JP4398749B2 - Polymer metal complex, use as gas adsorbent, gas separation device and gas storage device using the same - Google Patents

Polymer metal complex, use as gas adsorbent, gas separation device and gas storage device using the same Download PDF

Info

Publication number
JP4398749B2
JP4398749B2 JP2004039860A JP2004039860A JP4398749B2 JP 4398749 B2 JP4398749 B2 JP 4398749B2 JP 2004039860 A JP2004039860 A JP 2004039860A JP 2004039860 A JP2004039860 A JP 2004039860A JP 4398749 B2 JP4398749 B2 JP 4398749B2
Authority
JP
Japan
Prior art keywords
gas
adsorbent
metal complex
adsorption
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004039860A
Other languages
Japanese (ja)
Other versions
JP2005232222A (en
Inventor
洋 上代
衞 井上
克美 金子
あや 藤堂
維春 清宮
義之 服部
勉 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004039860A priority Critical patent/JP4398749B2/en
Publication of JP2005232222A publication Critical patent/JP2005232222A/en
Application granted granted Critical
Publication of JP4398749B2 publication Critical patent/JP4398749B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

本発明は、高分子金属錯体、この高分子金属錯体のガス吸着材としての利用、並びに、このガス吸着材を用いたガス分離装置及びガス貯蔵装置に関する。   The present invention relates to a polymer metal complex, use of the polymer metal complex as a gas adsorbent, and a gas separation device and a gas storage device using the gas adsorbent.

ガス吸着材は、加圧貯蔵や液化貯蔵に比べて、低圧で大量のガスを貯蔵し得る特性を有する。このため、近年、ガス吸着材を用いたガス貯蔵装置やガス分離装置の開発が盛んである。ガス吸着材としては、活性炭やゼオライト等が知られている。また、最近は、多孔性の高分子金属錯体にガスを吸蔵させる方法も提案されている(特許文献1、非特許文献1参照)。   The gas adsorbent has characteristics that can store a large amount of gas at a low pressure as compared with pressurized storage and liquefied storage. For this reason, in recent years, development of a gas storage device and a gas separation device using a gas adsorbent has been active. As the gas adsorbent, activated carbon, zeolite and the like are known. Recently, a method of occluding gas in a porous polymer metal complex has also been proposed (see Patent Document 1 and Non-Patent Document 1).

しかしながら、これらの従来提案されてきたガス吸着材は、ガス吸着量や作業性等の点で充分に満足できるものとは言えず、より優れた特性を有するガス吸着材の開発が所望されている。   However, these conventionally proposed gas adsorbents cannot be said to be sufficiently satisfactory in terms of gas adsorption amount, workability, etc., and development of gas adsorbents with better properties is desired. .

一方、外部刺激による動的構造変化を生じる高分子金属錯体が報告されている(非特許文献2、非特許文献3参照)。この新規な動的構造変化金属錯体の中でも、高分子構造を有する高分子金属錯体で、かつ内部に空孔を有する錯体をガス吸着材として使用した場合、ある一定の圧力まではガスを吸着しないが、ある一定圧を越えるとガス吸着が始まると言う特異な現象が観測されている。また、ガス放出に関しては、一定圧まではガスを放出しないが、一定圧以下になるとガスを急激に放出する現象も同時に観察されており、ガス吸蔵材としての利用が高まっている(非特許文献4、非特許文献5参照)。これらの動的構造変化を有する高分子金属錯体は、分子内に水素結合やπ−π相互作用等の弱い相互作用を有する部位が含まれており、それらが構造変化を起こす原因であると考えられているが、詳細はわかっていない。
特開2000−109493号公報 北川進、集積型金属錯体、講談社サイエンティフィク、2001年、214〜218頁 植村一広、北川進、未来材料、12月号、44、(2002) 松田亮太郎,北川進、Petrotec、第26巻2号97〜104頁 (2003) Kitagawa, S. et al., Angewandte Chem. Int. Ed. (2003) 428 Seki, K. et al., Phys. Chem. Chem. Phys., (2002) 4, 1968
On the other hand, polymer metal complexes that cause a dynamic structural change due to an external stimulus have been reported (see Non-Patent Documents 2 and 3). Among these new dynamic structural change metal complexes, when a polymer metal complex having a polymer structure and having a void in the interior is used as a gas adsorbent, gas is not adsorbed up to a certain pressure. However, a peculiar phenomenon that gas adsorption starts when a certain pressure is exceeded has been observed. As for gas release, gas is not released up to a certain pressure, but a phenomenon in which gas is suddenly released when the pressure falls below a certain pressure has been observed at the same time, and its use as a gas storage material is increasing (non-patent literature). 4, non-patent document 5). These polymer metal complexes with dynamic structural changes include sites with weak interactions such as hydrogen bonds and π-π interactions in the molecule, which are considered to cause structural changes. However, details are unknown.
JP 2000-109493 A Susumu Kitagawa, Integrated Metal Complex, Kodansha Scientific, 2001, 214-218 Kazuhiro Uemura, Susumu Kitagawa, Future Materials, December, 44, (2002) Ryotaro Matsuda, Susumu Kitagawa, Petrotec, Vol. 26, No. 2, pp. 97-104 (2003) Kitagawa, S .; et al. , Angelwandte Chem. Int. Ed. (2003) 428 Seki, K .; et al. Phys. Chem. Chem. Phys. , (2002) 4, 1968

本発明は、新規な高分子金属錯体を提供すること、及びこれを用いた優れた特性を有するガス吸着材を提供することを目的とする。また、本発明は、前記特性を有するガス吸着材を内部に収容してなるガス貯蔵装置及びガス分離装置、並びに前記ガス貯蔵装置を搭載してなる車両を併せて提供することを目的とする。   An object of the present invention is to provide a novel polymer metal complex and to provide a gas adsorbent having excellent characteristics using the same. Another object of the present invention is to provide a gas storage device and a gas separation device that contain therein the gas adsorbent having the above characteristics, and a vehicle equipped with the gas storage device.

本発明者らは、前述のような問題点を解決すべく、鋭意研究を積み重ねた結果、特定構造の高分子金属錯体(二次元格子積層化合物)が、特定の条件においてガス吸蔵能を有し、さらに外部刺激によって急激なガスの吸収や放出を行う能力を有することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-described problems, the present inventors have found that a polymer metal complex having a specific structure (two-dimensional lattice laminated compound) has a gas storage capacity under specific conditions. Furthermore, the present inventors have found that it has the ability to absorb and release gas rapidly by external stimulation, and has completed the present invention.

すなわち、本発明は、金属イオンおよび有機配位子からなる二次元格子積層型高分子金属錯体に関する。また本発明は、前記高分子金属錯体のガス吸蔵材料としての利用、前記ガス吸着材を内部に収容してなるガス貯蔵装置及びガス分離装置、並びに前記ガス貯蔵装置を搭載してなる車両に関する。   That is, the present invention relates to a two-dimensional lattice-stacked polymer metal complex composed of a metal ion and an organic ligand. The present invention also relates to the use of the polymer metal complex as a gas storage material, a gas storage device and gas separation device in which the gas adsorbent is housed, and a vehicle on which the gas storage device is mounted.

具体的には、本発明は、
(1) 下記式(1)の単位構造を有する二次元格子積層型の結晶構造であって、積層構造における層間のずれによる、空孔がない積層構造と空孔がある積層構造との相転位を有する高分子金属錯体、
Specifically, the present invention provides:
(1) A phase transition between a layered structure having no vacancies and a layered structure having vacancies due to a misalignment between layers in the layered structure, which has a unit structure of the following formula (1) A polymeric metal complex having

Figure 0004398749
Figure 0004398749

(ここで、式中、Xは銅の2価イオン、YはBF 対イオン、Lは4,4’−ビピリジルの有機配位子を示す。)
(2) 少なくとも1種のガスに関する吸脱着等温線がヒステリシスループを示す、(1)に記載の高分子金属錯体、
(3) 前記ガスが、水素、炭化水素、一酸化炭素、二酸化炭素、酸素、および窒素からなる群より選択される少なくとも1種類のガスである、(2)に記載の高分子金属錯体、
(4) 前記ガスが、硫化水素、硫黄酸化物、窒素酸化物、およびアンモニアからなる群より選択される少なくとも1種のガスである、(2)に記載の高分子金属錯体、
(5) (1)〜(4)のいずれか1項に記載の高分子金属錯体を含むガス吸着材、
(6) (5)に記載のガス吸着材を用いてなる圧力スイング吸着方式ガス分離装置、
(7) (5)に記載のガス吸着材を内部に収容してなるガス貯蔵装置、
(8) (7)に記載のガス貯蔵装置を搭載してなる車両、
である。
(Wherein, X represents a divalent copper ion, Y represents a counter ion of BF 4 , and L represents a 4,4′-bipyridyl organic ligand.)
(2) The polymer metal complex according to (1), wherein the adsorption / desorption isotherm regarding at least one gas shows a hysteresis loop,
(3) The polymer metal complex according to (2), wherein the gas is at least one gas selected from the group consisting of hydrogen, hydrocarbons, carbon monoxide, carbon dioxide, oxygen, and nitrogen,
(4) The polymer metal complex according to (2), wherein the gas is at least one gas selected from the group consisting of hydrogen sulfide, sulfur oxide, nitrogen oxide, and ammonia,
(5) A gas adsorbent comprising the polymer metal complex according to any one of (1) to (4),
(6) a pressure swing adsorption type gas separation device using the gas adsorbent according to (5),
(7) A gas storage device containing the gas adsorbent according to (5) inside,
(8) A vehicle equipped with the gas storage device according to (7),
It is.

本発明の高分子金属錯体は、多量のガスを吸蔵することが可能である。また、本発明の高分子金属錯体からなるガス吸蔵材料を内部に収容してなるガス貯蔵装置及びガス分離装置、並びに前記ガス貯蔵装置を搭載してなる車両を製造することが可能になる。   The polymer metal complex of the present invention can occlude a large amount of gas. In addition, it is possible to manufacture a gas storage device and gas separation device in which the gas storage material made of the polymer metal complex of the present invention is housed, and a vehicle on which the gas storage device is mounted.

本発明の高分子金属錯体は、ガスの吸脱着に関する特殊な性質を活用して各種用途に適用することができる。例えば、圧力スイング吸着方式(以下「PSA方式」と略記)のガス分離装置における吸着材に適用した場合にあっては、本発明のガス吸着材の特性を活かして、非常に効率良いガス分離が可能である。また、圧力変化に要する時間を短縮でき、省エネルギーにも寄与する。さらに、ガス分離装置の小型化にも寄与し得るため、高純度ガスを製品として販売する際のコスト競争力を高めることができることは勿論、自社工場内部で高純度ガスを用いる場合であっても、高純度ガスを必要とする設備に要するコストを削減できるため、結局最終製品の製造コストを削減する効果を有する。   The polymer metal complex of the present invention can be applied to various uses by utilizing the special properties relating to gas adsorption and desorption. For example, when applied to an adsorbent in a pressure swing adsorption method (hereinafter abbreviated as “PSA method”) gas separation device, the gas adsorption material of the present invention can be used to achieve very efficient gas separation. Is possible. In addition, the time required for pressure change can be shortened, contributing to energy saving. Furthermore, since it can contribute to miniaturization of the gas separation device, it is possible to increase cost competitiveness when selling high-purity gas as a product, of course, even when high-purity gas is used inside its own factory Since the cost required for the equipment that requires high purity gas can be reduced, the manufacturing cost of the final product can be reduced.

本発明の高分子金属錯体の他の用途としては、ガス貯蔵装置が挙げられる。本発明のガス吸着材をガス貯蔵装置(業務用ガスタンク、民生用ガスタンク、車両用燃料タンク等)に適用した場合には、搬送中や保存中の圧力を劇的に低減させることが可能である。搬送時や保存中のガス圧力を減少させ得ることに起因する効果としては、まず、形状自由度の向上が挙げられる。従来のガス貯蔵装置においては、保存中の圧力を維持しなくては、ガス吸着量を高く維持できない。しかしながら、本発明のガス貯蔵装置においては、圧力を低下させても、充分なガス吸着量を維持できる。このため、容器の耐圧性を低くすることができ、ガス貯蔵装置の形状をある程度自由に設計することができる。この効果は、例えば、自動車等の車両用燃料ガスタンクとして、本発明のガス貯蔵装置を用いた場合には絶大である。燃料タンクとして本発明のガス貯蔵装置を用いた場合には、上述のように耐圧性に関する制約が緩くなるため、形状をある程度自由に設計できる。具体的には、車両における車輪やシート等の形状にフィットするようにガス貯蔵装置の形状を調節することが可能となる。その結果、車両の小型化、荷物スペースの確保、車両の軽量化による燃費向上等の各種実利が得られる。   Another application of the polymer metal complex of the present invention is a gas storage device. When the gas adsorbent of the present invention is applied to a gas storage device (business gas tank, consumer gas tank, vehicle fuel tank, etc.), it is possible to dramatically reduce the pressure during transportation and storage. . As an effect resulting from the ability to reduce the gas pressure during transportation or storage, first, an improvement in the degree of freedom in shape can be mentioned. In a conventional gas storage device, the gas adsorption amount cannot be maintained high unless the pressure during storage is maintained. However, in the gas storage device of the present invention, a sufficient amount of gas adsorption can be maintained even if the pressure is reduced. For this reason, the pressure resistance of a container can be made low and the shape of a gas storage apparatus can be designed freely to some extent. This effect is enormous, for example, when the gas storage device of the present invention is used as a fuel gas tank for a vehicle such as an automobile. When the gas storage device of the present invention is used as a fuel tank, restrictions on pressure resistance are relaxed as described above, and the shape can be designed freely to some extent. Specifically, the shape of the gas storage device can be adjusted to fit the shape of wheels, seats, and the like in the vehicle. As a result, various benefits such as miniaturization of the vehicle, securing of luggage space, and improvement of fuel consumption due to weight reduction of the vehicle can be obtained.

なお、ガス分離装置やガス貯蔵装置に適用する場合における、容器形状や容器材質、ガスバルブの種類等に関しては、特別の装置を用いなくてもよく、ガス分離装置やガス貯蔵装置に用いられているものを用いることが可能である。ただし、各種装置の改良を排除するものではなく、いかなる装置を用いたとしても、本発明のガス高分子金属錯体を用いている限りにおいて、本発明の技術的範囲に包含されるものである。   In addition, when applied to a gas separation device or a gas storage device, the container shape, the material of the container, the type of the gas valve, etc. do not have to be used, and are used in the gas separation device and the gas storage device. Can be used. However, improvement of various apparatuses is not excluded, and any apparatus is included in the technical scope of the present invention as long as the gas polymer metal complex of the present invention is used.

続いて、本発明について詳細に説明する。   Next, the present invention will be described in detail.

本発明の二次元格子積層型高分子金属錯体は、下記式(1)で表される単位構造を有する組成式(2)で表される化合物である。本発明の高分子金属錯体は、図1および図2に示す立体構造を有する。 The two-dimensional lattice-stacked polymer metal complex of the present invention is a compound represented by a composition formula (2) having a unit structure represented by the following formula (1). The polymer metal complex of the present invention has the three-dimensional structure shown in FIGS.

Figure 0004398749
Figure 0004398749

(ここで、式中、Xは銅の2価イオンであり、YはBF 対イオン、Lは4,4’−ビピリジルの有機配位子を示す。)
即ち、本発明の二次元格子積層型高分子金属錯体は、金属イオンを交点とし、細長い形状の両末端に配位点を有する配位子が金属に配位することで、いわゆる2Dスクエアグリッド状の単層を形成している(Zawarotoko,M.J.,Crystal Engineering,2,37(1999))。さらに、この単層が層間のファンデルワールス力、π−π相互作用、金属イオンに配位した対イオン同士の相互作用等を仲立ちにして積層することで、3次元的な広がりを有する高分子金属錯体を形成している。
(Wherein, X is a divalent copper ion, Y is a counter ion of BF 4 , and L is a 4,4′-bipyridyl organic ligand.)
That is, the two-dimensional lattice-stacked polymer metal complex of the present invention has a so-called 2D square grid shape in which a metal ion is an intersection and a ligand having coordination points at both ends of an elongated shape is coordinated to the metal. (Zawarotoko, MJ, Crystal Engineering, 2, 37 (1999)). Furthermore, this single layer is a polymer having a three-dimensional spread by laminating the van der Waals force between layers, π-π interaction, interaction between counter ions coordinated to metal ions, etc. A metal complex is formed.

式(1)で表される単位構造を有する化合物を合成するための原料を例示する。 The raw material for synthesize | combining the compound which has a unit structure represented by Formula (1) is illustrated.

原料の1つは、遷移金属イオンXを含む金属塩である。ここで、Xは二価の遷移金属イオンであり、例えば、コバルトイオン、銅イオン、亜鉛イオン等が挙げられる。錯体の作り易さという点で、好ましくは、コバルトイオン、銅イオンであり、さらに好ましくは、銅イオンである。本発明では、Xを銅の2価イオンとした。また、Xの対イオンとしては1価の陰イオンが例示でき、例えばBF 、CFCO 、NO 等のイオンが挙げられる。錯体の作り易さという観点からは、BF が好ましい。2価の対イオンは、金属イオンとの相互作用強くなる傾向がある。また、1価のイオンでも、Cl、Br、CHCO 等は、同様に相互作用が強くなる傾向がある。本発明では、前記対イオンをBF としたOne of the raw materials is a metal salt containing a transition metal ion X. Here, X is a divalent transition metal ion, and examples thereof include cobalt ions, copper ions, and zinc ions. In terms of ease of forming the complex, cobalt ions and copper ions are preferable, and copper ions are more preferable. In the present invention, X is a copper divalent ion. As the counter ion X may be exemplified monovalent anion, for example BF 4 -, CF 3 CO 2 -, NO 3 - ions such like. From the viewpoint of ease of making the complex, BF 4 is preferable. The divalent counter ion tends to have a strong interaction with the metal ion. Even in the case of monovalent ions, Cl , Br , CH 3 CO 2 — and the like tend to have strong interactions as well. In the present invention, the counter ion BF 4 - was.

式(1)中のLは、有機配位子である。有機配位子としては、分子内の比較的離れた位置に2個の配位部位を有する配位子、即ち、4,4’−ビピリジル、又は、分子の両末端に4−ピリジル基を1個ずつ有するような配位子など、A−B−A(A=4−ピリジル基)型の配位子が挙げられる。ここで、Bとしては、1,4−フェニレン及びその置換体、1,3−フェニレン及びその置換体、2,5−チオフェニル及びその置換体、2,7−フルオレニル及びその置換体、1,4−ジエチニルベンゼン、4,4’−ビフェニレン等が挙げられる。比較的安価に入手可能な点で、4,4’−ビピリジル、1,4−ビス(4−ピリジル)ベンゼン、1,4−(ビス4−ピリジル)チオフェン、1,4−ビス(4−ピリジル)アセチレン、4,4’−ビス(4−ピリジル)ビフェニルが好ましく、汎用品として入手容易という観点からは、4,4’−ビピリジルが好ましい。本発明では、Lを4,4’−ビピリジルの有機配位子とした。 L in Formula (1) is an organic ligand. As an organic ligand, a ligand having two coordination sites in a relatively distant position in the molecule, that is, 4,4′-bipyridyl, or a 4-pyridyl group at both ends of the molecule is 1 AABA (A = 4-pyridyl group) type ligands, such as a ligand having one each, can be mentioned. Here, as B, 1,4-phenylene and its substituted product, 1,3-phenylene and its substituted product, 2,5-thiophenyl and its substituted product, 2,7-fluorenyl and its substituted product, 1,4 -Diethynylbenzene, 4,4'-biphenylene and the like. 4,4′-bipyridyl, 1,4-bis (4-pyridyl) benzene, 1,4- (bis4-pyridyl) thiophene, 1,4-bis (4-pyridyl) are relatively inexpensive. ) Acetylene and 4,4′-bis (4-pyridyl) biphenyl are preferred, and 4,4′-bipyridyl is preferred from the viewpoint of easy availability as a general-purpose product. In the present invention, L is an organic ligand of 4,4′-bipyridyl.

本発明の高分子金属錯体は、式(1)で表される単位構造が繰り返された構造を有する高分子体である。式()においてnは、一般的な高分子化合物の表記の場合と同様、式(1)の単位構造が繰り返されることを示しているに過ぎず、nの範囲については特に限定されない。高分子化合物の分子量についても、特に限定されない。例えば、1000以上の数平均分子量を有する。 The polymer metal complex of the present invention is a polymer having a structure in which the unit structure represented by the formula (1) is repeated. In the formula ( 2 ), n indicates that the unit structure of the formula (1) is repeated, as in the case of general polymer compounds, and the range of n is not particularly limited. The molecular weight of the polymer compound is not particularly limited. For example, it has a number average molecular weight of 1000 or more.

本発明のガス吸着材は、好ましくは、少なくとも1種のガスに関する吸脱着等温線がヒステリシスループを示す。即ち、図3に示すように、吸着時のガス圧力−ガス吸着量カーブと、脱着時のガス圧力−ガス吸着量カーブとが異なる材料である。   In the gas adsorbent of the present invention, the adsorption / desorption isotherm relating to at least one gas preferably exhibits a hysteresis loop. That is, as shown in FIG. 3, the gas pressure-gas adsorption amount curve at the time of adsorption is different from the gas pressure-gas adsorption amount curve at the time of desorption.

本発明のガス吸着材のガス圧力−ガス吸着量カーブがヒステリシスループを示す特異性を、図面を参照しながら説明する。図3は、本発明のガス吸着材におけるガス圧力−ガス吸着量の関係を示すグラフである。図4は、従来の吸着材におけるガス圧力−ガス吸着量の関係を示すグラフである。図中、横軸はガス圧力を示し、縦軸は吸着材の単位質量当りのガス吸着量を示す。   The peculiarity that the gas pressure-gas adsorption amount curve of the gas adsorbent of the present invention shows a hysteresis loop will be described with reference to the drawings. FIG. 3 is a graph showing the relationship between gas pressure and gas adsorption amount in the gas adsorbent of the present invention. FIG. 4 is a graph showing the relationship between gas pressure and gas adsorption amount in a conventional adsorbent. In the figure, the horizontal axis indicates the gas pressure, and the vertical axis indicates the gas adsorption amount per unit mass of the adsorbent.

従来のガス吸着材においては、ガス圧力の増加に従ってガス吸着量も増加し、吸着の際の圧力−吸着量カーブと、脱着の際の圧力−吸着量カーブとは一致する(図4)。例えば、従来のガス吸着材に吸着させる吸着量をAにする場合には、ガス圧力をPにまで加圧する必要があり、吸着量をAに保持するためには圧力をPに保持する必要がある。これに対し、本発明のガス吸着材においては、ガス吸着の際の圧力−吸着量カーブがヒステリシスループを示す(図3)。 In the conventional gas adsorbent, the gas adsorption amount increases as the gas pressure increases, and the pressure-adsorption amount curve during adsorption coincides with the pressure-adsorption amount curve during desorption (FIG. 4). For example, the amount of adsorption adsorbed to conventional gas adsorbent when the A 1, it is necessary to pressurize the gas pressure to the P 1, the pressure to hold the adsorption amount to the A 1 to P 1 Need to hold. On the other hand, in the gas adsorbent of the present invention, the pressure-adsorption amount curve during gas adsorption shows a hysteresis loop (FIG. 3).

かようなヒステリシスループが発現する機構については、未だ完全な理解はなされていない。考えられるメカニズムとしては、金属イオンと配位子からなる2Dスクエアグリッドの格子層が積層し、これらの層が相対的にずれることが重要な働きを有していると考えられる(Zawarotoko,M.J.,Crystal Engineering,2(1999),37)。層が、図5のようにずれて積層している場合には、化合物内に実質的な空孔がなく、ガスの吸着が生じない。一方、層が、図6のように積層している場合には、空孔が生じガスの吸着が生じる。即ち、急激なガス吸着のメカニズムは以下のように推定できる。ガスがないかもしくは低圧の場合には、図5のように積層しており、ガス圧が高まることにより、図6の積層構造に相転移が生じ、ガスが急激に空孔内に吸着され、細孔内で安定化される。一方、急激なガス放出のメカニズムは、ガス圧が低下することで不安定になり、前記とは逆の図6から図5への相転移が生じ、ガスが放出されると考えられる。ガス吸着とガス放出では錯体の細孔構造が変化しているため、ヒステリシスループが生じることになる(近藤精一、石川達雄、阿部郁夫、”吸着の化学”、丸善株式会社、53〜57頁)。   The mechanism by which such a hysteresis loop appears has not yet been fully understood. As a possible mechanism, it is considered that a lattice layer of a 2D square grid composed of metal ions and a ligand is stacked, and that these layers have an important function (Zawarotoko, M. et al. J., Crystal Engineering, 2 (1999), 37). In the case where the layers are stacked as shown in FIG. 5, there is no substantial pore in the compound, and no gas adsorption occurs. On the other hand, when the layers are stacked as shown in FIG. 6, vacancies occur and gas adsorption occurs. That is, the mechanism of rapid gas adsorption can be estimated as follows. When there is no gas or at a low pressure, the layers are stacked as shown in FIG. 5, and the gas pressure is increased to cause a phase transition in the stacked structure of FIG. 6, and the gas is rapidly adsorbed in the vacancies, Stabilized within the pores. On the other hand, the mechanism of rapid gas release becomes unstable due to a decrease in gas pressure, and the phase transition from FIG. 6 to FIG. 5 opposite to the above occurs and gas is considered to be released. Hysteresis loops occur due to changes in the pore structure of the complex between gas adsorption and gas release (Seiichi Kondo, Tatsuo Ishikawa, Ikuo Abe, “Adsorption Chemistry”, Maruzen Co., pp. 53-57) ).

この推定によれば、層の間の相互作用が、ずれの起こり易さに大きな影響を及ぼす。実際、いわゆる2Dスクエアグリッドの格子層が積層した高分子金属錯体は多数知られているが、そのほとんどすべてがガスを吸わないか、あるいは吸っても本発明の化合物のようなガスの急激な吸収や放出を伴うガス吸脱着のヒステリシスループを示すことはない(Kitagawa,S.,Chemistry−A European Journal (2002),8(16),3586〜3600、Zaworotko,M.J.,Chem.Commun.(1999)1327、Roye,H.−C.,Angewandte Chem.Int.Ed.(2002)583、Kitagawa,S.,J.Am.Chem.Soc.,(2002)2568参照)。このため、本発明のようなガス吸着能発現のためには、層間のずれの制御因子として、金属イオンや対イオンが重要な役割を果たしていると考えられるが、その詳細な機構は不明である。   According to this estimation, the interaction between the layers has a great influence on the likelihood of misalignment. In fact, many polymer metal complexes in which a so-called 2D square grid lattice layer is laminated are known, but almost all of them do not absorb gas, or even when absorbed, rapid absorption of gas such as the compound of the present invention. And no hysteresis loop of gas adsorption / desorption with release (Kitagawa, S., Chemistry-A European Journal (2002), 8 (16), 3586-3600, Zawortko, MJ, Chem. Commun. (1999) 1327, Roye, H.-C., Angelwandte Chem. Int. Ed. (2002) 583, Kitagawa, S., J. Am. Chem. Soc., (2002) 2568). For this reason, it is considered that metal ions and counter ions play an important role as a control factor for the displacement between layers for the gas adsorption ability expression as in the present invention, but the detailed mechanism is unknown. .

ただし、これらは単なるメカニズムの推定である。つまり、前記メカニズムに従っていない場合でも、本発明で規定する要件を満足し、所定のガスに関してヒステリシスループを示すのであれば、本発明の技術的範囲に包含される。   However, these are merely mechanism estimates. In other words, even if the mechanism is not followed, it is included in the technical scope of the present invention as long as it satisfies the requirements defined in the present invention and exhibits a hysteresis loop with respect to a predetermined gas.

本発明の二次元格子積層型高分子金属錯体は、原料となる金属塩と配位子とを溶媒中で混合することで得られる。この際、金属塩の溶媒としては、非水系溶媒を使用することが好ましい。溶媒として水系溶媒を使用すると、含水型の錯体が生成する虞がある(Kitagawa,S.,J.Chem.Soc.,Dalton Trans.,(1999)1569参照)。金属塩や有機配位子を溶解させる溶媒中に水が混合していると、含水型の錯体が生じる虞があるが、合計5モル%程度以下の水の混入で有れば、目的とする化合物の収率は低下しづらい。   The two-dimensional lattice-stacked polymer metal complex of the present invention can be obtained by mixing a metal salt as a raw material and a ligand in a solvent. At this time, it is preferable to use a non-aqueous solvent as the metal salt solvent. When an aqueous solvent is used as a solvent, a water-containing complex may be formed (see Kitagawa, S., J. Chem. Soc., Dalton Trans., (1999) 1569). If water is mixed in a solvent that dissolves metal salts and organic ligands, a water-containing complex may be formed. The yield of the compound is difficult to decrease.

反応は、金属塩および配位子をそれぞれ溶媒に溶解させて溶液とし、これらの溶液を混合する方法が簡便である。金属塩を溶解させる溶媒としては、アルコール系溶媒が好ましい。例えば、メタノール、エタノール等の1価のアルコール又はエチレングリコール等の2価のアルコールが好ましい。これらのアルコール溶媒は、単独で用いてもよいし、混合して使用してもかまわない。安価に入手可能であるという点で、メタノール、エタノール、2−プロパノール、エチレングリコールを使用することが好ましい。   For the reaction, a method of dissolving a metal salt and a ligand in a solvent to form a solution and mixing these solutions is simple. As the solvent for dissolving the metal salt, an alcohol solvent is preferable. For example, monovalent alcohols such as methanol and ethanol or divalent alcohols such as ethylene glycol are preferred. These alcohol solvents may be used alone or in combination. Methanol, ethanol, 2-propanol, and ethylene glycol are preferably used because they are available at low cost.

また、アルコール溶媒に有機溶媒を混合して使用することも可能である。混合する有機溶媒としては、アルコールと混和する溶媒が挙げられ、例えば、アセトニトリル、テトラヒドロフラン、アセトン、1,4−ジオキサン等である。これらは、単独で使用してもよいし、2種以上を混合して使用してもよい。これらの中では、アセトニトリル及びテトラヒドロフラン等の環状エーテルがよい結果を与えやすい。有機溶媒の混合比は50モル%以下、好ましくは30モル%以下である。   It is also possible to use an alcohol solvent mixed with an organic solvent. Examples of the organic solvent to be mixed include a solvent miscible with alcohol, such as acetonitrile, tetrahydrofuran, acetone, 1,4-dioxane and the like. These may be used alone or in combination of two or more. Of these, cyclic ethers such as acetonitrile and tetrahydrofuran tend to give good results. The mixing ratio of the organic solvent is 50 mol% or less, preferably 30 mol% or less.

一方、有機配位子を溶かす溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、エチレングリコール等のアルコール系溶媒、アセトニトリル等のニトリル類、ジエチルエーテル、テトラヒドロフラン等の非環状、環状のエーテル類、ベンゼン、トルエン等の芳香族系溶媒、ジメチルホルムアミド等のアミド系溶媒、酢酸エチル等のエステル類、ジクロロメタン、クロロホルム等のハロゲン系溶媒等が好ましい。これらは、単独で使用してもよいし、2種以上を混合して使用してもよい。溶解度的に、メタノール、エタノール、2−プロパノール、アセトニトリル、テトラヒドロフラン、トルエン、ジクロロメタンが好ましい。ヘキサノール等の分子量の大きいアルコールも使用可能であるが、有機配位子の溶解性が下がり、コスト的にも高価となるので、実質的な意味がなくなる虞がある。   On the other hand, as solvents for dissolving organic ligands, alcohol solvents such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol and ethylene glycol, nitriles such as acetonitrile, diethyl ether, tetrahydrofuran Preferred are non-cyclic and cyclic ethers such as benzene, toluene and other aromatic solvents, dimethylformamide and other amide solvents, ethyl acetate and other esters, dichloromethane and chloroform and other halogen-based solvents. These may be used alone or in combination of two or more. From the viewpoint of solubility, methanol, ethanol, 2-propanol, acetonitrile, tetrahydrofuran, toluene, and dichloromethane are preferable. Alcohols having a high molecular weight such as hexanol can be used, but the solubility of the organic ligand is lowered and the cost becomes high, so there is a possibility that the substantial meaning is lost.

金属塩の溶液及び有機配位子の溶液の混合方法は、金属塩溶液に配位子溶液を添加しても、その逆でもよい。また、混合に際しては、必ずしも溶液で行う必要はなく、例えば、金属塩溶液に固体の配位子を投入し、同時に溶媒を入れる方法や、反応容器に金属塩を装填した後に、配位子の固体又は溶液を注入し、さらに金属塩を溶かすための溶液を注入する等、最終的に反応が実質的に溶媒中で起こる方法であれば、種々の方法が可能である。ただし、金属塩の溶液と配位子の溶液を滴下混合する方法が、工業的には操作が最も簡便であり、好ましい。   The method of mixing the metal salt solution and the organic ligand solution may be performed by adding the ligand solution to the metal salt solution or vice versa. The mixing is not necessarily performed in a solution. For example, a method of adding a solid ligand to a metal salt solution and simultaneously adding a solvent, Various methods are possible as long as the reaction finally occurs substantially in a solvent, such as injecting a solid or solution and further injecting a solution for dissolving the metal salt. However, the method of dropping and mixing the metal salt solution and the ligand solution is industrially the most convenient and preferable.

溶液の濃度は、金属塩溶液は40mmol/L〜4mol/L、好ましくは80mmol/L〜2mol/Lであり、配位子の有機溶液は40mmol/L〜3mol/L、好ましくは80mmol/L〜1.8mol/Lである。これより低い濃度で反応を行っても、目的物は得られるが、製造効率が低下する虞がある。また、これより高い濃度では、吸着能が低下する虞がある。   The concentration of the solution is 40 mmol / L to 4 mol / L, preferably 80 mmol / L to 2 mol / L for the metal salt solution, and 40 mmol / L to 3 mol / L, preferably 80 mmol / L to the organic solution of the ligand. 1.8 mol / L. Even if the reaction is carried out at a lower concentration, the target product can be obtained, but the production efficiency may be lowered. Further, at a concentration higher than this, there is a possibility that the adsorption capacity is lowered.

反応温度は、−20〜120℃、好ましくは25〜90℃である。これ以下の低温で行うと、原料の溶解度が下がってしまう。オートクレーブ等を用いて、より高温で反応を行うことも可能であるが、加熱等のエネルギーコストの割には、収率は向上しづらい。   The reaction temperature is -20 to 120 ° C, preferably 25 to 90 ° C. If it is carried out at a lower temperature than this, the solubility of the raw material is lowered. Although it is possible to carry out the reaction at a higher temperature using an autoclave or the like, the yield is difficult to improve for the energy cost such as heating.

本発明の反応で用いられる金属塩と有機配位子の混合比率は、2:1〜1:4のモル比、好ましくは1.5:1〜1:3のモル比の範囲内である。これ以外の範囲では、目的物の収率が低下し、また、未反応の原料が残留して、目的物の取り出しが困難となる虞がある。   The mixing ratio of the metal salt and the organic ligand used in the reaction of the present invention is in the range of 2: 1 to 1: 4, preferably 1.5: 1 to 1: 3. In other ranges, the yield of the target product decreases, and unreacted raw materials remain, making it difficult to take out the target product.

反応終了後は、析出した粉体を濾過することで、容易に目的の高分子金属錯体を得ることができる。また、反応溶液を減圧濃縮することで、目的物の収量を増加させることが可能である。減圧濃縮の条件としては、様々な条件で実施が可能であるが、例えば、温度範囲が10〜80℃、エネルギーコスト的に好ましくは20〜60℃で行うことができる。   After completion of the reaction, the target polymer metal complex can be easily obtained by filtering the precipitated powder. In addition, the yield of the target product can be increased by concentrating the reaction solution under reduced pressure. The concentration under reduced pressure can be performed under various conditions. For example, the temperature range is 10 to 80 ° C., and the energy cost is preferably 20 to 60 ° C.

反応は、通常のガラスライニングSUS製反応容器及び機械式攪拌機を使用して行うことができる。反応終了後は、濾過、乾燥を行うことで、目的物質と原料の分離を行い、純度の高い目的物質を製造することが可能である。   The reaction can be carried out using a normal glass-lined SUS reaction vessel and a mechanical stirrer. After completion of the reaction, the target substance and raw material can be separated by filtration and drying to produce a target substance with high purity.

本発明の二次元格子積層型高分子金属錯体を用いたガス吸着材は、ガスに関する吸脱着等温線がヒステリシスループを示す材料であるが、少なくとも1種のガスに関してヒステリシスループを発現すればよく、全てのガスに対してヒステリシスループを示さずともよい。   The gas adsorbent using the two-dimensional lattice-stacked polymer metal complex of the present invention is a material in which the adsorption / desorption isotherm regarding the gas exhibits a hysteresis loop, but it is sufficient that the hysteresis loop is expressed with respect to at least one gas, It is not necessary to show a hysteresis loop for all gases.

本発明のガス吸着材がヒステリシスループを示す必要があるガスは、本発明のガス吸着材の適用用途によって異なる。例えば、本発明のガス吸着材をメタンガス貯蔵装置に用いる場合には、メタンガスに対してヒステリシスループを示す必要がある。本発明のガス吸着材を、水素と酸素との混合ガスから水素ガスを分離するガス分離装置に用いる場合には、各ガスに対してヒステリシスループを示す必要がある。一般的にいえば、本発明のガス吸着材を各種用途に利用されるガスの貯蔵又は分離に用いるのであれば、本発明のガス吸着材がヒステリシスループを示すガスは、水素、炭化水素(メタン、エタン、プロパン、ブタン、イソブタン等)、一酸化炭素、二酸化炭素、酸素、窒素等であることが好ましい。LNG等のように複数の炭化水素ガスの混合物を貯蔵できるように、これらの2種以上のガスに対してヒステリシスループを示しても勿論よい。また、本発明のガス吸着材をガスの除去に用いるのであれば、本発明のガス吸着材がヒステリシスループを示すガスは、硫化水素、硫黄酸化物(SOx)、窒素酸化物(NOx)、アンモニア等であることが好ましい。これらの2種以上のガスに対してヒステリシスループを示しても勿論よい。上記例示した以外のガスに対してヒステリシスループを示してもよい。   The gas that the gas adsorbent of the present invention needs to exhibit a hysteresis loop varies depending on the application of the gas adsorbent of the present invention. For example, when the gas adsorbent of the present invention is used in a methane gas storage device, it is necessary to show a hysteresis loop for methane gas. When the gas adsorbent of the present invention is used in a gas separation device that separates hydrogen gas from a mixed gas of hydrogen and oxygen, it is necessary to show a hysteresis loop for each gas. Generally speaking, if the gas adsorbent of the present invention is used for the storage or separation of gas used for various applications, the gas in which the gas adsorbent of the present invention exhibits a hysteresis loop is hydrogen, hydrocarbon (methane Ethane, propane, butane, isobutane, etc.), carbon monoxide, carbon dioxide, oxygen, nitrogen and the like. Of course, a hysteresis loop may be shown for these two or more gases so that a mixture of a plurality of hydrocarbon gases such as LNG can be stored. Further, if the gas adsorbent of the present invention is used for gas removal, the gas in which the gas adsorbent of the present invention exhibits a hysteresis loop includes hydrogen sulfide, sulfur oxide (SOx), nitrogen oxide (NOx), and ammonia. Etc. Of course, a hysteresis loop may be shown for these two or more gases. A hysteresis loop may be shown for gases other than those exemplified above.

本発明のガス吸着材として使用する材料は、貯蔵させるガスや吸着時に必要となる圧力に応じて選択され、具体的には、[Cu(BF(bpy)(式中、bpyは4,4’−ビピリジルを表す)であるMaterial used as a gas adsorbent of the present invention is selected in accordance with the pressure required at the time of gas and adsorbent to be stored, specifically, [Cu (BF 4) 2 (bpy) 2] n ( wherein, bpy is representing) of 4,4'-bipyridyl.

[吸着材の複合化]
本発明のガス吸着材(以下、吸着材(A))は、単独で吸着材として使用してもよいし、他の吸着材と複合化して使用してもよい。複合化して使用する場合には、他の吸着材として吸着等温線と脱着等温線とが一致する挙動を示す吸着材(B)と併用することで、非常に優れた吸着特性を有するガス吸着材とすることができる。
[Combination of adsorbents]
The gas adsorbent of the present invention (hereinafter referred to as adsorbent (A)) may be used alone as an adsorbent, or may be used in combination with other adsorbents. When combined and used, the gas adsorbent having very excellent adsorption characteristics when used in combination with the adsorbent (B) exhibiting a behavior in which the adsorption isotherm and desorption isotherm coincide with each other. It can be.

ここで、吸着材(B)とは、ガスに関する吸着等温線と脱着等温線とが一致する挙動を示す材料である。即ち、図4に示すように、吸着時のガス圧力−ガス吸着量カーブと、脱着時のガス圧力−ガス吸着量カーブとが実質的に一致する材料である。吸着材(B)は、かような特性を有する材料であれば特に限定されず、物理的吸着材、化学的吸着材、又はこれらが組み合わされてなる物理化学的吸着材を用いることができる。   Here, the adsorbent (B) is a material that exhibits a behavior in which an adsorption isotherm and a desorption isotherm relating to gas coincide with each other. That is, as shown in FIG. 4, the gas pressure-gas adsorption amount curve at the time of adsorption is substantially the same as the gas pressure-gas adsorption amount curve at the time of desorption. The adsorbent (B) is not particularly limited as long as it has such characteristics, and a physical adsorbent, a chemical adsorbent, or a physicochemical adsorbent formed by combining these can be used.

物理的吸着材とは、分子と分子との相互作用のような弱い力を用いて、被吸着分子を吸着する吸着材をいう。物理的吸着材としては、活性炭、シリカゲル、活性アルミナ、ゼオライト、クレー、超吸着性繊維、金属錯体が挙げられる。化学的吸着材とは、化学的な強固な結合によって、被吸着分子を吸着する吸着材をいう。化学的吸着材としては、炭酸カルシウム、硫酸カルシウム、過マンガン酸カリウム、炭酸ナトリウム、炭酸カリウム、燐酸ナトリウム、活性化された金属が挙げられる。物理化学的吸着材とは、物理的吸着材及び化学的吸着材の双方の吸着機構を備える吸着材をいう。これらの2種以上を組み合わせて用いてもよい。ただし、本発明の技術的範囲がこれらの具体例に限定されるものではない。吸着材(B)の形状は、特に限定されないが、一般的には、平均粒径500〜5000μmの粉末状のものを用いる。   A physical adsorbent refers to an adsorbent that adsorbs molecules to be adsorbed using weak force such as interaction between molecules. Examples of the physical adsorbent include activated carbon, silica gel, activated alumina, zeolite, clay, super adsorbent fiber, and metal complex. A chemical adsorbent refers to an adsorbent that adsorbs molecules to be adsorbed by chemical bonds. Examples of the chemical adsorbent include calcium carbonate, calcium sulfate, potassium permanganate, sodium carbonate, potassium carbonate, sodium phosphate, and activated metal. The physicochemical adsorbent refers to an adsorbent having an adsorption mechanism for both the physical adsorbent and the chemical adsorbent. Two or more of these may be used in combination. However, the technical scope of the present invention is not limited to these specific examples. The shape of the adsorbent (B) is not particularly limited, but generally a powdery material having an average particle size of 500 to 5000 μm is used.

吸着材(B)としては、製造コストやガス吸着性能を考慮すると、活性炭が好ましい。活性炭は、比較的安価である上、質量当たりのガス吸着量が多い。また、活性炭はガスの吸脱着に関するサイクル特性が悪く、吸脱着を繰り返すとガス吸着量が著しく減少する傾向がある。このため、従来においては、質量当たりのガス吸着量が多いにも拘わらず、ガス貯蔵装置やガス分離装置に用いることは困難であった。この点、本発明の吸着材(B)として用いた場合においては、活性炭の優れたガス吸着性能を充分に引き出すことができる。また、活性炭は、比表面積が大きいほど吸着量が増加する傾向を有するため、活性炭の比表面積は1000m/g以上であることが好ましい。 As the adsorbent (B), activated carbon is preferable in consideration of production cost and gas adsorption performance. Activated carbon is relatively inexpensive and has a large amount of gas adsorption per mass. In addition, activated carbon has poor cycle characteristics related to gas adsorption and desorption, and when adsorption and desorption is repeated, the amount of gas adsorption tends to be remarkably reduced. For this reason, in the past, it was difficult to use in gas storage devices and gas separation devices despite the large amount of gas adsorption per mass. In this regard, when used as the adsorbent (B) of the present invention, the excellent gas adsorption performance of the activated carbon can be sufficiently extracted. Moreover, since activated carbon has the tendency for an adsorption amount to increase, so that a specific surface area is large, it is preferable that the specific surface area of activated carbon is 1000 m < 2 > / g or more.

また、使用する吸着材(B)は、吸着させるガスに応じて、適宜構造を制御されることが好ましい。例えば、活性炭に含まれる細孔は、細孔の大きさによって、スーパーミクロポア(〜0.8nm)、ミクロポア(0.8〜2nm)、メソポア(2〜50nm)、マクロポア(50nm〜)に分類できる。細孔の大きさによって吸着し易いガスが異なり、メタンガスはミクロポアに吸着し易い。したがって、メタンガスを吸着させることを所望する場合には、ミクロポアの割合が大きくなるように、活性炭の細孔分布を制御するとよい。   Moreover, it is preferable that the structure of the adsorbent (B) to be used is appropriately controlled according to the gas to be adsorbed. For example, the pores contained in the activated carbon can be classified into super micropores (up to 0.8 nm), micropores (0.8 to 2 nm), mesopores (2 to 50 nm), and macropores (50 nm to) depending on the size of the pores. . Gases that are easily adsorbed differ depending on the size of the pores, and methane gas is easily adsorbed to micropores. Therefore, when it is desired to adsorb methane gas, the pore distribution of the activated carbon may be controlled so that the proportion of micropores is increased.

本発明の吸着材(A)と吸着材(B)を複合化する場合は、吸着材(A)は、吸着材(B)を被覆するが、好ましくはクラックや不完全な被覆がなく、吸着材(B)が外気に触れないように、完全に被覆することが好ましい。しかしながら、多少のクラック等が存在していても、吸着材(B)の自由なガス吸着を阻害し、吸着材(A)によって被覆されている吸着材(B)がガス吸着に関してヒステリシスループを示すのであれば、本発明の技術的範囲に包含されるものである。好ましくは、吸着材(B)に対して5〜50体積%の吸着材(A)で吸着材(B)を被覆する。また、吸着材(B)を被覆する吸着材(A)の厚みは、吸着材(A)の種類に応じて決定する必要があるが、吸着材(A)が薄すぎると、吸着材(B)へのガス吸着特性を充分に制御できない虞がある。一方、吸着材(A)が厚すぎると、吸着材(B)へのガス吸着が生じ難くなり、全体としてのガス吸着量が減少する虞がある。これらを考慮すると、吸着材(A)の平均厚みが10〜100μmであることが好ましい。吸着材(A)の厚みは、吸着材(A)の使用量の調節によって制御できる。なお、吸着材(A)の厚みは、電子顕微鏡を用いて撮影された断面写真から算出することができる。   When the adsorbent (A) and the adsorbent (B) of the present invention are combined, the adsorbent (A) covers the adsorbent (B), but preferably has no cracks or incomplete coating and is adsorbed. It is preferable to completely cover the material (B) so that it does not come into contact with the outside air. However, even if there are some cracks or the like, the adsorbent (B) obstructs free gas adsorption, and the adsorbent (B) covered with the adsorbent (A) exhibits a hysteresis loop with respect to gas adsorption. If so, it is included in the technical scope of the present invention. Preferably, the adsorbent (B) is covered with 5 to 50% by volume of the adsorbent (A) with respect to the adsorbent (B). Further, the thickness of the adsorbent (A) covering the adsorbent (B) needs to be determined according to the type of the adsorbent (A), but if the adsorbent (A) is too thin, the adsorbent (B) ) May not be fully controlled. On the other hand, if the adsorbent (A) is too thick, gas adsorption to the adsorbent (B) is difficult to occur, and the gas adsorption amount as a whole may be reduced. Considering these, it is preferable that the average thickness of the adsorbent (A) is 10 to 100 μm. The thickness of the adsorbent (A) can be controlled by adjusting the amount of adsorbent (A) used. The thickness of the adsorbent (A) can be calculated from a cross-sectional photograph taken using an electron microscope.

吸着材(A)と(B)の複合化の方法としては、(i)吸着材(A)が溶解している溶液中に、該溶液に溶解しない吸着材(B)を添加し、その後、吸着材(A)を結晶成長させることによって、吸着材(B)表面に吸着材(A)を付着させる方法、(ii)吸着材(A)を含むスラリーを準備し、スラリーを吸着材(B)表面にコーティング・乾燥させることによって、吸着材(B)表面に吸着材(A)を付着させる方法、等を用いることができる。   As a method of combining the adsorbents (A) and (B), (i) the adsorbent (B) that does not dissolve in the solution is added to the solution in which the adsorbent (A) is dissolved, and then A method of adsorbing the adsorbent (A) on the surface of the adsorbent (B) by crystal growth of the adsorbent (A); (ii) preparing a slurry containing the adsorbent (A); ) A method of attaching the adsorbent (A) to the surface of the adsorbent (B) by coating and drying the surface, etc. can be used.

[ガス分離装置への適用]
本発明のガス吸着材は、PSA方式のガス分離装置における吸着材として用いることができる。PSA方式のガス分離は、吸着材に対するガス圧力とガス吸着量との違いを利用することを原理とする。
[Application to gas separation equipment]
The gas adsorbent of the present invention can be used as an adsorbent in a PSA type gas separation apparatus. PSA gas separation is based on the principle of utilizing the difference between the gas pressure on the adsorbent and the gas adsorption amount.

活性炭やゼオライト等のガスの吸着等温線と脱着等温線とが一致する挙動を示す吸着材では、ガス吸着材に吸着量の差はあっても、2種類以上のガス(例えば、Aガス、Bガス)の両方が、吸着する場合が多い。そのため、このような従来材料を用いてPSA方式によるガス分離を行う場合、Aガス及びBガスの双方を吸着しているため、オフガスにはBガスと共にAガスも含まれる。したがって、Aガスのみを分離する場合には、極めて非効率的であり、製品ガスとしてAガスの純度を高くするためには、オフガス中へのAガスのロスも大きくなる欠点がある。   In an adsorbent that exhibits a behavior in which the adsorption isotherm and desorption isotherm of a gas such as activated carbon and zeolite coincide with each other, even if there is a difference in the amount of adsorption in the gas adsorbent, two or more gases (for example, A gas, B Gas) often adsorbs. Therefore, when performing gas separation by the PSA method using such a conventional material, since both the A gas and the B gas are adsorbed, the off gas includes the A gas as well as the B gas. Therefore, when only A gas is separated, it is very inefficient, and in order to increase the purity of A gas as a product gas, there is a disadvantage that loss of A gas into off-gas increases.

一方、本発明のガス吸着材(A)では、明確なガス吸着開始圧と脱着開始圧が存在し、かつ、それがガス種によって異なるという現象がみられる。例として、[Cu(BF(bpy)の酸素と窒素のガス吸脱着等温線を、図7に示す。この場合、酸素は、OMPaで吸収が始まり、OMPaで脱着する。一方、窒素では、nMPaで吸着するが、nMPaまで脱着が始まらない。そのため、酸素と窒素の混合ガスをガス吸着材(A)にnMPa以上で暴露して、酸素と窒素の両方を吸着させ、次いで、nMPa以下、OMPa以上にガス圧を制御することで、酸素ガスを放出することなく、窒素ガスのみを分離することが可能になる。即ち、ガス分離性能は飛躍的に向上し、1回のPSA操作で、コンタミネーションのない極めて高純度のガスを得ることも可能である。ただし、2サイクル以上のPSA操作を行うことを排除するものではない。 On the other hand, in the gas adsorbent (A) of the present invention, there is a phenomenon that there is a clear gas adsorption start pressure and a desorption start pressure, and these differ depending on the gas type. As an example, FIG. 7 shows a gas adsorption / desorption isotherm of oxygen and nitrogen of [Cu (BF 4 ) 2 (bpy) 2 ] n . In this case, absorption of oxygen starts at O 1 MPa and desorbs at O 2 MPa. On the other hand, nitrogen adsorbs at n 1 MPa, but desorption does not start until n 2 MPa. Therefore, a mixed gas of oxygen and nitrogen is exposed to the gas adsorbent (A) at n 1 MPa or more to adsorb both oxygen and nitrogen, and then the gas pressure is controlled to n 2 MPa or less and O 1 MPa or more. By doing so, it is possible to separate only nitrogen gas without releasing oxygen gas. That is, the gas separation performance is dramatically improved, and it is possible to obtain extremely high purity gas without contamination by one PSA operation. However, it does not exclude performing a PSA operation of two cycles or more.

本発明のガス分離装置は、上述のように、圧力のスイング幅が小さくてすむため、ガス分離装置の大幅な小型化にも寄与する。また、圧力スイング幅が小さいため、圧力変化に要する時間が短縮され、省エネルギーで、さらに、高純度ガスの製造ランニングコスト及び設備の固定費を低減することができる。高純度ガスを製品として販売する際のコスト競争力を高めることができることは勿論、自社工場内部で高純度ガスを用いる場合であっても、高純度ガスを必要とする設備に要するコストを削減できるため、結局最終製品の製造コストを削減する効果を有する。   As described above, the gas separation apparatus of the present invention requires a small pressure swing width, which contributes to a significant reduction in size of the gas separation apparatus. Moreover, since the pressure swing width is small, the time required for pressure change is shortened, energy saving, and further, the production running cost of high-purity gas and the fixed cost of equipment can be reduced. The cost competitiveness when selling high-purity gas as a product can be enhanced, and even when high-purity gas is used in its own factory, the cost required for facilities that require high-purity gas can be reduced. Therefore, it has the effect of reducing the manufacturing cost of the final product.

[ガス貯蔵装置への適用]
吸着材(A)をタンク等の容器内部に収容することによって、従来材料を使用した場合よりも優れたガス貯蔵装置とすることができる。
[Application to gas storage equipment]
By storing the adsorbent (A) in a container such as a tank, a gas storage device that is superior to the case where a conventional material is used can be obtained.

本発明の吸着材(A)は、ガスの吸着開始圧と脱着開始圧が存在する。吸着開始圧以上の圧力で、急激にガスをその吸着材の吸蔵能力一杯まで吸蔵し、脱着開始圧以下では、吸着していたガスのほぼ全量を脱着開始圧で放出する。例として、[Cu(BF(bpy)と、活性炭等の従来の材料の吸脱着等温線を、図8に示す。吸着材(A)は、従来材料と比較して、低圧でガス貯蔵量が大きいという特性を有し、低圧でガスを貯蔵する場合は、好適に使用することが可能である。 The adsorbent (A) of the present invention has a gas adsorption start pressure and a desorption start pressure. At a pressure higher than the adsorption start pressure, the gas is abruptly occluded to the full capacity of the adsorbent, and below the desorption start pressure, almost all of the adsorbed gas is released at the desorption start pressure. As an example, FIG. 8 shows adsorption / desorption isotherms of [Cu (BF 4 ) 2 (bpy) 2 ] n and conventional materials such as activated carbon. The adsorbent (A) has a characteristic that a gas storage amount is large at a low pressure as compared with a conventional material, and can be suitably used when storing gas at a low pressure.

さらにまた、従来材料は、ガスを脱着するに伴い、放出されるガス圧が低下する。ところが、実際の装置、例えば、ガスエンジン等でガスを使用する場合は、極低圧、例えば、0.5MPa以下では、エンジンの作動性に問題が生じる。そのため、従来材料では、ガス圧0.5MPa以下の貯蔵ガス(図8の縦線より左の部分)は、実質上使用できないため、貯蔵ガス圧の目減りが生じる。一方、吸着材(A)は、3.5MPaでガスを放出するため、ガスの目減り現象は生じず、ガス貯蔵装置に使用した場合は、実効容量が大きいという好ましい特性が生じる。   Furthermore, the pressure of the gas discharged from the conventional material decreases as the gas is desorbed. However, when gas is used in an actual apparatus, for example, a gas engine, a problem occurs in the operability of the engine at an extremely low pressure, for example, 0.5 MPa or less. Therefore, in the conventional material, the stored gas having a gas pressure of 0.5 MPa or less (the portion on the left side of the vertical line in FIG. 8) cannot be used substantially, and therefore the stored gas pressure is reduced. On the other hand, since the adsorbent (A) releases gas at 3.5 MPa, there is no gas loss phenomenon, and when it is used in a gas storage device, a preferable characteristic that the effective capacity is large occurs.

吸着材(A)を利用したタンク等の容器を製造する場合は、それらの構成や材料は従来公知の技術を用いることができ、特に限定されるものではない。例えば、バルブ制御によってガスの出入りを制御できる金属製容器等を用いることができる。例えば、金属製の薄肉容器の外面に、単位密度当たりの強度に優れる炭素繊維強化プラスチック材を巻き付けたものを用いることができる。容器には、ガス貯蔵装置の内圧を制御するための調整弁を備えておけば、ガス貯蔵装置からガスを放出させる際に調整弁を活用することができる。   When manufacturing containers, such as a tank using an adsorbent (A), those structures and materials can use a conventionally well-known technique and are not specifically limited. For example, it is possible to use a metal container or the like that can control the entry and exit of gas by valve control. For example, it is possible to use a metal thin-walled container wrapped around a carbon fiber reinforced plastic material having excellent strength per unit density. If the container is provided with a regulating valve for controlling the internal pressure of the gas storage device, the regulating valve can be used when gas is released from the gas storage device.

吸着材(A)の収容方法は、耐圧容器中への充填等の公知手法を用いることができ、特に限定されるものではない。ガス吸着材の収容量は、ガス貯蔵装置に求めるガス貯蔵能力に応じて決定すればよい。耐圧容器の形状や材質は特に限定されるものではない。本発明のガス貯蔵装置は、従来型のものと比較して、同じ貯蔵量を確保するためには、より低圧で構わないため、特別な耐圧構造を設けずともよい。この点で、コスト的に優位性があるといえる。   The accommodation method of the adsorbent (A) can be a known method such as filling in a pressure resistant container, and is not particularly limited. The capacity of the gas adsorbent may be determined according to the gas storage capacity required for the gas storage device. The shape and material of the pressure vessel are not particularly limited. The gas storage device of the present invention does not need to be provided with a special pressure-resistant structure because it may be at a lower pressure in order to ensure the same storage amount as compared with the conventional type. In this respect, it can be said that there is a cost advantage.

ガス吸着材が粉末状である場合には、ガス貯蔵装置を構成する容器に収容しようとすると、うまく充填できない虞がある。形状自由度の高いタンクを用いる場合には、特にこの問題が顕著となる虞がある。この場合には、粉体を錠剤形状にして収容してもよい。錠剤形状の物を用いる場合には、取扱性に優れ、老朽化した化合物を交換する際等に非常に便利である。   When the gas adsorbent is in a powder form, there is a possibility that it cannot be filled well if it is stored in a container constituting the gas storage device. When using a tank having a high degree of freedom in shape, this problem may be particularly noticeable. In this case, the powder may be stored in a tablet shape. In the case of using a tablet-shaped product, it is excellent in handleability and is very convenient when replacing an aged compound.

本発明のガス貯蔵装置は、これらに限定されるものではないが、業務用ガスタンク、民生用ガスタンク、車両用燃料タンク等の各種適用用途を有する。搬送時や貯蔵時のガス圧力を減少させ得ることに起因する効果としては、形状自由度の向上がまず挙げられる。従来のガス貯蔵装置においては、貯蔵時の圧力を維持しなくてはガス吸着量を高く維持できない。しかしながら、本発明のガス貯蔵装置においては、圧力を低下させても充分なガス吸着量を維持できる。このため、容器の耐圧性を低くすることができ、ガス貯蔵装置の形状をある程度自由に設計することができる。この効果は、例えば自動車等の車両用燃料ガスタンクとして、本発明のガス貯蔵装置を用いた場合には絶大である。従来型の燃料ガスタンクにおいては、燃料ガスタンクの形状は車両の形状とは無関係に決定されてしまう。このため、必然的に相当量のデッドスペースが生じることになる。また、高圧を保つために特別な装置が必要ともなる。この点、燃料ガスタンクとして、本発明のガス貯蔵装置を用いた場合には、上述のように耐圧性に関する制約が緩くなるため、形状をある程度自由に設計できる。具体的には、車両における車輪やシート等の形状にフィットするようにガス貯蔵装置の形状を調節することが可能となる。その結果、車両の小型化、荷物スペースの確保、車両の軽量化による燃費向上等の各種実利が得られる。   The gas storage device of the present invention has various applications such as, but not limited to, commercial gas tanks, consumer gas tanks, and vehicle fuel tanks. As an effect resulting from the ability to reduce the gas pressure at the time of conveyance or storage, firstly, improvement in the degree of freedom of shape can be mentioned. In the conventional gas storage device, the gas adsorption amount cannot be maintained high without maintaining the pressure during storage. However, in the gas storage device of the present invention, a sufficient gas adsorption amount can be maintained even if the pressure is lowered. For this reason, the pressure resistance of a container can be made low and the shape of a gas storage apparatus can be designed freely to some extent. This effect is enormous when the gas storage device of the present invention is used as a fuel gas tank for vehicles such as automobiles. In a conventional fuel gas tank, the shape of the fuel gas tank is determined regardless of the shape of the vehicle. This inevitably results in a considerable amount of dead space. In addition, a special device is required to maintain a high pressure. In this regard, when the gas storage device of the present invention is used as a fuel gas tank, the restrictions on pressure resistance are relaxed as described above, and therefore the shape can be designed freely to some extent. Specifically, the shape of the gas storage device can be adjusted to fit the shape of wheels, seats, and the like in the vehicle. As a result, various benefits such as miniaturization of the vehicle, securing of luggage space, and improvement of fuel consumption due to weight reduction of the vehicle can be obtained.

高分子金属錯体の調製方法は、ガス吸着材の種類によって異なるものであり、一義的に決定できるものではないが、ここでは、[Cu(BF(bpy)を合成する場合を例にとり、説明する。 The method for preparing the polymer metal complex differs depending on the type of the gas adsorbent and cannot be uniquely determined. Here, in the case of synthesizing [Cu (BF 4 ) 2 (bpy) 2 ] n Will be described as an example.

(実施例1)
ほうふっ化銅(II)のテトラヒドロフラン溶液(80mmol/L)に、4,4’−ビピリジルのアセトニトリル溶液(80mmol/L)を、アルゴン気流下でゆっくりと積層し、密栓をして8日間静置した。析出した粉体をアルゴン雰囲気下で減圧濾過し、減圧乾燥し、収率86%で薄紫色の高分子金属錯体の結晶を得た。
Example 1
A solution of 4,4′-bipyridyl in acetonitrile (80 mmol / L) on a tetrahydrofuran solution (80 mmol / L) of copper (II) boron fluoride is slowly layered under an argon stream, sealed, and left for 8 days. did. The precipitated powder was filtered under reduced pressure under an argon atmosphere and dried under reduced pressure to obtain a light purple polymer metal complex crystal in a yield of 86%.

得られた結晶の組成を決定するために、以下の実験を行った。得られた結晶1.00gをアルゴン気流中で秤量し、1mol/Lのアンモニア水に溶解し、ジクロロメタンで抽出した。ジクロロメタンをロータリーエバポレーターにて留去し、得られた固体561mgを、ガスクロマトグラフ質量分析計(島津製作所QP5050A)を用いて分析した結果、4,4’−ビピリジルであり、結晶中に56.1質量%含まれていたことがわかった。また、アンモニア水層をICP発光法により銅の含有量を調べた結果、11.6質量%であった。また、アンモニア水層を蒸留分離吸光光度法によりフッ素原子の含有量を調べた結果、27.7質量%であることがわかった。さらに、アンモニア水層をICP発光法によりほう素原子の含有量を調べた結果、3.95質量%であることがわかった。また、不活性ガス融解赤外線吸収法により酸素含有量を調べた結果、0.02質量%であり、含水錯体ではないことがわかった。これらの結果を総合すると、得られた結晶の組成は、[Cu(BF(bpy)であることがわかった。 In order to determine the composition of the obtained crystal, the following experiment was conducted. 1.00 g of the obtained crystal was weighed in an argon stream, dissolved in 1 mol / L ammonia water, and extracted with dichloromethane. Dichloromethane was distilled off with a rotary evaporator, and 561 mg of the obtained solid was analyzed using a gas chromatograph mass spectrometer (Shimadzu QP5050A). As a result, it was 4,4′-bipyridyl and 56.1 mass in the crystal. % Was found to be included. Further, the content of copper in the aqueous ammonia layer was examined by ICP emission method, and as a result, it was 11.6% by mass. Further, the content of fluorine atoms in the aqueous ammonia layer was examined by distillation separation spectrophotometry, and as a result, it was found to be 27.7% by mass. Furthermore, as a result of examining the content of boron atoms in the aqueous ammonia layer by ICP emission method, it was found to be 3.95% by mass. Further, as a result of examining the oxygen content by an inert gas melting infrared absorption method, it was found to be 0.02% by mass and not a water-containing complex. By combining these results, it was found that the composition of the obtained crystal was [Cu (BF 4 ) 2 (bpy) 2 ] n .

得られた結晶を、パーキンエルマー社製赤外分光装置system2000及びATRアタッチメントを使用して、赤外分光法にて分析を行った。測定は、すべて乾燥窒素ガス気流下で行った。測定の結果、以下の吸収を有し、bpy分子及びBF イオンを含有した錯体であることが分かった:3076、1618、1611、1536、1497、1431、1418、1327、1281、1226、1148、1102、1076、1046、1012、995、972、958、859、823、811、759、730、644cm−1The obtained crystals were analyzed by infrared spectroscopy using an infrared spectrometer system 2000 manufactured by PerkinElmer and an ATR attachment. All measurements were performed under a dry nitrogen gas stream. As a result of the measurement has an absorption of less, bpy molecules and BF 4 - was found to be a complex containing an ion: 3076,1618,1611,1536,1497,1431,1418,1327,1281,1226,1148 1102, 1076, 1046, 1012, 995, 972, 958, 859, 823, 811, 759, 730, 644 cm −1 .

得られた結晶の銅イオン周りの構造をXAFSにより決定した。測定は、高エネルギー加速器研究機構(KEK)、放射光施設(PF)ビームライン:BL−7C及びML−10Bにて実施した。得られたスペクトル、及び、比較対照のため、類似化合物[Cu(GeF)(bpy)・8HO(Kitagawa,S.et al.,J.Am.Chem.Soc.(2002)2568)のスペクトルを、図9に示す。比較の結果、0.1〜0.2nmのビピリジル配位子の窒素原子、0.2〜0.45nmのほうふっ化物イオンのふっ素原子及びビピリジル配位子の炭素原子が、極めて良い一致を示し、合成した[Cu(BF(bpy)が、比較対照の化合物[Cu(GeF)(bpy)・8HOと同一の原子空間配置をとっていることがわかった。即ち、銅イオンを原点としたX、Y軸上にビピリジル配位子の窒素原子が4個、さらにZ軸上にはほうふっ化物イオンのふっ素原子が配位している。これらの結果から、ビピリジルが銅イオン間を架橋することで、いわゆる2Dスクエアグリッドが形成され、交点に存在する銅の上下にBF イオンが存在していることがわかった。 The structure around the copper ion of the obtained crystal was determined by XAFS. Measurements were performed at High Energy Accelerator Research Organization (KEK), Synchrotron Radiation Facility (PF) beam lines: BL-7C and ML-10B. For the obtained spectrum and comparative control, a similar compound [Cu (GeF 6 ) (bpy) 2 ] n · 8H 2 O (Kitagawa, S. et al., J. Am. Chem. Soc. (2002) The spectrum of 2568) is shown in FIG. As a result of comparison, the nitrogen atom of the bipyridyl ligand of 0.1 to 0.2 nm, the fluorine atom of the boron fluoride ion of 0.2 to 0.45 nm, and the carbon atom of the bipyridyl ligand show very good agreement. The synthesized [Cu (BF 4 ) 2 (bpy) 2 ] n has the same atomic space arrangement as the comparative compound [Cu (GeF 6 ) (bpy) 2 ] n · 8H 2 O. all right. That is, four nitrogen atoms of the bipyridyl ligand are coordinated on the X and Y axes with the copper ion as the origin, and a fluorine atom of a fluoride ion is coordinated on the Z axis. From these results, it was found that bipyridyl bridges between copper ions to form a so-called 2D square grid, and BF 4 ions exist above and below the copper present at the intersection.

得られた結晶のガス吸着材としての77Kでの窒素吸着特性を調査した。測定には、BET自動吸着装置(日本ベル株式会社製)を用い、測定に先立って試料を300Kで6時間真空乾燥して、微量残存している可能性がある溶媒分子等を除去した。相対圧が約0.2までは窒素の吸着は観測されず、0.2を超える辺りで急激な吸着量の増加が確認された。   The nitrogen adsorption characteristic at 77K as a gas adsorbent of the obtained crystal was investigated. For the measurement, a BET automatic adsorption device (manufactured by Nippon Bell Co., Ltd.) was used, and the sample was vacuum-dried at 300K for 6 hours prior to the measurement to remove solvent molecules and the like that may remain in a trace amount. Adsorption of nitrogen was not observed until the relative pressure was about 0.2, and a sudden increase in the amount of adsorption was confirmed around 0.2.

また、得られたガス吸着材の室温での二酸化炭素吸着特性を調査した。測定方法は、窒素吸着測定の場合と同様にした。約0.04MPaまでは二酸化炭素の吸着は観測されず、0.04MPaを超える辺りで急激な吸着量の増加が確認された。また、脱着に際しては、約0.03MPaまでの脱着量は僅かであったのに対して、0.02MPaにさしかかる辺りで急激な吸着量の減少が確認された。   Moreover, the carbon dioxide adsorption characteristic at room temperature of the obtained gas adsorbent was investigated. The measurement method was the same as in the case of nitrogen adsorption measurement. Carbon dioxide adsorption was not observed up to about 0.04 MPa, and a sudden increase in the amount of adsorption was confirmed around 0.04 MPa. In addition, during the desorption, the desorption amount up to about 0.03 MPa was slight, whereas a sudden decrease in the adsorption amount was confirmed around 0.02 MPa.

さらに、得られたガス吸着材の室温でのメタン吸着特性を調査した。試料は、測定に先立って300Kで6時間真空乾燥して、微量残存している可能性がある溶媒分子等を除去した。測定は、303Kにおける質量法によるメタン高圧吸着等温線測定により行った(電子天秤はcahn社製cahn balance 1100を使用、メタンの純度としては99.5%のものをドライアイス エタノールトラップを通したものを使用)。約5MPaまではメタンの吸着は観測されず、5MPaを越える辺りで急激な吸着量の増加が確認された。また、脱着に際しては、約3.5MPaまでの脱着量は僅かであったのに対して、3.5MPaを下回った辺りで急激な吸着量の減少が確認された。メタンガスの吸着量の最大値は、ガス吸着材1cm当たり88cm(Normal)であった。また、吸脱着を50サイクル繰り返したが、ヒステリシスループには殆ど変化が見られなかった。 Furthermore, the methane adsorption property at room temperature of the obtained gas adsorbent was investigated. Prior to measurement, the sample was vacuum-dried at 300K for 6 hours to remove solvent molecules and the like that may remain in trace amounts. Measurement was performed by methane high-pressure adsorption isotherm measurement by mass method at 303 K (electronic balance using cahn balance 1100 manufactured by cahn, with 99.5% purity of methane passed through a dry ice ethanol trap. use). No adsorption of methane was observed up to about 5 MPa, and a sudden increase in the amount of adsorption was confirmed around 5 MPa. In addition, during the desorption, the desorption amount up to about 3.5 MPa was slight, but a sudden decrease in the adsorption amount was confirmed around 3.5 MPa. The maximum value of the adsorption amount of methane gas was 88 cm 3 (Normal) per 1 cm 3 of the gas adsorbent. Further, adsorption and desorption were repeated 50 cycles, but almost no change was observed in the hysteresis loop.

(実施例2〜5)
ほうふっ化銅(II)の有機溶媒溶液(80mmol/L)に、4,4’−ビピリジルの有機溶媒溶液(80mmol/L)を、アルゴン気流下でゆっくりと積層し、密栓をして8日間静置した。析出した粉体をアルゴン雰囲気下で減圧濾過し、減圧乾燥し、高分子金属錯体の結晶を得た。用いた有機溶媒と、収率との関係を、表1に示す。
(Examples 2 to 5)
An organic solvent solution of copper (II) borofluoride (80 mmol / L) was slowly layered with an organic solvent solution of 4,4′-bipyridyl (80 mmol / L) under a stream of argon and sealed for 8 days. Left to stand. The precipitated powder was filtered under reduced pressure in an argon atmosphere and dried under reduced pressure to obtain a polymer metal complex crystal. Table 1 shows the relationship between the organic solvent used and the yield.

Figure 0004398749
Figure 0004398749

得られた結晶をパーキンエルマー社製赤外分光装置system2000及びATRアタッチメントを使用して赤外分光法にて分析を行った。測定は、すべて乾燥窒素ガス気流下で行った。測定の結果,実施例2〜5のいずれの場合も、実施例1で得られた錯体と同一であることが分かった。   The obtained crystals were analyzed by infrared spectroscopy using an infrared spectrometer system 2000 manufactured by PerkinElmer and an ATR attachment. All measurements were performed under a dry nitrogen gas stream. As a result of the measurement, it was found that any of Examples 2 to 5 was the same as the complex obtained in Example 1.

本発明の高分子金属錯体は、配位子の整列によって形成される多数の微細孔が物質内部に存在する。この多孔性を生かして様々な物質の吸着、除去に利用できる。例えば、空気中の有毒物質の除去、水中の無機、有機物等の不要物の除去による水の浄化、あるいは空気や水中の有用な物質を吸着して、これを取り出すことで有用物質の空気や水からの回収が可能となる。   In the polymer metal complex of the present invention, a large number of micropores formed by alignment of ligands are present inside the substance. Utilizing this porosity, it can be used for adsorption and removal of various substances. For example, the removal of toxic substances in the air, the purification of water by removing unnecessary substances such as inorganic and organic substances in the water, or the adsorption of useful substances in the air and water and taking them out, the useful substances air and water Can be recovered.

本発明の高分子金属錯体の構造模式図である。It is a structural schematic diagram of the polymer metal complex of the present invention. 本発明の高分子金属錯体の立体構造模式図である。It is a three-dimensional structure schematic diagram of the polymer metal complex of the present invention. 本発明のガス吸着材におけるガス吸脱着カーブである。It is a gas adsorption / desorption curve in the gas adsorbent of the present invention. 従来のガス吸着材におけるガス吸脱着カーブである。It is a gas adsorption-desorption curve in the conventional gas adsorbent. 実質的な空孔が形成されていない、高分子金属錯体の積層の様態を示す概念図である。It is a conceptual diagram which shows the aspect of lamination | stacking of a polymeric metal complex in which the substantial void | hole is not formed. 空孔が形成された、高分子金属錯体の積層の様態を示す概念図である。It is a conceptual diagram which shows the aspect of lamination | stacking of a polymer metal complex in which the void | hole was formed. 本発明のガス吸着材における、酸素及び窒素ガス吸脱着カーブである(−196℃)。It is an oxygen and nitrogen gas adsorption-desorption curve (-196 degreeC) in the gas adsorbent of this invention. 本発明のガス吸着材及び従来の吸着材のガス吸脱着カーブを比較するグラフである。It is a graph which compares the gas adsorption / desorption curve of the gas adsorbent of the present invention and the conventional adsorbent. 実施例1で得られた化合物のXAFSスペクトル、および、その類似化合物[Cu(GeF)(bpy)・8HOのXAFSスペクトルである。It is a XAFS spectrum of the compound obtained in Example 1, and an XAFS spectrum of the similar compound [Cu (GeF 6 ) (bpy) 2 ] n · 8H 2 O.

Claims (8)

下記式(1)の単位構造を有する二次元格子積層型の結晶構造であって、積層構造における層間のずれによる、空孔がない積層構造と空孔がある積層構造との相転位を有する高分子金属錯体。
Figure 0004398749
(ここで、式中、Xは銅の2価イオン、YはBF 対イオン、Lは4,4’−ビピリジルの有機配位子を示す。)
A two-dimensional lattice-stacked crystal structure having a unit structure of the following formula (1), which has a phase transition between a layered structure without vacancies and a layered structure with vacancies due to a gap between layers in the layered structure. Molecular metal complex.
Figure 0004398749
(Wherein, X represents a divalent copper ion, Y represents a counter ion of BF 4 , and L represents a 4,4′-bipyridyl organic ligand.)
少なくとも1種のガスに関する吸脱着等温線がヒステリシスループを示す、請求項1に記載の高分子金属錯体。   The polymer metal complex according to claim 1, wherein an adsorption / desorption isotherm relating to at least one gas exhibits a hysteresis loop. 前記ガスが、水素、炭化水素、一酸化炭素、二酸化炭素、酸素、および窒素からなる群より選択される少なくとも1種類のガスである、請求項2に記載の高分子金属錯体。   The polymer metal complex according to claim 2, wherein the gas is at least one gas selected from the group consisting of hydrogen, hydrocarbon, carbon monoxide, carbon dioxide, oxygen, and nitrogen. 前記ガスが、硫化水素、硫黄酸化物、窒素酸化物、およびアンモニアからなる群より選択される少なくとも1種のガスである、請求項2に記載の高分子金属錯体。   The polymer metal complex according to claim 2, wherein the gas is at least one gas selected from the group consisting of hydrogen sulfide, sulfur oxide, nitrogen oxide, and ammonia. 請求項1〜4のいずれか1項に記載の高分子金属錯体を含むガス吸着材。   The gas adsorbent containing the polymeric metal complex of any one of Claims 1-4. 請求項5に記載のガス吸着材を用いてなる圧力スイング吸着方式ガス分離装置。   A pressure swing adsorption type gas separator using the gas adsorbent according to claim 5. 請求項5に記載のガス吸着材を内部に収容してなるガス貯蔵装置。   A gas storage device comprising the gas adsorbent according to claim 5 contained therein. 請求項7に記載のガス貯蔵装置を搭載してなる車両。   A vehicle comprising the gas storage device according to claim 7.
JP2004039860A 2004-02-17 2004-02-17 Polymer metal complex, use as gas adsorbent, gas separation device and gas storage device using the same Expired - Lifetime JP4398749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004039860A JP4398749B2 (en) 2004-02-17 2004-02-17 Polymer metal complex, use as gas adsorbent, gas separation device and gas storage device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004039860A JP4398749B2 (en) 2004-02-17 2004-02-17 Polymer metal complex, use as gas adsorbent, gas separation device and gas storage device using the same

Publications (2)

Publication Number Publication Date
JP2005232222A JP2005232222A (en) 2005-09-02
JP4398749B2 true JP4398749B2 (en) 2010-01-13

Family

ID=35015508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004039860A Expired - Lifetime JP4398749B2 (en) 2004-02-17 2004-02-17 Polymer metal complex, use as gas adsorbent, gas separation device and gas storage device using the same

Country Status (1)

Country Link
JP (1) JP4398749B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132292A1 (en) * 2005-06-06 2006-12-14 Nippon Oil Corporation Porous substance and process for production thereof
DE202008000810U1 (en) * 2007-11-04 2008-12-24 BLüCHER GMBH sorption filter
JP2009208028A (en) * 2008-03-06 2009-09-17 Hokkaido Univ Carbon dioxide adsorbent
EP2382224B1 (en) 2008-12-23 2014-05-21 University Of Windsor Metal hydrazide materials
JPWO2011105521A1 (en) 2010-02-24 2013-06-20 株式会社クラレ Metal complex, adsorbent, occlusion material and separation material comprising the same
JP2012020956A (en) * 2010-07-14 2012-02-02 Kuraray Co Ltd Metal complex and method of producing the same

Also Published As

Publication number Publication date
JP2005232222A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
Kapelewski et al. Record high hydrogen storage capacity in the metal–organic framework Ni2 (m-dobdc) at near-ambient temperatures
Shang et al. Facile synthesis of CuBTC and its graphene oxide composites as efficient adsorbents for CO2 capture
Bao et al. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework
Lee et al. Microporous metal–organic frameworks with high gas sorption and separation capacity
Murray et al. Hydrogen storage in metal–organic frameworks
KR100856445B1 (en) Method for storing, absorbing and emitting gases using novel framework materials
He et al. A series of metal–organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity
Nakagawa et al. Enhanced selectivity of CO 2 from a ternary gas mixture in an interdigitated porous framework
Munusamy et al. Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101 (Cr): Volumetric measurements and dynamic adsorption studies
Liu et al. Progress in adsorption-based CO 2 capture by metal–organic frameworks
JP5646789B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
Peralta et al. CO 2 capture enhancement in InOF-1 via the bottleneck effect of confined ethanol
Kim et al. Efficient SF6/N2 separation at high pressures using a zirconium-based mesoporous metal–organic framework
Li et al. Nanocomposites formed by in situ growth of NiDOBDC nanoparticles on graphene oxide sheets for enhanced CO2 and H2 storage
Åhlén et al. Gas sorption properties and kinetics of porous bismuth-based metal-organic frameworks and the selective CO2 and SF6 sorption on a new bismuth trimesate-based structure UU-200
He et al. Direct Functionalization of the Open Metal Sites in Rare Earth-Based Metal–Organic Frameworks Used for the Efficient Separation of Ethylene
Zhang et al. C 2 H 2 capture and separation in a MOF based on Ni 6 trigonal-prismatic units
Wang et al. Porous organic cages for gas separations
KR101937811B1 (en) Organic-inorganic Hybrid Porous Adsorbent And Method For Preparing The Same
Kang et al. Ultramicroporous hydrogen-bond decorated robust metal–organic framework for high xenon capture performances
JP4398749B2 (en) Polymer metal complex, use as gas adsorbent, gas separation device and gas storage device using the same
JP2005232033A (en) Polymer metal complex, use as gas adsorbent, gas separation apparatus and gas storage apparatus using the same
CN111182964A (en) Chromium-based metal-organic frameworks for water adsorption related applications and gas storage
Takei et al. Hydrogen Adsorption Properties of Lantern-Type Dinuclear M (BDC)(DABCO) 1⁄ 2
JP2005232034A (en) Polymer metal complex, use as gas adsorbent, gas separation apparatus and gas storage apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4398749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term