JP2012020956A - Metal complex and method of producing the same - Google Patents

Metal complex and method of producing the same Download PDF

Info

Publication number
JP2012020956A
JP2012020956A JP2010159362A JP2010159362A JP2012020956A JP 2012020956 A JP2012020956 A JP 2012020956A JP 2010159362 A JP2010159362 A JP 2010159362A JP 2010159362 A JP2010159362 A JP 2010159362A JP 2012020956 A JP2012020956 A JP 2012020956A
Authority
JP
Japan
Prior art keywords
metal complex
group
carbon dioxide
metal
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010159362A
Other languages
Japanese (ja)
Inventor
Yasutaka Inubushi
康貴 犬伏
Keisuke Kishida
圭輔 岸田
Hiroshi Kitagawa
宏 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Kyoto University NUC
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Kuraray Co Ltd
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Kuraray Co Ltd, Kyoto University NUC filed Critical Showa Denko KK
Priority to JP2010159362A priority Critical patent/JP2012020956A/en
Publication of JP2012020956A publication Critical patent/JP2012020956A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Pyridine Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal complex having excellent carbon dioxide-separating performance.SOLUTION: The metal complex comprises: at least one metal ion selected from metals that belong to Group II and Group VII to XII of the periodic table; a lewis-base anion; and an organic ligand capable of bidentate coordination to the metal ion, wherein the organic ligand is expressed by the general formula (I).

Description

本発明は、金属錯体及びその製造方法に関する。さらに詳しくは、少なくとも1種の金属イオンと、ルイス塩基性アニオンと、該金属に二座配位可能な有機配位子とからなる金属錯体に関する。本発明の金属錯体は、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気などを吸着するための吸着材として好ましい。また、本発明の金属錯体は、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気を分離するための分離材としても好ましく、特に、メタンと二酸化炭素、エチレンと二酸化炭素、水素と二酸化炭素、窒素と二酸化炭素、メタンとエタンまたは空気とメタンなどの分離材として好ましい。   The present invention relates to a metal complex and a method for producing the same. More specifically, the present invention relates to a metal complex comprising at least one metal ion, a Lewis basic anion, and an organic ligand capable of bidentate coordination with the metal. The metal complex of the present invention is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or organic It is preferable as an adsorbent for adsorbing vapor and the like. The metal complex of the present invention includes carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor Or it is also preferable as a separating material for separating organic vapor, and is particularly preferable as a separating material such as methane and carbon dioxide, ethylene and carbon dioxide, hydrogen and carbon dioxide, nitrogen and carbon dioxide, methane and ethane, or air and methane.

これまで、脱臭、排ガス処理などの分野で種々の吸着材が開発されている。活性炭はその代表例であり、活性炭の優れた吸着性能を利用して、空気浄化、脱硫、脱硝、有害物質除去など各種工業において広く使用されている。近年は半導体製造プロセスなどへ窒素の需要が増大しており、かかる窒素を製造する方法として、分子ふるい炭を使用して圧力スイング吸着法や温度スイング吸着法により空気から窒素を製造する方法が使用されている。また、分子ふるい炭は、メタノール分解ガスからの水素精製など各種ガス分離精製にも応用されている。   So far, various adsorbents have been developed in fields such as deodorization and exhaust gas treatment. Activated carbon is a representative example, and is widely used in various industries such as air purification, desulfurization, denitration, and removal of harmful substances by utilizing the excellent adsorption performance of activated carbon. In recent years, the demand for nitrogen has increased for semiconductor manufacturing processes, etc., and as a method for producing such nitrogen, a method of producing nitrogen from air by pressure swing adsorption method or temperature swing adsorption method using molecular sieve charcoal is used. Has been. Molecular sieve charcoal is also applied to various gas separation and purification such as hydrogen purification from methanol cracked gas.

圧力スイング吸着法や温度スイング吸着法により混合ガスを分離する際には、一般に、分離吸着材として分子ふるい炭やゼオライトなどを使用し、その平衡吸着量または吸着速度の差により分離を行っている。しかしながら、平衡吸着量の差によって混合ガスを分離する場合、これまでの吸着材では除去したいガスのみを選択的に吸着することができないため分離係数が小さくなり、装置の大型化は不可避であった。また、吸着速度の差によって混合ガスを分離する場合、ガスの種類によっては除去したいガスのみを吸着できるが、吸着と脱着を交互に行う必要があり、この場合も装置は依然として大型にならざるを得なかった。   When separating mixed gas by pressure swing adsorption method or temperature swing adsorption method, generally, molecular sieve charcoal or zeolite is used as the separation adsorbent, and separation is performed by the difference in the equilibrium adsorption amount or adsorption rate. . However, when separating the mixed gas based on the difference in the amount of equilibrium adsorption, the conventional adsorbents cannot selectively adsorb only the gas to be removed, so the separation factor becomes small, and the size of the apparatus is inevitable. . In addition, when separating the mixed gas based on the difference in adsorption speed, only the gas to be removed can be adsorbed depending on the type of gas, but it is necessary to perform adsorption and desorption alternately, and in this case, the apparatus still has to be large. I didn't get it.

一方、より優れた吸着性能を与える吸着材として、外部刺激により動的構造変化を生じる高分子金属錯体が開発されている(非特許文献1、非特許文献2参照)。この新規な動的構造変化高分子金属錯体をガス吸着材として使用した場合、ある一定の圧力まではガスを吸着しないが、ある一定圧を越えるとガス吸着が始まるという特異な現象が観測されている。また、ガスの種類によって吸着開始圧が異なる現象が観測されている。   On the other hand, polymer metal complexes that cause a dynamic structural change by an external stimulus have been developed as adsorbents that give better adsorption performance (see Non-Patent Document 1 and Non-Patent Document 2). When this new dynamic structure change polymer metal complex is used as a gas adsorbent, a unique phenomenon is observed in which gas adsorption does not adsorb up to a certain pressure, but gas adsorption starts when a certain pressure is exceeded. Yes. In addition, a phenomenon has been observed in which the adsorption start pressure varies depending on the type of gas.

この現象を、例えば圧力スイング吸着方式のガス分離装置における吸着材に応用した場合、非常に効率良いガス分離が可能となる。また、圧力のスイング幅を狭くすることができ、省エネルギーにも寄与する。さらに、ガス分離装置の小型化にも寄与し得るため、高純度ガスを製品として販売する際のコスト競争力を高めることができることは勿論、自社工場内部で高純度ガスを用いる場合であっても、高純度ガスを必要とする設備に要するコストを削減できるため、結局最終製品の製造コストを削減する効果を有する。   When this phenomenon is applied to, for example, an adsorbent in a pressure swing adsorption type gas separation apparatus, very efficient gas separation is possible. In addition, the pressure swing width can be narrowed, contributing to energy saving. Furthermore, since it can contribute to miniaturization of the gas separation device, it is possible to increase cost competitiveness when selling high-purity gas as a product, of course, even when high-purity gas is used inside its own factory Since the cost required for the equipment that requires high purity gas can be reduced, the manufacturing cost of the final product can be reduced.

動的構造変化高分子金属錯体を吸蔵材や分離材に適用した例として、(1)インターデジテイト型の集積構造を有する金属錯体(特許文献1、特許文献2参照)、(2)二次元格子積層型の集積構造を有する金属錯体(特許文献3、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8参照)、(3)相互貫入型の集積構造を有する金属錯体(特許文献9参照)などが知られている。   Examples of applying the dynamic structural change polymer metal complex to an occlusion material or separation material include (1) a metal complex having an interdigitated integrated structure (see Patent Document 1 and Patent Document 2), (2) two-dimensional Metal complex having lattice stacked type integrated structure (see Patent Document 3, Patent Document 4, Patent Document 5, Patent Document 6, Patent Document 7, and Patent Document 8), (3) Metal complex having interpenetrating type integrated structure (See Patent Document 9) and the like are known.

しかしながら、さらなる装置小型化によるコスト削減が求められているのが現状であり、これを達成するために分離性能のさらなる向上が求められている。   However, the current situation is that cost reduction by further downsizing of the apparatus is required, and further improvement in separation performance is required to achieve this.

特許文献6では、[X(CFSO(式中、Xは2価の遷移金属イオン、Lは有機配位子である。)の単位構造を有する高分子金属錯体が開示されている。しかしながら、実施例に記載されているのは銅イオンとトリフルオロメタンスルホン酸イオンと4,4’−ビピリジルとからなる高分子金属錯体であり、ガスの吸着、混合ガスの分離において、4,4’−ビピリジル以外の二座配位可能な有機配位子が吸着性能、分離性能に与える効果については何ら言及されていない。 In Patent Document 6, a polymer metal complex having a unit structure of [X (CF 3 SO 3 ) 2 L 2 ] n (wherein X is a divalent transition metal ion and L is an organic ligand). Is disclosed. However, what is described in the examples is a polymer metal complex composed of copper ion, trifluoromethanesulfonate ion, and 4,4′-bipyridyl. In gas adsorption and mixed gas separation, 4,4 ′ -No mention is made of the effect of organic ligands other than bipyridyl capable of bidentate coordination on adsorption performance and separation performance.

特許文献7では、[NiY(式中、Yは対イオン、Lは有機配位子である。)の単位構造を有する高分子金属錯体が開示されている。しかしながら、実施例に記載されているのはニッケルイオンとテトラフルオロホウ酸イオンと1,4−ビス(4−ピリジル)ベンゼンとからなる高分子金属錯体であり、ガスの吸着、混合ガスの分離において、1,4−ビス(4−ピリジル)ベンゼン以外の二座配位可能な有機配位子が吸着性能、分離性能に与える効果については何ら言及されていない。 Patent Document 7 discloses a polymer metal complex having a unit structure of [NiY 2 L 2 ] n (wherein Y is a counter ion and L is an organic ligand). However, what is described in the examples is a polymer metal complex composed of nickel ions, tetrafluoroborate ions and 1,4-bis (4-pyridyl) benzene, and in gas adsorption and mixed gas separation. No mention is made of the effect of bidentate organic ligands other than 1,4-bis (4-pyridyl) benzene on adsorption performance and separation performance.

特許文献8では、[XY(式中、Xは2価の遷移金属イオン、Yは対イオン、Lは有機配位子である。)の単位構造を有する高分子金属錯体が開示されている。しかしながら、実施例に記載されているのは銅イオンとテトラフルオロホウ酸イオンと4,4’−ビピリジルとからなる高分子金属錯体であり、ガスの吸着、混合ガスの分離において、銅イオン以外の金属イオンや4,4’−ビピリジル以外の二座配位可能な有機配位子が吸着性能、分離性能に与える効果については何ら言及されていない。 In Patent Document 8, a polymer metal complex having a unit structure of [XY 2 L 2 ] n (wherein X is a divalent transition metal ion, Y is a counter ion, and L is an organic ligand) It is disclosed. However, what is described in the examples is a polymer metal complex composed of copper ions, tetrafluoroborate ions, and 4,4′-bipyridyl, and other than copper ions in gas adsorption and mixed gas separation. No mention is made of the effects of organic ions capable of bidentate coordination other than metal ions and 4,4′-bipyridyl on the adsorption performance and separation performance.

二価の金属イオン、前記金属イオンに配位可能な原子を有する二座配位可能な有機配位子、およびハロゲン化二価金属アニオンより構成される三次元構造を有するガス貯蔵可能な有機金属錯体が開示されている(特許文献10参照)。しかしながら、実施例に記載されているのは銅イオンとヘキサフルオロケイ酸イオンと4,4’−ビピリジルとからなる高分子金属錯体、銅イオンとテトラフルオロホウ酸イオンと1,4−ビス(4−ピリジル)ベンゼンとからなる高分子金属錯体、銅イオンとヘキサフルオロゲルマン酸イオンと4,4’−ビピリジルとからなる高分子金属錯体、銅イオンとヘキサフルオロチタン酸イオンと4,4’−ビピリジルとからなる高分子金属錯体及び銅イオンとヘキサフルオロジルコン酸イオンと4,4’−ビピリジルとからなる高分子金属錯体であり、ガスの吸着、混合ガスの分離において、銅イオン以外の金属イオンや4,4’−ビピリジル及び1,4−ビス(4−ピリジル)ベンゼン以外の二座配位可能な有機配位子が吸着性能、分離性能に与える効果については何ら言及されていない。   Gas storage organic metal having a three-dimensional structure composed of a divalent metal ion, an organic ligand capable of bidentate coordination having an atom capable of coordinating to the metal ion, and a halogenated divalent metal anion A complex is disclosed (see Patent Document 10). However, what is described in the examples is a polymer metal complex composed of copper ion, hexafluorosilicate ion and 4,4′-bipyridyl, copper ion, tetrafluoroborate ion and 1,4-bis (4 -Pyridyl) Polymer metal complex composed of benzene, Polymer metal complex composed of copper ion, hexafluorogermanate ion and 4,4'-bipyridyl, Copper ion, hexafluorotitanate ion and 4,4'-bipyridyl And a polymer metal complex composed of copper ion, hexafluorozirconate ion and 4,4′-bipyridyl, in the adsorption of gas and separation of mixed gas, Organic ligands capable of bidentate coordination other than 4,4'-bipyridyl and 1,4-bis (4-pyridyl) benzene adsorbed and separated It has not been any mention of the effect of.

銅イオンと、ルイス塩基性アニオンと、1,2−ビス(4−ピリジル)エタン、1,3−ビス(4−ピリジル)プロパン及び4,4’−ジピリジルスルフィドから選択される該金属に二座配位可能な有機配位子とからなる高分子金属錯体が開示されている(特許文献11参照)。しかしながら、実施例に記載されているのは銅イオンとヘキサフルオロリン酸イオンと1,2−ビス(4−ピリジル)エタンとからなる高分子金属錯体、銅イオンとヘキサフルオロリン酸イオンとテトラフルオロホウ酸イオンと1,2−ビス(4−ピリジル)エタンとからなる高分子金属錯体、銅イオンとテトラフルオロホウ酸イオンと1,2−ビス(4−ピリジル)エタンとからなる高分子金属錯体、銅イオンとヘキサフルオロリン酸イオンと1,3−ビス(4−ピリジル)プロパンとからなる高分子金属錯体、銅イオンとテトラフルオロホウ酸イオンと1,3−ビス(4−ピリジル)プロパンとからなる高分子金属錯体、銅イオンとヘキサフルオロヒ酸イオンと1,2−ビス(4−ピリジル)エタンとからなる高分子金属錯体、銅イオンとヘキサフルオロアンチモン酸イオンと1,2−ビス(4−ピリジル)エタンとからなる高分子金属錯体、銅イオンとベンゼンスルホン酸イオンとテトラフルオロホウ酸イオンと1,2−ビス(4−ピリジル)エタンとからなる高分子金属錯体及び銅イオンとヘキサフルオロリン酸イオンと4−フェニルピリジンとからなる高分子金属錯体であり、ガスの吸着、混合ガスの分離において、トリフルオロメタンスルホン酸イオンや銅イオン以外の金属イオンが吸着性能、分離性能に与える効果については何ら言及されていない。   Bidentate to the metal selected from copper ion, Lewis basic anion, 1,2-bis (4-pyridyl) ethane, 1,3-bis (4-pyridyl) propane and 4,4′-dipyridyl sulfide A polymer metal complex comprising an organic ligand capable of coordination is disclosed (see Patent Document 11). However, what is described in the examples is a polymer metal complex composed of copper ion, hexafluorophosphate ion and 1,2-bis (4-pyridyl) ethane, copper ion, hexafluorophosphate ion and tetrafluoro. Polymer metal complex composed of borate ion and 1,2-bis (4-pyridyl) ethane, Polymer metal complex composed of copper ion, tetrafluoroborate ion and 1,2-bis (4-pyridyl) ethane , A polymer metal complex composed of copper ion, hexafluorophosphate ion and 1,3-bis (4-pyridyl) propane, copper ion, tetrafluoroborate ion and 1,3-bis (4-pyridyl) propane Polymeric metal complex comprising copper ion, hexafluoroarsenic acid ion and 1,2-bis (4-pyridyl) ethane, copper ion Polymer metal complex comprising hexafluoroantimonate ion and 1,2-bis (4-pyridyl) ethane, copper ion, benzenesulfonate ion, tetrafluoroborate ion and 1,2-bis (4-pyridyl) ethane Is a polymer metal complex consisting of copper ion, hexafluorophosphate ion and 4-phenylpyridine, and other than trifluoromethanesulfonate ion and copper ion in gas adsorption and mixed gas separation No mention is made of the effect of metal ions on the adsorption performance and separation performance.

特開2004−161675公報JP 2004-161675 A 特開2008−247884公報JP 2008-24784A 特開2003−275531公報JP 2003-275531 A 特開2003−278997公報JP 2003-278997 A 特開2004−74026公報JP 2004-74026 A 特開2005−232033公報JP 2005-232033 A 特開2005−232034公報JP 2005-232034 A 特開2005−232222公報JP-A-2005-232222 特開2003−342260公報JP 2003-342260 A 特開2000−117100公報JP 2000-117100 A 特開2009−208028公報JP 2009-208028 A

植村一広、北川進、未来材料、第2巻、44〜51頁(2002年)Kazuhiro Uemura, Susumu Kitagawa, Future Materials, Volume 2, 44-51 (2002) 松田亮太郎、北川進、ペトロテック、第26巻、97〜104頁(2003年)Ryotaro Matsuda, Susumu Kitagawa, Petrotech, Vol. 26, 97-104 (2003)

したがって、本発明の目的は、従来よりも優れたガス吸着特性を有する吸着材及び従来よりも混合ガスの分離性能が優れるガス分離材として使用できる金属錯体を提供することにある。   Accordingly, an object of the present invention is to provide an adsorbent having gas adsorbing properties superior to those of the prior art and a metal complex that can be used as a gas separating material having superior separation performance of a mixed gas as compared with the prior art.

本発明者らは鋭意検討し、少なくとも1種の金属と、ルイス塩基性アニオンと、該金属に二座配位可能な有機配位子とからなる金属錯体により、上記目的を達成することができることを見出し、本発明に至った。   The present inventors have intensively studied and can achieve the above object with a metal complex comprising at least one metal, a Lewis basic anion, and an organic ligand capable of bidentate coordination with the metal. And found the present invention.

すなわち、本発明によれば、以下のものが提供される。
(1)周期表の2族及び7〜12族に属する金属から選択される少なくとも1種の金属イオンと、ルイス塩基性アニオンと、下記一般式(I);
That is, according to the present invention, the following is provided.
(1) at least one metal ion selected from metals belonging to groups 2 and 7-12 of the periodic table, a Lewis basic anion, and the following general formula (I):

Figure 2012020956
Figure 2012020956

(式中、Xは同一又は異なってメチレン基または硫黄原子であり、R、R、R、R、R、R、R及びRはそれぞれ同一または異なって水素原子、置換基を有していてもよいアルキル基、アルコキシ基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基またはハロゲン原子であり、nは1または2である。)で表される該金属イオンに二座配位可能な有機配位子とからなる金属錯体であって、その組成が (Wherein X is the same or different and is a methylene group or a sulfur atom, and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and each represents a hydrogen atom, An alkyl group, alkoxy group, formyl group, acyloxy group, alkoxycarbonyl group, nitro group, cyano group, amino group, monoalkylamino group, dialkylamino group, acylamino group or halogen atom which may have a substituent , N is 1 or 2.) A metal complex composed of an organic ligand capable of bidentate coordination with the metal ion represented by the following formula:

Figure 2012020956
Figure 2012020956

(式中、Mは周期表の2族及び7〜12族に属する金属から選択される少なくとも1種の金属イオンである。Mが銅イオンの場合にAはトリフルオロメタンスルホン酸イオンであり、Mが銅イオン以外の場合にAはルイス塩基性アニオンから選択される少なくとも1種のアニオンである。Bは該金属イオンに二座配位可能な有機配位子である。)で表される金属錯体。
(2)該二座配位可能な有機配位子が1,2−ビス(4−ピリジル)エタン、1,3−ビス(4−ピリジル)プロパン及び4,4’−ジピリジルスルフィドから選択される少なくとも1種である(1)に記載の金属錯体。
(3)該金属がマンガン、鉄、コバルト、ニッケル及び銅から選択される少なくとも1種である(1)または(2)に記載の金属錯体。
(4)(1)〜(3)いずれかに記載の金属錯体からなる吸着材。
(5)該吸着材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気を吸着するための吸着材である(4)に記載の分離材。
(6)(1)〜(3)いずれかに記載の金属錯体からなる分離材。
(7)該分離材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気を分離するための分離材である(6)に記載の分離材。
(8)該分離材が、メタンと二酸化炭素、エチレンと二酸化炭素、水素と二酸化炭素、窒素と二酸化炭素、メタンとエタンまたは空気とメタンを分離するための分離材である(6)に記載の分離材。
(9)周期表の2族及び7〜12族に属する金属から選択される少なくとも1種の金属イオンと、ルイス塩基性アニオンと、該金属イオンに二座配位可能な有機配位子(I)とを溶媒中で反応させ、金属錯体を析出させる、(1)に記載の金属錯体の製造方法。
(In the formula, M is at least one metal ion selected from metals belonging to Groups 2 and 7-12 of the periodic table. When M is a copper ion, A is a trifluoromethanesulfonate ion, When A is other than a copper ion, A is at least one anion selected from Lewis basic anions, and B is an organic ligand capable of bidentate coordination with the metal ion. Complex.
(2) The bidentate organic ligand is selected from 1,2-bis (4-pyridyl) ethane, 1,3-bis (4-pyridyl) propane, and 4,4′-dipyridyl sulfide. The metal complex according to (1), which is at least one kind.
(3) The metal complex according to (1) or (2), wherein the metal is at least one selected from manganese, iron, cobalt, nickel and copper.
(4) An adsorbent comprising the metal complex according to any one of (1) to (3).
(5) The adsorbent is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or The separating material according to (4), which is an adsorbing material for adsorbing organic vapor.
(6) A separating material comprising the metal complex according to any one of (1) to (3).
(7) The separator is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or The separating material according to (6), which is a separating material for separating organic vapor.
(8) The separation material according to (6), wherein the separation material is a separation material for separating methane and carbon dioxide, ethylene and carbon dioxide, hydrogen and carbon dioxide, nitrogen and carbon dioxide, methane and ethane, or air and methane. Separation material.
(9) At least one metal ion selected from metals belonging to Group 2 and Groups 7-12 of the periodic table, a Lewis basic anion, and an organic ligand (I ) In a solvent to precipitate a metal complex. The method for producing a metal complex according to (1).

本発明により、少なくとも1種の金属イオンと、ルイス塩基性アニオンと、該金属イオンに二座配位可能な有機配位子(I)とからなる金属錯体を提供することができる。   The present invention can provide a metal complex comprising at least one metal ion, a Lewis basic anion, and an organic ligand (I) capable of bidentate coordination with the metal ion.

本発明の金属錯体は、各種ガスの吸着性能に優れているので、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気などを吸着するための吸着材として使用することができる。   Since the metal complex of the present invention is excellent in the adsorption performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxidation It can be used as an adsorbent for adsorbing substances, nitrogen oxides, siloxanes, water vapor, organic vapors and the like.

また、本発明の金属錯体は、各種ガスの分離性能に優れているので、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気などを分離するための分離材としても使用することができ、特に、メタンと二酸化炭素、エチレンと二酸化炭素、水素と二酸化炭素、窒素と二酸化炭素、メタンとエタンまたは空気とメタンなどの分離材として使用することができる。   Further, since the metal complex of the present invention is excellent in the separation performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, It can also be used as a separator for separating sulfur oxides, nitrogen oxides, siloxanes, water vapor or organic vapors, and in particular, methane and carbon dioxide, ethylene and carbon dioxide, hydrogen and carbon dioxide, nitrogen and carbon dioxide. It can be used as a separating material such as carbon, methane and ethane or air and methane.

合成例1で得た金属錯体の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 1. FIG. 合成例2で得た金属錯体の粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 2. FIG. 合成例3で得た金属錯体の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 3. FIG. 合成例4で得た金属錯体の粉末X線回折パターンである。6 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 4. FIG. 合成例5で得た金属錯体の粉末X線回折パターンである。6 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 5. FIG. 比較合成例1で得た金属錯体の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of the metal complex obtained in Comparative Synthesis Example 1. FIG. 比較合成例2で得た金属錯体の粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of the metal complex obtained in Comparative Synthesis Example 2. FIG. 比較合成例3で得た金属錯体の粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of the metal complex obtained in Comparative Synthesis Example 3. FIG. 比較合成例4で得た金属錯体の粉末X線回折パターンである。6 is a powder X-ray diffraction pattern of the metal complex obtained in Comparative Synthesis Example 4. FIG. 合成例1、比較合成例1及び比較合成例2で得た金属錯体について、エチレンの195Kにおける吸着等温線を容量法により測定した結果である。It is the result of having measured the adsorption isotherm in 195K of ethylene by the capacitance method about the metal complex obtained by the synthesis example 1, the comparative synthesis example 1, and the comparative synthesis example 2. FIG. 合成例1で得た金属錯体について、二酸化炭素及びメタンの195Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in 195K of a carbon dioxide and methane about the metal complex obtained by the synthesis example 1 by the capacitance method. 合成例2で得た金属錯体について、二酸化炭素及びメタンの195Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm of carbon dioxide and methane in 195K by the capacitance method about the metal complex obtained by the synthesis example 2. FIG. 合成例3で得た金属錯体について、二酸化炭素及びメタンの195Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in 195K of a carbon dioxide and methane about the metal complex obtained by the synthesis example 3 by the capacitance method. 比較合成例3で得た金属錯体について、二酸化炭素及びメタンの195Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in 195K of a carbon dioxide and methane about the metal complex obtained by the comparative synthesis example 3 by the capacitance method. 合成例4で得た金属錯体について、二酸化炭素及びエチレンの195Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in 195K of a carbon dioxide and ethylene about the metal complex obtained by the synthesis example 4 by the capacitance method. 合成例5で得た金属錯体について、二酸化炭素及びエチレンの195Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm in 195K of a carbon dioxide and ethylene about the metal complex obtained by the synthesis example 5 by the capacitance method. 比較合成例4で得た金属錯体について、二酸化炭素及びエチレンの195Kにおける吸脱着等温線を容量法により測定した結果である。It is the result of having measured the adsorption-desorption isotherm of carbon dioxide and ethylene in 195K by the capacitance method about the metal complex obtained by the comparative synthesis example 4.

本発明の金属錯体は、周期表の2族及び7〜12族に属する金属から選択される少なくとも1種の金属イオンと、ルイス塩基性アニオンと、該金属に二座配位可能な有機配位子(I)とからなる。   The metal complex of the present invention comprises at least one metal ion selected from metals belonging to Groups 2 and 7-12 of the periodic table, a Lewis basic anion, and an organic coordination capable of bidentate coordination with the metal. It consists of a child (I).

本発明の金属錯体は、周期表の2族及び7〜12族に属する金属から選択される少なくとも1種の金属イオンと、ルイス塩基性アニオンと、該金属に二座配位可能な有機配位子(I)とを、常圧下、溶媒中で数時間から数日間反応させ、析出させて製造することができる。例えば、金属塩の水溶液または有機溶媒溶液と、ルイス塩基性アニオン及び二座配位可能な有機配位子を含有する有機溶媒溶液とを、常圧下で混合して反応させることにより本発明の金属錯体を得ることができる。   The metal complex of the present invention comprises at least one metal ion selected from metals belonging to Groups 2 and 7-12 of the periodic table, a Lewis basic anion, and an organic coordination capable of bidentate coordination with the metal. The child (I) can be produced by reacting and precipitating for a few hours to several days in a solvent under normal pressure. For example, an aqueous solution or organic solvent solution of a metal salt and an organic solvent solution containing a Lewis basic anion and an organic ligand capable of bidentate coordination are mixed and reacted under normal pressure to react with the metal of the present invention. A complex can be obtained.

本発明に用いられる周期表の2族及び7〜12族に属する金属の塩としては、マグネシウム塩、カルシウム塩、マンガン塩、鉄塩、ルテニウム塩、コバルト塩、ロジウム塩、ニッケル塩、パラジウム塩、銅塩、亜鉛塩及びカドミウム塩を使用することができ、マンガン塩、鉄塩、コバルト塩、ニッケル塩及び銅塩が好ましく、コバルト塩及びニッケル塩がより好ましい。金属塩は、単一の金属塩を使用することが好ましいが、2種以上の金属塩を混合して用いてもよい。また、これらの金属塩としては、酢酸塩、ギ酸塩などの有機酸塩、硫酸塩、硝酸塩、炭酸塩、塩酸塩、臭化水素酸塩などの無機酸塩を使用することができる。   Examples of salts of metals belonging to Groups 2 and 7-12 of the periodic table used in the present invention include magnesium salts, calcium salts, manganese salts, iron salts, ruthenium salts, cobalt salts, rhodium salts, nickel salts, palladium salts, Copper salts, zinc salts and cadmium salts can be used, with manganese salts, iron salts, cobalt salts, nickel salts and copper salts being preferred, and cobalt salts and nickel salts being more preferred. The metal salt is preferably a single metal salt, but two or more metal salts may be mixed and used. Further, as these metal salts, organic acid salts such as acetates and formates, inorganic acid salts such as sulfates, nitrates, carbonates, hydrochlorides and hydrobromides can be used.

本発明に用いられるルイス塩基性アニオンとしては、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ酸イオン、ヘキサフルオロアンチモン酸イオン、ギ酸イオン、酢酸イオン、トリフルオロ酢酸イオン、トリフルオロメタンスルホン酸イオン、ベンゼンスルホン酸イオンを使用することができ、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ酸イオン、ヘキサフルオロアンチモン酸イオン、トリフルオロメタンスルホン酸イオンが好ましい。アニオンは、2種以上のアニオンを混合して用いても良い。ここで、ルイス塩基性のアニオンとは化学的に安定で還元性や求核性をほとんど示さないアニオンを意味する。   Examples of Lewis basic anions used in the present invention include tetrafluoroborate ion, hexafluorophosphate ion, hexafluoroarsenate ion, hexafluoroantimonate ion, formate ion, acetate ion, trifluoroacetate ion, trifluoromethanesulfone. Acid ions and benzenesulfonate ions can be used, and tetrafluoroborate ions, hexafluorophosphate ions, hexafluoroarsenate ions, hexafluoroantimonate ions, and trifluoromethanesulfonate ions are preferable. Two or more kinds of anions may be mixed and used. Here, the Lewis basic anion means an anion which is chemically stable and hardly exhibits reducibility or nucleophilicity.

本発明に用いられるルイス塩基性アニオンは、金属塩のカウンターアニオンをそのまま使用しても、アルカリ金属塩の形で使用しても良い。   The Lewis basic anion used in the present invention may be a metal salt counter anion or may be used in the form of an alkali metal salt.

本発明に用いられる二座配位可能な有機配位子(I)は、下記一般式(I);   The organic ligand (I) capable of bidentate coordination used in the present invention has the following general formula (I):

Figure 2012020956
Figure 2012020956

で表される。式中、Xは同一又は異なってメチレン基(CH)または硫黄原子(S)であり、R、R、R、R、R、R、R及びRはそれぞれ同一または異なって水素原子、置換基を有していてもよいアルキル基、アルコキシ基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基またはハロゲン原子であり、nは1または2である。 It is represented by In the formula, X is the same or different and is a methylene group (CH 2 ) or a sulfur atom (S), and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same. Alternatively, a hydrogen atom, an optionally substituted alkyl group, an alkoxy group, a formyl group, an acyloxy group, an alkoxycarbonyl group, a nitro group, a cyano group, an amino group, a monoalkylamino group, a dialkylamino group, an acylamino group A group or a halogen atom, and n is 1 or 2.

上記R、R、R、R、R、R、R及びRを構成することのできる置換基の内、アルキル基またはアルコキシ基の炭素原子数は1〜5が好ましい。アルキル基の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基などの直鎖または分岐を有するアルキル基が、アルコキシ基の例としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基,n−ブトキシ基、イソブトキシ基、tert−ブトキシ基が、アシロキシ基の例としては、アセトキシ基、n−プロパノイルオキシ基、n−ブタノイルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基が、アルコキシカルボニル基の例としては、メトキシカルボニル基、エトキシカルボニル基、n−ブトキシカルボニル基が、モノアルキルアミノ基の例としては、メチルアミノ基が、ジアルキルアミノ基の例としては、ジメチルアミノ基が、アシルアミノ基の例としては、アセチルアミノ基が、ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が、それぞれ挙げられる。また、該アルキル基等が有していてもよい置換基の例としては、アルコキシ基(メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基,n−ブトキシ基、イソブトキシ基、tert−ブトキシ基など)、アミノ基、モノアルキルアミノ基(メチルアミノ基など)、ジアルキルアミノ基(ジメチルアミノ基など)、ホルミル基、エポキシ基、アシロキシ基(アセトキシ基、n−プロパノイルオキシ基、n−ブタノイルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、n−ブトキシカルボニル基など)、カルボン酸無水物基(−CO−O−CO−R基)(Rは炭素数1〜5のアルキル基である)などが挙げられる。アルキル基の置換基の数は、1〜3個が好ましく、1個がより好ましい。 Among the substituents that can constitute R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 , the alkyl group or alkoxy group preferably has 1 to 5 carbon atoms. . Examples of the alkyl group include a linear or branched alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, and a pentyl group, and an alkoxy group. Examples of methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, and examples of acyloxy group include acetoxy group, n-propanoyloxy group , N-butanoyloxy group, pivaloyloxy group, benzoyloxy group are examples of alkoxycarbonyl group, methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group are examples of monoalkylamino group, methylamino Examples of the dialkylamino group include a dimethylamino group Examples of amino group, acetylamino group, examples of the halogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, and the like, respectively. Examples of the substituent that the alkyl group may have include an alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group). Etc.), amino group, monoalkylamino group (such as methylamino group), dialkylamino group (such as dimethylamino group), formyl group, epoxy group, acyloxy group (acetoxy group, n-propanoyloxy group, n-butanoyl) Oxy group, pivaloyloxy group, benzoyloxy group, etc.), alkoxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group, etc.), carboxylic acid anhydride group (—CO—O—CO—R group) (R Is an alkyl group having 1 to 5 carbon atoms). 1-3 are preferable and, as for the number of the substituents of an alkyl group, one is more preferable.

二座配位可能な有機配位子(I)としては、例えば、1,2−ビス(4−ピリジル)エタン(X=CH、n=1)、1,3−ビス(4−ピリジル)プロパン(X=CH、n=2)及び4,4’−ジピリジルスルフィド(X=S、n=1)が好ましい。ここで、二座配位可能な有機配位子とは非共有電子対で金属に対して配位する原子を2つ以上有する中性配位子を意味する。 As the organic ligand (I) capable of bidentate coordination, for example, 1,2-bis (4-pyridyl) ethane (X═CH 2 , n = 1), 1,3-bis (4-pyridyl) Propane (X═CH 2 , n = 2) and 4,4′-dipyridyl sulfide (X═S, n = 1) are preferred. Here, an organic ligand capable of bidentate coordination means a neutral ligand having two or more atoms coordinated to a metal by an unshared electron pair.

金属錯体を製造するときのルイス塩基性アニオンと二座配位可能な有機配位子(I)の混合比率は、ルイス塩基性アニオン:二座配位可能な有機配位子(I)=1:5〜5:1のモル比の範囲内が好ましく、1:3〜3:1のモル比の範囲内がより好ましい。これ以外の範囲で反応を行っても目的とする金属錯体は得られるが、収率が低下し、副反応も増えるために好ましくない。   The mixing ratio of the Lewis basic anion to the bidentate organic ligand (I) when producing the metal complex is as follows: Lewis basic anion: bidentate organic ligand (I) = 1 : Preferably in the range of 5-5: 1 molar ratio, more preferably in the range of 1: 3-3: 1 molar ratio. Even if the reaction is carried out in a range other than this, the desired metal complex can be obtained, but this is not preferable because the yield is lowered and the side reaction is also increased.

金属錯体を製造するときの金属塩と二座配位可能な有機配位子(I)の混合比率は、金属塩:二座配位可能な有機配位子(I)=3:1〜1:3のモル比の範囲内が好ましく、2:1〜1:2のモル比の範囲内がより好ましい。これ以外の範囲では目的とする金属錯体の収率が低下し、また、未反応の原料が残留して得られた金属錯体の精製が困難になる。   When the metal complex is produced, the mixing ratio of the metal salt and the organic ligand (I) capable of bidentate coordination is as follows: metal salt: organic ligand capable of bidentate coordination (I) = 3: 1 to 1 : Within the range of the molar ratio of 3: 3, and more preferably within the range of the molar ratio of 2: 1 to 1: 2. In other ranges, the yield of the target metal complex decreases, and purification of the metal complex obtained by leaving unreacted raw materials becomes difficult.

金属錯体を製造するための溶媒における金属塩のモル濃度は、0.005〜5.0mol/Lが好ましく、0.01〜2.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では未反応の金属塩が残留し、得られた金属錯体の精製が困難になる。   The molar concentration of the metal salt in the solvent for producing the metal complex is preferably 0.005 to 5.0 mol / L, and more preferably 0.01 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. Further, at a concentration higher than this, unreacted metal salt remains, and purification of the obtained metal complex becomes difficult.

金属錯体を製造するための溶媒におけるルイス塩基性アニオンのモル濃度は、0.001〜5.0mol/Lが好ましく、0.005〜2.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では溶解性が低下し、反応が円滑に進行しない。   The molar concentration of the Lewis basic anion in the solvent for producing the metal complex is preferably 0.001 to 5.0 mol / L, and more preferably 0.005 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. If the concentration is higher than this, the solubility is lowered and the reaction does not proceed smoothly.

金属錯体を製造するための溶媒における二座配位可能な有機配位子(I)のモル濃度は、0.001〜5.0mol/Lが好ましく、0.005〜2.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では溶解性が低下し、反応が円滑に進行しない。   The molar concentration of the organic ligand (I) capable of bidentate coordination in the solvent for producing the metal complex is preferably 0.001 to 5.0 mol / L, more preferably 0.005 to 2.0 mol / L. preferable. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. If the concentration is higher than this, the solubility is lowered and the reaction does not proceed smoothly.

金属錯体の製造に用いる溶媒としては、有機溶媒、水またはそれらの混合溶媒を使用することができる。具体的には、メタノール、エタノール、プロパノール、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、塩化メチレン、クロロホルム、アセトン、酢酸エチル、アセトニトリル、N,N−ジメチルホルムアミド、水またはこれらの混合溶媒を使用することができる。反応温度としては、253〜423Kが好ましい。   As a solvent used for producing the metal complex, an organic solvent, water, or a mixed solvent thereof can be used. Specifically, methanol, ethanol, propanol, diethyl ether, dimethoxyethane, tetrahydrofuran, hexane, cyclohexane, heptane, benzene, toluene, methylene chloride, chloroform, acetone, ethyl acetate, acetonitrile, N, N-dimethylformamide, water or These mixed solvents can be used. The reaction temperature is preferably 253 to 423K.

結晶性の良い金属錯体は、純度が高くて吸着性能が良い。反応が終了したことはガスクロマトグラフィーまたは高速液体クロマトグラフィーにより原料の残存量を定量することにより確認することができる。反応終了後、得られた混合液を吸引濾過に付して沈殿物を集め、有機溶媒による洗浄後、373K程度で数時間真空乾燥することにより、本発明の金属錯体を得ることができる。   A metal complex having good crystallinity has high purity and good adsorption performance. The completion of the reaction can be confirmed by quantifying the remaining amount of the raw material by gas chromatography or high performance liquid chromatography. After completion of the reaction, the obtained mixed solution is subjected to suction filtration to collect a precipitate, washed with an organic solvent, and then vacuum dried at about 373 K for several hours to obtain the metal complex of the present invention.

本発明の金属錯体における三次元構造は、合成後の結晶においても変化できるため、その変化に伴って、細孔の構造や大きさも変化する。この構造が変化する条件は、吸着される物質の種類、吸着圧力、吸着温度に依存する。すなわち、細孔表面と物質の相互作用の差に加え、吸着する物質により構造変化の程度が異なるため、高い選択性が発現する。本発明では、金属イオンとそのカウンターアニオンである塩基性アニオンの間の相互作用を制御すること、すなわち、金属イオンと一般式(I)で表される二座配位可能な有機配位子とからなる一次元鎖状構造からなる細孔表面の電荷密度を制御することで、高いガス分離性能が発現する。吸着された物質が脱着した後は、元の構造に戻るので、細孔の大きさも元に戻る。   Since the three-dimensional structure in the metal complex of the present invention can be changed in the synthesized crystal, the structure and size of the pores change with the change. The conditions for changing the structure depend on the type of substance to be adsorbed, the adsorption pressure, and the adsorption temperature. That is, in addition to the difference in the interaction between the pore surface and the substance, the degree of structural change differs depending on the substance to be adsorbed, so that high selectivity is expressed. In the present invention, the interaction between the metal ion and its counter anion, the basic anion, is controlled, that is, the metal ion and the organic ligand capable of bidentate coordination represented by the general formula (I) By controlling the charge density on the surface of the pores composed of a one-dimensional chain structure consisting of the above, high gas separation performance is exhibited. After the adsorbed substance is desorbed, it returns to its original structure, so the pore size also returns.

前記の選択吸着メカニズムは推定ではあるが、例え前記メカニズムに従っていない場合でも、本発明で規定する要件を満足するのであれば、本発明の技術的範囲に包含される。   Although the selective adsorption mechanism is estimated, even if it does not follow the mechanism, it is included in the technical scope of the present invention as long as it satisfies the requirements defined in the present invention.

本発明の金属錯体は、各種ガスの吸着性能に優れているので、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素(メタン、エタン、エチレン、アセチレンなど)、希ガス(ヘリウム、ネオン、アルゴン、クリプトン、キセノンなど)、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン(ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサンなど)、水蒸気または有機蒸気などを吸着するための吸着材として好ましい。有機蒸気とは、常温、常圧で液体状の有機物質の気化ガスを意味する。このような有機物質としては、メタノール、エタノールなどのアルコール類;トリメチルアミン、トリエチルアミンなどのアミン類;アセトアルデヒドなどのアルデヒド類;炭素数5〜16の脂肪族炭化水素;ベンゼン、トルエンなどの芳香族炭化水素;アセトン、メチルエチルケトンなどのケトン類;塩化メチル、塩化メチレン、クロロホルムなどのハロゲン化炭化水素などが挙げられる。   Since the metal complex of the present invention is excellent in the adsorption performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, C 1-4 hydrocarbon (methane, ethane, ethylene, acetylene, etc.), Noble gas (such as helium, neon, argon, krypton, xenon), hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane (such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane), water vapor or organic vapor It is preferable as an adsorbent for adsorbing. The organic vapor means a vaporized organic substance that is liquid at normal temperature and pressure. Examples of such organic substances include alcohols such as methanol and ethanol; amines such as trimethylamine and triethylamine; aldehydes such as acetaldehyde; aliphatic hydrocarbons having 5 to 16 carbon atoms; aromatic hydrocarbons such as benzene and toluene. Ketones such as acetone and methyl ethyl ketone; halogenated hydrocarbons such as methyl chloride, methylene chloride and chloroform;

また、本発明の金属錯体は、各種ガスを選択的に吸着することができるので、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素(メタン、エタン、エチレン、アセチレンなど)、希ガス(ヘリウム、ネオン、アルゴン、クリプトン、キセノンなど)、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン(ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサンなど)、水蒸気または有機蒸気などを分離するための分離材としても好ましく、特に、メタン中の二酸化炭素、エチレン中の二酸化炭素、水素中の二酸化炭素、窒素中の二酸化炭素、メタン中のエタンまたは空気中のメタンなどを、圧力スイング吸着法や温度スイング吸着法により分離するのに適している。有機蒸気とは、常温、常圧で液体状の有機物質の気化ガスを意味する。このような有機物質としては、メタノール、エタノールなどのアルコール類;トリメチルアミンなどのアミン類;アセトアルデヒドなどのアルデヒド類;炭素数5〜16の脂肪族炭化水素;ベンゼン、トルエンなどの芳香族炭化水素;アセトン、メチルエチルケトンなどのケトン類;塩化メチル、クロロホルムなどのハロゲン化炭化水素などが挙げられる。   In addition, since the metal complex of the present invention can selectively adsorb various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, C 1-4 hydrocarbon (methane, ethane, ethylene, Acetylene), noble gases (such as helium, neon, argon, krypton, xenon), hydrogen sulfide, ammonia, sulfur oxides, nitrogen oxides, siloxanes (such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane), water vapor or It is also preferable as a separating material for separating organic vapors, and in particular, carbon dioxide in methane, carbon dioxide in ethylene, carbon dioxide in hydrogen, carbon dioxide in nitrogen, ethane in methane or methane in air Is suitable for separation by a pressure swing adsorption method or a temperature swing adsorption method. The organic vapor means a vaporized organic substance that is liquid at normal temperature and pressure. Examples of such organic substances include alcohols such as methanol and ethanol; amines such as trimethylamine; aldehydes such as acetaldehyde; aliphatic hydrocarbons having 5 to 16 carbon atoms; aromatic hydrocarbons such as benzene and toluene; acetone And ketones such as methyl ethyl ketone; halogenated hydrocarbons such as methyl chloride and chloroform.

以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。以下の実施例および比較例における分析および評価は次のようにして行った。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. Analysis and evaluation in the following examples and comparative examples were performed as follows.

(1)粉末X線回折パターンの測定
X線回折装置を用いて、回折角(2θ)=5〜50°の範囲を走査速度3°/分で走査
し、対称反射法で測定した。分析条件の詳細を以下に示す。
<分析条件>
装置:ブルカー・エイエックスエス株式会社製 NEW D8 ADVANCE
X線源:CuKα(λ=1.5418Å) 40kV 40mA
ゴニオメーター:水平型ゴニオメーター
検出器:LynxEye
ステップ幅:0.02°
スリット:発散スリット=0.6mm
受光スリット=1.5°
散乱スリット=0.6mm
(1) Measurement of powder X-ray diffraction pattern Using an X-ray diffractometer, a range of diffraction angle (2θ) = 5 to 50 ° was scanned at a scanning speed of 3 ° / min, and measured by a symmetric reflection method. Details of the analysis conditions are shown below.
<Analysis conditions>
Equipment: NEW D8 ADVANCE manufactured by Bruker AXS Co., Ltd.
X-ray source: CuKα (λ = 1.5418Å) 40 kV 40 mA
Goniometer: Horizontal goniometer Detector: LynxEye
Step width: 0.02 °
Slit: Divergent slit = 0.6mm
Receiving slit = 1.5 °
Scattering slit = 0.6mm

(2)吸脱着等温線の測定
ガス吸着量測定装置を用いて容量法で測定を行った。このとき、測定に先立って試料を373K、2Paで12時間乾燥し、吸着水などを除去した。分析条件の詳細を以下に示す。
<分析条件>
装置:日本ベル株式会社製BELSORP−max
平衡待ち時間:300秒
(2) Measurement of adsorption / desorption isotherm Measurement was performed by a volumetric method using a gas adsorption amount measuring device. At this time, prior to measurement, the sample was dried at 373 K and 2 Pa for 12 hours to remove adsorbed water and the like. Details of the analysis conditions are shown below.
<Analysis conditions>
Apparatus: BELSORP-max manufactured by Nippon Bell Co., Ltd.
Equilibrium waiting time: 300 seconds

<合成例1>
窒素雰囲気下、テトラフルオロホウ酸コバルト六水和物0.290g(0.85mmol)をアセトニトリル20mLに溶解させ、353Kで30分攪拌した。続いて、1,2−ビス(4−ピリジル)エタン0.380g(2.1mmol)のアセトニトリル溶液20mLを30分かけて滴下した。その後、353Kで3時間攪拌した。析出した金属錯体を吸引濾過により回収した後、アセトニトリルで3回洗浄し、目的の金属錯体0.218g(収率37%)を得た。得られた金属錯体の粉末X線回折パターンを図1に示す。
<Synthesis Example 1>
Under a nitrogen atmosphere, 0.290 g (0.85 mmol) of cobalt tetrafluoroborate hexahydrate was dissolved in 20 mL of acetonitrile and stirred at 353 K for 30 minutes. Subsequently, 20 mL of acetonitrile solution of 0.380 g (2.1 mmol) of 1,2-bis (4-pyridyl) ethane was dropped over 30 minutes. Thereafter, the mixture was stirred at 353 K for 3 hours. The precipitated metal complex was collected by suction filtration and then washed three times with acetonitrile to obtain 0.218 g (yield 37%) of the target metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.

<合成例2>
窒素雰囲気下、硝酸コバルト六水和物0.299g(1.0mmol)、1,2−ビス(4−ピリジル)エタン0.365g(2.0mmol)を容量比で水:エタノール=1:4からなる水とエタノールの混合溶媒25mLに溶解させ、353Kで30分攪拌した。続いて、ヘキサフルオロリン酸ナトリウム0.850g(5.1mmol)の水溶液10mLを10分かけて滴下した。その後、353Kで1時間攪拌した。析出した金属錯体を吸引濾過により回収した後、水で3回、続いてエタノールで3回洗浄し、目的の金属錯体0.346g(収率43%)を得た。得られた金属錯体の粉末X線回折パターンを図2に示す。
<Synthesis Example 2>
Under a nitrogen atmosphere, 0.299 g (1.0 mmol) of cobalt nitrate hexahydrate and 0.365 g (2.0 mmol) of 1,2-bis (4-pyridyl) ethane in a volume ratio of water: ethanol = 1: 4 The resultant was dissolved in 25 mL of a mixed solvent of water and ethanol, and stirred at 353 K for 30 minutes. Subsequently, 10 mL of an aqueous solution of 0.850 g (5.1 mmol) of sodium hexafluorophosphate was added dropwise over 10 minutes. Then, it stirred at 353K for 1 hour. The deposited metal complex was collected by suction filtration, and then washed with water three times and then with ethanol three times to obtain 0.346 g (43% yield) of the target metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.

<合成例3>
窒素雰囲気下、トリフルオロメタンスルホン酸銅3.62g(10mmol)を水200mLに溶解させ、298Kで30分攪拌した。続いて、1,2−ビス(4−ピリジル)エタン3.69g(20mmol)のアセトン溶液200mLを1時間かけて滴下した。その後、298Kで1時間攪拌した。析出した金属錯体を吸引濾過により回収した後、アセトンで3回洗浄し、目的の金属錯体6.73g(収率83%)を得た。得られた金属錯体の粉末X線回折パターンを図3に示す。
<Synthesis Example 3>
Under a nitrogen atmosphere, 3.62 g (10 mmol) of copper trifluoromethanesulfonate was dissolved in 200 mL of water and stirred at 298 K for 30 minutes. Subsequently, 200 mL of an acetone solution of 3.69 g (20 mmol) of 1,2-bis (4-pyridyl) ethane was added dropwise over 1 hour. Then, it stirred at 298K for 1 hour. The precipitated metal complex was collected by suction filtration and then washed with acetone three times to obtain 6.73 g (yield 83%) of the target metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.

<合成例4>
窒素雰囲気下、硝酸ニッケル六水和物0.290g(1.0mmol)、1,2−ビス(4−ピリジル)エタン0.380g(2.1mmol)を容量比で水:エタノール=1:4からなる水とエタノールの混合溶媒25mLに溶解させ、353Kで30分攪拌した。続いて、テトラフルオロホウ酸ナトリウム0.550g(5.0mmol)の水溶液10mLを10分かけて滴下した。その後、353Kで1時間攪拌した。析出した金属錯体を吸引濾過により回収した後、水で3回、続いてエタノールで3回洗浄し、目的の金属錯体0.289g(収率44%)を得た。得られた金属錯体の粉末X線回折パターンを図4に示す。
<Synthesis Example 4>
Under a nitrogen atmosphere, 0.290 g (1.0 mmol) of nickel nitrate hexahydrate and 0.380 g (2.1 mmol) of 1,2-bis (4-pyridyl) ethane in a volume ratio of water: ethanol = 1: 4 The resultant was dissolved in 25 mL of a mixed solvent of water and ethanol, and stirred at 353 K for 30 minutes. Subsequently, 10 mL of an aqueous solution of sodium tetrafluoroborate 0.550 g (5.0 mmol) was added dropwise over 10 minutes. Then, it stirred at 353K for 1 hour. The precipitated metal complex was collected by suction filtration, and then washed with water three times and then with ethanol three times to obtain 0.289 g (yield 44%) of the target metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.

<合成例5>
窒素雰囲気下、硝酸ニッケル六水和物0.290g(1.0mmol)、1,2−ビス(4−ピリジル)エタン0.390g(2.1mmol)を容量比で水:エタノール=1:4からなる水とエタノールの混合溶媒25mLに溶解させ、353Kで30分攪拌した。続いて、テトラフルオロリン酸ナトリウム0.850g(5.1mmol)の水溶液10mLを10分かけて滴下した。その後、353Kで1時間攪拌した。析出した金属錯体を吸引濾過により回収した後、水で3回、続いてエタノールで3回洗浄し、目的の金属錯体0.679g(収率80%)を得た。得られた金属錯体の粉末X線回折パターンを図5に示す。
<Synthesis Example 5>
Under a nitrogen atmosphere, 0.290 g (1.0 mmol) of nickel nitrate hexahydrate and 0.390 g (2.1 mmol) of 1,2-bis (4-pyridyl) ethane in a volume ratio of water: ethanol = 1: 4 The resultant was dissolved in 25 mL of a mixed solvent of water and ethanol, and stirred at 353 K for 30 minutes. Subsequently, 10 mL of an aqueous solution of 0.850 g (5.1 mmol) of sodium tetrafluorophosphate was added dropwise over 10 minutes. Then, it stirred at 353K for 1 hour. The precipitated metal complex was collected by suction filtration, and then washed with water three times and then with ethanol three times to obtain 0.679 g (yield 80%) of the target metal complex. FIG. 5 shows a powder X-ray diffraction pattern of the obtained metal complex.

<比較合成例1>
窒素雰囲気下、ヘキサフルオロホウ酸銅六水和物3.45g(10mmol)を水200mLに溶解させ、298Kで30分攪拌した。続いて、1,2−ビス(4−ピリジル)エタン3.69g(20mmol)のアセトン溶液200mLを1時間かけて滴下した。その後、298Kで1時間攪拌した。析出した金属錯体を吸引濾過により回収した後、アセトンで3回洗浄し、目的の金属錯体5.99g(収率83%)を得た。得られた金属錯体の粉末X線回折パターンを図6に示す。
<Comparative Synthesis Example 1>
Under a nitrogen atmosphere, 3.45 g (10 mmol) of copper hexafluoroborate hexahydrate was dissolved in 200 mL of water and stirred at 298 K for 30 minutes. Subsequently, 200 mL of an acetone solution of 3.69 g (20 mmol) of 1,2-bis (4-pyridyl) ethane was added dropwise over 1 hour. Then, it stirred at 298K for 1 hour. The deposited metal complex was collected by suction filtration and then washed with acetone three times to obtain 5.99 g (yield 83%) of the target metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.

<比較合成例2>
窒素雰囲気下、ヘキサフルオロホウ酸銅六水和物3.45g(10mmol)及びヘキサフルオロリン酸カリウム3.68g(20mmol)を水200mLに溶解させ、298Kで30分攪拌した後、吸引濾過により不溶物を除去した。続いて、濾液に1,2−ビス(4−ピリジル)エタン3.69g(20mmol)のアセトン溶液200mLを1時間かけて滴下した。その後、298Kで1時間攪拌した。析出した金属錯体を吸引濾過により回収した後、アセトンで3回洗浄し、目的の金属錯体6.71g(収率80%)を得た。得られた金属錯体の粉末X線回折パターンを図7に示す。
<Comparative Synthesis Example 2>
In a nitrogen atmosphere, 3.45 g (10 mmol) of copper hexafluoroborate hexahydrate and 3.68 g (20 mmol) of potassium hexafluorophosphate were dissolved in 200 mL of water, stirred at 298 K for 30 minutes, and then insoluble by suction filtration. The thing was removed. Subsequently, 200 mL of an acetone solution of 3.69 g (20 mmol) of 1,2-bis (4-pyridyl) ethane was added dropwise to the filtrate over 1 hour. Then, it stirred at 298K for 1 hour. The deposited metal complex was collected by suction filtration and then washed with acetone three times to obtain 6.71 g (yield 80%) of the target metal complex. FIG. 7 shows a powder X-ray diffraction pattern of the obtained metal complex.

<比較合成例3>
窒素雰囲気下、ヘキサフルオロホウ酸銅六水和物1.55g(4.5mmol)を水100mLに溶解させ、353Kで1時間攪拌した。続いて、4,4’−ジピリジルジスルフィド2.20g(10mmol)のアセトン溶液100mLを30分かけて滴下した。その後、353Kで3時間攪拌した。析出した金属錯体を吸引濾過により回収した後、水で3回、続いてアセトンで3回洗浄し、目的の金属錯体2.93g(収率82%)を得た。得られた金属錯体の粉末X線回折パターンを図8に示す。
<Comparative Synthesis Example 3>
Under nitrogen atmosphere, 1.55 g (4.5 mmol) of copper hexafluoroborate hexahydrate was dissolved in 100 mL of water and stirred at 353 K for 1 hour. Subsequently, 100 mL of an acetone solution of 2.20 g (10 mmol) of 4,4′-dipyridyl disulfide was added dropwise over 30 minutes. Thereafter, the mixture was stirred at 353 K for 3 hours. The precipitated metal complex was collected by suction filtration, and then washed with water three times and then with acetone three times to obtain 2.93 g (yield 82%) of the desired metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.

<比較合成例4>
窒素雰囲気下、ヘキサフルオロホウ酸銅六水和物1.55g(4.5mmol)を水100mLに溶解させ、353Kで1時間攪拌した。続いて、1,3−ビス(4−ピリジル)プロパン1.99g(10mmol)のアセトン溶液100mLを60分かけて滴下した。その後、353Kで3時間攪拌した。析出した金属錯体を吸引濾過により回収した後、水で3回、続いてアセトンで3回洗浄し、目的の金属錯体2.40g(収率63%)を得た。得られた金属錯体の粉末X線回折パターンを図9に示す。
<Comparative Synthesis Example 4>
Under nitrogen atmosphere, 1.55 g (4.5 mmol) of copper hexafluoroborate hexahydrate was dissolved in 100 mL of water and stirred at 353 K for 1 hour. Subsequently, 100 mL of an acetone solution of 1.99 g (10 mmol) of 1,3-bis (4-pyridyl) propane was added dropwise over 60 minutes. Thereafter, the mixture was stirred at 353 K for 3 hours. The precipitated metal complex was collected by suction filtration, and then washed with water three times and then with acetone three times to obtain 2.40 g (yield 63%) of the target metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.

<実施例1>
合成例1で得た金属錯体について、195Kにおけるエチレンの吸着等温線を測定した。結果を図10に示す。
<Example 1>
For the metal complex obtained in Synthesis Example 1, an adsorption isotherm of ethylene at 195 K was measured. The results are shown in FIG.

<比較例1>
比較合成例1で得た金属錯体について、195Kにおけるエチレンの吸着等温線を測定した。結果を図10に示す。
<Comparative Example 1>
For the metal complex obtained in Comparative Synthesis Example 1, an adsorption isotherm of ethylene at 195 K was measured. The results are shown in FIG.

<比較例2>
比較合成例2で得た金属錯体について、195Kにおけるエチレンの吸着等温線を測定した。結果を図10に示す。
<Comparative example 2>
For the metal complex obtained in Comparative Synthesis Example 2, an ethylene adsorption isotherm at 195K was measured. The results are shown in FIG.

図10より、本発明の金属錯体は低圧領域におけるエチレンの吸着量が多いので、エチレンの吸着材として優れていることは明らかである。   From FIG. 10, it is clear that the metal complex of the present invention is excellent as an ethylene adsorbent because it has a large amount of ethylene adsorbed in a low pressure region.

<実施例2>
合成例1で得た金属錯体について、195Kにおける二酸化炭素とメタンの吸脱着等温線を測定した。結果を図11に示す。
<Example 2>
For the metal complex obtained in Synthesis Example 1, the adsorption / desorption isotherm of carbon dioxide and methane at 195 K was measured. The results are shown in FIG.

<実施例3>
合成例2で得た金属錯体について、195Kにおける二酸化炭素とメタンの吸脱着等温線を測定した。結果を図12に示す。
<Example 3>
For the metal complex obtained in Synthesis Example 2, the adsorption and desorption isotherm of carbon dioxide and methane at 195 K was measured. The results are shown in FIG.

<実施例4>
合成例3で得た金属錯体について、195Kにおける二酸化炭素とメタンの吸脱着等温線を測定した。結果を図13に示す。
<Example 4>
For the metal complex obtained in Synthesis Example 3, the adsorption / desorption isotherm of carbon dioxide and methane at 195 K was measured. The results are shown in FIG.

<比較例3>
比較合成例3で得た金属錯体について、195Kにおける二酸化炭素とメタンの吸脱着等温線を測定した。結果を図14に示す。
<Comparative Example 3>
For the metal complex obtained in Comparative Synthesis Example 3, the adsorption / desorption isotherm of carbon dioxide and methane at 195 K was measured. The results are shown in FIG.

図11、図12及び図13と図14の比較より、本発明の金属錯体は二酸化炭素を選択的に吸着するので、メタンと二酸化炭素の分離材として優れていることは明らかである。   From comparison between FIGS. 11, 12 and 13 and FIG. 14, it is clear that the metal complex of the present invention selectively adsorbs carbon dioxide, and thus is excellent as a separator for methane and carbon dioxide.

<実施例5>
合成例4で得た金属錯体について、195Kにおける二酸化炭素とエチレンの吸脱着等温線を測定した。結果を図15に示す。
<Example 5>
For the metal complex obtained in Synthesis Example 4, the adsorption and desorption isotherm of carbon dioxide and ethylene at 195 K was measured. The results are shown in FIG.

<実施例6>
合成例5で得た金属錯体について、195Kにおける二酸化炭素とエチレンの吸脱着等温線を測定した。結果を図16に示す。
<Example 6>
For the metal complex obtained in Synthesis Example 5, the adsorption and desorption isotherm of carbon dioxide and ethylene at 195 K was measured. The results are shown in FIG.

<比較例4>
比較合成例4で得た金属錯体について、195Kにおける二酸化炭素とエチレンの吸脱着等温線を測定した。結果を図17に示す。
<Comparative example 4>
For the metal complex obtained in Comparative Synthesis Example 4, the adsorption / desorption isotherm of carbon dioxide and ethylene at 195 K was measured. The results are shown in FIG.

図15及び図16と図17の比較より、本発明の金属錯体は二酸化炭素の吸着量がエチレンの吸着量の3倍以上あり、二酸化炭素を選択的に吸着するので、エチレンと二酸化炭素の分離材として優れていることは明らかである。   From the comparison of FIGS. 15, 16, and 17, the metal complex of the present invention has an adsorption amount of carbon dioxide of three times or more than the adsorption amount of ethylene and selectively adsorbs carbon dioxide. It is clear that it is excellent as a material.

Claims (9)

周期表の2族及び7〜12族に属する金属から選択される少なくとも1種の金属イオンと、ルイス塩基性アニオンと、下記一般式(I);
Figure 2012020956
(式中、Xは同一又は異なってメチレン基または硫黄原子であり、R、R、R、R、R、R、R及びRはそれぞれ同一または異なって水素原子、置換基を有していてもよいアルキル基、アルコキシ基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基またはハロゲン原子であり、nは1または2である。)で表される該金属イオンに二座配位可能な有機配位子とからなる金属錯体であって、その組成が
Figure 2012020956
(式中、Mは周期表の2族及び7〜12族に属する金属から選択される少なくとも1種の金属イオンである。Mが銅イオンの場合にAはトリフルオロメタンスルホン酸イオンであり、Mが銅イオン以外の場合にAはルイス塩基性アニオンから選択される少なくとも1種のアニオンである。Bは該金属イオンに二座配位可能な有機配位子である。)で表される金属錯体。
At least one metal ion selected from metals belonging to Groups 2 and 7-12 of the periodic table, a Lewis basic anion, and the following general formula (I);
Figure 2012020956
(Wherein X is the same or different and is a methylene group or a sulfur atom, and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and each represents a hydrogen atom, An alkyl group, alkoxy group, formyl group, acyloxy group, alkoxycarbonyl group, nitro group, cyano group, amino group, monoalkylamino group, dialkylamino group, acylamino group or halogen atom which may have a substituent , N is 1 or 2.) A metal complex composed of an organic ligand capable of bidentate coordination with the metal ion represented by the following formula:
Figure 2012020956
(In the formula, M is at least one metal ion selected from metals belonging to Groups 2 and 7-12 of the periodic table. When M is a copper ion, A is a trifluoromethanesulfonate ion, When A is other than a copper ion, A is at least one anion selected from Lewis basic anions, and B is an organic ligand capable of bidentate coordination with the metal ion. Complex.
該二座配位可能な有機配位子が1,2−ビス(4−ピリジル)エタン、1,3−ビス(4−ピリジル)プロパン及び4,4’−ジピリジルスルフィドから選択される少なくとも1種である請求項1に記載の金属錯体。   The bidentate organic ligand is at least one selected from 1,2-bis (4-pyridyl) ethane, 1,3-bis (4-pyridyl) propane and 4,4′-dipyridyl sulfide. The metal complex according to claim 1, wherein 該金属がマンガン、鉄、コバルト、ニッケル及び銅から選択される少なくとも1種である請求項1または2いずれかに記載の金属錯体。   The metal complex according to claim 1 or 2, wherein the metal is at least one selected from manganese, iron, cobalt, nickel, and copper. 請求項1〜3いずれかに記載の金属錯体からなる吸着材。   The adsorbent which consists of a metal complex in any one of Claims 1-3. 該吸着材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気を吸着するための吸着材である請求項4に記載の吸着材。   The adsorbent is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or organic vapor. The adsorbent according to claim 4, which is an adsorbent for adsorbing. 請求項1〜3いずれかに記載の金属錯体からなる分離材。   The separating material which consists of a metal complex in any one of Claims 1-3. 該分離材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1〜4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気を分離するための分離材である請求項6に記載の分離材。 The separation material is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or organic vapor. The separation material according to claim 6, which is a separation material for separation. 該分離材が、メタンと二酸化炭素、エチレンと二酸化炭素、水素と二酸化炭素、窒素と二酸化炭素、メタンとエタンまたは空気とメタンを分離するための分離材である請求項6に記載の分離材。 The separation material according to claim 6, wherein the separation material is a separation material for separating methane and carbon dioxide, ethylene and carbon dioxide, hydrogen and carbon dioxide, nitrogen and carbon dioxide, methane and ethane, or air and methane. 周期表の2族及び7〜12族に属する金属から選択される少なくとも1種の金属イオンと、ルイス塩基性アニオンと、該金属イオンに二座配位可能な有機配位子(I)とを溶媒中で反応させ、金属錯体を析出させる、請求項1に記載の金属錯体の製造方法。 At least one metal ion selected from metals belonging to Groups 2 and 7-12 of the periodic table, a Lewis basic anion, and an organic ligand (I) capable of bidentate coordination with the metal ion The method for producing a metal complex according to claim 1, wherein the metal complex is precipitated by reacting in a solvent.
JP2010159362A 2010-07-14 2010-07-14 Metal complex and method of producing the same Pending JP2012020956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010159362A JP2012020956A (en) 2010-07-14 2010-07-14 Metal complex and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010159362A JP2012020956A (en) 2010-07-14 2010-07-14 Metal complex and method of producing the same

Publications (1)

Publication Number Publication Date
JP2012020956A true JP2012020956A (en) 2012-02-02

Family

ID=45775522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010159362A Pending JP2012020956A (en) 2010-07-14 2010-07-14 Metal complex and method of producing the same

Country Status (1)

Country Link
JP (1) JP2012020956A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063951A (en) * 2011-08-26 2013-04-11 Sumitomo Chemical Co Ltd Method and apparatus for separating unsaturated hydrocarbon and saturated hydrocarbon, and metal complex
JP2014046234A (en) * 2012-08-30 2014-03-17 Kuraray Co Ltd Anion exchanger
JP2016154086A (en) * 2015-02-20 2016-08-25 株式会社豊田中央研究所 Coordination structure and power storage device
CN112295550A (en) * 2020-09-24 2021-02-02 浙江工业大学 Fluorosilicate porous hybrid material, and preparation method and application thereof
CN113061262A (en) * 2021-03-31 2021-07-02 宁波浙铁江宁化工有限公司 Metal organic framework material for adsorbing heavy metal in water and preparation method thereof
WO2023033035A1 (en) * 2021-08-31 2023-03-09 Eneos株式会社 Carbon dioxide capturing agent, metal-organic framework, and compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232033A (en) * 2004-02-17 2005-09-02 Nippon Steel Corp Polymer metal complex, use as gas adsorbent, gas separation apparatus and gas storage apparatus using the same
JP2005232222A (en) * 2004-02-17 2005-09-02 Nippon Steel Corp Polymer metal complex and utilization as gas adsorbent and gas separation apparatus and gas storage apparatus using the same
JP2009208028A (en) * 2008-03-06 2009-09-17 Hokkaido Univ Carbon dioxide adsorbent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232033A (en) * 2004-02-17 2005-09-02 Nippon Steel Corp Polymer metal complex, use as gas adsorbent, gas separation apparatus and gas storage apparatus using the same
JP2005232222A (en) * 2004-02-17 2005-09-02 Nippon Steel Corp Polymer metal complex and utilization as gas adsorbent and gas separation apparatus and gas storage apparatus using the same
JP2009208028A (en) * 2008-03-06 2009-09-17 Hokkaido Univ Carbon dioxide adsorbent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014021029; Ivan Brito, et al.: 'Supramolecular structure, thermal and spectroscopic properties of a new coordination polymer: Catena' Molecular Crystals and Liquid Crystals Vol.521, 20100528, pp.158-167 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063951A (en) * 2011-08-26 2013-04-11 Sumitomo Chemical Co Ltd Method and apparatus for separating unsaturated hydrocarbon and saturated hydrocarbon, and metal complex
JP2014046234A (en) * 2012-08-30 2014-03-17 Kuraray Co Ltd Anion exchanger
JP2016154086A (en) * 2015-02-20 2016-08-25 株式会社豊田中央研究所 Coordination structure and power storage device
CN112295550A (en) * 2020-09-24 2021-02-02 浙江工业大学 Fluorosilicate porous hybrid material, and preparation method and application thereof
CN113061262A (en) * 2021-03-31 2021-07-02 宁波浙铁江宁化工有限公司 Metal organic framework material for adsorbing heavy metal in water and preparation method thereof
WO2023033035A1 (en) * 2021-08-31 2023-03-09 Eneos株式会社 Carbon dioxide capturing agent, metal-organic framework, and compound

Similar Documents

Publication Publication Date Title
JP5574669B2 (en) Metal complex and separation material comprising the same
JP5787665B2 (en) Metal complex, adsorbent, occlusion material and separation material comprising the same
WO2011105521A1 (en) Metal complex, and adsorbent, occlusion material and separator material made from same
WO2010021345A1 (en) Metal complex and manufacturing method therefor
JP5506283B2 (en) Metal complex and method for producing the same
JP5677131B2 (en) Metal complex, and occlusion material and separation material comprising the same
JP5478120B2 (en) Metal complex and method for producing the same
JP2012031161A (en) Metal complex, and occlusion material and separating material consisting of the same
JP5725784B2 (en) Metal complex and separation material comprising the same
JP2012193122A (en) Metal complex and separation material consisting thereof
JP2012020956A (en) Metal complex and method of producing the same
JP5478121B2 (en) Metal complex and method for producing the same
JP2011051949A (en) Metal complex and method for producing the same
JP2012232928A (en) Metal complex, and adsorbent and separation material comprising the same
JP2011195575A (en) Metal complex and production method thereof
JP5677132B2 (en) Metal complex and method for producing the same
JP5730078B2 (en) Separation method of hydrocarbon-based mixed gas
JP2013063960A (en) Method for separating hydrocarbon-based mixed gas
JP2012184197A (en) Metal complex and adsorbent, occlusion material, and separation material consisting of the same
JP2012232929A (en) Metal complex, and adsorbing material and separation material comprising the same
JP2013040126A (en) Metal complex and adsorbing material comprising the same
JP5832197B2 (en) Metal complex, and occlusion material and separation material comprising the same
JP2013040130A (en) Metal complex, and adsorbing material, occluding material and separating material each comprising the same
JP5328378B2 (en) Metal complex and method for producing the same
JP5452074B2 (en) Metal complex and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150616