標変換を行うことにより各歯幅歯丈比BHでの噛合剛性曲線を近似するものである。すなわち、歯幅歯丈比BH=6のはすば歯対は、実際に使用され得る頻度の高いはすば歯対の1つであり、また、当該はすば歯対は歯幅歯丈比BHが大きいため、噛合剛性値の計算数を多く設定できる。これらのことから、式(14)〜(18)では、実用的且つ近似精度の高い歯幅歯丈比BH=6でのはすば歯対の噛合剛性曲線を基準として各歯幅歯丈比BHでの噛合剛性曲線を近似する。この場合、分岐点のX座標(Xd)は、次式のように歯幅歯丈比BH=6で等価変換することができる。
【0047】
d(BH=6)=〔εβ・(6/BH)−εα〕/〔(εα/mn)・H〕 …(19)
なお、歯幅歯丈比BH=6以外の噛合剛性曲線を基準として式(14)〜(18)と同等の近似関数を作成してもよいことは勿論である。
【0048】
次に、第1,第2の分岐点外(Xs≦X≦Xd1,Xd2≦X≦Xe)での各噛合剛性値の近似関数について検討する。
【0049】
図12に、ケース1に分類される各種諸元のはすば歯対の噛合剛性曲線のうち、分岐点が噛合開始点及び噛合終了点寄りにある場合のもの(すなわち、ねじれ角β0が比較的小さいもの)を示す。なお、図12には、BH=3,Hk=2.35,αn=20.5°,β0=4°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線、BH=3,Hk=2.35,αn=20.5°,β0=8°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線、BH=3,Hk=2.35,αn=20.5°,β0=12°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線、BH=3,Hk=2.35,αn=20.5°,β0=16°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線、及び、BH=3,Hk=2.35,αn=20.5°,β0=20°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線がそれぞれ例示されている。
【0050】
また、図13に、ケース1に分類される各種諸元のはすば歯対の噛合剛性曲線のうち、分岐点が噛合中心点寄りにある場合のもの(すなわち、ねじれ角β0が比較的大きいもの)を示す。なお、図13には、BH=3,Hk=2.35,αn=20.5°,β0=24°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線、BH=3,Hk=2.35,αn=20.5°,β0=28°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線、及び、BH=3,Hk=2.35,αn=20.5°,β0=32°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線がそれぞれ例示されている。
【0051】
また、図14に、ケース2に分類される各種諸元のはすば歯対の噛合剛性曲線を示す。なお、図14には、BH=3,Hk=2.35,αn=20.5°,β0=36°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線、BH=4,Hk=2.35,αn=20.5°,β0=30°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線、BH=5,Hk=2.35,αn=20.5°,β0=26°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線、及び、BH=6,Hk=2.35,αn=20.5°,β0=22.5°での各噛合剛性値K(X)をその噛合中心点での噛合剛性値Kpで規格化した噛合剛性曲線がそれぞれ例示されている。ここで、ケース3に分類される各種諸元のはすば歯対の噛合剛性曲線も、分岐点外においては、ケース2と略同様となる。
【0052】
図12からも明らかなように、ねじれ角β0が比較的小さい場合には、分岐点外での噛合剛性曲線は直線で近似することができる。また、図13,図14からも明らかなように、ねじれ角β0が比較的大きい場合には、分岐点外の噛合剛性曲線は直線で近似することが困難である。これらに基づき、本出願人らは、分岐点外での各噛合剛性曲線について更なる検討を行った結果、ねじれ角β0を歯幅歯丈比BH=6のもの(β0(BH=6))に等価変換した際に、β0(BH=6)<12°の噛合剛性曲線を直線近似することができ、β0(BH=6)≧12°の噛合剛性曲線をA次の項を有する指数関数とB次の項を有する関数とで近似できることを知見した。そこで、これらを考慮して、本出願人らは、分岐点外(Xs≦X≦Xd1,Xd2≦X≦Xe)での近似関数を以下のように作成した。
【0053】
なお、等価変換ねじれ角β0(BH=6)は次式で定義される。
【0054】
β0(BH=6)=tan-1〔(BH/6)・tanβ0〕 …(20)
【0055】
β0(BH=6)<12°の場合
K(X)/Kp=a0+a1・|X| …(21)
0=(|Xd|・Ys−Yd・|Xs|)/(|Xd|−|Xs|) …(22)
1=(Yd−Ys)/(|Xd|−|Xs|) …(23)
【0056】
β0(BH=6)≧12°の場合
K(X)/Kp=〔Ka(X)+Kb(X)〕/2 …(24)
Ka(X)=a0・exp(a1・|X|A) …(25)
Kb(X)=b0+b1・|X|B …(26)
0=exp〔(|XdA・lnYs−|XsA・lnYd
/(|XdA−|XsA)〕…(27)
1=(lnYd−lnYs)/(|XdA−|XsA) …(28)
0=(|XdB・Ys−Yd・|XsB)/(|XdB−|XsB) …(29)
1=(Yd−Ys)/(|XdB−|XsB) …(30)
【0057】
ここで、式(24)〜(30)において、各ケースでの次数A,Bはねじれ角β0に基づいて以下のように規定される。
【0058】
ケース1(εα>εβ)の場合
A=f4(β0(BH=6)
=3.79864−0.09678・β0(BH=6) …(31)
B=f5(β0(BH=6)
=4.42725−0.19427・β0(BH=6)
+0.00451・β0(BH=6) 2 …(32)
ケース2,3(εα≦εβ)の場合
A=f8(β0(BH=6)
=−0.13500+0.08200・β0(BH=6) …(33)
B=f5(β0(BH=6)
=4.42725−0.19427・β0(BH=6)
+0.00451・β0(BH=6) 2 …(34)
また、式(24)〜(30)において、Ysは、噛合開始点での噛合剛性値と噛合中心点での噛合剛性値との比を示し、例えば以下のように求められる。
【0059】
s=K(Xs)/Kp=f3(β0,BH)
=〔CC0+CC1・(β0−4)+CC2・(β0−4)2〕/β0 …(35)
C0=0.07139−0.01574・(BH−2)
+0.00206・(BH−2)2 …(36)
C1=0.01714−0.00725・(BH−2)
+0.00071・(BH−2)2 …(37)
C2=0.00005+0.00009・(BH−2)
+0.000002・(BH−2)2 …(38)
また、式(24)〜(30)において、Ydは、分岐点での噛合剛性値と噛合中心点での噛合剛性値との比〔K(Xd)/Kp〕を示し、式(11)〜(13)に基づいて設定された近似式、または、式(14)〜(18)に基づいて設定された近似式を用いて求められる。
【0060】
次に、上述の各近似関数を用いてはすば歯対の噛合剛性を演算する演算装置について説明する。
【0061】
図2において、符号1ははすば歯対の噛合剛性演算装置を示し、この噛合剛性演算装置1は、はすば歯対の諸元を入力するための入力部5と、入力部5からのの入力諸元に基づいてはすば歯対の噛合剛性値を演算する演算部6と、演算部6で実行される噛合剛性演算ルーチンを格納するとともに、入力部5からの入力諸元や演算部6での演算結果等を適宜記憶する記憶部7と、演算部6での演算結果等を出力する出力部8とを有して構成されている。
【0062】
ここで、噛合剛性演算装置1は、例えば図3に示すコンピュータシステム10で実現される。このコンピュータシステム10は、例えば、コンピュータ本体11に、キーボード12と、ディスプレイ装置13と、プリンタ14とが接続ケーブル15を介して接続されて要部が構成されている。そして、このコンピュータシステム10において、例えば、コンピュータ本体11に配設された各種ドライブ装置やキーボード12等が入力部5として機能するとともに、コンピュータ本体11に内蔵されたCPU,ROM,RAM等が演算部6として機能する。また、コンピュータ本体11に内蔵されたハードディスク等が記憶部7として機能するとともに、ディスプレイ装置13やプリンタ14等が出力部8として機能する。
【0063】
本実施の形態において、記憶部7に格納された噛合剛性演算ルーチンは、上述の式(7)〜(38)を適宜用いて入力諸元に応じた噛合剛性近似式を設定するとともに、設定した噛合剛性近似式に基づいてはすば歯対の各噛合状態での噛合剛性値を演算するためのものである。
【0064】
そして、演算部6は、記憶部7に格納された噛合剛性演算ルーチンをロードし、実行することによって、分岐点演算手段、噛合率比較手段、第1の近似式設定手段(近似式設定手段)、第2の近似式設定手段(近似式設定手段)、及び、ねじれ角比較手段としての各機能を実現する。
【0065】
次に、上述の構成による噛合剛性演算装置1において、演算部6で実行される噛合剛性演算ルーチンについて説明する。
【0066】
このルーチンは、はすば歯対の諸元が入力部5を通じて入力された後に実行される。ここで、本実施の形態において、噛合剛性演算装置1には、諸元として、例えば、歯直角モジュールmn、歯丈係数Ks、頂隙係数Ck、圧力角αn、歯幅B、及び、ねじれ角β0が入力される。
【0067】
ルーチンがスタートすると、先ず、ステップS101において、演算部6は、周知の演算方法を用いて、入力諸元に基づき、歯丈H、歯幅歯丈比BH、正面噛合率εα、及び、重なり噛合率εβ等の諸元計算を行う。
【0068】
続くステップS102において、演算部6は、式(7)及び(8)を用いて、はすば歯対の噛合開始点及び噛合終了点のX座標(Xs、及びXe)を演算する。
【0069】
続くステップS103において、演算部6は、式(9)及び(10)を用いて、はすば歯対の第1,第2の分岐点のX座標(Xd1、及びXd2)を演算する。
【0070】
そして、ステップS104において、演算部6は、ステップS101で求めた正面噛合率εαと重なり噛合率εβとの大小関係を比較し、εα>εβであると判定した場合には、今回の入力諸元に基づくはすば歯対はケース1に分類されるはすば歯対であると判定してステップS105に進む。
【0071】
ステップS104からステップS105に進むと、演算部6は、式(11)〜(13)を用いて、第1,第2の分岐点間(Xd1≦X≦Xd2)の区間での噛合剛性曲線の近似式を設定する。
【0072】
続くステップS106において、演算部6は、ステップS105で設定した近似式を用いて、分岐点での噛合剛性値と噛合中心点での噛合剛性値との比Yd〔=K(Xd)/Kp〕を演算する。
【0073】
続くステップS107において、演算部6は、式(35)〜(38)を用いて、噛合開始点での噛合剛性値と噛合中心点での噛合剛性値との比Ysを演算する。
【0074】
続くステップS108において、演算部6は、式(20)を用いて、歯幅歯丈比BH=6での等価変換ねじれ角β0(BH=6)を演算する。
【0075】
そして、ステップS109において、演算部6は、等価変換ねじれ角β0(BH=6)と予め設定された設定ねじれ角(例えば、12°)との大小関係を比較し、β0(BH=6)<12°であると判定した場合には、今回の入力諸元に基づくはすば歯対は、分岐点外(Xs≦X≦Xd1,Xd2≦X≦Xe)の区間での噛合剛性曲線を直線近似することが可能であると判定してステップS110に進む。
【0076】
ステップS109からステップS110に進むと、演算部6は、式(21)〜(23)を用いて、分岐点外の区間での噛合剛性曲線の近似式を設定する。
【0077】
そして、ステップS110からステップS117に進むと、演算部6は、ステップS105及びステップS110で設定した各区間での噛合剛性曲線の近似式を用いて、はすば歯対の噛合開始点Xsから噛合終了点Xeまで各噛合剛性値を演算し、この演算結果を出力部8を通じて出力した後、ルーチンを終了する。
【0078】
一方、ステップS109において、β0(BH=6)≧12°であると判定した場合には、今回の入力諸元に基づくはすば歯対は、分岐点外の区間での噛合剛性曲線を直線近似することは困難であると判定して判定してステップS111に進む。
【0079】
ステップS109からステップS111に進むと、演算部6は、式(24)〜(32)を用いて、分岐点外の区間での噛合剛性曲線の近似式を設定する。
【0080】
そして、ステップS111からステップS117に進むと、演算部6は、ステップS105及びステップS111で設定した各区間での噛合剛性曲線の近似式を用いて、はすば歯対の噛合開始点Xsから噛合終了点Xeまで各噛合剛性値を演算し、この演算結果を出力部8を通じて出力した後、ルーチンを終了する。
【0081】
また、εα≦εβであると判定した場合には、今回の入力諸元に基づくはすば歯対はケース2またはケース3に分類されるはすば歯対であると判定してステップS112に進む。
【0082】
ステップS104からステップS112に進むと、演算部6は、式(14)〜(19)を用いて、第1,第2の分岐点間(Xd1≦X≦Xd2)の区間での噛合剛性曲線の近似式を設定する。
【0083】
続くステップS113において、演算部6は、ステップS112で設定した近似式を用いて、分岐点での噛合剛性値と噛合中心点での噛合剛性値との比Yd〔=K(Xd)/Kp〕を演算する。
【0084】
続くステップS114において、演算部6は、式(35)〜(38)を用いて、噛合開始点での噛合剛性値と噛合中心点での噛合剛性値との比Ysを演算する。
【0085】
続くステップS115において、演算部6は、式(20)を用いて、歯幅歯丈比BH=6での等価変換ねじれ角β0(BH=6)を演算する。
【0086】
そして、ステップS115からステップS116に進むと、演算部6は、式(24)〜(30)、(33)、(34)を用いて、分岐点外の区間での噛合剛性曲線の近似式を設定する。
【0087】
そして、ステップS116からステップS117に進むと、演算部6は、ステップS112及びステップS116で設定した各区間での噛合剛性曲線の近似式を用いて、はすば歯対の噛合開始点Xsから噛合終了点Xeまで各噛合剛性値を演算し、この演算結果を出力部8を通じて出力した後、ルーチンを終了する。
【0088】
次に、上述の噛合剛性演算装置1を用いた噛合剛性値の具体的な演算例について説明する。なお、以下で出てくる各計算式とその計算結果が少し異なっているが、これは噛合剛性演算装置1上で所定の計算分割数を与えて演算を行っているためである。
【0089】
(演算例1)
この演算例1では、はすば歯対の諸元として、噛合剛性演算装置1に、mn=1、Ks=1、Ck=0.35、αn=20.5°、B=4.7、β0=4°が入力された場合の例について説明する。
【0090】
上記諸元が入力されて噛合剛性演算ルーチンがスタートすると、先ず、ステップS101において、演算部6は、入力諸元に基づき、歯丈H、歯幅歯丈比BH、正面噛合率εα、及び、重なり噛合率εβ等の諸元計算を行う。
【0091】
H=2.35
BH=2
εα=1.919
εβ=0.104
【0092】
続くステップS102において、演算部6は、式(7)及び(8)を用いて、はすば歯対の噛合開始点及び噛合終了点のX座標(Xs、及びXe)を以下の通り演算する。
【0093】
s=−(1.919+0.104)
/〔(1.919/1)・2.35〕
=−0.448
e=(1.919+0.104)
/〔(1.919/1)・2.35〕
=0.448
【0094】
続くステップS103において、演算部6は、式(9)及び(10)を用いて、はすば歯対の第1,第2の分岐点のX座標(Xd1、及びXd2)を以下の通り演算する。
【0095】
d1=−|(1.919−0.104)
/〔(1.919/1)・2.35〕|
=−0.403
d2=|(1.919−0.104)
/〔(1.919/1)・2.35〕|
=0.403
【0096】
そして、εα=1.919、εβ=0.104であることから、ステップS104において、演算部6は、εα>εβであると判定し、今回の入力諸元に基づくはすば歯対はケース1に分類されるはすば歯対であると判定してステップS105に進む。
【0097】
ステップS104からステップS105に進むと、演算部6は、式(11)〜(13)を用いて、第1,第2の分岐点間(Xd1≦X≦Xd2)の区間での噛合剛性曲線の近似式を以下の通り設定する。
【0098】
2=f1(β0
=−1.40846+0.00726・(4−4)
−0.00111・(4−4)2
=−1.40846
4=f2(β0
=−2.35761−0.12962・(4−4)
+0.00470・(4−4)2
=−2.35761
K(X)/Kp=1−1.40846・X2−2.35761・X4…(39)
【0099】
続くステップS106において、演算部6は、近似式(39)を用いて、分岐点での噛合剛性値と噛合中心点での噛合剛性値との比Yd〔=K(Xd)/Kp〕を以下の通り演算する。
【0100】
d=K(X)/Kp
=1−1.40846・(0.403)2
−2.35761・(0.403)4
=0.714
【0101】
続くステップS107において、演算部6は、式(35)〜(38)を用いて、噛合開始点での噛合剛性値と噛合中心点での噛合剛性値との比Ysを以下の通り演算する。
【0102】
C0=0.07139−0.01574・(2−2)
+0.00206・(2−2)2
=7.139E−2
C1=0.01714−0.00725・(2−2)
+0.00071・(2−2)2
=1.714E−2
C2=0.00005+0.00009・(2−2)
+0.000002・(2−2)2
=4.823E−5
s=K(Xs)/Kp=f3(β0,BH)
=〔7.139E−2+(1.714E−2)・(4−4)
+(4.823E−5)・(4−4)2〕/4
=1.785E−2
【0103】
続くステップS108において、演算部6は、式(20)を用いて、歯幅歯丈比BH=6での等価変換ねじれ角β0(BH=6)を演算する。
【0104】
β0(BH=6)=tan-1〔(2/6)・tan4°〕
=1.335°
【0105】
そして、β0(BH=6)=1.335°であることから、ステップS109において、演算部6は、β0(BH=6)<12°であると判定し、今回の入力諸元に基づくはすば歯対は、分岐点外(Xs≦X≦Xd1,Xd2≦X≦Xe)の区間での噛合剛性曲線を直線近似することが可能であると判定してステップS110に進む。
【0106】
ステップS109からステップS110に進むと、演算部6は、式(21)〜(23)を用いて、分岐点外の区間での噛合剛性曲線の近似式を以下の通り設定する。
【0107】
0=(|0.403|・1.785E−2−0.714・|−0.448|)
/(|0.403|−|−0.448|)
=6.28584
1=(0.714−1.785E−2)
/(|0.403|−|−0.448|)
=−13.92886
K(X)/Kp
=6.28584−13.92886・|X|…(40)
【0108】
そして、ステップS110からステップS117に進むと、演算部6は、ステップS105及びステップS110で設定した各区間での噛合剛性曲線の近似式(39)、(40)を用いて、はすば歯対の噛合開始点Xsから噛合終了点Xeまで各噛合剛性値を演算し、この演算結果を出力部8を通じて出力した後、ルーチンを終了する。
【0109】
この結果、図15に示すように、式(1)〜(6)を用いて演算した噛合剛性値の理論値と極めて良く一致した噛合剛性値が得られる。
【0110】
(演算例2)
この演算例2では、はすば歯対の諸元として、噛合剛性演算装置1に、mn=1、Ks=1、Ck=0.35、αn=20.5°、B=7.05、β0=36°が入力された場合の例について説明する。
【0111】
上記諸元が入力されて噛合剛性演算ルーチンがスタートすると、先ず、ステップS101において、演算部6は、入力諸元に基づき、歯丈H、歯幅歯丈比BH、正面噛合率εα、及び、重なり噛合率εβ等の諸元計算を行う。
【0112】
H=2.35
BH=3
εα=1.347
εβ=1.319
【0113】
続くステップS102において、演算部6は、式(7)及び(8)を用いて、はすば歯対の噛合開始点及び噛合終了点のX座標(Xs、及びXe)を以下の通り演算する。
【0114】
s=−(1.347+1.319)
/〔(1.347/1)・2.35〕
=−0.842
e=(1.347+1.319)
/〔(1.347/1)・2.35〕
=0.842
【0115】
続くステップS103において、演算部6は、式(9)及び(10)を用いて、はすば歯対の第1,第2の分岐点のX座標(Xd1、及びXd2)を以下の通り演算する。
【0116】
d1=−|(1.347−1.319)
/〔(1.347/1)・2.35〕|
=0
d2=|(1.347−1.319)
/〔(1.347/1)・2.35〕|
=0
なお、Xd1,Xd2は、実際には所定の演算分割数を与えて演算しているため、本演算例では何れも”0”となる。
【0117】
そして、εα=1.347、εβ=1.319であることから、ステップS104において、演算部6は、εα>εβであると判定し、今回の入力諸元に基づくはすば歯対はケース1に分類されるはすば歯対であると判定してステップS105に進む。
【0118】
ステップS104からステップS105に進むと、演算部6は、式(11)〜(13)を用いて、第1,第2の分岐点間(Xd1≦X≦Xd2)の区間での噛合剛性曲線の近似式を以下の通り設定する。
【0119】
2=f1(β0
=−1.40846+0.00726・(36−4)
−0.00111・(36−4)2
=−2.30915
4=f2(β0
=−2.35761−0.12962・(36−4)
+0.00470・(36−4)2
=−1.69128
K(X)/Kp=1−2.30915・X2−1.69128・X4…(41)
【0120】
続くステップS106において、演算部6は、近似式(41)を用いて、分岐点での噛合剛性値と噛合中心点での噛合剛性値との比Yd〔=K(Xd)/Kp〕を以下の通り演算する。
【0121】
d=K(X)/Kp
=1−2.30915・(0)2
−1.69128・(0)4
=1
【0122】
続くステップS107において、演算部6は、式(35)〜(38)を用いて、噛合開始点での噛合剛性値と噛合中心点での噛合剛性値との比Ysを以下の通り演算する。
【0123】
C0=0.07139−0.01574・(3−2)
+0.00206・(3−2)2
=5.772E−2
C1=0.01714−0.00725・(3−2)
+0.00071・(3−2)2
=1.059E−2
C2=0.00005+0.00009・(3−2)
+0.000002・(3−2)2
=1.401E−4
s=K(Xs)/Kp=f3(β0,BH)
=〔5.772E−2+(1.059E−2)・(36−4)
+(1.401E−4)・(36−4)2〕/36
=1.500E−2
【0124】
続くステップS108において、演算部6は、式(20)を用いて、歯幅歯丈比BH=6での等価変換ねじれ角β0(BH=6)を演算する。
【0125】
β0(BH=6)=tan-1〔(3/6)・tan36°〕
=19.965°
【0126】
そして、β0(BH=6)=19.965°であることから、ステップS109において、演算部6は、β0(BH=6)≧12°であると判定し、今回の入力諸元に基づくはすば歯対は、分岐点外(Xs≦X≦Xd1,Xd2≦X≦Xe)の区間での噛合剛性曲線を直線近似することが困難であると判定してステップS111に進む。
【0127】
ステップS109からステップS111に進むと、演算部6は、式(24)〜(32)を用いて、分岐点外の区間での噛合剛性曲線の近似式を以下の通り設定する。
【0128】
A=3.79864−0.09678・19.965=1.866
B=4.42725−0.19427・19.965
+0.00451・(19.965)2
=2.345
0=exp[〔|0|1.866・ln(1.500E−2)
−|−0.842|1.866・ln(1)〕
/〔|0|1.866−|−0.842|1.866〕]
=1
1=〔ln(1)−ln(1.500E−2)〕
/〔|0|1.866−|−0.842|1.866
=−5.81609
0=〔|0|2.345・(1.500E−2)
−1・|−0.842|2.345
/〔|0|2.345−|−0.842|2.345
=1
1=〔1−(1.500E−2)〕
/〔|0|2.345−|−0.842|2.345
=−1.48226
Ka(X)=1・exp(−5.81609・|X|1.866
Kb(X)=1−1.48226・|X|2.345
K(X)/Kp=〔exp(−5.81609・|X|1.866
+(1−1.48226・|X|2.345)〕/2 …(42)
【0129】
そして、ステップS111からステップS117に進むと、演算部6は、ステップS105及びステップS111で設定した各区間での噛合剛性曲線の近似式(41)、(42)を用いて、はすば歯対の噛合開始点Xsから噛合終了点Xeまで各噛合剛性値を演算し、この演算結果を出力部8を通じて出力した後、ルーチンを終了する。
【0130】
この結果、図16に示すように、式(1)〜(6)を用いて演算した噛合剛性値の理論値と極めて良く一致した噛合剛性値が得られる。
【0131】
(演算例3)
この演算例3では、はすば歯対の諸元として、噛合剛性演算装置1に、mn=1、Ks=1、Ck=0.35、αn=20.5°、B=14.1、β0=36°が入力された場合の例について説明する。
【0132】
上記諸元が入力されて噛合剛性演算ルーチンがスタートすると、先ず、ステップS101において、演算部6は、入力諸元に基づき、歯丈H、歯幅歯丈比BH、正面噛合率εα、及び、重なり噛合率εβ等の諸元計算を行う。
【0133】
H=2.35
BH=6
εα=1.347
εβ=2.638
【0134】
続くステップS102において、演算部6は、式(7)及び(8)を用いて、はすば歯対の噛合開始点及び噛合終了点のX座標(Xs、及びXe)を以下の通り演算する。
【0135】
s=−(1.347+2.638)
/〔(1.347/1)・2.35〕
=−1.258
e=(1.347+2.638)
/〔(1.347/1)・2.35〕
=1.258
【0136】
続くステップS103において、演算部6は、式(9)及び(10)を用いて、はすば歯対の第1,第2の分岐点のX座標(Xd1、及びXd2)を以下の通り演算する。
【0137】
d1=−|(1.347−2.638)
/〔(1.347/1)・2.35〕|
=−0.407
d2=|(1.347−2.638)
/〔(1.347/1)・2.35〕|
=0.407
【0138】
そして、εα=1.347、εβ=2.638であることから、ステップS104において、演算部6は、εα≦εβであると判定し、今回の入力諸元に基づくはすば歯対はケース3に分類されるはすば歯対であると判定してステップS112に進む。
【0139】
ステップS104からステップS112に進むと、演算部6は、式(14)〜(19)を用いて、第1,第2の分岐点間(Xd1≦X≦Xd2)の区間での噛合剛性曲線の近似式を以下の通り設定する。
【0140】
d(BH=6)=〔2.638・(6/6)−1.347〕/〔(1.347/1)・2.35〕
=0.407
2=f6(β0
=−0.51970・exp〔−0.36190・(36−28)〕
=−2.873E−2
4=f7(β0
=−16.9460・exp〔−0.34700・(36−28)〕
=−1.056
N=X+0.407−0.407
N=1+(−2.873E−2)・(0.407−0.407)2
−1.056・(0.407−0.407)4
=1
K(X)/Kp=1+(−2.873E−2)・X2−1.056・X4…(43)
【0141】
続くステップS113において、演算部6は、近似式(43)を用いて、分岐点での噛合剛性値と噛合中心点での噛合剛性値との比Yd〔=K(Xd)/Kp〕を以下の通り演算する。
【0142】
d=K(X)/Kp
=1+(−2.873E−2)・(0.407)2
−1.056・(0.407)4
=0.965
【0143】
続くステップS114において、演算部6は、式(35)〜(38)を用いて、噛合開始点での噛合剛性値と噛合中心点での噛合剛性値との比Ysを以下の通り演算する。
【0144】
C0=0.07139−0.01574・(6−2)
+0.00206・(6−2)2
=4.146E−2
C1=0.01714−0.00725・(6−2)
+0.00071・(6−2)2
=−5.643E−4
C2=0.00005+0.00009・(6−2)
+0.000002・(6−2)2
=4.371E−4
s=K(Xs)/Kp=f3(β0,BH)
=〔4.146E−2+(−5.643E−4)・(36−4)
+(4.371E−4)・(36−4)2〕/36
=1.308E−2
【0145】
続くステップS115において、演算部6は、式(20)を用いて、歯幅歯丈比BH=6での等価変換ねじれ角β0(BH=6)を演算する。
【0146】
β0(BH=6)=tan-1〔(6/6)・tan36°〕
=36°
【0147】
そして、ステップS115からステップS116に進むと、演算部6は、式(24)〜(30)、(33)、(34)を用いて、分岐点外の区間での噛合剛性曲線の近似式を以下の通り設定する。
【0148】
A=−0.13500+0.08200・36=2.817
B=4.42725−0.19427・36
+0.00451・(36)2
=3.275
0=exp[〔|0.407|2.817・ln(1.3082E−2)
−|−1.258|2.817・ln(0.965)〕
/〔|0.407|2.817−|−1.258|2.817〕]
=1.16738
1=〔ln(0.965)−ln(1.308E−2)〕
/〔|0.407|2.817−|−1.258|2.817
=−2.34216
0=〔|0.407|3.275・(1.308E−2)
−0.965・|−1.258|3.275
/〔|0.407|3.275−|−1.258|3.275
=0.99007
1=〔0.965−(1.308E−2)〕
/〔|0.407|3.275−|−1.258|3.275
=−0.45835
Ka(X)=(1.16738)
・exp(−2.34216・|X|2.817
Kb(X)=0.99007−0.45835・|X|3.275
K(X)/Kp=〔(1.16738)
・exp(−2.34216・|X|2.817
+(0.99007−0.45835・|X|3.275)〕/2…(44)
【0149】
そして、ステップS116からステップS117に進むと、演算部6は、ステップS112及びステップS116で設定した各区間での噛合剛性曲線の近似式(43)、(44)を用いて、はすば歯対の噛合開始点Xsから噛合終了点Xeまで各噛合剛性値を演算し、この演算結果を出力部8を通じて出力した後、ルーチンを終了する。
【0150】
この結果、図17に示すように、式(1)〜(6)を用いて演算した噛合剛性値の理論値と極めて良く一致した噛合剛性値が得られる。
【0151】
このような実施の形態によれば、噛合剛性曲線の挙動が変化する第1,第2の分岐点を演算し、第1の分岐点から第2の分岐点までの区間の噛合剛性曲線の近似式と、噛合開始点から第1の分岐点まで及び第2の分岐点から噛合終了点までの区間の噛合剛性曲線の近似式とを異なる関数に設定することにより実際の噛合剛性曲線と極めてよく一致した近似式を設定することができ、このように設定された近似式を用いることにより、簡単な演算処理で精度よくはすば歯対の噛合剛性値を把握することができる。
【0152】
また、はすば歯対の正面噛合率と重なり噛合率との大小関係を比較し、この比較結果に応じて噛合剛性曲線の近似式を異なる関数に設定することにより、実際の噛合剛性曲線と極めてよく一致した近似式を設定することができ、このように設定された近似式を用いることにより、簡単な演算処理で精度よくはすば歯対の噛合剛性値を把握することができる。
【0153】
これらの場合において、第1の分岐点から第2の分岐点までの区間の近似式を2次と4次の項を備えた関数に設定することにより、実際の噛合剛性曲線と極めて一致した近似式を設定することができる。その際、正面噛合率が重なり噛合率よりも小さい場合には、所定の歯幅歯丈比(例えば、BH=6)の噛合剛性曲線に基づいて作成した近似関数を分岐点の座標に基づいて変形して近似式を設定することにより簡単な処理で精度よく近似式を設定することができる。
【0154】
また、正面噛合率が重なり噛合率よりも大きい場合には、噛合開始点から第1の分岐点まで及び第2の分岐点から噛合終了点までの区間の噛合剛性曲線の近似式を、ねじれ角と予め設定した設定ねじれ角との大小関係の比較結果に応じて異なる関数に設定することにより、近似式を精度よく設定することができる。具体的には、ねじれ角が設定ねじれ角よりも小さいと判定した際に、近似式を1次関数に設定することにより、近似式を精度よく設定することができる。その一方で、ねじれ角が設定ねじれ角よりも大きいと判定した際に、ねじれ角に基づいて規定される所定次数の指数関数であって上記ねじれ角に基づいて規定される所定次数の関数を備えた関数に設定することにより、近似式を精度よく設定することができる。その際、ねじれ角と設定ねじれ角との比較を、所定の歯幅歯丈比(例えばBH=6)で等価変換したねじれ角を用いて行うことにより、使用する関数の選択を一定の指標下で画一的に行うことができる。また、ねじれ角が設定ねじれ角よりも大きいと判定した場合の次数の規定を、所定の歯幅歯丈比(例えばBH=6)で等価変換したねじれ角を用いて行うことにより、画一的な演算で良好な次数の規定を行うことができる。
【0155】
また、正面噛合率が重なり噛合率よりも小さい場合には、噛合開始点から第1の分岐点まで及び第2の分岐点から噛合終了点までの区間の噛合剛性曲線の近似式を、ねじれ角に基づいて規定される所定次数の指数関数であって上記ねじれ角に基づいて規定される所定次数の関数を備えた関数に設定することにより、近似式を精度よく設定することができる。その際、次数の規定を、所定の歯幅歯丈比(例えばBH=6)で等価変換したねじれ角を用いて行うことにより、画一的な演算で良好な次数の規定を行うことができる。
【0156】
そして、このように精度よく設定された近似式から求めた噛合剛性値を用いて噛合固有振動数や回転方向振動等の各種解析を行った情報に基づき、はすば歯車対諸元設計等を行うことにより、静粛性や強度に優れたはすば歯車対を得ることができる。
【0157】
【発明の効果】
以上説明したように本発明によれば、広範囲な歯車諸元に対し、簡単な演算処理で精度よく、はすば歯対の噛合剛性値を把握することができる。
【図面の簡単な説明】
【図1】はすば歯対の噛合剛性演算ルーチンを示すフローチャート
【図2】はすば歯対の噛合剛性演算装置の概略構成図
【図3】はすば歯対の噛合剛性演算装置を実現するためのコンピュータの一例を示す概略図
【図4】はすば歯車対の作用平面を示す説明図
【図5】各ケースでのはすば歯対の噛合剛性曲線を示す図表
【図6】正面噛合率が重なり噛合率よりも大きいケース(ケース1)での噛合分岐点を示す説明図
【図7】正面噛合率が重なり噛合率と等しいケース(ケース2)での噛合分岐点を示す説明図
【図8】正面噛合率が重なり噛合率よりも小さいケース(ケース3)での噛合分岐点を示す説明図
【図9】ケース1での分岐点間の噛合剛性曲線を示す図表
【図10】ケース3での分岐点間の噛合剛性曲線を示す図表
【図11】図10の各噛合剛性曲線を座標変換して示す図表
【図12】分岐点が噛合開始点及び噛合終了点寄りにある場合におけるケース1での分岐点外の噛合剛性曲線を示す図表
【図13】分岐点が噛合中心点寄りにある場合におけるケース1での分岐点外の噛合剛性曲線を示す図表
【図14】ケース2での分岐点外の噛合剛性曲線を示す図表
【図15】ケース1での噛合剛性曲線の理論値と近似値との比較結果を示す図表
【図16】ケース2での噛合剛性曲線の理論値と近似値との比較結果を示す図表
【図17】ケース3での噛合剛性曲線の理論値と近似値との比較結果を示す図表
【符号の説明】
1 … 噛合剛性演算装置
6 … 演算部(分岐点演算手段、噛合率比較手段、第1の近似式設定手段、第2の近似式設定手段、ねじれ角比較手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a meshing rigidity calculation device for a helical tooth pair that calculates a meshing rigidity value from the start to the end of meshing of a helical tooth pair.
[0002]
[Prior art]
Conventionally, in helical gear pairs widely used in vehicles such as automobiles, trucks, railway vehicles, and construction machines, etc., the natural vibration of meshing is aimed at improving quietness and optimizing strength. Various analyzes such as number and vibration in the rotational direction are performed.
[0003]
For such analysis, it is required to accurately grasp the variation in the meshing rigidity from the start of meshing of the helical tooth pair to the end of meshing. It is performed by solving an integral equation using an influence function of the bending and contact deflection of the helical tooth pair using a computer.
[0004]
However, the calculation of the meshing rigidity value using the above-described integral equation is very difficult, and when a certain degree of calculation accuracy is required, the calculation time becomes enormous, and the input calculation conditions (load, Depending on the tooth surface shape etc., there is a problem that the calculated value does not converge.
[0005]
In response to this, for example, in Non-Patent Document 1, involute that can display the spring stiffness variation from the start of meshing to the end of meshing in a parallel tooth with a pressure angle of 20 ° uses an approximate equation of meshing rigidity of a pair of helical teeth, A technique for calculating a variation in meshing rigidity of a helical tooth pair is disclosed.
[0006]
[Non-Patent Document 1]
Umezawa and 2 others “Vibration characteristics of helical gears for power transmission (spring stiffness approximation)”, Transactions of the Japan Society of Mechanical Engineers (C), Vol. 51, No. 469 (Showa 60-9), P2316 to P2322
[0007]
[Problems to be solved by the invention]
However, the meshing stiffness value obtained from the approximate expression disclosed in Non-Patent Document 1 described above does not necessarily correspond to the actual meshing stiffness value sufficiently, and furthermore, it is an average tooth with a pressure angle of 20 °. Since it is specialized in length, there is a possibility that it cannot be sufficiently applied to a practical gear having various pressure angles and tooth heights.
[0008]
The present invention has been made in view of the above circumstances, and for a wide range of gear specifications, a helical tooth pair capable of accurately grasping the meshing rigidity value of a helical tooth pair with simple arithmetic processing. An object of the present invention is to provide a meshing rigidity calculation device.
[0009]
[Means for Solving the Problems]
  In order to solve the above-mentioned problem, the invention according to claim 1 sets an approximate expression of the meshing rigidity curve based on the specifications of the helical tooth pair meshing with each other, and the meshing end point from the meshing start point based on the approximate expression A helical gear pair stiffness calculating device for calculating each mesh stiffness value up to a point, wherein the helical gear pair stiffness curveThe first1, a branch point calculating means for calculating a second branch point, and a first approximate expression setting means for setting an approximate expression of the meshing rigidity curve in a section from the first branch point to the second branch point And second approximation formula setting means for setting an approximation formula of the meshing rigidity curve in a section from the meshing start point to the first branch point and from the second branch point to the meshing end point;A meshing rate comparison means for comparing the magnitude relationship between the front meshing rate and the overlapping meshing rate of the helical tooth pair;WithThe first and second approximation formula setting means set the approximation formulas of the meshing rigidity curves in the sections to different functions according to the comparison result between the front meshing rate and the overlapping meshing rate.It is characterized by that.
[0013]
  Claims2An apparatus for calculating the meshing rigidity of a helical tooth pair according to the invention described in claim1In the described invention, the first approximate expression setting means is a function in which the approximate expression is a function having coordinates on the equivalent action line of the helical tooth pair as variables, and includes quadratic and quartic terms. It is set to a function.
[0014]
  Claims3According to the described invention, the meshing configuration computing device for helical tooth pairs1 or 2In the invention described in the above, when the meshing rate comparison unit determines that the front meshing rate is smaller than the overlapping meshing rate, the first approximate expression setting unit performs meshing rigidity with a predetermined tooth width / height ratio. The approximate expression is set by modifying an approximate function created based on a curve based on the coordinates of the branch point.
[0015]
  Claims4An apparatus for calculating the meshing rigidity of a helical tooth pair according to the invention described in claimAny one of 1 to 3In the invention described in the above, when the meshing rate comparison means determines that the front meshing rate is larger than the overlapping meshing rate, the magnitude relationship between the helical angle of the helical tooth pair and a preset twisting angle set in advance And the second approximate expression setting means sets the approximate expression to a different function according to the comparison result of the twist angle comparison means.
[0016]
  Claims5An apparatus for calculating the meshing rigidity of a helical tooth pair according to the invention described in claim4In the described invention, the torsion angle comparing means compares the magnitude relationship with the set torsion angle by using a torsion angle equivalently converted at a predetermined tooth width / height ratio.
[0017]
  Claims6An apparatus for calculating the meshing rigidity of a helical tooth pair according to the invention described in claim4 or claim 5When the torsion angle comparing means determines that the torsion angle is smaller than the set torsion angle, the second approximate expression setting means determines the approximate expression and the helical tooth pair. Is set to a linear function with the coordinates on the equivalent action line as a variable.
[0018]
  Claims7An apparatus for calculating the meshing rigidity of a helical tooth pair according to the invention described in claim4 or 5When the torsion angle comparing means determines that the torsion angle is larger than the set torsion angle, the second approximate expression setting means determines the approximate expression and the helical tooth pair. A function having coordinates on the equivalent action line as a variable, an exponential function of a predetermined order defined based on the twist angle, and a function of a predetermined order defined based on the twist angle Features.
[0019]
  Claims8An apparatus for calculating the meshing rigidity of a helical tooth pair according to the invention described in claim7In the described invention, the second approximate expression setting means defines the order using a torsion angle equivalently converted with a predetermined tooth width / height ratio.
[0020]
  Claims9An apparatus for calculating the meshing rigidity of a helical tooth pair according to the invention described in claimAny one of claims 1 to 8In the invention described in claim 2, when the meshing rate comparison unit determines that the front meshing rate is smaller than the overlapping meshing rate, the second approximate formula setting unit sets the approximate formula to the helical tooth. A function having coordinates on a pair of equivalent action lines as variables, and an exponential function of a predetermined order defined based on the twist angle and a function of a predetermined order defined based on the twist angle It is characterized by.
[0021]
  Claims10An apparatus for calculating the meshing rigidity of a helical tooth pair according to the invention described in claim9In the described invention, the second approximate expression setting means defines the order using a torsion angle equivalently converted with a predetermined tooth width / height ratio.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. The drawings relate to an embodiment of the present invention, FIG. 1 is a flowchart showing a helical gear pair engagement rigidity calculation routine, FIG. 2 is a schematic configuration diagram of a helical tooth pair engagement rigidity calculation device, and FIG. FIG. 4 is a schematic diagram showing an example of a computer for realizing the meshing rigidity calculating device for a helical tooth pair, FIG. 4 is an explanatory diagram showing an action plane of the helical gear pair, and FIG. 5 is a helical tooth in each case. FIG. 6 is a diagram showing a pair of meshing rigidity curves, FIG. 6 is an explanatory diagram showing a meshing branch point in a case (case 1) where the front meshing rate is larger than the overlapping meshing rate, and FIG. 7 is a case where the front meshing rate is equal to the overlapping meshing rate. FIG. 8 is an explanatory diagram showing a meshing branch point in a case (case 3) where the front meshing rate is smaller than the overlapping meshing rate, and FIG. FIG. 10 is a chart showing a meshing rigidity curve between points, and FIG. Fig. 11 is a diagram showing the stiffness curve, Fig. 11 is a diagram showing the meshing stiffness curves of Fig. 10 after coordinate conversion, and Fig. 12 is outside the branch point in case 1 when the branch point is near the mesh start point and mesh end point. FIG. 13 is a chart showing a meshing rigidity curve, FIG. 13 is a chart showing a meshing rigidity curve outside the branching point in case 1 when the branching point is close to the meshing center point, and FIG. FIG. 15 is a chart showing a comparison result between the theoretical value and the approximate value of the meshing rigidity curve in case 1, and FIG. 16 is a comparison result between the theoretical value and the approximate value of the meshing rigidity curve in case 2. The chart and FIG. 17 are charts showing comparison results between theoretical values and approximate values of the meshing rigidity curve in case 3.
[0023]
Here, prior to describing the configuration of the helical stiffness pair computing device according to the present embodiment, the results of analysis of the mesh stiffness values at each specification of the helical tooth pair by the present applicants. Will be described.
[0024]
In FIG. 4, reference numeral 100 denotes an action plane of the driving side gear 101 and the driven side gear 102 constituting the helical gear pair. As shown in FIG. 4, since the meshing contact line CC of the helical tooth pair is twisted with respect to the gear shaft, the meshing starts from point contact unlike the spur gear. That is, the meshing of the helical tooth pair starts from the point S, the oblique meshing contact line CC advances in parallel on the working plane 100 while changing the length, and finally ends at the point E.
[0025]
First, the present applicants solve each meshing from the start of meshing to the end of meshing by solving the following integral equation of bending deflection and tooth surface contact deflection of helical gear pairs of various gear specifications. Deflection amount δ in contact line CCx And the amount of deflection δxFrom the above, the meshing rigidity value K (X) was obtained.
[0026]
δx= ∫Kb(X, ξ) · P (ξ) dξ + ∫Kc(X = ξ) · P (ξ) dξ (1)
Ps= ∫P (ξ) dξ (2)
K (X) = Ps/ Δx  ... (3)
[0027]
Here, in equation (1), K is an influence function of surface contact deflection.cIs the free end load proposed by Suzuki et al. (See Suzuki and Umezawa, “Nearly approaching the tooth contact of the gears that come into contact with each other”, The Japan Society of Mechanical Engineers, Vol. 52, No. 481 (1986), P2449). The theoretical formula between the rollers considering the influence of distribution was used.
[0028]
Kc[X = ξ, y = η = fuc (x)]
= 25 · (1-γ2) ・ ∫ (1-xFour)1/4dx
/ Π · E · ΔB · (1-xFour)1/4(However, the integration range is 0 to 1) (4)
[0029]
In addition, K is a bending bending influence function of teeth.bIs the tooth width direction proposed by Kano et al. (See Kano / Saiki, “New Bending and Deflection Influence Function of Gear Rack”, Annual Meeting of the Japan Society of Mechanical Engineers 2002 (V) 2314, P27). A high-precision formula that takes into account the bending characteristics of different tooth height directions was used.
[0030]
Kb(X, y, ξ, η)
= U · G (η) · [ν (r) / ν (η)]
・ [[[F (x) · F (ξ)] / F (| x−ξ |)]1/2  ... (5)
r = η + [[λ · (x−ξ)]2+ (Y−η)2]1/2  (6)
[0031]
The variables in the formulas (1) to (6) are as follows.
[0032]
(X, y): Coordinate value of the deflection observation point
(Ξ, η): Coordinate value of unit concentrated load point
P (ξ): Load distribution on the meshing contact line
E: Young's modulus [2.068 × 1011Nm2]
γ: Poisson's ratio [0.3]
ΔB: Calculated division width on each meshing contact line
X: Coordinate value on the equivalent action line (see Fig. 4) of the helical tooth pair with the contact tooth width center being 0
U: Absolute value of deflection at the origin when the origin is concentrated
λ: Coordinate conversion coefficient to the concentric distribution of the bent elliptical distribution
r: Radius of bending concentric distribution with tooth tip as origin
ν (r): Deflection characteristic function of equivalent concentric distribution
G (η): Deflection characteristic function just below the concentrated load point in the tooth height direction
F (ξ): Deflection characteristic function just below the concentrated load point in the tooth width direction
[0033]
Using the above calculation formula, as a result of calculating and analyzing the theoretical value of each meshing rigidity from the start to the end of meshing of the helical tooth pair according to various gear specifications, the present applicants There is a branching point (hereinafter referred to as the first branching point) where the behavior of the meshing rigidity curve changes between the meshing start point and the meshing center point, and the same between the meshing center point and the meshing end point. It was found that there is a branch point (hereinafter referred to as a second branch point). And, as a result of examining this branch point in more detail, the position is the front meshing rate εαAnd overlap mesh rate εβIn addition to being determined by the magnitude relationship, for example, it has been found that it can be classified into three cases (case 1 to case 3) as shown in each example of FIG. In FIG. 5, the example shown in case 1 is BH [ratio of tooth width to tooth height (tooth width / tooth height)] = 2, Hk(Tooth height ratio) = 2.35, αn(Pressure angle) = 20.5 °, β0(Twist angle on pitch cylinder) = Each meshing stiffness value K (X) at 4 ° is meshing stiffness value K at the meshing center pointp(K (0)) is a meshing rigidity curve standardized by (K (0)). The example shown in Case 2 is BH = 3, Hk= 2.35, αn= 20.5 °, β0= Meshing stiffness value K (X) at 36 ° is the meshing stiffness value K at the meshing center pointpIs an engagement rigidity curve standardized by the following, and an example shown in case 3 is BH = 6, Hk= 2.35, αn= 20.5 °, β0= Meshing stiffness value K (X) at 36 ° is the meshing stiffness value K at the meshing center pointpIt is the meshing rigidity curve standardized by.
[0034]
Case 1 has a front meshing ratio εαIs the overlap meshing ratio εβIs a larger case. In this case, as shown in FIG. 6, the length of the meshing contact line CC that translates on the working plane 100 from the meshing start point S to the meshing end point E is such that the meshing contact line CC is toothed on the working plane 100. It is the longest in a state that crosses the width direction. In this case, the first branch point exists at the moment when the length of the meshing contact line CC is the longest, and the second branch point exists at the moment when the length is not the longest.
[0035]
Case 2 has a front meshing ratio εαIs the overlap meshing ratio εβIs the same case. In this case, as shown in FIG. 7, the length of the meshing contact line CC that translates from the meshing start point S to the meshing end point E on the working plane 100 is the same as the meshing contact line CC on the working plane 100. It becomes the longest at the moment of crossing in the width direction and the tooth height direction. In this case, the first and second branch points simultaneously exist at the moment when the length of the meshing contact line CC becomes the longest.
[0036]
Case 3 has a front meshing ratio εαIs the overlap meshing ratio εβIs a smaller case. In this case, as shown in FIG. 8, the length of the meshing contact line CC that translates from the meshing start point S to the meshing end point E on the working plane 100 is the same as the meshing contact line CC on the working plane 100. It is the longest in a state that crosses the length direction. In this case, the first branch point exists at the moment when the length of the meshing contact line CC is the longest, and the second branch point exists at the moment when the length is not the longest.
[0037]
Thus, each meshing rigidity curve is greatly influenced by the difference in the branch point position. The position of each branch point is one of the above three cases depending on only the gear specifications. Here, the coordinates on the action line of the meshing start point, the meshing end point, and the first and second branch points, that is, Xs, Xe, Xd1, Xd2Is calculated as follows.
[0038]
Xs=-(Εα+ Εβ) / [(Εα/ Mn・ H] ... (7)
Xe= (Εα+ Εβ) / [(Εα/ Mn・ H] ... (8)
Xd1=-| (Εα−εβ) / [(Εα/ Mn) ・ H] |… (9)
Xd2= | (Εα−εβ) / [(Εα/ Mn) ・ H] |… (10)
[0039]
Here, the variables in the equations (7) to (10) are as follows.
[0040]
mn: Tooth right angle module
H: Tooth length
As is clear from the equations (9) and (10), the X coordinate of the first and second branch points is the meshing center point X.pOn behalf of these, Xd2Simply XdAlso called.
[0041]
Based on the above points, first, between the first and second branch points (Xd1≦ X ≦ Xd2)) Approximate function of each meshing rigidity value.
[0042]
FIG. 9 shows the meshing rigidity curves of the helical tooth pairs of various specifications classified as case 1. In FIG. 9, BH = 2, Hk= 2.35, αn= 20.5 °, β0= Each meshing rigidity value K (X) at 20 ° is the meshing rigidity value K at the meshing center pointpMeshing rigidity curve standardized by BH = 4, Hk= 2.35, αn= 20.5 °, β0= Each meshing rigidity value K (X) at 20 ° is the meshing rigidity value K at the meshing center pointpMeshing rigidity curve standardized with BH = 6, Hk= 2.35, αn= 20.5 °, β0= Each meshing rigidity value K (X) at 20 ° is the meshing rigidity value K at the meshing center pointpThe meshing rigidity curves standardized in FIG. As can be seen from FIG. 9, in case 1, each meshing rigidity curve is on substantially the same parabola, regardless of the tooth width / height ratio BH.
[0043]
FIG. 10 shows the meshing rigidity curves of the helical tooth pairs of various specifications classified as case 3. In FIG. 10, BH = 4, Hk= 2.35, αn= 20.5 °, β0= Meshing stiffness value K (X) at 36 ° is the meshing stiffness value K at the meshing center pointpMeshing rigidity curve standardized with BH = 5, Hk= 2.35, αn= 20.5 °, β0= Meshing stiffness value K (X) at 36 ° is the meshing stiffness value K at the meshing center pointpMeshing rigidity curve standardized with BH = 6, Hk= 2.35, αn= 20.5 °, β0= Meshing stiffness value K (X) at 36 ° is the meshing stiffness value K at the meshing center pointpThe meshing rigidity curves standardized in FIG. In this case, as shown in FIG. 10, the meshing rigidity value K (X) of each helical tooth pair is affected by the tooth width B, and therefore the behavior varies depending on the tooth width / tooth height ratio BH. On the other hand, it can be seen that the meshing rigidity value curves of each helical tooth pair substantially coincide on the same parabola when coordinate transformation for matching each branch point position is performed, as shown in FIG. FIG. 11 shows an example in which the first and second branch point positions of BH = 4 and 5 are made to coincide with the first and second branch point positions of BH = 6 by coordinate transformation.
[0044]
As can be seen from the above, each meshing rigidity curve between the branch points can be approximated by a bilaterally symmetric parabolic function having a quadratic term and a quadratic term and having a meshing center point as a vertex. In this case, the parabola shape of the case 1 is constant regardless of the tooth width tooth height ratio BH, but the parabola shape of the case 3 changes depending on the tooth width tooth height ratio BH. Therefore, taking these into consideration, the present applicants have decided that between the branch points (−Xd1≦ X ≦ Xd2) Was created as follows.
[0045]
Case 1 (εα> Εβ)in the case of
K (X) / Kp= 1 + a2・ X2+ AFour・ XFour  ... (11)
a2= F10)
= -1.40884 + 0.00726. (Β0-4)
-0.00111 ・ (β0-4)2  (12)
aFour= F20)
= -2.35761-0.12962 · (β0-4)
+0.00470 ・ (β0-4)2  ... (13)
[0046]
Case 3 (εαβ)in the case of
K (X) / Kp= 2 + a2・ XN 2+ AFour・ XN Four-YN  ... (14)
XN= X + Xd (BH = 6)-Xd  ... (15)
YN= 1 + a2・ (Xd (BH = 6)-Xd)2+ AFour・ (Xd (BH = 6)-Xd)Four  ... (16)
a2= F60)
= −0.51970 · exp [−0.36190 · (β0-28)] ... (17)
aFour= F70)
= −16.9460 · exp [−0.34700 · (β0-28)] ... (18)
Here, the approximate function defined by the equations (14) to (18) is based on the meshing rigidity curve with the tooth width ratio BH = 6, and the branch point XdThe meshing rigidity curve at each tooth width / height ratio BH is approximated by performing coordinate conversion based on the above. In other words, the helical tooth pair having the tooth width ratio BH = 6 is one of the most frequently used helical tooth pairs, and the helical tooth pair is a tooth width tooth height. Since the ratio BH is large, it is possible to set a large number of calculations for the meshing rigidity value. From these facts, in the formulas (14) to (18), each tooth width tooth height ratio is based on the meshing rigidity curve of the helical tooth pair at a practical and highly accurate tooth width tooth height ratio BH = 6. Approximate the meshing stiffness curve at BH. In this case, the X coordinate (Xd) Can be equivalently converted with a tooth width / height ratio BH = 6 as in the following equation.
[0047]
Xd (BH = 6)= [Εβ(6 / BH) -εα] / [(Εα/ Mn・ H] ... (19)
Needless to say, an approximation function equivalent to the equations (14) to (18) may be created on the basis of the meshing rigidity curve other than the tooth width / height ratio BH = 6.
[0048]
Next, outside the first and second branch points (Xs≦ X ≦ Xd1, Xd2≦ X ≦ Xe)) Approximate function of each meshing rigidity value.
[0049]
FIG. 12 shows the case where the branch point is close to the meshing start point and the meshing end point among the meshing rigidity curves of the helical tooth pairs of various specifications classified as case 1 (that is, the twist angle β0Is relatively small). In FIG. 12, BH = 3, Hk= 2.35, αn= 20.5 °, β0= Meshing stiffness value K (X) at 4 ° is the meshing stiffness value K at the meshing center pointpMeshing rigidity curve standardized by B, BH = 3, Hk= 2.35, αn= 20.5 °, β0= Meshing stiffness value K (X) at 8 ° for each meshing stiffness value K (X)pMeshing rigidity curve standardized by B, BH = 3, Hk= 2.35, αn= 20.5 °, β0= Meshing stiffness value K (X) at 12 ° is the meshing stiffness value K at the meshing center pointpMeshing rigidity curve standardized by B, BH = 3, Hk= 2.35, αn= 20.5 °, β0= Each meshing stiffness value K (X) at 16 ° is the meshing stiffness value K at the meshing center pointpMeshing rigidity curve standardized with BH = 3, Hk= 2.35, αn= 20.5 °, β0= Each meshing rigidity value K (X) at 20 ° is the meshing rigidity value K at the meshing center pointpThe meshing rigidity curves standardized in FIG.
[0050]
FIG. 13 shows the case where the branch point is close to the meshing center point among the meshing rigidity curves of the helical tooth pairs of various specifications classified as case 1 (that is, the twist angle β0Is relatively large). In FIG. 13, BH = 3, Hk= 2.35, αn= 20.5 °, β0= Meshing stiffness value K (X) at 24 ° is the meshing stiffness value K at the meshing center pointpMeshing rigidity curve standardized by B, BH = 3, Hk= 2.35, αn= 20.5 °, β0= Each meshing stiffness value K (X) at 28 ° is the meshing stiffness value K at the meshing center pointpMeshing rigidity curve standardized with BH = 3, Hk= 2.35, αn= 20.5 °, β0= Meshing stiffness value K (X) at 32 ° is the meshing stiffness value K at the meshing center pointpThe meshing rigidity curves standardized in FIG.
[0051]
FIG. 14 shows the meshing rigidity curves of the helical tooth pairs of various specifications classified as case 2. In FIG. 14, BH = 3, Hk= 2.35, αn= 20.5 °, β0= Meshing stiffness value K (X) at 36 ° is the meshing stiffness value K at the meshing center pointpMeshing rigidity curve standardized by BH = 4, Hk= 2.35, αn= 20.5 °, β0= Meshing stiffness value K (X) at 30 ° is the meshing stiffness value K at the meshing center pointpMeshing rigidity curve standardized with BH = 5, Hk= 2.35, αn= 20.5 °, β0= Each meshing stiffness value K (X) at 26 ° is the meshing stiffness value K at the meshing center pointpMeshing rigidity curve standardized with BH = 6, Hk= 2.35, αn= 20.5 °, β0= Meshing stiffness value K (X) at 22.5 ° is the meshing stiffness value K at the meshing center pointpThe meshing rigidity curves standardized in FIG. Here, the meshing rigidity curves of the helical tooth pairs of various specifications classified as case 3 are substantially the same as those of case 2 outside the branch point.
[0052]
As is apparent from FIG. 12, the twist angle β0Is relatively small, the meshing stiffness curve outside the branch point can be approximated by a straight line. As is apparent from FIGS. 13 and 14, the twist angle β0Is relatively large, it is difficult to approximate the meshing stiffness curve outside the branch point with a straight line. Based on these, the applicants conducted further studies on each meshing rigidity curve outside the branch point, and as a result, the twist angle β0With tooth width / height ratio BH = 6 (β0 (BH = 6)) When equivalent conversion to0 (BH = 6)<12 ° meshing stiffness curve can be linearly approximated, β0 (BH = 6)It has been found that a meshing rigidity curve of ≧ 12 ° can be approximated by an exponential function having an A-order term and a function having a B-order term. Therefore, in consideration of these, the applicants are outside the branch point (Xs≦ X ≦ Xd1, Xd2≦ X ≦ Xe) Was created as follows.
[0053]
In addition, equivalent transformation helix angle β0 (BH = 6)Is defined as:
[0054]
β0 (BH = 6)= Tan-1[(BH / 6) · tanβ0] (20)
[0055]
β0 (BH = 6)<12 °
K (X) / Kp= A0+ A1・ | X | (21)
a0= (| Xd| ・ Ys-Yd・ | Xs|) / (| Xd|-| Xs|) (22)
a1= (Yd-Ys) / (| Xd|-| Xs|) (23)
[0056]
β0 (BH = 6)When ≧ 12 °
K (X) / Kp= [Ka (X) + Kb (X)] / 2 (24)
Ka (X) = a0・ Exp (a1・ | X |A... (25)
Kb (X) = b0+ B1・ | X |B  ... (26)
a0= Exp [(| XdA・ InYs− | XsA・ InYd)
/ (| XdA− | XsA]] ... (27)
a1= (LnYd-LnYs) / (| XdA− | XsA(28)
b0= (| XdB・ Ys-Yd・ | XsB) / (| XdB− | XsB... (29)
b1= (Yd-Ys) / (| XdB− | XsB... (30)
[0057]
Here, in the formulas (24) to (30), the orders A and B in each case are the twist angles β0Is defined as follows.
[0058]
Case 1 (εα> Εβ)in the case of
A = fFour0 (BH = 6))
= 3.79864-0.09678.beta0 (BH = 6)  ... (31)
B = fFive0 (BH = 6))
= 4.42725-0.19427.beta0 (BH = 6)
+ 0.00451 · β0 (BH = 6) 2  ... (32)
Cases 2 and 3 (εα≤εβ)in the case of
A = f80 (BH = 6))
= -0.13500 + 0.08200 · β0 (BH = 6)  ... (33)
B = fFive0 (BH = 6))
= 4.42725-0.19427.beta0 (BH = 6)
+ 0.00451 · β0 (BH = 6) 2  ... (34)
In the formulas (24) to (30), YsIndicates the ratio between the meshing stiffness value at the meshing start point and the meshing stiffness value at the meshing center point, and is obtained, for example, as follows.
[0059]
Ys= K (Xs) / Kp= FThree0, BH)
= [CC0+ CC1・ (Β0-4) + CC2・ (Β0-4)2] / Β0  ... (35)
CC0= 0.07139-0.01574 (BH-2)
+0.00206 ・ (BH-2)2  ... (36)
CC1= 0.01714-0.00725 (BH-2)
+ 0.00071 · (BH-2)2  ... (37)
CC2= 0.00005 + 0.00009 · (BH-2)
+0.000002 ・ (BH-2)2  ... (38)
In the formulas (24) to (30), YdIs the ratio of the meshing stiffness value at the bifurcation point to the meshing stiffness value at the meshing center point [K (Xd) / Kp, And an approximate expression set based on the expressions (11) to (13) or an approximate expression set based on the expressions (14) to (18).
[0060]
Next, an arithmetic unit that calculates the meshing rigidity of the helical tooth pair using each of the above approximate functions will be described.
[0061]
In FIG. 2, reference numeral 1 denotes a helical gear pair meshing rigidity calculating device. The meshing rigidity calculating device 1 includes an input unit 5 for inputting the specifications of the helical tooth pair, and an input unit 5. The calculation unit 6 for calculating the meshing rigidity value of the helical tooth pair on the basis of the input specifications and the meshing rigidity calculation routine executed by the calculation unit 6 are stored, and the input specifications from the input unit 5 and The storage unit 7 that appropriately stores the calculation result and the like in the calculation unit 6 and the output unit 8 that outputs the calculation result and the like in the calculation unit 6 are configured.
[0062]
Here, the meshing rigidity computing device 1 is realized by a computer system 10 shown in FIG. 3, for example. In the computer system 10, for example, a keyboard 12, a display device 13, and a printer 14 are connected to a computer main body 11 via a connection cable 15 to constitute a main part. In the computer system 10, for example, various drive devices, a keyboard 12, and the like arranged in the computer main body 11 function as the input unit 5, and a CPU, ROM, RAM, and the like built in the computer main body 11 are arithmetic units. 6 functions. Further, a hard disk or the like built in the computer main body 11 functions as the storage unit 7, and the display device 13, the printer 14, and the like function as the output unit 8.
[0063]
In the present embodiment, the meshing rigidity calculation routine stored in the storage unit 7 sets and sets the meshing rigidity approximation formula corresponding to the input specifications using the above formulas (7) to (38) as appropriate. This is for calculating the meshing rigidity value of each helical tooth pair in each meshing state based on the meshing rigidity approximation formula.
[0064]
Then, the calculation unit 6 loads and executes the meshing rigidity calculation routine stored in the storage unit 7, thereby executing a branch point calculation unit, a meshing rate comparison unit, and a first approximate expression setting unit (approximation formula setting unit). Each function as a second approximation formula setting unit (approximation formula setting unit) and a twist angle comparison unit is realized.
[0065]
Next, the meshing rigidity calculation routine executed by the calculation unit 6 in the meshing rigidity calculating apparatus 1 having the above-described configuration will be described.
[0066]
This routine is executed after the specifications of the helical tooth pair are input through the input unit 5. Here, in the present embodiment, the meshing rigidity computing device 1 includes, as specifications, for example, a tooth right angle module m.n, Tooth height coefficient Ks, Crevice coefficient Ck, Pressure angle αn, Tooth width B, and twist angle β0Is entered.
[0067]
When the routine starts, first, in step S101, the calculation unit 6 uses a well-known calculation method, based on the input specifications, the tooth height H, the tooth width / tooth height ratio BH, and the front meshing ratio ε.α, And overlap meshing ratio εβCalculate the specifications.
[0068]
In subsequent step S102, the calculation unit 6 uses the equations (7) and (8) to calculate the X coordinate (X of the engagement start point and the engagement end point of the helical tooth pair.sAnd Xe) Is calculated.
[0069]
In subsequent step S103, the calculation unit 6 uses the equations (9) and (10) to calculate the X coordinates (X of the first and second branch points of the helical tooth pair.d1And Xd2) Is calculated.
[0070]
In step S104, the calculation unit 6 determines that the front meshing ratio ε obtained in step S101.αAnd overlap mesh rate εβAnd the magnitude relationship with εα> ΕβIf it is determined that the helical tooth pair based on the current input specifications is a helical tooth pair classified as case 1, the process proceeds to step S105.
[0071]
When the process proceeds from step S104 to step S105, the calculation unit 6 uses the equations (11) to (13) to calculate the distance between the first and second branch points (Xd1≦ X ≦ Xd2) Is set as an approximate expression for the meshing rigidity curve.
[0072]
In subsequent step S106, the calculation unit 6 uses the approximate expression set in step S105 to calculate the ratio Y between the meshing rigidity value at the branch point and the meshing rigidity value at the meshing center point.d[= K (Xd) / Kp] Is calculated.
[0073]
In subsequent step S107, the calculation unit 6 uses the equations (35) to (38) to calculate the ratio Y between the meshing rigidity value at the meshing start point and the meshing rigidity value at the meshing center point.sIs calculated.
[0074]
In subsequent step S108, the calculation unit 6 uses the equation (20) to calculate the equivalent conversion torsion angle β when the tooth width / height ratio BH = 6.0 (BH = 6)Is calculated.
[0075]
In step S109, the calculation unit 6 determines that the equivalent conversion torsion angle β0 (BH = 6)Is compared with the preset twist angle (for example, 12 °), and β0 (BH = 6)If it is determined that it is <12 °, the helical tooth pair based on the current input specifications is outside the branch point (Xs≦ X ≦ Xd1, Xd2≦ X ≦ Xe), It is determined that the meshing rigidity curve in the section can be linearly approximated, and the process proceeds to step S110.
[0076]
When the process proceeds from step S109 to step S110, the calculation unit 6 sets an approximate expression of the meshing rigidity curve in the section outside the branch point using Expressions (21) to (23).
[0077]
Then, when proceeding from step S110 to step S117, the calculation unit 6 uses the approximate expression of the meshing rigidity curve in each section set in step S105 and step S110, and the meshing start point X of the helical tooth pair.sFrom meshing end point XeEach meshing rigidity value is calculated until the calculation result is output through the output unit 8, and then the routine is terminated.
[0078]
On the other hand, in step S109, β0 (BH = 6)If it is determined that ≧ 12 °, it is determined that the helical tooth pair based on the present input specifications is difficult to linearly approximate the meshing rigidity curve in the section outside the branch point. Then, the process proceeds to step S111.
[0079]
When the process proceeds from step S109 to step S111, the calculation unit 6 sets an approximate expression of the meshing rigidity curve in the section outside the branch point using the expressions (24) to (32).
[0080]
Then, when proceeding from step S111 to step S117, the calculation unit 6 uses the approximate expression of the meshing rigidity curve in each section set in step S105 and step S111, and the meshing start point X of the helical tooth pair.sFrom meshing end point XeEach meshing rigidity value is calculated until the calculation result is output through the output unit 8, and then the routine is terminated.
[0081]
Also, εα≤εβIf it is determined that the helical tooth pair based on the current input specifications is a helical tooth pair classified as case 2 or case 3, the process proceeds to step S112.
[0082]
When the process proceeds from step S104 to step S112, the calculation unit 6 uses the equations (14) to (19) to calculate the distance between the first and second branch points (Xd1≦ X ≦ Xd2) Is set as an approximate expression for the meshing rigidity curve.
[0083]
In subsequent step S113, the calculation unit 6 uses the approximate expression set in step S112 to calculate the ratio Y between the meshing rigidity value at the branch point and the meshing rigidity value at the meshing center point.d[= K (Xd) / Kp] Is calculated.
[0084]
In subsequent step S114, the calculation unit 6 uses the expressions (35) to (38) to calculate the ratio Y between the meshing rigidity value at the meshing start point and the meshing rigidity value at the meshing center point.sIs calculated.
[0085]
In subsequent step S115, the arithmetic unit 6 uses the equation (20) to calculate the equivalent conversion torsion angle β with the tooth width / height ratio BH = 6.0 (BH = 6)Is calculated.
[0086]
Then, when the process proceeds from step S115 to step S116, the arithmetic unit 6 uses the equations (24) to (30), (33), and (34) to obtain an approximate expression of the meshing rigidity curve in the section outside the branch point. Set.
[0087]
Then, when the process proceeds from step S116 to step S117, the calculation unit 6 uses the approximate expression of the meshing rigidity curve in each section set in steps S112 and S116 to start the meshing start point X of the helical tooth pair.sFrom meshing end point XeEach meshing rigidity value is calculated until the calculation result is output through the output unit 8, and then the routine is terminated.
[0088]
Next, a specific calculation example of the meshing rigidity value using the above-described meshing rigidity calculating device 1 will be described. Note that the calculation formulas shown below and the calculation results thereof are slightly different because the calculation is performed by giving a predetermined number of calculation divisions on the meshing rigidity calculation device 1.
[0089]
(Operation example 1)
In this calculation example 1, as the specifications of the helical tooth pair, the meshing rigidity calculation device 1 has mn= 1, Ks= 1, Ck= 0.35, αn= 20.5 °, B = 4.7, β0An example in which = 4 ° is input will be described.
[0090]
When the above specifications are input and the meshing rigidity calculation routine starts, first, in step S101, the calculation unit 6 determines, based on the input specifications, the tooth height H, the tooth width / height ratio BH, and the front meshing ratio ε.α, And overlap meshing ratio εβCalculate the specifications.
[0091]
H = 2.35
BH = 2
εα= 1.919
εβ= 0.104
[0092]
In subsequent step S102, the calculation unit 6 uses the equations (7) and (8) to calculate the X coordinate (X of the engagement start point and the engagement end point of the helical tooth pair.sAnd Xe) Is calculated as follows.
[0093]
Xs=-(1.919 + 0.104)
/[(1.919/1)·2.35]
= -0.448
Xe= (1.919 + 0.104)
/[(1.919/1)·2.35]
= 0.448
[0094]
In subsequent step S103, the calculation unit 6 uses the equations (9) and (10) to calculate the X coordinates (X of the first and second branch points of the helical tooth pair.d1And Xd2) Is calculated as follows.
[0095]
Xd1=-| (1.919-0.104)
/ [(1.919 / 1) · 2.35] |
= -0.403
Xd2= | (1.919-0.104)
/ [(1.919 / 1) · 2.35] |
= 0.403
[0096]
And εα= 1.919, εβ= 0.104, so in step S104, the calculation unit 6α> ΕβIt is determined that the helical tooth pair based on the current input specifications is a helical tooth pair classified as case 1, and the process proceeds to step S105.
[0097]
When the process proceeds from step S104 to step S105, the calculation unit 6 uses the equations (11) to (13) to calculate the distance between the first and second branch points (Xd1≦ X ≦ Xd2), The approximate expression of the meshing rigidity curve in the section is set as follows.
[0098]
a2= F10)
= -1.40884 + 0.00726 ・ (4-4)
-0.00111 ・ (4-4)2
= -1.40846
aFour= F20)
= -2.35761-0.12962 (4-4)
+0.00470 ・ (4-4)2
= -2.33571
K (X) / Kp= 1-1.4084.X2-2.35761XFour... (39)
[0099]
In subsequent step S106, the calculation unit 6 uses the approximate expression (39) to calculate the ratio Y between the meshing rigidity value at the branch point and the meshing rigidity value at the meshing center point.d[= K (Xd) / Kp] Is calculated as follows.
[0100]
Yd= K (X) / Kp
= 1.-1.4084. (0.403)2
-2.35761 (0.403)Four
= 0.714
[0101]
In subsequent step S107, the calculation unit 6 uses the equations (35) to (38) to calculate the ratio Y between the meshing rigidity value at the meshing start point and the meshing rigidity value at the meshing center point.sIs calculated as follows.
[0102]
CC0= 0.07139-0.01574 (2-2)
+0.00206 ・ (2-2)2
= 7.139E-2
CC1= 0.01714-0.00725 (2-2)
+ 0.00071 · (2-2)2
= 1.714E-2
CC2= 0.00005 + 0.00009 (2-2)
+0.000002 ・ (2-2)2
= 4.823E-5
Ys= K (Xs) / Kp= FThree0, BH)
= [7.139E-2 + (1.714E-2). (4-4)
+ (4.823E-5), (4-4)2] / 4
= 1.785E-2
[0103]
In subsequent step S108, the calculation unit 6 uses the equation (20) to calculate the equivalent conversion torsion angle β when the tooth width / height ratio BH = 6.0 (BH = 6)Is calculated.
[0104]
β0 (BH = 6)= Tan-1[(2/6) tan4 °]
= 1.335 °
[0105]
And β0 (BH = 6)= 1.335 °, the calculation unit 6 determines that β is β in step S109.0 (BH = 6)It is determined that the angle is <12 °, and the helical tooth pair based on the present input specifications is outside the branch point (Xs≦ X ≦ Xd1, Xd2≦ X ≦ Xe), It is determined that the meshing rigidity curve in the section can be linearly approximated, and the process proceeds to step S110.
[0106]
When the process proceeds from step S109 to step S110, the calculation unit 6 sets the approximate expression of the meshing rigidity curve in the section outside the branch point as follows using the expressions (21) to (23).
[0107]
a0= (| 0.403 | .1.785E-2-0.714. | -0.448 |)
/ (| 0.403 |-| -0.448 |)
= 6.28584
a1= (0.714-1.785E-2)
/ (| 0.403 |-| -0.448 |)
= -13.92886
K (X) / Kp
= 6.28584-13.92886 · | X | (40)
[0108]
Then, when the process proceeds from step S110 to step S117, the calculation unit 6 uses the approximate expressions (39) and (40) of the meshing rigidity curves in the sections set in step S105 and step S110 to determine a pair of helical teeth. Meshing start point XsFrom meshing end point XeEach meshing rigidity value is calculated until the calculation result is output through the output unit 8, and then the routine is terminated.
[0109]
As a result, as shown in FIG. 15, a meshing rigidity value that is in good agreement with the theoretical value of the meshing rigidity value calculated using the equations (1) to (6) is obtained.
[0110]
(Calculation example 2)
In this calculation example 2, as the specifications of the helical tooth pair, the meshing rigidity calculation device 1 has mn= 1, Ks= 1, Ck= 0.35, αn= 20.5 °, B = 7.05, β0An example in which = 36 ° is input will be described.
[0111]
When the above specifications are input and the meshing rigidity calculation routine starts, first, in step S101, the calculation unit 6 determines, based on the input specifications, the tooth height H, the tooth width / height ratio BH, and the front meshing ratio ε.α, And overlap meshing ratio εβCalculate the specifications.
[0112]
H = 2.35
BH = 3
εα= 1.347
εβ= 1.319
[0113]
In subsequent step S102, the calculation unit 6 uses the equations (7) and (8) to calculate the X coordinate (X of the engagement start point and the engagement end point of the helical tooth pair.sAnd Xe) Is calculated as follows.
[0114]
Xs=-(1.347 + 1.319)
/[(1.347/1)·2.35]
= -0.842
Xe= (1.347 + 1.319)
/[(1.347/1)·2.35]
= 0.842
[0115]
In subsequent step S103, the calculation unit 6 uses the equations (9) and (10) to calculate the X coordinates (X of the first and second branch points of the helical tooth pair.d1And Xd2) Is calculated as follows.
[0116]
Xd1=-| (1.347-1.319)
/ [(1.347 / 1) · 2.35] |
= 0
Xd2= | (1.347-1.319)
/ [(1.347 / 1) · 2.35] |
= 0
Xd1, Xd2Is actually calculated by giving a predetermined number of calculation divisions, and in this calculation example, all are “0”.
[0117]
And εα= 1.347, εβ= 1.319, so in step S104, the arithmetic unit 6 determines that εα> ΕβIt is determined that the helical tooth pair based on the current input specifications is a helical tooth pair classified as case 1, and the process proceeds to step S105.
[0118]
When the process proceeds from step S104 to step S105, the calculation unit 6 uses the equations (11) to (13) to calculate the distance between the first and second branch points (Xd1≦ X ≦ Xd2), The approximate expression of the meshing rigidity curve in the section is set as follows.
[0119]
a2= F10)
= -1.40884 + 0.00726 ・ (36-4)
-0.00111 ・ (36-4)2
=-2.30915
aFour= F20)
= -2.35761-0.12962 (36-4)
+0.00470 ・ (36-4)2
= -1.69128
K (X) / Kp= 1-2.30915 · X2-1.69128 ・ XFour... (41)
[0120]
In subsequent step S106, the calculation unit 6 uses the approximate expression (41) to calculate the ratio Y between the meshing rigidity value at the branch point and the meshing rigidity value at the meshing center point.d[= K (Xd) / Kp] Is calculated as follows.
[0121]
Yd= K (X) / Kp
= 1-2.30915 ・ (0)2
-1.69128 ・ (0)Four
= 1
[0122]
In subsequent step S107, the calculation unit 6 uses the equations (35) to (38) to calculate the ratio Y between the meshing rigidity value at the meshing start point and the meshing rigidity value at the meshing center point.sIs calculated as follows.
[0123]
CC0= 0.07139-0.01574 (3-2)
+0.00206 ・ (3-2)2
= 5.772E-2
CC1= 0.01714-0.00725 (3-2)
+ 0.00071 · (3-2)2
= 1.059E-2
CC2= 0.00005 + 0.00009 · (3-2)
+0.000002 ・ (3-2)2
= 1.401E-4
Ys= K (Xs) / Kp= FThree0, BH)
= [5.772E-2 + (1.059E-2). (36-4)
+ (1.401E-4) ・ (36-4)2] / 36
= 1.500E-2
[0124]
In subsequent step S108, the calculation unit 6 uses the equation (20) to calculate the equivalent conversion torsion angle β when the tooth width / height ratio BH = 6.0 (BH = 6)Is calculated.
[0125]
β0 (BH = 6)= Tan-1[(3/6) tan 36 °]
= 19.965 °
[0126]
And β0 (BH = 6)= 19.965 °, the calculation unit 6 determines that β0 (BH = 6)It is determined that ≧ 12 °, and the helical tooth pair based on the present input specifications is out of the branch point (Xs≦ X ≦ Xd1, Xd2≦ X ≦ Xe), It is determined that it is difficult to linearly approximate the meshing rigidity curve, and the process proceeds to step S111.
[0127]
When the process proceeds from step S109 to step S111, the calculation unit 6 sets the approximate expression of the meshing rigidity curve in the section outside the branch point as follows using the expressions (24) to (32).
[0128]
A = 3.79864-0.09678 / 19.965 = 1.866
B = 4.42725-0.19427 / 19.965
+0.00451 ・ (19.965)2
= 2.345
a0= Exp [[| 0 |1.866・ In (1.500E-2)
− | −0.842 |1.866・ Ln (1)]
/ [| 0 |1.866− | −0.842 |1.866]]
= 1
a1= [Ln (1) -ln (1.500E-2)]
/ [| 0 |1.866− | −0.842 |1.866]
= -5.881609
b0= [| 0 |2.345・ (1.500E-2)
-1 ・ | -0.842 |2.345]
/ [| 0 |2.345− | −0.842 |2.345]
= 1
b1= [1- (1.500E-2)]
/ [| 0 |2.345− | −0.842 |2.345]
= -1.48226
Ka (X) = 1 · exp (−5.881609 · | X |1.866)
Kb (X) = 1.-1.48226 · | X |2.345
K (X) / Kp= [Exp (−5.881609 · | X |1.866)
+ (1-1.482226 · | X |2.345)] / 2 ... (42)
[0129]
Then, when the process proceeds from step S111 to step S117, the calculation unit 6 uses the approximate expressions (41) and (42) of the meshing rigidity curve in each section set in step S105 and step S111, to form a pair of helical teeth. Meshing start point XsFrom meshing end point XeEach meshing rigidity value is calculated until the calculation result is output through the output unit 8, and then the routine is terminated.
[0130]
As a result, as shown in FIG. 16, a meshing rigidity value that matches the theoretical value of the meshing rigidity value calculated using the equations (1) to (6) very well is obtained.
[0131]
(Calculation example 3)
In this calculation example 3, as the specifications of the helical tooth pair, the meshing rigidity calculation device 1 is set to mn= 1, Ks= 1, Ck= 0.35, αn= 20.5 °, B = 14.1, β0An example in which = 36 ° is input will be described.
[0132]
When the above specifications are input and the meshing rigidity calculation routine starts, first, in step S101, the calculation unit 6 determines, based on the input specifications, the tooth height H, the tooth width / height ratio BH, and the front meshing ratio ε.α, And overlap meshing ratio εβCalculate the specifications.
[0133]
H = 2.35
BH = 6
εα= 1.347
εβ= 2.638
[0134]
In subsequent step S102, the calculation unit 6 uses the equations (7) and (8) to calculate the X coordinate (X of the engagement start point and the engagement end point of the helical tooth pair.sAnd Xe) Is calculated as follows.
[0135]
Xs=-(1.347 + 2.638)
/[(1.347/1)·2.35]
= -1.258
Xe= (1.347 + 2.638)
/[(1.347/1)·2.35]
= 1.258
[0136]
In subsequent step S103, the calculation unit 6 uses the equations (9) and (10) to calculate the X coordinates (X of the first and second branch points of the helical tooth pair.d1And Xd2) Is calculated as follows.
[0137]
Xd1=-| (1.347-2.638)
/ [(1.347 / 1) · 2.35] |
= -0.407
Xd2= | (1.347-2.638)
/ [(1.347 / 1) · 2.35] |
= 0.407
[0138]
And εα= 1.347, εβ= 2.638, in step S104, the calculation unit 6 determines that εα≤εβIt is determined that the helical tooth pair based on the current input specifications is a helical tooth pair classified as case 3, and the process proceeds to step S112.
[0139]
When the process proceeds from step S104 to step S112, the calculation unit 6 uses the equations (14) to (19) to calculate the distance between the first and second branch points (Xd1≦ X ≦ Xd2), The approximate expression of the meshing rigidity curve in the section is set as follows.
[0140]
Xd (BH = 6)= [2.638 · (6/6) −1.347] / [(1.347 / 1) · 2.35]
= 0.407
a2= F60)
= -0.51970.exp [-0.36190. (36-28)]
= -2.873E-2
aFour= F70)
= -16.9460.exp [-0.34700. (36-28)]
= -1.056
XN= X + 0.407-0.407
YN= 1 + (-2.873E-2). (0.407-0.407)2
-1.056 ・ (0.407-0.407)Four
= 1
K (X) / Kp= 1 + (− 2.873E−2) · X2-1.056 · XFour... (43)
[0141]
In subsequent step S113, the calculation unit 6 uses the approximate expression (43) to calculate the ratio Y between the meshing rigidity value at the branch point and the meshing rigidity value at the meshing center point.d[= K (Xd) / Kp] Is calculated as follows.
[0142]
Yd= K (X) / Kp
= 1 + (-2.873E-2). (0.407)2
-1.056 ・ (0.407)Four
= 0.965
[0143]
In subsequent step S114, the calculation unit 6 uses the expressions (35) to (38) to calculate the ratio Y between the meshing rigidity value at the meshing start point and the meshing rigidity value at the meshing center point.sIs calculated as follows.
[0144]
CC0= 0.07139-0.01574 (6-2)
+0.00206 ・ (6-2)2
= 4.146E-2
CC1= 0.01714-0.00725 · (6-2)
+ 0.00071 · (6-2)2
= −5.643E-4
CC2= 0.00005 + 0.00009 · (6-2)
+0.000002 ・ (6-2)2
= 4.371E-4
Ys= K (Xs) / Kp= FThree0, BH)
= [4.146E-2 + (-5.643E-4). (36-4)
+ (4.371E-4) / (36-4)2] / 36
= 1.308E-2
[0145]
In subsequent step S115, the arithmetic unit 6 uses the equation (20) to calculate the equivalent conversion torsion angle β with the tooth width / height ratio BH = 6.0 (BH = 6)Is calculated.
[0146]
β0 (BH = 6)= Tan-1[(6/6) tan 36 °]
= 36 °
[0147]
Then, when the process proceeds from step S115 to step S116, the calculation unit 6 uses the expressions (24) to (30), (33), and (34) to calculate an approximate expression of the meshing rigidity curve in the section outside the branch point. Set as follows.
[0148]
A = −0.13500 + 0.08200 · 36 = 2.817
B = 4.442525−0.19427 · 36
+0.00451 ・ (36)2
= 3.275
a0= Exp [[| 0.407 |2.817・ Ln (1.3082E-2)
− | −1.258 |2.817・ Ln (0.965)]
/ [| 0.407 |2.817− | −1.258 |2.817]]
= 1.16738
a1= [Ln (0.965) -ln (1.308E-2)]
/ [| 0.407 |2.817− | −1.258 |2.817]
= -2.334216
b0= [| 0.407 |3.275・ (1.308E-2)
-0.965 ・ | -1.258 |3.275]
/ [| 0.407 |3.275− | −1.258 |3.275]
= 0.99007
b1= [0.965- (1.308E-2)]
/ [| 0.407 |3.275− | −1.258 |3.275]
= -0.45835
Ka (X) = (1.16738)
・ Exp (−2.334216. | X |2.817)
Kb (X) = 0.99007-0.45835. | X |3.275
K (X) / Kp= [(1.16738)
・ Exp (−2.334216. | X |2.817)
+ (0.99007−0.45835 · | X |3.275)] / 2 ... (44)
[0149]
Then, when the process proceeds from step S116 to step S117, the calculation unit 6 uses the approximate expressions (43) and (44) of the meshing rigidity curve in each section set in step S112 and step S116, to form a pair of helical teeth. Meshing start point XsFrom meshing end point XeEach meshing rigidity value is calculated until the calculation result is output through the output unit 8, and then the routine is terminated.
[0150]
As a result, as shown in FIG. 17, a meshing rigidity value that matches the theoretical value of the meshing rigidity value calculated using the equations (1) to (6) very well is obtained.
[0151]
According to such an embodiment, the first and second branch points at which the behavior of the meshing rigidity curve changes are calculated, and the meshing rigidity curve of the section from the first branching point to the second branching point is approximated. By setting the equation and the approximate expression of the meshing stiffness curve in the section from the meshing start point to the first branch point and from the second bifurcation point to the meshing end point to be different functions, the actual meshing stiffness curve is very good. The approximate expression that coincides can be set, and by using the approximate expression set in this way, the meshing rigidity value of the helical tooth pair can be grasped with high accuracy by simple arithmetic processing.
[0152]
Also, by comparing the magnitude relationship between the front meshing rate and the overlapping meshing rate of the helical tooth pair, and by setting the approximate equation of the meshing stiffness curve to a different function according to the comparison result, the actual meshing stiffness curve and It is possible to set an approximate expression that matches very well, and by using the approximate expression set in this way, it is possible to grasp the meshing rigidity value of the helical tooth pair with high accuracy by simple calculation processing.
[0153]
In these cases, by setting the approximate expression of the section from the first branch point to the second branch point to a function having quadratic and quaternary terms, an approximation that closely matches the actual mesh stiffness curve An expression can be set. At that time, if the front meshing rate is smaller than the overlapping meshing rate, an approximate function created based on the meshing rigidity curve of a predetermined tooth width / height ratio (for example, BH = 6) is based on the coordinates of the branch point. By deforming and setting the approximate expression, the approximate expression can be set with high accuracy by simple processing.
[0154]
Further, when the front meshing rate is larger than the overlapping meshing rate, an approximate expression of the meshing rigidity curve in the section from the meshing start point to the first branch point and from the second branch point to the meshing end point is expressed by the twist angle. By setting different functions in accordance with the comparison result of the magnitude relationship between and the preset twist angle, the approximate expression can be set with high accuracy. Specifically, when it is determined that the twist angle is smaller than the set twist angle, the approximate expression can be set with high accuracy by setting the approximate expression to a linear function. On the other hand, when it is determined that the twist angle is larger than the set twist angle, an exponential function of a predetermined order defined based on the twist angle and a function of a predetermined order defined based on the twist angle is provided. By setting to the function, the approximate expression can be set with high accuracy. At that time, the comparison of the twist angle and the set twist angle is performed by using the twist angle equivalently converted with a predetermined tooth width / height ratio (for example, BH = 6), so that the function to be used is selected under a certain index. Can be done uniformly. Further, when the torsion angle is determined to be larger than the set torsion angle, the order is defined using a torsion angle that is equivalently converted with a predetermined tooth width ratio (for example, BH = 6). It is possible to define a favorable order with a simple operation.
[0155]
Further, when the front meshing rate is smaller than the overlapping meshing rate, an approximate expression of the meshing rigidity curve of the section from the meshing start point to the first branch point and from the second branch point to the meshing end point is expressed by the twist angle. The approximate expression can be set with high accuracy by setting an exponential function of a predetermined order defined on the basis of the above and a function having a function of a predetermined order defined based on the twist angle. At that time, by defining the order using a torsion angle that is equivalently converted with a predetermined tooth width ratio (for example, BH = 6), it is possible to define a favorable order with uniform calculation. .
[0156]
Based on information obtained by performing various analyzes such as the meshing natural frequency and rotational vibration using the meshing rigidity value obtained from the approximation formula set with high accuracy in this way, the helical gear pair specification design, etc. By doing so, a helical gear pair excellent in silence and strength can be obtained.
[0157]
【The invention's effect】
As described above, according to the present invention, it is possible to grasp the meshing rigidity value of the helical tooth pair with high accuracy with a simple calculation process for a wide range of gear specifications.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a meshing rigidity calculation routine for a pair of helical teeth.
FIG. 2 is a schematic configuration diagram of a helical gear pair engagement rigidity calculation device.
FIG. 3 is a schematic view showing an example of a computer for realizing a meshing rigidity calculating device for a pair of helical teeth.
FIG. 4 is an explanatory diagram showing an action plane of a helical gear pair.
FIG. 5 is a chart showing a meshing rigidity curve of a helical tooth pair in each case.
FIG. 6 is an explanatory diagram showing a meshing branch point in a case (case 1) in which the front meshing rate is larger than the overlapping meshing rate.
FIG. 7 is an explanatory diagram showing a meshing branch point in a case (case 2) in which the front meshing rate is equal to the overlapping meshing rate.
FIG. 8 is an explanatory diagram showing a meshing branch point in a case (case 3) in which the front meshing rate is smaller than the overlapping meshing rate.
FIG. 9 is a chart showing a meshing rigidity curve between branch points in case 1;
FIG. 10 is a chart showing a meshing rigidity curve between branch points in case 3;
FIG. 11 is a chart showing each meshing rigidity curve of FIG. 10 after coordinate conversion.
FIG. 12 is a chart showing a meshing rigidity curve outside the branching point in case 1 when the branching point is close to the meshing start point and the meshing end point.
FIG. 13 is a chart showing a meshing rigidity curve outside the branching point in case 1 when the branching point is close to the meshing center point.
FIG. 14 is a chart showing a meshing rigidity curve outside a branch point in case 2;
FIG. 15 is a chart showing a comparison result between a theoretical value and an approximate value of a meshing rigidity curve in case 1;
FIG. 16 is a chart showing comparison results between theoretical values and approximate values of meshing rigidity curves in Case 2;
FIG. 17 is a chart showing a comparison result between the theoretical value and approximate value of the meshing rigidity curve in case 3;
[Explanation of symbols]
1 ... meshing rigidity calculation device
6... Calculation unit (branch point calculation means, engagement rate comparison means, first approximate expression setting means, second approximate expression setting means, torsion angle comparison means)

Claims (10)

互いに噛み合うはすば歯対の諸元に基づいて噛合剛性曲線の近似式を設定し、上記近似式に基づいて噛合開始点から噛合終了点までの間の各噛合剛性値を演算するはすば歯対の噛合剛性演算装置であって、
上記はすば歯対の噛合剛性曲線の第1,第2の分岐点を演算する分岐点演算手段と、
上記第1の分岐点から上記第2の分岐点までの区間の上記噛合剛性曲線の近似式を設定する第1の近似式設定手段と、
上記噛合開始点から上記第1の分岐点まで及び上記第2の分岐点から上記噛合終了点までの区間の上記噛合剛性曲線の近似式を設定する第2の近似式設定手段と
上記はすば歯対の正面噛合率と重なり噛合率との大小関係を比較する噛合率比較手段とを備え
上記第1,第2の近似式設定手段は、上記正面噛合率と上記重なり噛合率との比較結果に応じて、上記各区間での上記噛合剛性曲線の近似式を異なる関数に設定することを特徴とするはすば歯対の噛合剛性演算装置。
An approximation formula of the meshing stiffness curve is set based on the specifications of the helical tooth pair meshing with each other, and each meshing stiffness value between the meshing start point and the meshing end point is calculated based on the approximate formula. A device for calculating the meshing rigidity of a tooth pair,
A branch point calculating means for calculating the first and second branch points of the meshing rigidity curve of the helical tooth pair;
First approximation formula setting means for setting an approximation formula of the meshing rigidity curve in a section from the first branch point to the second branch point;
Second approximation formula setting means for setting an approximation formula of the meshing rigidity curve in a section from the meshing start point to the first branch point and from the second branch point to the meshing end point ;
A meshing rate comparison means for comparing the magnitude relationship between the front meshing rate of the helical tooth pair and the overlapping meshing rate ;
The first and second approximate expression setting means set the approximate expression of the meshing rigidity curve in each section to a different function according to a comparison result between the front meshing rate and the overlapping meshing rate. A feature is a device for calculating meshing rigidity of a pair of helical teeth.
上記第1の近似式設定手段は、上記近似式を、上記はすば歯対の等価作用線上の座標を変数とする関数であって、2次と4次の項を備えた関数に設定することを特徴とする請求項1記載のはすば歯対の噛合剛性演算装置。  The first approximate expression setting means sets the approximate expression to a function having a variable on the equivalent action line of the helical tooth pair and having a quadratic term and a quadratic term. The apparatus for calculating the meshing rigidity of the helical tooth pair according to claim 1. 上記噛合率比較手段で上記正面噛合率が上記重なり噛合率よりも小さいと判定した際に、  When it is determined by the mesh rate comparison means that the front mesh rate is smaller than the overlap mesh rate,
上記第1の近似式設定手段は、所定の歯幅歯丈比の噛合剛性曲線に基づいて作成した近似関数を上記分岐点の座標に基づいて変形することで上記近似式を設定することを特徴とする請求項1または2に記載のはすば歯対の噛合剛性演算装置。  The first approximate expression setting means sets the approximate expression by deforming an approximate function created based on a meshing rigidity curve having a predetermined tooth width / height ratio, based on the coordinates of the branch point. The apparatus for calculating the meshing rigidity of the helical tooth pair according to claim 1 or 2.
上記噛合率比較手段で上記正面噛合率が上記重なり噛合率よりも大きいと判定した際に、上記はすば歯対のねじれ角と予め設定した設定ねじれ角との大小関係を比較するねじれ角比較手段を有し、  A torsion angle comparison that compares the magnitude relationship between the torsion angle of the helical tooth pair and a preset set torsion angle when the intermeshing rate comparing means determines that the front engagement rate is greater than the overlapping engagement rate. Having means,
上記第2の近似式設定手段は、上記ねじれ角比較手段の比較結果に応じて、上記近似式を異なる関数に設定することを特徴とする請求項1乃至請求項3の何れか1項に記載のはすば歯対の噛合剛性演算装置。  The second approximate expression setting means sets the approximate expression to a different function according to a comparison result of the torsion angle comparison means. The helical rigidity calculation device for helical pairs.
上記ねじれ角比較手段は、所定の歯幅歯丈比で等価変換したねじれ角を用いて、上記設定ねじれ角との大小関係を比較することを特徴とする請求項4記載のはすば歯対の噛合剛性演算装置。  5. The helical tooth pair according to claim 4, wherein the torsion angle comparing means compares the magnitude relationship with the set torsion angle by using a torsion angle equivalently converted at a predetermined tooth width / height ratio. Meshing rigidity calculation device. 上記ねじれ角比較手段で上記ねじれ角が上記設定ねじれ角よりも小さいと判定した際に、  When the twist angle comparison means determines that the twist angle is smaller than the set twist angle,
上記第2の近似式設定手段は、上記近似式を、上記はすば歯対の等価作用線上の座標を変数とする1次関数に設定することを特徴とする請求項4または5に記載のはすば歯対の噛合剛性演算装置。  The second approximate expression setting means sets the approximate expression to a linear function having coordinates on the equivalent action line of the helical tooth pair as a variable. A device for calculating the meshing rigidity of a pair of helical teeth.
上記ねじれ角比較手段で上記ねじれ角が上記設定ねじれ角よりも大きいと判定した際に、  When it is determined by the twist angle comparison means that the twist angle is larger than the set twist angle,
上記第2の近似式設定手段は、上記近似式を、上記はすば歯対の等価作用線上の座標を変数とする関数であって、上記ねじれ角に基づいて規定される所定次数の指数関数であって上記ねじれ角に基づいて規定される所定次数の関数に設定することを特徴とする請求項4または5に記載のはすば歯対の噛合剛性演算装置。  The second approximate expression setting means is a function having the approximate expression as a variable with coordinates on the equivalent action line of the helical tooth pair as a variable, and an exponential function of a predetermined order defined based on the twist angle. 6. The apparatus according to claim 4, wherein the function is set to a function of a predetermined order defined based on the torsion angle.
上記第2の近似式設定手段は、所定の歯幅歯丈比で等価変換したねじれ角を用いて上記次数を規定することを特徴とする請求項7記載のはすば歯対の噛合剛性演算装置。  8. The calculation of the meshing rigidity of a pair of helical teeth according to claim 7, wherein the second approximate expression setting means defines the order using a torsion angle equivalently converted at a predetermined tooth width / height ratio. apparatus. 上記噛合率比較手段で上記正面噛合率が上記重なり噛合率よりも小さいと判定した際に、  When it is determined by the mesh rate comparison means that the front mesh rate is smaller than the overlap mesh rate,
上記第2の近似式設定手段は、上記近似式を、上記はすば歯対の等価作用線上の座標を変数とする関数であって、上記ねじれ角に基づいて規定される所定次数の指数関数であって上記ねじれ角に基づいて規定される所定次数の関数に設定することを特徴とする請求項1乃至請求項8の何れか1項に記載のはすば歯対の噛合剛性演算装置。  The second approximate expression setting means is a function having the approximate expression as a variable with coordinates on the equivalent action line of the helical tooth pair as a variable, and an exponential function of a predetermined order defined based on the twist angle. 9. The apparatus according to claim 1, wherein the function is set to a function of a predetermined order defined based on the torsion angle.
上記第2の近似式設定手段は、所定の歯幅歯丈比で等価変換したねじれ角を用いて上記次数を規定することを特徴とする請求項9記載のはすば歯対の噛合剛性演算装置。  10. The calculation of meshing rigidity of a pair of helical teeth according to claim 9, wherein the second approximate expression setting means defines the order using a torsion angle obtained by equivalent conversion with a predetermined tooth width / height ratio. apparatus.
JP2003113138A 2003-04-17 2003-04-17 Helical tooth pair meshing rigidity calculation device Expired - Fee Related JP4401674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113138A JP4401674B2 (en) 2003-04-17 2003-04-17 Helical tooth pair meshing rigidity calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113138A JP4401674B2 (en) 2003-04-17 2003-04-17 Helical tooth pair meshing rigidity calculation device

Publications (2)

Publication Number Publication Date
JP2004318608A JP2004318608A (en) 2004-11-11
JP4401674B2 true JP4401674B2 (en) 2010-01-20

Family

ID=33473165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113138A Expired - Fee Related JP4401674B2 (en) 2003-04-17 2003-04-17 Helical tooth pair meshing rigidity calculation device

Country Status (1)

Country Link
JP (1) JP4401674B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535318A (en) * 2014-12-29 2015-04-22 盐城工学院 Method for measuring variable stiffness in process of gear mesh

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707879B2 (en) 2005-04-15 2010-05-04 Fuji Jukogyo Kabushiki Kaisha Gear pair evaluation apparatus, gear pair evaluation program, and gear pair whose tooth surfaces are evaluated using the apparatus and program
CN104573196B (en) * 2014-12-18 2018-02-27 西安交通大学 A kind of helical gears time-variant mesh stiffness Analytic Calculation Method
CN107153736B (en) * 2017-05-11 2019-07-19 东北大学 A kind of the considerations of amendment, rouses the gear pair meshing characteristic analysis method to correction of the flank shape
CN107420523A (en) * 2017-09-14 2017-12-01 东北大学 A kind of helical gear pair mesh stiffness computational methods with cracks in tooth surface defect
CN107763173B (en) * 2017-11-22 2020-01-21 电子科技大学 Finite element analysis-based helical gear time-varying meshing stiffness calculation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535318A (en) * 2014-12-29 2015-04-22 盐城工学院 Method for measuring variable stiffness in process of gear mesh
CN104535318B (en) * 2014-12-29 2017-02-22 盐城工学院 Method for measuring variable stiffness in process of gear mesh

Also Published As

Publication number Publication date
JP2004318608A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4401674B2 (en) Helical tooth pair meshing rigidity calculation device
JP5774713B2 (en) Method of setting root rim thickness of flexible external gear of wave gear device
Marques et al. Analytical load sharing and mesh stiffness model for spur/helical and internal/external gears–Towards constant mesh stiffness gear design
JP5913378B2 (en) Wave gear device having involute positive deviation tooth profile considering rim thickness
WO1998014296A1 (en) Gear designing method, gear manufacturing method, and gear manufactured by the same method
CN108416120B (en) Method for determining load distribution rate of double-tooth meshing area of straight-toothed spur gear
CN109783840B (en) Calculation method for time-varying meshing stiffness of straight-tooth cylindrical gear internal meshing gear pair
US4259875A (en) High-torque low-noise gearing
Chen et al. Tooth profile design for the manufacture of helical gear sets with small numbers of teeth
EP0622565A1 (en) Tertiary negative-deflection flexing contact gears of non-profile-shifted tooth profile
Liu et al. Study on the meshing stiffness of plastic helical gear meshing with metal worm via point-contact
CN104662331B (en) Gear
CN110377932A (en) A kind of molded line representation method of steel ball reducer cycloid disc
JP4474250B2 (en) Conical involute gear pair design method and conical involute gear pair
Zhou et al. Conformational statistics of bent semiflexible polymers
CN112651085A (en) Gear shaping method, device and equipment
JP4583856B2 (en) Design evaluation system for conical involute gear pairs
CN113434972A (en) Method for calculating axial static stiffness of planetary roller screw
Taşeli Exact analytical solutions of the Hamiltonian with a squared tangent potential
JP4646414B2 (en) Linear object shape analyzer
Jianfeng et al. Finite element analysis of cylindrical gears
JP4474249B2 (en) Conical involute gear pair
JP4474251B2 (en) Conical involute gear pair
JP2011158338A (en) Gearwheel pair evaluation apparatus
EP3916610A1 (en) Method for modeling and designing a helical spring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Ref document number: 4401674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees