JP4397685B2 - Semiconductor detector - Google Patents

Semiconductor detector Download PDF

Info

Publication number
JP4397685B2
JP4397685B2 JP2003428235A JP2003428235A JP4397685B2 JP 4397685 B2 JP4397685 B2 JP 4397685B2 JP 2003428235 A JP2003428235 A JP 2003428235A JP 2003428235 A JP2003428235 A JP 2003428235A JP 4397685 B2 JP4397685 B2 JP 4397685B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
type
semiconductor
detector
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003428235A
Other languages
Japanese (ja)
Other versions
JP2005191136A (en
Inventor
憲一 井上
裕史 後藤
主税 一原
隆 古保里
貴之 平野
明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003428235A priority Critical patent/JP4397685B2/en
Publication of JP2005191136A publication Critical patent/JP2005191136A/en
Application granted granted Critical
Publication of JP4397685B2 publication Critical patent/JP4397685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は,照射された荷電粒子を検出する半導体検出器に係り,詳しくは,ヘリウムや水素等の単一エネルギのイオンを照射し,資料中の原子核との弾性散乱によって後方に跳ね返されたイオンのエネルギスペクトルを測定することにより,試料成分元素の同定や深さ方向の組成分析を行うイオン散乱分析装置において,広い面積で散乱イオンを捕らえ,また捕らえた位置を特定して,イオンのエネルギに比例した電気信号を出力する半導体検出器に関する。   The present invention relates to a semiconductor detector for detecting irradiated charged particles, and more specifically, ions irradiated with a single energy such as helium or hydrogen and rebounded back by elastic scattering with atomic nuclei in the data. By measuring the energy spectrum of the ion, the ion scattering analyzer that identifies the constituent elements of the sample and analyzes the composition in the depth direction captures the scattered ions over a wide area, identifies the position where they were captured, and determines the energy of the ions. The present invention relates to a semiconductor detector that outputs a proportional electrical signal.

放射線の中でも,医療用途に使われる透過性の強い比較的低エネルギ(10〜150keV)の硬X線やγ線では,比較的強度も強く,固体シンチレータによって一旦電磁波(可視光)や極低エネルギ電子線に変換する光電子増倍管または半導体ホトダイオードの2次元アレイ素子によって,容易且つ高精度に照射線のの二次元分布が検出できる。
一方,数十keV〜数MeVオーダの中高エネルギを持つα線(ヘリウム原子核)などのイオン粒子は,固体の表面分析等のためによく用いられる。このような中高エネルギ荷電粒子の場合には,非破壊的な分析用途であるがゆえに,イオン1個1個を区別して計数するための高い検出感度と,散乱事象に関わった物質組成などの情報を得,あるいは他の粒子線と区別等するためのエネルギ分解能が要求される。そのため直接変換型の検出器構造を基本とした位置分解能型半導体検出器が工夫,考案されてきた。
直接変換型の検出器材料としては,常温で常時高抵抗な真性半導体結晶(代表的にはシリコン)が用いられ,荷電粒子が表面皮下に進入した時に,その飛跡に沿って生成する多数の電子−正孔対を,高電界で電極に集め,微小電流として検出する方法が一般的である。図11(a)には,真性半導体基板の表面(荷電粒子の入射する側)と裏面に削り込んだ溝によって分離された帯状の電極列を,表裏面間で互いに交差させて配置した構造の検出素子の例を示す。両サイドの帯状電極を抵抗で直列につなぐことによって,その両端のアンプに荷電粒子で生じた電流電荷が位置に依存して分割されて流れ,2次元情報が読出される仕組みである(例えば,非特許文献1参照。)。さらに図11(b)では,画素1つ1つを行列状に分離し,各行および列ごとに1個ずつアンプを設け,各検出素子の出力をそれぞれ該当する行と列のアンプに導いて,2次元情報を得る工夫がなされている(例えば,特許文献1参照。)。
ところが,上記例のように2次元半導体の2つの対向する面にオーミック接触で被着された電極間には,半導体結晶の中に存在する欠陥によって漏れ電流(暗電流と言う)が生じる。例えば,入手し得る最高水準の比抵抗(〜50kΩcm)を有するシリコン結晶の場合,1cm2×厚さ1mm素子の抵抗は5kΩであり,100Vの電圧を印加すれば50mAの暗電流が流れることになる。荷電粒子1個が生成する電子−正孔対が105個分集まった場合の電流が1μAであることと比べれば,前記50mAの電流は極めて大きな電流であり,検出器としての感度にも多大な影響を及ぼし,実用的ではない。そこで,この暗電流の影響を低減する方法として,キャリア注入を伴わない接触構造の電極が用いられる。例えば,半導体に対し十分に高いショットキーバリアを構築する金やアルミ等の材料を用いたり(表面障壁型),n型(p型)半導体基板において,電極と半導体の界面皮下にp型(n型)のドーピング処理を施すことによってPNダイオード構造を形成(pn接合型)する構造が一般的に用いられる。
後者を例に,以下に実用化されている半導体検出器の原理について説明する。逆バイアス電圧(電極に負極電位)を印加した場合,電極皮下のp型層からn型基板へ正孔が流れ,逆にn型基板からp型層へ電子が流れ込み,擬似的な真性半導体層が形成される(「空乏層」と呼ばれる)。この空乏領域の比抵抗は極めて高く,印加電圧の勾配はほとんどこの領域が担うことになり,簡単に106〜107V/mという強電界が得られる。この空乏層内に荷電粒子を進入させれば,生成される正孔−電子対を,強電界によって効率良く収集することができる。もし荷電粒子の飛程(進入距離)以上の厚さの空乏層を検出器に形成すれば,荷電粒子のエネルギに比例した電流信号が得られる。
実際の半導体検出器は,空乏層の厚みが,対象とする荷電粒子の種類やエネルギに応じて決まる最大飛程(進入距離)と同じ程度となるよう,基板のドーピング濃度や動作バイアス電圧を選択する。その設計ノモグラムを図10に示す。本発明の対象とするα線は,5.0MeV以下のエネルギであることから,飛程(進入距離)は20μm程度以下であることを図10から読み取ることができる(図10「空乏層厚」参照)。これ以上空乏層を広げても,必要以上に高いバイアス電圧が必要となり,その分暗電流等が増大するだけである。
このように薄い空乏層は,荷電粒子の飛び込む側の電極皮下に形成され,電極が負電位(正電位)の場合,正孔−電子対のうち正孔(電子)は,空乏層にかかる高電界により即座に電極に収集され電流信号に変換されるが,電子(正孔)の方は空乏層を出た後,基板厚に相当する距離(〜数百μm)を経て裏面の接地電極にたどり着く。このとき,電子(正孔)の移動に伴う信号は,移動時間に比例したゆっくりした(緩やかな)パルスとなり,次々に飛来する荷電粒子の正孔(電子)信号と重なり,エネルギ分解能はもとより,計数効率すなわち感度をも落とすことになる。さらに,多数の電子(正孔)は電極に達する前に,基板内部に存在する結晶(格子)欠陥に遭遇し,再結合や捕獲(トラッピング)によって失われ,検出信号電流の減衰につながる。
また,図12に示すような裏面電極が表面電極に交差する方向の位置分解能を担う2次元分解能型の場合には,基板厚みを挟むため,電子(正孔)の移動に伴う誘導電位が広がってしまい,位置情報の劣化原因となる。さらに,基板内部にもともと残留している電荷やトラップされる電子によって基板内の電界が歪むため,裏面電極からの信号から精度の良い位置情報が得られないという問題がある。
上記多数の課題に対して,例えば,厚い基板においても良好な応答性を確保する工夫として,図13のように,作動電圧供給のための表面電極,裏面電極以外に,荷電粒子の信号電流を検出するための第3の電極を表面に,交差指形構造に配置したものが知られている(例えば,特許文献2参照。)。また,図14のようにSOI基板を用いて実効的な基板厚みを薄くし,かつ裏面からの貫通部を形成し,裏面電極を表面に近接させた工夫も知られている(例えば,特許文献3参照。)。いずれも,本発明の対象である位置分解能型半導体検出器の検出器に関するものではないが,共通の課題に対する工夫の一例ではある。
特開昭61−14591号公報 特開平10−56196号公報 特開2003−294846号公報 IEEE Trans. on Nuclear Science, Vol.MS−24,No.1,1997, P.182−187
Among radiation, hard X-rays and γ-rays with a relatively low energy (10 to 150 keV) that are used for medical applications have a relatively high intensity. The solid scintillator once causes electromagnetic waves (visible light) and extremely low energy. By using a photomultiplier tube or a two-dimensional array element of a semiconductor photodiode that converts to an electron beam, the two-dimensional distribution of the irradiation beam can be detected easily and with high accuracy.
On the other hand, ion particles such as α rays (helium nuclei) having medium and high energy on the order of several tens keV to several MeV are often used for surface analysis of solids. In the case of such medium and high energy charged particles, since it is used for non-destructive analysis, information such as high detection sensitivity for distinguishing and counting individual ions and material composition related to scattering events. Energy resolution is required to obtain or distinguish from other particle beams. Therefore, position resolution type semiconductor detectors based on a direct conversion type detector structure have been devised and devised.
As a direct conversion type detector material, an intrinsic semiconductor crystal (typically silicon) that is always highly resistant at room temperature is used. When charged particles enter the surface, many electrons are generated along the track. -A general method is to collect hole pairs on an electrode with a high electric field and detect them as a minute current. FIG. 11 (a) shows a structure in which strip-like electrode arrays separated by grooves cut into the front surface (the side on which charged particles are incident) and the back surface of the intrinsic semiconductor substrate are arranged so as to intersect each other between the front and back surfaces. The example of a detection element is shown. By connecting the strip electrodes on both sides in series with resistors, the current charge generated by the charged particles flows to the amplifiers at both ends depending on the position and flows, and two-dimensional information is read (for example, (Refer nonpatent literature 1.). Further, in FIG. 11B, each pixel is separated in a matrix, and one amplifier is provided for each row and column, and the output of each detection element is guided to the corresponding row and column amplifier, A device for obtaining two-dimensional information has been devised (for example, see Patent Document 1).
However, a leakage current (referred to as a dark current) is generated between the electrodes deposited by ohmic contact on two opposing surfaces of the two-dimensional semiconductor as in the above example due to defects existing in the semiconductor crystal. For example, in the case of a silicon crystal having the highest specific resistance (up to 50 kΩcm) available, the resistance of a 1 cm 2 × 1 mm thick element is 5 kΩ, and a dark current of 50 mA flows when a voltage of 100 V is applied. Become. Compared with the current of 1 μA when 10 5 electron-hole pairs generated by one charged particle are collected, the current of 50 mA is extremely large, and the sensitivity as a detector is also great. This is not practical. Therefore, as a method for reducing the influence of this dark current, an electrode having a contact structure without carrier injection is used. For example, a material such as gold or aluminum that constructs a sufficiently high Schottky barrier for a semiconductor is used (surface barrier type), or in an n-type (p-type) semiconductor substrate, p-type (n In general, a structure in which a PN diode structure is formed (pn junction type) by performing a doping process of (type) is used.
Taking the latter as an example, the principle of a semiconductor detector in practical use will be described below. When a reverse bias voltage (a negative potential is applied to the electrode), holes flow from the p-type layer under the electrode to the n-type substrate, and conversely electrons flow from the n-type substrate to the p-type layer. Is formed (referred to as a “depletion layer”). The specific resistance of this depletion region is extremely high, and the gradient of the applied voltage is almost borne by this region, and a strong electric field of 10 6 to 10 7 V / m can be easily obtained. If charged particles enter the depletion layer, the generated hole-electron pairs can be efficiently collected by a strong electric field. If a depletion layer with a thickness larger than the charged particle range (entrance distance) is formed on the detector, a current signal proportional to the energy of the charged particles can be obtained.
The actual semiconductor detector selects the substrate doping concentration and operating bias voltage so that the thickness of the depletion layer is the same as the maximum range (entrance distance) determined by the type and energy of the target charged particles. To do. The design nomogram is shown in FIG. Since the α ray targeted for the present invention has an energy of 5.0 MeV or less, it can be read from FIG. 10 that the range (approach distance) is about 20 μm or less (FIG. 10 “Depletion Layer Thickness”). reference). Even if the depletion layer is further expanded, a bias voltage higher than necessary is required, and the dark current and the like only increase accordingly.
Such a thin depletion layer is formed under the electrode on the side where charged particles jump, and when the electrode is a negative potential (positive potential), holes (electrons) out of the hole-electron pairs are high on the depletion layer. Although it is immediately collected by the electric field and converted into a current signal by the electric field, electrons (holes) leave the depletion layer and then pass through a distance (up to several hundred μm) corresponding to the substrate thickness to the ground electrode on the back side. Arrive. At this time, the signal accompanying the movement of the electrons (holes) becomes a slow (slow) pulse proportional to the movement time, and overlaps with the hole (electron) signals of the charged particles that come one after another. Counting efficiency, ie sensitivity, is also reduced. Furthermore, a large number of electrons (holes) encounter crystal (lattice) defects existing inside the substrate before reaching the electrodes, and are lost due to recombination and trapping, leading to attenuation of the detection signal current.
In addition, in the case of a two-dimensional resolution type in which the back electrode as shown in FIG. 12 bears the position resolution in the direction intersecting the front electrode, the induced potential accompanying the movement of electrons (holes) spreads to sandwich the substrate thickness. As a result, the position information deteriorates. Furthermore, since the electric field in the substrate is distorted due to the charge remaining inside the substrate and trapped electrons, there is a problem that accurate position information cannot be obtained from the signal from the back electrode.
For example, as shown in FIG. 13, in addition to the front electrode and the back electrode for supplying the operating voltage, the signal current of the charged particles is applied to the above-mentioned many problems in order to ensure good response even in a thick substrate. A device in which a third electrode for detection is arranged on the surface in an interdigital structure is known (for example, see Patent Document 2). Further, as shown in FIG. 14, a device is known in which an effective substrate thickness is reduced using an SOI substrate, a through-hole is formed from the back surface, and the back electrode is brought close to the surface (for example, Patent Documents). 3). Neither of them relates to the detector of the position resolution type semiconductor detector that is the subject of the present invention, but is an example of a device for a common problem.
JP-A 61-14591 JP-A-10-56196 Japanese Patent Laid-Open No. 2003-294846 IEEE Trans. on Nuclear Science, Vol. MS-24, no. 1, 1997, p. 182-187

数μm程度の入射荷電粒子の飛程(進入距離)より数十〜数百倍もの厚み(数百μm)をもつ半導体基板の,表/裏面に陽/陰極電極を配置する従来構造(図12)では,裏面電極に引き寄せられる正孔または電子の電荷が,半導体材料内に存在するトラップに捕えられ,検出信号の波形が小さくなり感度が劣化したり,時間的に鈍った波形となり計数率効率が低下する,また裏面信号の位置情報の劣化などの問題が生じる。
本発明の目的は,従来検出器における表/裏面に陽/陰電極を配置したことに伴う計数効率低下の問題を克服するべく,半導体検出器の感受面の表面皮下,数μm程度の深さまでしか進入しない,数MeV以下のα線など荷電重粒子線に対して,半導体検出器内部に生成された電子−正孔対を,効率良く,また応答性良く捕捉・収集して,粒子入射の1次元又は2次元位置情報信号に直接変換することができる半導体検出器を提供することである。
Conventional structure in which positive / cathode electrodes are arranged on the front / rear surface of a semiconductor substrate having a thickness (several hundred μm) several tens to several hundreds times the range (entrance distance) of incident charged particles of about several μm (FIG. 12). ), The charge of holes or electrons attracted to the back electrode is trapped by traps existing in the semiconductor material, and the detection signal waveform becomes smaller and the sensitivity deteriorates or the waveform becomes dull in time. Problems such as deterioration of the position information of the back signal.
An object of the present invention is to subsurface the surface of a semiconductor detector to a depth of about several μm in order to overcome the problem of a decrease in counting efficiency associated with the arrangement of positive / negative electrodes on the front / back side of a conventional detector. For charged heavy particle beams such as α-rays of several MeV or less that only enter, the electron-hole pairs generated inside the semiconductor detector are captured and collected efficiently and responsively. It is to provide a semiconductor detector that can be directly converted into a one-dimensional or two-dimensional position information signal.

上記のような課題を解決するために,本発明は,
半導体基板の表面に入射する荷電粒子のエネルギを測定する半導体検出器であって,
前記半導体基板の,前記荷電粒子が入射する面である片側の面に,複数の陽極配線及び複数の陰極配線が互いに格子状及び/若しくは交互にアレイ状に配置されており,
前記半導体基板がn型半導体基板である場合には該n型半導体基板の前記陰極配線と接する部分にp型層が,前記半導体基板がp型半導体基板である場合には該p型半導体基板の前記陽極配線と接する部分にn型層が形成されており,
前記複数の陽極配線及び複数の陰極配線が互いに格子状に形成され,且つ前記p型層(またはn型層)及び/若しくは前記n + 型層(またはp + 型層)が,格子状を形成する前記陽極配線と前記陰極配線に囲まれた矩形状の中心に向け凸状に張り出した形状をもつことを特徴とする半導体検出器として構成されている。
さらに,前記半導体基板が,SiO 2 の絶縁層を有するSOIウェハである構成とすることも可能である。
または,前記半導体基板がn型半導体基板である場合には前記陽極配線が,前記半導体基板がp型半導体基板である場合には前記陰極配線が,前記半導体基板に形成された溝内に埋め込まれていることによって,より好適な前記半導体検出器が構成される。
もしくは,本発明は,
SiO 2 の絶縁層を有するSOIウェハである半導体基板の表面に入射する荷電粒子のエネルギを測定する半導体検出器であって,
前記半導体基板の,前記荷電粒子が入射する面である片側の面に,複数の陽極配線及び複数の陰極配線が互いに格子状及び/若しくは交互にアレイ状に配置されており,
前記半導体基板がn型半導体基板である場合には該n型半導体基板の前記陰極配線と接する部分にp型層が,前記半導体基板がp型半導体基板である場合には該p型半導体基板の前記陽極配線と接する部分にn型層が形成されており,
前記半導体基板がn型半導体基板である場合には前記陽極配線が,前記半導体基板がp型半導体基板である場合には前記陰極配線が,前記半導体基板に形成された溝内に埋め込まれてなることを特徴とする半導体検出器として構成することも可能である。
また,前記半-導体基板がn型半導体基板である場合には前記半導体基板の前記陽極配線と接する部分にn+型層が,前記半導体基板がp型半導体基板である場合には前記半導体基板の前記陰極配線と接する部分にp+型層が形成されていることが望ましい
記半導体基板の比抵抗値は10Ωcm以上であることが望ましい。
前記半導体基板がn型半導体基板である場合には,前記陰極配線が接する基板部分に適量の硼素がドーピングされることによって,p型層が形成されていることが望ましい。
もしくは,前記陽極配線が接する基板部分に適量の砒素又はリンがドーピングされることによって,n+型層が形成されていることが望ましい。
また,前記半導体基板がp型半導体基板である場合には,前記陽極配線が接する部分に適量の砒素またはリンがドーピングされることによって,n型層が形成されていることが望ましい。
もしくは,前記陰極配線が接する基板部分に適量の硼素がドーピングされることによって,p+型層が形成されていることが望ましい
In order to solve the above problems, the present invention provides:
A semiconductor detector for measuring the energy of charged particles incident on the surface of a semiconductor substrate,
A plurality of anode wirings and a plurality of cathode wirings are arranged in a lattice and / or alternately in an array on one surface of the semiconductor substrate on which the charged particles are incident,
When the semiconductor substrate is an n-type semiconductor substrate, a p-type layer is in contact with the cathode wiring of the n-type semiconductor substrate, and when the semiconductor substrate is a p-type semiconductor substrate, An n-type layer is formed in a portion in contact with the anode wiring ;
The plurality of anode wirings and the plurality of cathode wirings are formed in a lattice shape, and the p-type layer (or n-type layer) and / or the n + -type layer (or p + -type layer) forms a lattice shape. The semiconductor detector has a shape protruding in a convex shape toward a rectangular center surrounded by the anode wiring and the cathode wiring .
Further, the semiconductor substrate may be an SOI wafer having a SiO 2 insulating layer.
Alternatively, the anode wiring is embedded in a groove formed in the semiconductor substrate when the semiconductor substrate is an n-type semiconductor substrate, and the cathode wiring is embedded in the semiconductor substrate when the semiconductor substrate is a p-type semiconductor substrate. Thus, a more preferable semiconductor detector is configured.
Alternatively, the present invention
A semiconductor detector for measuring the energy of charged particles incident on the surface of a semiconductor substrate, which is an SOI wafer having an insulating layer of SiO 2 ,
A plurality of anode wirings and a plurality of cathode wirings are arranged in a lattice and / or alternately in an array on one surface of the semiconductor substrate on which the charged particles are incident,
When the semiconductor substrate is an n-type semiconductor substrate, a p-type layer is in contact with the cathode wiring of the n-type semiconductor substrate, and when the semiconductor substrate is a p-type semiconductor substrate, An n-type layer is formed in a portion in contact with the anode wiring;
The anode wiring is embedded in a groove formed in the semiconductor substrate when the semiconductor substrate is an n-type semiconductor substrate, and the cathode wiring is embedded in the semiconductor substrate is a p-type semiconductor substrate. It is also possible to configure as a semiconductor detector characterized by this.
Further, when the semi-conductor substrate is an n-type semiconductor substrate, an n + -type layer is formed on a portion of the semiconductor substrate in contact with the anode wiring, and when the semiconductor substrate is a p-type semiconductor substrate, the semiconductor substrate It is desirable that a p + -type layer is formed at a portion in contact with the cathode wiring .
Specific resistance value before Symbol semiconductor substrate is preferably not less than 10 .OMEGA.cm.
When the semiconductor substrate is an n-type semiconductor substrate, it is desirable that a p-type layer is formed by doping an appropriate amount of boron in the substrate portion in contact with the cathode wiring.
Alternatively, it is desirable that an n + -type layer is formed by doping an appropriate amount of arsenic or phosphorus in the substrate portion in contact with the anode wiring.
In addition, when the semiconductor substrate is a p-type semiconductor substrate, it is desirable that an n-type layer is formed by doping an appropriate amount of arsenic or phosphorus in a portion where the anode wiring is in contact.
Alternatively, it is desirable that the p + -type layer is formed by doping an appropriate amount of boron in the substrate portion in contact with the cathode wiring .

以上,本発明によれば半導体検出器の感受面皮下,深さ20μm程度以下までしか進入しないα線等の荷電粒子線を受けて半導体検出器内部に生成された電子−正孔対を効率良く収集することが可能となり,従来の検出器よりも応答性,位置分解能等が優れた半導体検出器を提供することができる。   As described above, according to the present invention, the electron-hole pair generated inside the semiconductor detector by receiving charged particle beams such as α rays that penetrate only to a depth of about 20 μm or less under the sensitive surface of the semiconductor detector is efficiently obtained. Therefore, it is possible to provide a semiconductor detector that has better responsiveness, position resolution, and the like than conventional detectors.

以下添付図面を参照して,本発明の実施の形態及び実施例につき説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。また,下記実施の形態,実施例及び図面は前記半導体基板がn型半導体基板であることを前提に記載されているが,前記半導体基板がp型半導体基板であっても,すべての極性を反転させることによって本発明の実施が可能であることは自明であるため,記載を省略したに過ぎないものであって,本発明の技術的範囲を,n型半導体基板の場合に限定する性格のものではない。
図1(a)は,本発明に基づく2次元位置分解能をもつpn接合型荷電粒子用半導体検出器の実施形態の一例である。この実施形態では,n型半導体基板1に荷電粒子が入射する側の面である片側の面のみに,複数の陽極配線7および該陽極配線7と直交する陰極配線5が絶縁層8を介して格子状に交差配置されているのが特徴である。半導体検出器として機能するためには,前記陰極配線5(前記陽極配線7との交差部を除く)が前記n型半導体基板1と接する部分にp型層4が形成され,前記n型半導体基板1との間にpn接合構造が形成されている必要がある。
図3は,本発明に基づく1次元位置分解能をもつpn接合型荷電粒子用半導体検出器の実施形態の一例である。この場合,基本構造は前記2次元位置分解能をもつ検出器と同様であるが,n型半導体基板1に荷電粒子が入射する側の面である片側の面のみに,複数の陽極配線7および陰極配線5が交互にアレイ状に並行配置されているのが特徴である。半導体検出器として機能するためには,前記陰極配線5(前記陽極配線7との交差部を除く)が前記半導体基板1と接する部分にp型層4が形成され,前記n型半導体基板1との間にpn接合構造が形成されている必要がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings for understanding of the present invention. It should be noted that the following embodiments and examples are examples embodying the present invention and do not limit the technical scope of the present invention. The following embodiments, examples and drawings are described on the assumption that the semiconductor substrate is an n-type semiconductor substrate, but all polarities are reversed even if the semiconductor substrate is a p-type semiconductor substrate. Since it is obvious that the present invention can be implemented, the description is merely omitted, and the technical scope of the present invention is limited to the case of an n-type semiconductor substrate. is not.
FIG. 1A is an example of an embodiment of a pn junction type charged particle semiconductor detector having a two-dimensional position resolution based on the present invention. In this embodiment, a plurality of anode wirings 7 and cathode wirings 5 orthogonal to the anode wirings 7 are provided on only one surface, which is a surface on which charged particles are incident on the n-type semiconductor substrate 1, via an insulating layer 8. It is characterized by being arranged in a grid pattern. In order to function as a semiconductor detector, a p-type layer 4 is formed in a portion where the cathode wiring 5 (excluding the intersection with the anode wiring 7) is in contact with the n-type semiconductor substrate 1, and the n-type semiconductor substrate A pn junction structure must be formed between
FIG. 3 is an example of an embodiment of a pn junction type charged particle semiconductor detector having one-dimensional position resolution according to the present invention. In this case, the basic structure is the same as that of the detector having the two-dimensional position resolution, but a plurality of anode wirings 7 and cathodes are provided only on one side, which is the side on which charged particles are incident on the n-type semiconductor substrate 1. A characteristic is that the wires 5 are alternately arranged in parallel in an array. In order to function as a semiconductor detector, a p-type layer 4 is formed in a portion where the cathode wiring 5 (excluding the intersection with the anode wiring 7) is in contact with the semiconductor substrate 1, and the n-type semiconductor substrate 1 A pn junction structure must be formed between the two.

以下,図1(a)および図3に基づいて本発明に係る半導体検出器の動作について説明する。
複数の陰極配線5の間は,コンデンサ13および抵抗14から構成されるパルス成形回路によって結合され,端部のバイアス電圧カット用の結合コンデンサ16を経由して2つのプリアンプ15a,15bにつながる。また陰極配線5は夫々高抵抗12を通じてバイアス電圧11が供給される。同様に陽極配線7も,コンデンサ13および抵抗14から構成されるパルス成形回路によって結合され,端部は2つのプリアンプ15c,15dに直結されている。
本回路系を通じ,陰電極配線5の表面直下のp型層4と基板のn型活性層3から形成されるpn接合にバイアス電圧11が印加されると,p型層4の下方に向かって空乏層9が広がるが,やがて該空乏層9が横方向に広がり,陰極配線5と陽極配線7によって囲まれた領域に広がっていく。この広がった空乏層9が荷電粒子の感受面となる。
空乏層9が広がった領域に荷電粒子が入射したときに生成された正孔の電荷は陰電極5に,電子の電荷は陽電極7に夫々集められ,上記パルス成形回路によって,各々電極位置に依存して電荷分割された両端のプリアンプ15a−15bまたは15c−15dによって,電圧信号として読み出される。信号読出し回路の実施例を図5に,2次元読出し系をダイオードで模擬した等価回路を図6に示す。なお,信号読出し回路系は,陰極配線5と陽極配線7が直交交差する場合に限られるものではない。例えば,図7のように60°で交差する,斜交交差させたような構成であってもよい。
入射位置を特定するための電荷分割の方式には,図8に示すように,抵抗だけで構成される抵抗分割型と,抵抗とコンデンサによる容量分割型がある。図9は,それぞれの特徴をまとめたものである。荷電粒子検出器のように,1個1個の信号をパルス信号として計測する場合には,一般に容量分割型が適している。
この実施形態では,半導体基板1の荷電粒子を受ける片面のみに陽極配線7と陰極配線5が配設されていることにより,荷電粒子を感受する空乏層9が,荷電粒子を受ける面側数μm程度の深さに偏って形成されるので,半導体基板1の感受面の表面皮下数μmしか進入しない荷電粒子を効率良く捕捉することができる。
Hereinafter, the operation of the semiconductor detector according to the present invention will be described with reference to FIGS.
The plurality of cathode wirings 5 are coupled by a pulse shaping circuit composed of a capacitor 13 and a resistor 14 and connected to two preamplifiers 15a and 15b via a coupling capacitor 16 for bias voltage cut at the end. The cathode wiring 5 is supplied with a bias voltage 11 through a high resistance 12, respectively. Similarly, the anode wiring 7 is also coupled by a pulse shaping circuit composed of a capacitor 13 and a resistor 14, and its end is directly coupled to the two preamplifiers 15c and 15d.
Through this circuit system, when a bias voltage 11 is applied to a pn junction formed from the p-type layer 4 immediately below the surface of the negative electrode wiring 5 and the n-type active layer 3 of the substrate, it moves downward to the p-type layer 4. The depletion layer 9 spreads, but eventually the depletion layer 9 spreads in the lateral direction and spreads into a region surrounded by the cathode wiring 5 and the anode wiring 7. The spread depletion layer 9 becomes a charged particle sensitive surface.
The charge of the holes generated when the charged particles are incident on the region where the depletion layer 9 is spread is collected on the negative electrode 5 and the charge of the electrons is collected on the positive electrode 7. The voltage signals are read out by the preamplifiers 15a-15b or 15c-15d at both ends which are divided according to the charge. FIG. 5 shows an embodiment of a signal readout circuit, and FIG. 6 shows an equivalent circuit simulating a two-dimensional readout system with a diode. The signal readout circuit system is not limited to the case where the cathode wiring 5 and the anode wiring 7 intersect at right angles. For example, as shown in FIG. 7, it may be configured to intersect at 60 ° or obliquely intersect.
As shown in FIG. 8, there are a resistance division type constituted only by a resistor and a capacitance division type constituted by a resistor and a capacitor as charge division methods for specifying the incident position. FIG. 9 summarizes each feature. In the case of measuring each signal as a pulse signal like a charged particle detector, a capacity division type is generally suitable.
In this embodiment, the anode wiring 7 and the cathode wiring 5 are disposed only on one side of the semiconductor substrate 1 that receives charged particles, so that the depletion layer 9 that senses charged particles has a surface side of several μm that receives charged particles. Since it is formed to be biased to a certain depth, charged particles that enter only a few μm of the surface of the sensitive surface of the semiconductor substrate 1 can be captured efficiently.

図1及び図3を用いて,特に,好適な検出特性を得ることができる本発明の具体的な実施例について説明する。
第1の実施例として,半導体基板1の陽極配線7と接する部分にn+型層6を形成する場合が挙げられる。n+型層6は前記半導体基板1と前記陽極配線7との間にオーミック接触を確保するためのものであり,これによって暗電流の影響が相対的に小さくなるため,好適な検出特性を得ることが可能となる。
第2の実施例として,前記複数の陽極配線7及び複数の陰極配線5が互いに格子状に形成された,前記2次元位置分解能をもつpn接合型荷電粒子用半導体検出器(図1(a))の場合であって,前記p型層4及び/若しくは前記n+型層6を,前記陰極配線5と前記陽極配線7に囲まれた矩形領域の基板表面露出部分に形成する場合が挙げられる。この場合,上記前記p型層4及び/若しくはn+型層6を上記領域の中心に向け凸状に張り出した形状とすることが望ましい。この例では図1(b)ないし(d)に示すように,空乏層9の表面積が広がり,感受面積比率を上げることができるため,好適な検出特性を得ることが可能となる。また,図1の上図(e)に示すように,陽極配線7直下のn+型層6を張り出し,前記矩形の2辺に平行な「くの字」型の形状にすることによっても,感受面積比率を上げることができる。
第3の実施例として,前記半導体基板1が比抵抗10Ωcm以上である場合が挙げられる。この場合,暗電流の影響が相対的に小さくなるため,好適な検出特性を得ることが可能となる。
第4の実施例として,1014〜1015[/cm2]の硼素元素をイオン注入または表面拡散によりドーピングすることで,前記p型層4が厚さ0.1〜2.0μmに形成され及び/若しくは,1015〜1016[/cm2]の砒素または燐元素をイオン注入または表面拡散によりドーピングすることで,前記n+型層6が厚さ0.1〜2.0μmに形成されている場合が挙げられる。このように適正なドーピング濃度を選択して適正な厚みを有するp型層及び/若しくはn+型層を形成することによって,好適な検出特性を得ることが可能となる。
第5の実施例として,半導体基板1としてSiO2の絶縁層2が形成されているSOIウェハを用いる場合が挙げられる。これによって電荷収集効率を向上させることができ,好適な検出特性を得ることが可能となる。
第6の実施例として,図2に示されるように,半導体基板1の活性層3の中にSiO2の絶縁層2より浅い溝を形成し,該溝の中に陽極配線4を埋め込んだ場合が挙げられる。これによって,さらに電荷収集効率を向上させることができ,好適な検出特性を得ることが可能となる。
A specific embodiment of the present invention capable of obtaining particularly suitable detection characteristics will be described with reference to FIGS.
As a first embodiment, there is a case where an n + -type layer 6 is formed on a portion of the semiconductor substrate 1 in contact with the anode wiring 7. The n + -type layer 6 is for ensuring ohmic contact between the semiconductor substrate 1 and the anode wiring 7, and thereby the influence of dark current is relatively reduced, so that suitable detection characteristics are obtained. It becomes possible.
As a second embodiment, a semiconductor detector for pn junction type charged particles having the two-dimensional position resolution, in which the plurality of anode wirings 7 and the plurality of cathode wirings 5 are formed in a grid pattern (FIG. 1A). And the p-type layer 4 and / or the n + -type layer 6 is formed on a substrate surface exposed portion of a rectangular region surrounded by the cathode wiring 5 and the anode wiring 7. . In this case, it is preferable that the p-type layer 4 and / or the n + -type layer 6 have a shape protruding in a convex shape toward the center of the region. In this example, as shown in FIGS. 1B to 1D, since the surface area of the depletion layer 9 is increased and the sensitive area ratio can be increased, it is possible to obtain suitable detection characteristics. Further, as shown in the upper diagram (e) of FIG. 1, by extending the n + type layer 6 immediately below the anode wiring 7 and making it a “shape” shape parallel to the two sides of the rectangle, The sensitive area ratio can be increased.
As a third embodiment, the semiconductor substrate 1 has a specific resistance of 10 Ωcm or more. In this case, since the influence of the dark current becomes relatively small, it is possible to obtain suitable detection characteristics.
As a fourth embodiment, the p-type layer 4 is formed to a thickness of 0.1 to 2.0 μm by doping boron element of 10 14 to 10 15 [/ cm 2 ] by ion implantation or surface diffusion. The n + -type layer 6 is formed to a thickness of 0.1 to 2.0 μm by doping arsenic or phosphorus elements of 10 15 to 10 16 [/ cm 2 ] by ion implantation or surface diffusion. There are cases. Thus, it is possible to obtain suitable detection characteristics by selecting an appropriate doping concentration and forming a p-type layer and / or an n + -type layer having an appropriate thickness.
As a fifth embodiment, and the like when using an SOI wafer in which an insulating layer 2 of SiO 2 is formed as the semiconductor substrate 1. As a result, charge collection efficiency can be improved, and suitable detection characteristics can be obtained.
As a sixth embodiment, as shown in FIG. 2, a groove shallower than the insulating layer 2 of SiO 2 is formed in the active layer 3 of the semiconductor substrate 1, and the anode wiring 4 is embedded in the groove. Is mentioned. As a result, the charge collection efficiency can be further improved, and suitable detection characteristics can be obtained.

ここで,上記第5及び第6の実施例の場合に電荷収集効率を向上させることができる理由を,図4を用いて詳細に説明する。
図4(a)は,半導体基板1(活性層3)の裏面に,接地電位の陽電極7aを持った半導体検出器の場合であり,従来技術を示すものである。荷電粒子が入射する表面に複数の陰極配線5がアレイ状に並行配置され,半導体基板1と接する部分がp型層となり,バイアス電圧を印加することにより,空乏層が下方に向けて広がる。荷電粒子が陰極配線5の間に入射して生成する正孔は,すぐに陰極に捕集されるが,電子は空乏層を経て,厚い活性層を通過し,裏面の接地陽電極に吸収される。厚い活性層には格子欠陥などが多数存在し,再結合やトラッピングによって電子が失われるため,電荷収集効率は低い。
図4(b)は,荷電粒子が入射する面に,複数の陰極配線5および陽極配線7を交互にアレイ状に並行配置した半導体検出器であり,本発明の一実施形態を示すものである。同様にバイアス電圧を印加することにより,空乏層ははじめ陰極配線5直下のp型層4から広がるが,やがて電気力線に沿って陽極配線7に向けて広がり,表面を覆う。空乏層は多少基板内(すなわち下方)に広がるが表面近傍に限定されるため,荷電粒子によって生じる正孔および電子は,夫々陰極および陽極に,共に効率よく捕集される。したがって,従来技術と比べて応答性,位置分解能共に向上する。
図4(c)は,半導体基板1として,SiO2の絶縁層2が表面皮下に埋めこまれたSOIウェハを採用した半導体検出器であり,本発明の一実施形態であって,前記実施例5の場合に相当する。空乏層は,はじめ下方へ広がるが,SiO2の絶縁層2に達するとそれより下方には広がれないため横方向に広がり始める。これにより,空乏層がごく薄い活性層に限定されるため空乏層内部の電界強度が上がり,電荷収集効率が向上する。したがって,前記図4(b)の実施形態よりも応答性,位置分解能が向上する。
図4(d)は,前記SOIウェハである半導体基板1の活性層3に溝を掘り,陽電極7を埋めこんだ構造をもった半導体検出器であり,本発明の一実施形態であって,前記実施例6の場合に相当する。空乏層は,前記図4(c)の場合と同様の広がり方をする。これに加えて,本実施例の場合,活性層内の電気力線が表面に平行に走るため,より均質な電界分布となることが図より理解できる。これにより電荷の捕集効率が向上し,前記図(c)の実施形態よりもさらに応答性,位置分解能が向上する。
尚,図4では,本発明の一実施形態である複数の陽極配線および陰極配線が交互にアレイ状に並行配置されている場合のみが説明されているが,図面を簡素化して理解を容易にすることを意図したものであり,本発明の他の実施態様である複数の陽極配線及び陰極配線が互いに格子状に配置されている場合であっても,同様の原理によって説明される。
Here, the reason why the charge collection efficiency can be improved in the case of the fifth and sixth embodiments will be described in detail with reference to FIG.
FIG. 4A shows the case of a semiconductor detector having a positive electrode 7a having a ground potential on the back surface of the semiconductor substrate 1 (active layer 3), and shows the prior art. A plurality of cathode wirings 5 are arranged in parallel on the surface on which charged particles are incident, and a portion in contact with the semiconductor substrate 1 becomes a p-type layer, and a depletion layer spreads downward by applying a bias voltage. Holes generated when charged particles enter between the cathode wiring 5 are immediately collected by the cathode, but the electrons pass through the depletion layer, pass through the thick active layer, and are absorbed by the grounded positive electrode on the back surface. The The thick active layer has many lattice defects and electrons are lost due to recombination and trapping, so the charge collection efficiency is low.
FIG. 4B shows a semiconductor detector in which a plurality of cathode wirings 5 and anode wirings 7 are alternately arranged in parallel on the surface on which charged particles are incident, and shows an embodiment of the present invention. . Similarly, by applying a bias voltage, the depletion layer first spreads from the p-type layer 4 immediately below the cathode wiring 5, but eventually spreads toward the anode wiring 7 along the lines of electric force and covers the surface. Although the depletion layer extends somewhat in the substrate (ie, downward) but is limited to the vicinity of the surface, holes and electrons generated by the charged particles are efficiently collected on the cathode and the anode, respectively. Therefore, both responsiveness and position resolution are improved as compared with the prior art.
FIG. 4C shows a semiconductor detector that employs an SOI wafer in which an insulating layer 2 of SiO 2 is buried under the surface as the semiconductor substrate 1, and is an embodiment of the present invention. This corresponds to the case of 5. The depletion layer first spreads downward, but when it reaches the insulating layer 2 of SiO 2 , it does not spread downward and starts to spread laterally. As a result, the depletion layer is limited to a very thin active layer, so that the electric field strength inside the depletion layer is increased and the charge collection efficiency is improved. Therefore, responsiveness and position resolution are improved as compared with the embodiment of FIG.
FIG. 4D shows a semiconductor detector having a structure in which a groove is dug in the active layer 3 of the semiconductor substrate 1 which is the SOI wafer and a positive electrode 7 is buried, which is an embodiment of the present invention. This corresponds to the case of the sixth embodiment. The depletion layer spreads in the same manner as in FIG. In addition, in the case of the present embodiment, it can be understood from the figure that the electric field lines in the active layer run parallel to the surface, so that the electric field distribution is more uniform. Thereby, the charge collection efficiency is improved, and the response and the position resolution are further improved as compared with the embodiment of FIG.
In FIG. 4, only the case where a plurality of anode wirings and cathode wirings according to an embodiment of the present invention are alternately arranged in parallel is described. However, the drawing is simplified for easy understanding. Even when a plurality of anode wirings and cathode wirings, which are other embodiments of the present invention, are arranged in a grid pattern, the same principle will be used.

(a) 本発明に係る半導体検出器の実施形態の一例である2次元位置分解能型検出器の概略断面斜視図。(b)ないし(e) 陽極配線と陰極配線に囲まれた矩形状を上方から見た概略図。(A) The schematic cross-sectional perspective view of the two-dimensional position resolution type | mold detector which is an example of embodiment of the semiconductor detector which concerns on this invention. (B) thru | or (e) The schematic which looked at the rectangular shape enclosed by the anode wiring and the cathode wiring from the upper direction. 同じく2次元位置分解能型検出器であって,別の実施形態を示す概略断面斜視図。It is a two-dimensional position resolution type detector similarly, Comprising: The schematic cross-sectional perspective view which shows another embodiment. 本発明に係る半導体検出器の実施形態の一例である1次元位置分解能型検出器の概略断面斜視図。1 is a schematic cross-sectional perspective view of a one-dimensional position resolution type detector that is an example of an embodiment of a semiconductor detector according to the present invention. 本発明の各実施例により電荷捕集効率が向上することを示す,1次元分解能型検出器の断面図。Sectional drawing of a one-dimensional resolution type | mold detector which shows that charge collection efficiency improves by each Example of this invention. 本発明に係る半導体検出器の実施形態の一例である2次元位置分解能型検出器における信号読出し回路の一例を示す概念図。The conceptual diagram which shows an example of the signal read-out circuit in the two-dimensional position resolution type | mold detector which is an example of embodiment of the semiconductor detector which concerns on this invention. 図5に示す信号読出し回路の一例をダイオードで模擬した等価回路図。FIG. 6 is an equivalent circuit diagram simulating an example of the signal readout circuit shown in FIG. 5 with a diode. 図5に示す信号読出し回路の変形例を示す概念図。The conceptual diagram which shows the modification of the signal read-out circuit shown in FIG. 荷電粒子の入射位置を特定するための電荷分割を実行する回路の一例である抵抗分割型回路と容量分割型回路とを示す回路図。The circuit diagram which shows the resistance division type circuit and capacitance division type circuit which are examples of the circuit which performs the electric charge division for pinpointing the incident position of a charged particle. 図8に示す抵抗分割型の特性と容量分割型の特性とを比較した比較図。FIG. 9 is a comparison diagram comparing the resistance division type characteristics and the capacitance division type characteristics shown in FIG. 8. 半導体基板としてシリコン基板を用いた場合の設計ノモグラム。Design nomogram when a silicon substrate is used as the semiconductor substrate. 従来技術である,γ線等高エネルギ粒子用2次元位置分解能型半導体検出器の斜視図。The perspective view of the two-dimensional position resolution type | mold semiconductor detector for high energy particles, such as a gamma ray, which is a prior art. 従来技術である,表裏面に交差電極を配した2次元位置分解能型半導体検出器の概略断面斜視図。The schematic cross-sectional perspective view of the two-dimensional position resolution type | mold semiconductor detector which has arrange | positioned the cross electrode on the front and back which is a prior art. 特許文献2の図1及び図2a,b。Fig. 1 and Fig. 2a, b of Patent Document 2. 特許文献3の図4。FIG. 4 of Patent Document 3.

符号の説明Explanation of symbols

1…(n型)半導体基板
2…絶縁層(SiO2
3…活性層
4…p型層
5…陰極配線
6…n+型層
7…陽極配線
8…絶縁層
9…空乏層
11…バイアス電源
12,14…抵抗
13,16…コンデンサ
15…プリアンプ
1 ... (n-type) semiconductor substrate 2 ... insulating layer (SiO 2)
DESCRIPTION OF SYMBOLS 3 ... Active layer 4 ... p-type layer 5 ... Cathode wiring 6 ... n + type layer 7 ... Anode wiring 8 ... Insulating layer 9 ... Depletion layer 11 ... Bias power supply 12, 14 ... Resistance 13, 16 ... Capacitor 15 ... Preamplifier

Claims (10)

半導体基板の表面に入射する荷電粒子のエネルギを測定する半導体検出器であって,
前記半導体基板の,前記荷電粒子が入射する面である片側の面に,複数の陽極配線及び複数の陰極配線が互いに格子状及び/若しくは交互にアレイ状に配置されており,
前記半導体基板がn型半導体基板である場合には該n型半導体基板の前記陰極配線と接する部分にp型層が,前記半導体基板がp型半導体基板である場合には該p型半導体基板の前記陽極配線と接する部分にn型層が形成されており,
前記複数の陽極配線及び複数の陰極配線が互いに格子状に形成され,且つ前記p型層(またはn型層)及び/若しくは前記n + 型層(またはp + 型層)が,格子状を形成する前記陽極配線と前記陰極配線に囲まれた矩形状の中心に向け凸状に張り出した形状をもつことを特徴とする半導体検出器。
A semiconductor detector for measuring the energy of charged particles incident on the surface of a semiconductor substrate,
A plurality of anode wirings and a plurality of cathode wirings are arranged in a lattice and / or alternately in an array on one surface of the semiconductor substrate on which the charged particles are incident,
When the semiconductor substrate is an n-type semiconductor substrate, a p-type layer is in contact with the cathode wiring of the n-type semiconductor substrate, and when the semiconductor substrate is a p-type semiconductor substrate, An n-type layer is formed in a portion in contact with the anode wiring ;
The plurality of anode wirings and the plurality of cathode wirings are formed in a lattice shape, and the p-type layer (or n-type layer) and / or the n + -type layer (or p + -type layer) forms a lattice shape. A semiconductor detector having a shape protruding in a convex shape toward a rectangular center surrounded by the anode wiring and the cathode wiring .
前記半導体基板が,SiOThe semiconductor substrate is made of SiO. 22 の絶縁層を有するSOIウェハである請求項1に記載の半導体検出器。The semiconductor detector according to claim 1, which is an SOI wafer having a plurality of insulating layers. 前記半導体基板がn型半導体基板である場合には前記陽極配線が,前記半導体基板がp型半導体基板である場合には前記陰極配線が,前記半導体基板に形成された溝内に埋め込まれてなる請求項2に記載の半導体検出器。The anode wiring is embedded in a groove formed in the semiconductor substrate when the semiconductor substrate is an n-type semiconductor substrate, and the cathode wiring is embedded in the semiconductor substrate is a p-type semiconductor substrate. The semiconductor detector according to claim 2. SiOSiO 22 の絶縁層を有するSOIウェハである半導体基板の表面に入射する荷電粒子のエネルギを測定する半導体検出器であって,A semiconductor detector for measuring the energy of charged particles incident on the surface of a semiconductor substrate which is an SOI wafer having an insulating layer of
前記半導体基板の,前記荷電粒子が入射する面である片側の面に,複数の陽極配線及び複数の陰極配線が互いに格子状及び/若しくは交互にアレイ状に配置されており,A plurality of anode wirings and a plurality of cathode wirings are arranged in a lattice and / or alternately in an array on one surface of the semiconductor substrate on which the charged particles are incident,
前記半導体基板がn型半導体基板である場合には該n型半導体基板の前記陰極配線と接する部分にp型層が,前記半導体基板がp型半導体基板である場合には該p型半導体基板の前記陽極配線と接する部分にn型層が形成されており,When the semiconductor substrate is an n-type semiconductor substrate, a p-type layer is in contact with the cathode wiring of the n-type semiconductor substrate, and when the semiconductor substrate is a p-type semiconductor substrate, An n-type layer is formed in a portion in contact with the anode wiring;
前記半導体基板がn型半導体基板である場合には前記陽極配線が,前記半導体基板がp型半導体基板である場合には前記陰極配線が,前記半導体基板に形成された溝内に埋め込まれてなることを特徴とする半導体検出器。The anode wiring is embedded in a groove formed in the semiconductor substrate when the semiconductor substrate is an n-type semiconductor substrate, and the cathode wiring is embedded in the semiconductor substrate is a p-type semiconductor substrate. A semiconductor detector.
前記半導体基板がn型半導体基板である場合には前記半導体基板の前記陽極配線と接する部分にn+型層が,前記半導体基板がp型半導体基板である場合には前記半導体基板の前記陰極配線と接する部分にp+型層が形成されている請求項1〜4のいずれかに記載の半導体検出器。 When the semiconductor substrate is an n-type semiconductor substrate, an n + -type layer is in contact with the anode wiring of the semiconductor substrate, and when the semiconductor substrate is a p-type semiconductor substrate, the cathode wiring of the semiconductor substrate. The semiconductor detector according to claim 1, wherein a p + -type layer is formed in a portion in contact with the semiconductor detector. 前記半導体基板の比抵抗値が10Ωcm以上である請求項1ないしのいずれかに記載の半導体検出器。 The semiconductor detector according to any of claims 1 to 5 the resistivity of the semiconductor substrate is not less than 10 .OMEGA.cm. 前記半導体基板がn型半導体基板であって,前記陰極配線が接する基板部分に適量の硼素がドーピングされることによって,p型層が形成されてなる請求項1ないしのいずれかに記載の半導体検出器。 It said semiconductor substrate is an n-type semiconductor substrate, wherein by an appropriate amount of boron is doped into the substrate portion where the cathode lines are in contact with the semiconductor according to any one of claims 1 p-type layer is formed 6 Detector. 前記半導体基板がn型半導体基板であって,前記陽極配線が接する基板部分に適量の砒素又はリンがドーピングされることによって,n+型層が形成されてなる請求項1ないしのいずれかに記載の半導体検出器。 Said semiconductor substrate is an n-type semiconductor substrate, wherein by an appropriate amount of arsenic or phosphorus is doped in the substrate portion where the anode wire is in contact, either to n + -type layer claims 1 becomes formed 7 The semiconductor detector as described. 前記半導体基板がp型半導体基板であって,前記陽極配線が接する基板部分に適量の砒素又はリンがドーピングされることによって,n型層が形成されてなる請求項1ないしのいずれかに記載の半導体検出器。 It said semiconductor substrate is a p-type semiconductor substrate, wherein by an appropriate amount of arsenic or phosphorus is doped in the substrate portion where the anode wire is in contact, according to any one of claims 1 n-type layer is formed 6 Semiconductor detector. 前記半導体基板がp型半導体基板であって,前記陰極配線が接する基板部分に適量の硼素がドーピングされることによって,p+型層が形成されてなる請求項1ないしまたは請求項のいずれかに記載の半導体検出器。 It said semiconductor substrate is a p-type semiconductor substrate, one said by the appropriate amount of boron is doped into the substrate portion where the cathode lines are in contact with the preceding claims 1 p + -type layer is formed of 6 or claim 9 A semiconductor detector according to claim 1.
JP2003428235A 2003-12-24 2003-12-24 Semiconductor detector Expired - Fee Related JP4397685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428235A JP4397685B2 (en) 2003-12-24 2003-12-24 Semiconductor detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428235A JP4397685B2 (en) 2003-12-24 2003-12-24 Semiconductor detector

Publications (2)

Publication Number Publication Date
JP2005191136A JP2005191136A (en) 2005-07-14
JP4397685B2 true JP4397685B2 (en) 2010-01-13

Family

ID=34787304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428235A Expired - Fee Related JP4397685B2 (en) 2003-12-24 2003-12-24 Semiconductor detector

Country Status (1)

Country Link
JP (1) JP4397685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913763A (en) * 2013-01-07 2014-07-09 同方威视技术股份有限公司 Radiation detector and radiation detection device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067738A (en) * 2008-09-10 2010-03-25 Iwate Univ Charged particle detector using gallium nitride-based semiconductor material
JP5731344B2 (en) * 2011-09-28 2015-06-10 浜松ホトニクス株式会社 Radiation detector
CN113937174B (en) * 2021-10-14 2023-12-12 南京大学 Silicon carbide-based transverse PN junction extreme ultraviolet detector based on selective ion implantation and preparation method thereof
CN115877433B (en) * 2023-02-24 2023-06-02 山东大学 Compact charged particle discriminating semiconductor calorimeter and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913763A (en) * 2013-01-07 2014-07-09 同方威视技术股份有限公司 Radiation detector and radiation detection device
CN103913763B (en) * 2013-01-07 2016-06-15 同方威视技术股份有限公司 Radiation detector and radiation detector assembly

Also Published As

Publication number Publication date
JP2005191136A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
US6333504B1 (en) Semiconductor radiation detector with enhanced charge collection
JP3093799B2 (en) Semiconductor radiation detector with enhanced charge collection ability
Shah et al. Position-sensitive avalanche photodiodes for gamma-ray imaging
US6037595A (en) Radiation detector with shielding electrode
TWI638449B (en) Detector, positron emission tomography apparatus and X-ray computed tomography apparatus
US7064338B2 (en) Two-dimensional radiation detector
US9778378B2 (en) Detector configuration with semiconductor photomultiplier strips and differential readout
JP4170411B2 (en) High-speed radiation detector
US6069360A (en) Method and apparatus for electron-only radiation detectors from semiconductor materials
JP3411580B2 (en) Ionizing radiation detector
Apresyan et al. Measurements of an AC-LGAD strip sensor with a 120 GeV proton beam
US20060118728A1 (en) Wafer bonded silicon radiation detectors
JP4397685B2 (en) Semiconductor detector
US20080258072A1 (en) Detector for Ionizing Radiation
US6731065B1 (en) Apparatus and method for radiation detection with radiation beam impinging on photocathode layer at a grazing incidence
US20070001122A1 (en) Device with stacked electrodes for detecting radiation and method of detecting ionizing radiation that uses such a device
US7825384B1 (en) Quantum detector array
JP2000121738A (en) Semiconductor radiation detector
US4411059A (en) Method for manufacturing a charge splitting resistive layer for a semiconductor gamma camera
RU2197036C2 (en) Coordinate detector of relativistic particles
Narita et al. Development of prototype pixellated PIN CdZnTe detectors
EP3594723B1 (en) Double response ionizing radiation detector and measuring method using the same
Kok et al. 3D silicon sensors-Large area production, QA and development for the CERN ATLAS experiment pixel sensor upgrade
Moffat et al. A novel detector for low-energy photon detection with fast response
Macri et al. Study of 5 and 10 mm thick CZT strip detectors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees