JP4397236B2 - Optical deflection apparatus, optical deflection array, image forming apparatus, and image projection display apparatus - Google Patents

Optical deflection apparatus, optical deflection array, image forming apparatus, and image projection display apparatus Download PDF

Info

Publication number
JP4397236B2
JP4397236B2 JP2004000111A JP2004000111A JP4397236B2 JP 4397236 B2 JP4397236 B2 JP 4397236B2 JP 2004000111 A JP2004000111 A JP 2004000111A JP 2004000111 A JP2004000111 A JP 2004000111A JP 4397236 B2 JP4397236 B2 JP 4397236B2
Authority
JP
Japan
Prior art keywords
film
plate
light
stress
optical deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004000111A
Other languages
Japanese (ja)
Other versions
JP2005195721A (en
Inventor
健 南條
静一 加藤
剛一 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004000111A priority Critical patent/JP4397236B2/en
Publication of JP2005195721A publication Critical patent/JP2005195721A/en
Application granted granted Critical
Publication of JP4397236B2 publication Critical patent/JP4397236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は光偏向装置、光偏向アレイ、画像形成装置及び画像投影表示装置に関し、詳細には入射光に対する出射光の方向を変える光偏向装置に関する。   The present invention relates to an optical deflection apparatus, an optical deflection array, an image forming apparatus, and an image projection display apparatus, and more particularly to an optical deflection apparatus that changes the direction of outgoing light with respect to incident light.

静電力を利用してミラーを変位または変形させて光の反射方向を変える光偏向装置としての技術は、ラリィ ジェイ.ホーンベック(L.J.Hornbeck)らが開示している捩り梁型のデジタルマイクロミラーデバイス(以下DMDと略す)がある。このDMDは、ミラーであるビームを上部に具備するヒンジを回転軸として、ビームが空間を介して対向する電極との電位差で生じる静電引力により捩り変位させ、ミラーに入射する光束の反射方向を変えて光偏向するデバイスである。このDMDに関しての詳細は非特許文献1に記載されている。また、このDMDを用いた製品として、投影型の画像表示装置が非特許文献2に記載されている。更に、DMDに関する製造方法及びミラー部材やヒンジ部材の構成が特許文献1に開示されている。この特許文献1において、ビームがミラーすなわち光反射領域に相当する。ヒンジは厚さが75nmで組成がAl−1%Si−0.2%Tiであり、ビーム接触体金属は厚さが300nmのアルミニウム合金であり、ビームは厚さが400nmのアルミニウム合金と開示されている。なお、ビーム接触体金属とビームの組成は明らかにされていない。よって、このような構成の最も厚い部位の膜厚は加算して775nmとなる。特許文献1において、ミラーであるビームの平面性を確保する手段は明らかにされておらず、またそれぞれの部材の弾性率や膜応力に関しての記載もないが、光偏向装置として機能するDMDは少なくとも光反射領域として機能するビームにおいて平面性が必要であり、膜厚を400nmと厚くすることによりその要求を満たしていると推測される。   The technology as an optical deflecting device that changes the reflection direction of light by displacing or deforming a mirror using electrostatic force is described in Larry J. There is a torsion beam type digital micromirror device (hereinafter abbreviated as DMD) disclosed by L. J. Hornbeck et al. This DMD uses a hinge having a mirror beam at the top as a rotation axis, and the beam is torsionally displaced by an electrostatic attraction generated by a potential difference with an opposing electrode through the space, and the reflection direction of the light beam incident on the mirror is changed. It is a device that changes and deflects light. Details of this DMD are described in Non-Patent Document 1. Further, Non-Patent Document 2 describes a projection-type image display device as a product using this DMD. Furthermore, Patent Document 1 discloses a manufacturing method related to DMD and a configuration of a mirror member and a hinge member. In Patent Document 1, the beam corresponds to a mirror, that is, a light reflection region. The hinge is disclosed as 75 nm thick and Al-1% Si-0.2% Ti, the beam contact metal is an aluminum alloy with a thickness of 300 nm, and the beam is disclosed as an aluminum alloy with a thickness of 400 nm. ing. It should be noted that the composition of the beam contact metal and the beam is not clarified. Therefore, the film thickness of the thickest part having such a configuration is 775 nm in total. Patent Document 1 does not disclose means for ensuring the flatness of the beam, which is a mirror, and there is no description regarding the elastic modulus and film stress of each member. The beam functioning as the light reflection region needs to have flatness, and it is assumed that the requirement is satisfied by increasing the film thickness to 400 nm.

次に、他の従来技術として、回折格子を用いた光バルブがある。非特許文献3、そして特許文献2〜4において開示されている回折格子光バルブは、Grating Light Valve(以下GLVと略す)と呼ばれ、1素子が2つのグループからなる複数の細長いリボンを有し、このリボンは上面に光反射領域を有し、複数のリボンと空間を介して対向する電極との電位差により生じる静電引力により、2つのグループにおけるリボンの高さを変えて回折光を発生させ、反射光の強度を変えて光変調するデバイスである。また、GLVを用いた投影型の画像表示装置としては、特許文献5に開示されている。特許文献3の中で開示されているGLVの製造方法によると、光反射領域を有するリボンは、弾性材料及び薄いアルミニウム層及び薄い誘電層を含んで構成されている。弾性材料は、好ましい材料としてシリコン窒化膜であり、その膜厚及び膜応力はリボンを変位させた後に初期高さに戻すためのバネ力によって決定される。薄いアルミニウム層はリボンの反射率を増加するために設けられ、100nm以下の厚さで構成されることが好ましい。薄い誘電層は製造プロセス工程中に下層アルミニウム層を保護することを第1の目的とし、光偏向動作中の下層アルミニウム層のエレクトロマイグレーション及び機械的歪を抑制することを助けることを第2の目的として設けられ、50nm以下の厚さで構成されることが好ましい。   Next, as another prior art, there is a light valve using a diffraction grating. The diffraction grating light valves disclosed in Non-Patent Document 3 and Patent Documents 2 to 4 are called Grating Light Valves (hereinafter abbreviated as GLV), and each element has a plurality of elongated ribbons composed of two groups. This ribbon has a light reflection area on the upper surface, and the diffracted light is generated by changing the height of the ribbons in the two groups by the electrostatic attraction generated by the potential difference between the plurality of ribbons and the electrodes facing each other through the space. A device that modulates light by changing the intensity of reflected light. A projection-type image display device using GLV is disclosed in Patent Document 5. According to the GLV manufacturing method disclosed in Patent Document 3, a ribbon having a light reflecting region is configured to include an elastic material, a thin aluminum layer, and a thin dielectric layer. The elastic material is a silicon nitride film as a preferable material, and the film thickness and film stress are determined by the spring force for returning to the initial height after the ribbon is displaced. The thin aluminum layer is provided in order to increase the reflectance of the ribbon, and is preferably configured with a thickness of 100 nm or less. The thin dielectric layer is primarily intended to protect the underlying aluminum layer during the manufacturing process, and is intended to help suppress electromigration and mechanical distortion of the underlying aluminum layer during light deflection operations. It is preferable to be provided with a thickness of 50 nm or less.

また、非特許文献1に開示しているDMDにおいては、ビームを400nmと厚くすることによりミラー面の平面性を確保していると推測される。しかし、そのために光反射領域を有する部材であるヒンジ、ビーム接触体金属、ビームの最も厚い部位は775nm程度となり、総重量も重くなる。そのためDMDの光応答性能は0.1MHz程度であり、高速動作が困難である問題を有している。また、重量が重いことに起因して、光偏向動作時に薄膜ヒンジの破壊を起こしやすく、長期信頼性を低下させる問題を有している。更に、ビームの材料としてアルミニウム合金を用いているので、仮にこのビームを例えば200nm程度の薄膜にした場合、アルミニウム合金の弾性率(物性値としてヤング率の意)は100GPa以下と低いため、製造過程や光偏向動作時に歪み、平面性を低下させてしまう。すなわちミラーの薄膜化が困難である問題を有している。   Further, in the DMD disclosed in Non-Patent Document 1, it is presumed that the flatness of the mirror surface is ensured by making the beam as thick as 400 nm. However, for this purpose, the thickest part of the hinge, beam contactor metal, and beam, which are members having a light reflecting region, is about 775 nm, and the total weight is also increased. Therefore, the optical response performance of the DMD is about 0.1 MHz, which has a problem that high-speed operation is difficult. In addition, due to the heavy weight, the thin film hinge is liable to be broken during the light deflection operation, and the long-term reliability is lowered. Furthermore, since an aluminum alloy is used as the material of the beam, if this beam is made into a thin film of about 200 nm, for example, the elastic modulus (meaning Young's modulus as a physical property value) of the aluminum alloy is as low as 100 GPa or less. And distortion during the optical deflection operation, reducing the flatness. That is, there is a problem that it is difficult to reduce the thickness of the mirror.

一方、特許文献2,4に開示しているGLVにおいては、光反射領域を有するリボンが弾性材料及び薄いアルミニウム層並びに薄い誘電層から構成されている。しかし、このGLVは両端固定梁型のリボンを用いているため、静電引力によりリボンの高さを変える、すなわちリボンを微小伸び変形させる際に、例えば弾性材料の膜応力が高い引張応力であったり、弾性率が特に高い場合には、リボンが静電引力により変形変位することが困難となり、駆動電圧が上昇することとなる。逆にいうと、駆動電圧を低電圧とするためにはリボンの主要部材である弾性材料の膜応力及び弾性率は比較的低く抑えることが必要となる。一般的に、薄膜の残留膜応力σと弾性率(物性的なヤング率)Eと歪εは、ε=σ/Eの関係を有しているので、特許文献3に開示されているように、弾性材料としてシリコン窒化膜を用いた場合には、その弾性率Eは250GPa以上と高く、低電圧駆動のためには膜応力σを例えば0.1GPa以下と低くする必要がある。その場合、膜応力σにより弾性材料に内在する歪量εは小さくなる。一方、薄いアルミニウム層の弾性率Eは一般的に100GPa以下と低く、膜応力σも一般的に0.5GPa程度と低いので、膜応力σによりアルミニウム層の歪量εは弾性材料のそれより大きくなる。すなわち弾性材料と薄いアルミニウム層の歪量に差が生じることとなる。例えば弾性材料の膜厚を200nm程度と薄くした場合、各膜に内在する歪量の差はリボン膜の反りとなって生じる。そのため、固定端を有するGLVにおいてはリボンの平面性が低下する問題を有している。この問題は弾性材料の膜厚を厚くすることにより解決するが、その場合は駆動電圧を上昇させる問題を有している。以上のように、GLVにおいてはその動作がリボンの伸び変形を伴うために、駆動電圧の制限により、リボンを構成する部材の弾性率及び残留膜応力を特に大きくすることができない。そのため、光反射領域の平面性を確保しつつリボンを薄膜化することは困難である問題を有している。   On the other hand, in the GLV disclosed in Patent Documents 2 and 4, a ribbon having a light reflection region is composed of an elastic material, a thin aluminum layer, and a thin dielectric layer. However, since this GLV uses a both-ends fixed beam type ribbon, when the height of the ribbon is changed by electrostatic attraction, that is, when the ribbon is micro-elongated and deformed, for example, the elastic material has a high membrane stress. If the elastic modulus is particularly high, it becomes difficult for the ribbon to be deformed and displaced by electrostatic attraction, and the drive voltage increases. Conversely, in order to reduce the driving voltage, it is necessary to keep the film stress and elastic modulus of the elastic material, which is the main member of the ribbon, relatively low. In general, the residual film stress σ, elastic modulus (physical Young's modulus) E, and strain ε of a thin film have a relationship of ε = σ / E. When a silicon nitride film is used as the elastic material, the elastic modulus E is as high as 250 GPa or more, and the film stress σ needs to be as low as 0.1 GPa or less for low voltage driving. In this case, the strain amount ε inherent in the elastic material is reduced by the film stress σ. On the other hand, the elastic modulus E of the thin aluminum layer is generally as low as 100 GPa or less, and the film stress σ is generally as low as about 0.5 GPa, so that the strain amount ε of the aluminum layer is larger than that of the elastic material due to the film stress σ. Become. That is, a difference occurs in the strain amount between the elastic material and the thin aluminum layer. For example, when the thickness of the elastic material is as thin as about 200 nm, the difference in the amount of strain inherent in each film is caused as a bow of the ribbon film. Therefore, the GLV having a fixed end has a problem that the flatness of the ribbon is lowered. This problem can be solved by increasing the film thickness of the elastic material. In this case, however, there is a problem of increasing the drive voltage. As described above, since the operation of the GLV is accompanied by the elongation deformation of the ribbon, the elastic modulus and residual film stress of the members constituting the ribbon cannot be particularly increased due to the limitation of the driving voltage. Therefore, there is a problem that it is difficult to reduce the thickness of the ribbon while ensuring the flatness of the light reflection region.

次に、図7は従来の光偏向装置の構成を示し、同図の(a)は平面図であり、同図の(b)は図7の(a)のB−B’線断面図である。但し、支点部材103及び電極105a,105b,105c,105dに関しては透過して記載する。図7に示す従来の光偏向装置100は、光反射領域を有する部材が静電引力にて変位することにより、この光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置である。そして、従来の光偏向装置100は、基板101と、複数の、図7では4つの規制部材102と、支点部材103と、板状部材104と、複数の電極105、図7では4つの電極105a,105b,105c,105dを有している。更に、各規制部材102はそれぞれ上部にストッパ102−1を有し、基板101の複数の端部にそれぞれ設けられている。また、支点部材103は頂部を有して基板101の上面に設けられている。更に、板状部材104は固定端を持たず、上面に光反射領域を有しており、少なくとも一部に導電性を有する部材からなる導電体層を有し、基板101と支点部材103とストッパ102−1の間の空間内で可動的に配置されている。また、複数の電極105a,105b,105c,105dは基板101上にそれぞれ設けられ、板状部材104の導電体層とほぼ対向している。このような従来の光偏向装置100は、次のような利点を有している。すなわち、支点部材103と基板101と板状部材104の接触で、傾斜角が決定されるので、ミラーの偏向角の制御が容易かつ安定である。また、支点部材103を中心として対向する電極に異なる電位を印加することにより高速に薄膜の板状部材104を反転するので、応答速度が速くできる。更に、板状部材104が固定端を有していないので捻り変形などの変形を伴わず長期的な劣化が少なく低電圧で駆動できる。また、半導体プロセスにより微細で軽量な板状部材104を形成できるので、ストッパ102−1との衝突による衝撃が少なく、長期的な劣化が少ない。更には、規制部材102、板状部材104や光反射領域の構成を任意に決めることにより、反射光のON/OFF比、つまり画像機器におけるS/N比、映像機器におけるコントラスト比を向上できる。また、半導体プロセス及び装置を使用できるので、低コストにて微細化と集積化が可能である。更に、支点部材103を中心として複数の電極を配置することにより、1軸及び2軸方向の光偏向が可能である。   Next, FIG. 7 shows a configuration of a conventional optical deflecting device, where FIG. 7A is a plan view, and FIG. 7B is a cross-sectional view taken along line BB ′ of FIG. is there. However, the fulcrum member 103 and the electrodes 105a, 105b, 105c, and 105d are described in a transparent manner. A conventional optical deflection apparatus 100 shown in FIG. 7 is an optical deflection apparatus in which a light beam incident on the light reflection area is deflected by changing a reflection direction when a member having the light reflection area is displaced by electrostatic attraction. is there. The conventional optical deflection apparatus 100 includes a substrate 101, a plurality of four regulating members 102 in FIG. 7, a fulcrum member 103, a plate-like member 104, a plurality of electrodes 105, and four electrodes 105a in FIG. , 105b, 105c, 105d. Further, each regulating member 102 has a stopper 102-1 at the upper portion, and is provided at each of a plurality of ends of the substrate 101. The fulcrum member 103 has a top and is provided on the upper surface of the substrate 101. Further, the plate-like member 104 does not have a fixed end, has a light reflection region on the upper surface, has a conductive layer made of a conductive member at least in part, and has a substrate 101, a fulcrum member 103, and a stopper. It is movably arranged in the space between 102-1. The plurality of electrodes 105 a, 105 b, 105 c, and 105 d are provided on the substrate 101, respectively, and substantially face the conductor layer of the plate-like member 104. Such a conventional optical deflection apparatus 100 has the following advantages. That is, since the tilt angle is determined by the contact of the fulcrum member 103, the substrate 101, and the plate member 104, the control of the deflection angle of the mirror is easy and stable. In addition, since the thin plate member 104 is reversed at a high speed by applying different potentials to the opposing electrodes with the fulcrum member 103 as the center, the response speed can be increased. Furthermore, since the plate-like member 104 does not have a fixed end, it can be driven at a low voltage with little long-term deterioration without deformation such as torsional deformation. In addition, since the fine and lightweight plate-like member 104 can be formed by a semiconductor process, there is little impact due to collision with the stopper 102-1, and long-term deterioration is small. Furthermore, the ON / OFF ratio of reflected light, that is, the S / N ratio in the image equipment and the contrast ratio in the video equipment can be improved by arbitrarily determining the configuration of the regulating member 102, the plate-like member 104, and the light reflection area. In addition, since a semiconductor process and apparatus can be used, miniaturization and integration are possible at low cost. Furthermore, by arranging a plurality of electrodes around the fulcrum member 103, light deflection in the uniaxial and biaxial directions is possible.

次に、従来の光偏向装置の駆動の様子を模式的に図8に、及び各電極に印加する電位のタイミングチャートを図9に示す。図9は図7の従来の光偏向装置を例として駆動により板状部材が傾斜した様子を示しており、図8の(a)にOFF動作時の図7の(a)のA−A’線断面図、図8の(b)にOFF動作時の図7の(a)のC−C’線断面図、図8の(c)にON動作時の図7の(a)のA−A’線断面図、図8の(d)にON動作時の図7の(a)のC−C’線断面図を示している。図7に示す電極105a,105b,105c,105dに印加する電位を切り替えることにより光偏向動作が発生する。また、図8の(a)〜(d)のそれぞれには、電極105a,105b,105c,105dに印加された電位により発生する静電引力が白抜き矢印で記載されている。   Next, FIG. 8 schematically shows how the conventional optical deflection apparatus is driven, and FIG. 9 shows a timing chart of potentials applied to the respective electrodes. FIG. 9 shows a state in which the plate-like member is tilted by driving, taking the conventional optical deflector of FIG. 7 as an example. FIG. 8 (a) shows an AA ′ of FIG. 7 (a) during the OFF operation. 8B is a cross-sectional view taken along the line CC ′ in FIG. 7A during the OFF operation, and FIG. 8C is a cross-sectional view taken along the line A- in FIG. A sectional view taken along line A ′, and FIG. 8D shows a sectional view taken along line CC ′ of FIG. 7A during the ON operation. A light deflection operation occurs by switching the potential applied to the electrodes 105a, 105b, 105c, and 105d shown in FIG. Further, in each of FIGS. 8A to 8D, the electrostatic attractive force generated by the potential applied to the electrodes 105a, 105b, 105c, and 105d is indicated by white arrows.

以下に、図8及び図9を基に、従来の光偏向装置の駆動動作と、それに対応した板状部材104の傾斜変位動作、すなわち光偏向動作を説明する。
先ず図9のOFF動作における電位の印加組み合わせにおいて、電極105aに高電位aを印加し、電極105bに低電位cを印加し、電極105c及び電極105dに中間の電位bを印加すると、導電体層を有しかつ電極群105と対向している電気的に浮いている板状部材104は簡易的なクローズ回路の計算から容易に類推されるように上記中間の電位bと等しくなる。それにより、ON側の電極105c,105dに対して静電引力を生じず、OFF側の電極105a,105bに対して図8の(a)に記載のように静電引力が発生する。そのため、板状部材104がOFF側に傾斜変位する。この動作は一連の光偏向動作のOFF動作だけでなく、光偏向動作の初期に行うリセット動作であっても良い。次に、図9のON動作における電位の印加組み合わせにおいて、電極105cに高電位aを印加し、電極105dに低電位cを印加し、電極105a及び電極105bに中間の電位bを印加すると、導電体層を有しかつ電極群105と対向している電気的に浮いている板状部材104はやはり簡易的なクローズ回路の計算から容易に類推されるように上記中間の電位bと等しくなる。それにより、OFF側の電極105a,105bに対して静電引力を生じず、ON側の電極105c,105dに対して図8の(d)に記載のように静電引力が発生する。そのため、板状部材104がON側に傾斜変位する。なお、従来の光偏向装置の板状部材104は単層であるが、必ずしも単層に限るものではなく、2層構造を有するものでも良い。また、上述の従来の光偏向装置の駆動動作及びそれに対応した板状部材104の傾斜変位動作は、電気的に浮いている板状部材104を傾斜変位させる方法を記載したが、他に支点部材103を導電性部材で構成し、この支点部材103を経由して板状部材104に接触させて電位を付与し、対向する電極群105との間の静電引力により板状部材104を傾斜変位させる方法もある。
Hereinafter, based on FIGS. 8 and 9, the driving operation of the conventional optical deflection apparatus and the corresponding tilt displacement operation of the plate-like member 104, that is, the optical deflection operation will be described.
First, in the potential application combination in the OFF operation of FIG. 9, when a high potential a is applied to the electrode 105a, a low potential c is applied to the electrode 105b, and an intermediate potential b is applied to the electrode 105c and the electrode 105d, the conductor layer And the electrically floating plate member 104 facing the electrode group 105 is equal to the intermediate potential b as can be easily inferred from a simple closed circuit calculation. As a result, no electrostatic attractive force is generated on the ON-side electrodes 105c and 105d, and an electrostatic attractive force is generated on the OFF-side electrodes 105a and 105b as shown in FIG. Therefore, the plate-like member 104 is inclined and displaced to the OFF side. This operation may be not only a series of optical deflection operation OFF operations, but also a reset operation performed at the initial stage of the optical deflection operation. Next, in the potential application combination in the ON operation of FIG. 9, when a high potential a is applied to the electrode 105c, a low potential c is applied to the electrode 105d, and an intermediate potential b is applied to the electrodes 105a and 105b, The electrically floating plate-like member 104 having a body layer and facing the electrode group 105 becomes equal to the intermediate potential b as can be easily inferred from simple closed circuit calculations. As a result, no electrostatic attractive force is generated on the OFF-side electrodes 105a and 105b, and an electrostatic attractive force is generated on the ON-side electrodes 105c and 105d as shown in FIG. Therefore, the plate-like member 104 is inclined and displaced to the ON side. The plate member 104 of the conventional optical deflecting device is a single layer, but is not necessarily limited to a single layer, and may have a two-layer structure. In addition, the above-described driving operation of the conventional optical deflecting device and the corresponding tilt displacement operation of the plate-like member 104 have been described as a method of tilting and displace the electrically floating plate-like member 104. 103 is formed of a conductive member, and a potential is applied by contacting the plate-like member 104 via the fulcrum member 103, and the plate-like member 104 is inclined and displaced by electrostatic attraction between the opposing electrode groups 105. There is also a way to make it.

従来の光偏向装置の利点として、光偏向に寄与する板状部材104が固定端を有しておらず、光偏向動作に板状部材の変形変位すなわち伸び変形や捩り変形が伴わないことによるものである。すなわち、従来の光偏向装置における板状部材は支点部材を中心とした傾斜変位による光偏向動作を行うので、板状部材は軽量であればあるほど低電圧駆動が可能であることは明らかである。軽量な板状部材とするためには、薄膜化または小型化が有効であるが、小型化は必要なミラー面積により制限されるため、薄膜化が有効である。しかし、板状部材の構成部材を安易に薄膜化することは、板状部材の反りすなわち平面性の低下や、製造プロセス中の凝着及び光偏向動作時の平面性低下を招く恐れがある。   As an advantage of the conventional optical deflection apparatus, the plate-like member 104 that contributes to optical deflection does not have a fixed end, and the optical deflection operation is not accompanied by deformation deformation of the plate-like member, that is, elongation deformation or torsional deformation. It is. That is, since the plate-like member in the conventional optical deflecting device performs the light deflection operation by the tilt displacement with the fulcrum member as the center, it is clear that the lighter the plate-like member, the lower the voltage can be driven. . In order to obtain a lightweight plate-like member, it is effective to reduce the thickness or size. However, since the size reduction is limited by the required mirror area, it is effective to reduce the thickness. However, easily reducing the thickness of the constituent members of the plate-shaped member may cause warpage of the plate-shaped member, that is, flatness deterioration, adhesion during the manufacturing process, and flatness deterioration during light deflection operation.

ここで、板状部材の薄膜化による課題を詳しく説明すると、第一に板状部材が単層膜である場合について記載すると、板状部材は高反射性が必要となるためにアルミニウム膜またはアルミニウムを90重量パーセント含有するアルミニウム合金単層であることが最も好ましい。その場合、アルミニウム系膜の弾性率(物性的にヤング率のこと)は70〜100GPaと低いために、製造プロセス中及び光偏向動作時に膜に対して過剰な力を受け平面性を確保することが困難となる。   Here, the problem due to the thinning of the plate-like member will be described in detail. First, the case where the plate-like member is a single layer film will be described. Since the plate-like member needs to have high reflectivity, an aluminum film or aluminum Most preferably, it is an aluminum alloy monolayer containing 90 weight percent. In that case, since the elastic modulus of the aluminum film (physical Young's modulus) is as low as 70 to 100 GPa, it is necessary to receive an excessive force on the film during the manufacturing process and during the optical deflection operation to ensure flatness. It becomes difficult.

次に、従来の光偏向装置の製造プロセスの一例を図10に示す。同図の(a)〜(i)は、図7に示した従来の光偏向装置の製造過程を代表的な工程に沿って示し、図7の(a)のB−B’線断面工程図である。
はじめに、図10の(a)に示すように、シリコン基板101上に、支点部材103を構成するシリコン酸化膜がプラズマCVD法により堆積され、その後、濃度階調性を有するフォトマスクを用いた写真製版法やレジストパターン形成後熱変形させる写真製版法により、支点部材103の形状とほぼ同形状の任意の膜厚を有するレジストパターンを形成し、その後、ドライエッチング法により目的形状の支点部材103が形成される。なお、シリコン基板101上にシリコン酸化膜を形成し、その上層の一部を同様の加工を行っても良い。次に、図10の(b)に示すように、電極105a,105b,105c,105dを窒化チタン(TiN)膜の薄膜で形成する。TiN薄膜は、TiをターゲットとしたDCマグネトロンスパッタ法により成膜し、写真製版法及びドライエッチング法により複数の電極105a,105b,105c,105dとしてパターン化する。そして、図10の(c)に示すように、電極105a,105b,105c,105dの保護膜106として、プラズマCVD法によるシリコン酸化膜を形成する。次に、図10の(d)に示すように、非晶質なシリコン膜をスパッタ法により堆積させ、CMP技術を用いて処理時間制御にて平坦化した。この時、支点部材103の頂部上に残る非晶質なシリコン膜の膜厚を制御することが重要である。残存する非晶質なシリコン膜が第1の犠牲層107である。なお、第1の犠牲層107としては上記非晶質なシリコン膜以外にもポリイミド膜、感光性有機膜(一般的に半導体プロセスにて用いられるレジスト膜)や多結晶シリコン膜などを用いることもでき、平坦化の手法としては、熱処理によるリフロー法やドライエッチングによるエッチバック法を用いることもできる。そして、図10の(e)に示すように、従来の光偏向装置の特徴である板状部材104を堆積、パターン化する。板状部材104は高い光反射性を有しかつ導電体層としての役割を果たすために、アルミニウム膜をスパッタリング技術により堆積させ、写真製版法及びドライエッチング法によりパターン化する。
Next, FIG. 10 shows an example of a manufacturing process of a conventional optical deflecting device. (A)-(i) of the same figure shows the manufacturing process of the conventional optical deflection | deviation apparatus shown in FIG. 7 along with a typical process, and is the BB 'sectional process drawing of (a) of FIG. It is.
First, as shown in FIG. 10A, a silicon oxide film constituting a fulcrum member 103 is deposited on a silicon substrate 101 by a plasma CVD method, and then a photo using a photomask having a density gradation property. A resist pattern having an arbitrary film thickness that is substantially the same as the shape of the fulcrum member 103 is formed by a plate making method or a photoengraving method in which heat deformation is performed after forming a resist pattern. It is formed. A silicon oxide film may be formed on the silicon substrate 101, and a part of the upper layer may be processed in the same manner. Next, as shown in FIG. 10B, electrodes 105a, 105b, 105c, and 105d are formed of a thin film of titanium nitride (TiN) film. The TiN thin film is formed by a DC magnetron sputtering method using Ti as a target, and patterned as a plurality of electrodes 105a, 105b, 105c, and 105d by a photoengraving method and a dry etching method. Then, as shown in FIG. 10C, a silicon oxide film is formed by plasma CVD as the protective film 106 for the electrodes 105a, 105b, 105c, and 105d. Next, as shown in FIG. 10 (d), an amorphous silicon film was deposited by sputtering, and planarized by the processing time control using the CMP technique. At this time, it is important to control the film thickness of the amorphous silicon film remaining on the top of the fulcrum member 103. The remaining amorphous silicon film is the first sacrificial layer 107. As the first sacrificial layer 107, a polyimide film, a photosensitive organic film (a resist film generally used in a semiconductor process), a polycrystalline silicon film, or the like can be used in addition to the amorphous silicon film. As a planarization method, a reflow method by heat treatment or an etch back method by dry etching can be used. Then, as shown in FIG. 10E, a plate-like member 104, which is a feature of the conventional optical deflection apparatus, is deposited and patterned. Since the plate-like member 104 has high light reflectivity and plays a role as a conductor layer, an aluminum film is deposited by a sputtering technique and patterned by a photolithography method and a dry etching method.

次に、図10の(f)に示すように、非晶質なシリコン膜をスパッタ法により堆積させ、第2の犠牲層108とした。なお、第2の犠牲層108としては上記非晶質なシリコン膜以外にもポリイミド膜、感光性有機膜(一般的に半導体プロセスにて用いられるレジスト膜)や多結晶シリコン膜などを用いることもできる。そして、図10の(g)に示すように、光偏向装置を個別に分離し、板状部材104の周囲にストッパ102−1を有する規制部材102を配置するために、写真製版法及びドライエッチング法により、第1の犠牲層107及び第2の犠牲層108を同時に板状部材104よりやや広くパターン化する。次に、図10の(h)に示すように、ストッパを有する規制部材102を構成するシリコン酸化膜をプラズマCVD法により堆積させ、写真製版法及びドライエッチング法により任意の個所にパターン化する。なお、ストッパ102−1を有する規制部材102は、図7に見られる配置に留まらず、板状部材104を制限空間に留める位置であれば良い。そして、図10の(i)に示すように、残存する第1の犠牲層107及び第2の犠牲層108を、ウェットエッチング法により開口部を通してエッチング除去し、板状部材104を可動範囲が制限された空間に配置して、従来の光偏向装置が完成する。なお、犠牲層のエッチングは犠牲層の種類に応じて、ウェットエッチングに限らずドライエッチングにより実施することもできる。また、犠牲層のエッチングは基板平面方向にエッチングを進行させるため、板状部材104の材質をエッチングされにくい材料で最適化することが重要である。   Next, as shown in FIG. 10F, an amorphous silicon film was deposited by sputtering to form the second sacrificial layer 108. In addition to the amorphous silicon film, a polyimide film, a photosensitive organic film (a resist film generally used in a semiconductor process), a polycrystalline silicon film, or the like may be used as the second sacrificial layer 108. it can. Then, as shown in FIG. 10 (g), in order to separate the light deflection devices individually and arrange the regulating member 102 having the stopper 102-1 around the plate-like member 104, photolithography and dry etching are performed. By patterning, the first sacrificial layer 107 and the second sacrificial layer 108 are simultaneously patterned slightly wider than the plate-like member 104. Next, as shown in FIG. 10H, a silicon oxide film constituting the regulating member 102 having a stopper is deposited by a plasma CVD method, and patterned at an arbitrary position by a photoengraving method and a dry etching method. In addition, the regulating member 102 having the stopper 102-1 is not limited to the arrangement shown in FIG. 7, and may be a position that holds the plate-like member 104 in the restricted space. Then, as shown in FIG. 10I, the remaining first sacrificial layer 107 and second sacrificial layer 108 are removed by etching through the openings by wet etching, and the movable range of the plate member 104 is limited. The conventional light deflection apparatus is completed by arranging in the formed space. Note that etching of the sacrificial layer is not limited to wet etching, but can be performed by dry etching depending on the type of the sacrificial layer. Further, since the sacrificial layer is etched in the direction of the substrate plane, it is important to optimize the material of the plate-like member 104 with a material that is difficult to etch.

このような製造プロセス中、特に図10の(i)に示す第1の犠牲層107及び第2の犠牲層108のエッチングにおいて、板状部材104が上記アルミニウム系膜単層である場合200nm以下の薄膜とすると、アルミニウム系単層膜は犠牲層ウェットエッチング工程において保護膜106や規制部材102に貼りつく不良(凝着のこと)を起こすことになる。そのため、板状部材104を上記アルミニウム系膜単層で構成する場合には好ましくは400〜500nm程度の厚膜であることが望ましい。
特許第3,383,031号明細書 特許第2,941,952号明細書 特許第3,016,871号明細書 特許第3,164,824号明細書 特開2002−131838号公報 Proc. SPIE Vol.1150, pp.86-102(1989) 「A MEMS-Based Projection Display」PROCEEDINGS OF THE IEEE. VOL.86,N0.8,AUGUST 1998 ,page 1687-1704 Optics Letters,Vol.7, No.9, pp688〜pp690
In such a manufacturing process, particularly in the etching of the first sacrificial layer 107 and the second sacrificial layer 108 shown in FIG. 10I, when the plate-like member 104 is the above-mentioned aluminum-based film single layer, the thickness is 200 nm or less. If it is a thin film, the aluminum-based single layer film will cause a defect (adhesion) sticking to the protective film 106 and the regulating member 102 in the sacrificial layer wet etching process. Therefore, when the plate-like member 104 is formed of the above-described aluminum-based film single layer, it is preferable that the thickness is about 400 to 500 nm.
Patent 3,383,031 specification Patent No. 2,941,952 Patent No. 3,016,871 Patent No. 3,164,824 JP 2002-131838 A Proc. SPIE Vol.1150, pp.86-102 (1989) "A MEMS-Based Projection Display" PROCEEDINGS OF THE IEEE. VOL.86, N0.8, AUGUST 1998, page 1687-1704 Optics Letters, Vol.7, No.9, pp688〜pp690

しかし、板状部材を薄膜とした場合光偏向動作中に不具合が発生する場合がある。この不具合について説明する。図11はON動作後に起きた不具合の様子を示す断面図であり、図7の(a)のB−B’線断面図である。図11においてON動作後、傾斜した板状部材104は電極105c,105dと対向する部位において近接する。そのため比較的大きな静電引力が作用する。この時板状部材104として弾性率が比較的低いアルミニウム系単層膜を200nm以下の薄膜で用いると、図11に示すように板状部材104が撓み、極端な場合は電極105への電位を断った後も元に戻らない現象、一般的に固着という現象が発生する。そのため板状部材104の平面性が低下することとなる。このように、板状部材が単層で構成されかつ薄膜化した場合の問題点であるが、この問題は単層膜に限らず多層膜でも同様であるのは言うまでもない。   However, when the plate-like member is a thin film, a problem may occur during the light deflection operation. This defect will be described. FIG. 11 is a cross-sectional view showing a state of a defect that has occurred after the ON operation, and is a cross-sectional view taken along line B-B ′ of FIG. In FIG. 11, after the ON operation, the inclined plate-like member 104 comes close to the portion facing the electrodes 105c and 105d. Therefore, a relatively large electrostatic attractive force acts. At this time, when an aluminum-based single layer film having a relatively low elastic modulus is used as the plate-like member 104 with a thin film having a thickness of 200 nm or less, the plate-like member 104 bends as shown in FIG. A phenomenon that does not return to the original state after refusal, generally a phenomenon of sticking, occurs. Therefore, the flatness of the plate-like member 104 is deteriorated. As described above, this is a problem when the plate-like member is formed of a single layer and is thinned. Needless to say, this problem is not limited to a single layer film but also a multilayer film.

次に、板状部材を多層とする場合に顕著となる問題について以下に説明する。なお、代表的に2層で構成しかつ薄膜化した場合を例として説明する。
一般的に任意の基板上に堆積した膜はその基板との熱膨張係数差や堆積手法や堆積時の温度さらに膜中の元素の結合状態に応じて、膜中に残留応力を有することとなる。後述する残留膜応力または膜応力はこれを表す。残留膜応力は理想的には膜厚方向で均一であることが望まれるが、堆積手法によっては膜厚方向に不均一である場合もある。更に、この膜はその組成及び堆積手法に応じてそれぞれ特有のヤング率を有する。後述する弾性率はこれを表す。特有の弾性率を持つ膜が残留膜応力を有するので、上述のε=σ/Eに示すように、膜は歪を内在することとなる。後述する歪量はこれを表す。図7の従来の光偏向装置は、板状部材104が固定端を有していないことを特徴としており、図10の(i)の犠牲層のエッチングにおいて周囲の第1の犠牲層107及び第2の犠牲層108がエッチング除去されると、板状部材104は膜応力及び弾性率に応じて歪が開放され伸縮されることとなる。この時、膜厚方向に膜応力が不均一でない限り単層膜では均一に歪が開放されるので板状部材104が大きく反ることはない。すなわち平面性が低下することはない。それに対し、板状部材104が2層で構成されている場合、各膜はそれぞれが有する弾性率及び膜応力に従い、それぞれの歪量を開放することとなる。図12に板状部材が2層で構成され犠牲層エッチング時に歪が開放された様子を模式的に示す。図12において構成膜201、202がそれぞれ弾性率E1、E2と残留引張応力σ1、σ2を有する場合、それぞれの歪量はσ1/E1、σ2/E2となる。歪量が白抜き矢印の大きさで示したように、構成膜201の方が大きい場合、板状部材は、図12に黒矢印で記載のように曲げモーメントを受け、201側に反ることとなる。すなわち板状部材の平面性が低下することとなる。この不具合は、板状部材の総膜厚が薄膜化するほど顕著となり、例えば総膜厚が300nm以下では重要な課題と考えられる。
Next, a problem that becomes prominent when the plate-like member is a multilayer will be described below. Note that a case in which the film is typically formed of two layers and thinned will be described as an example.
In general, a film deposited on an arbitrary substrate has a residual stress in the film depending on the difference in thermal expansion coefficient with the substrate, the deposition method, the temperature during deposition, and the bonding state of elements in the film. . The residual film stress or film stress described later represents this. The residual film stress is ideally desired to be uniform in the film thickness direction, but may be non-uniform in the film thickness direction depending on the deposition method. Furthermore, this film has a specific Young's modulus depending on its composition and deposition technique. The elastic modulus described later represents this. Since a film having a specific elastic modulus has a residual film stress, as shown in the above-described ε = σ / E, the film has inherent strain. The amount of distortion described later represents this. The conventional optical deflector of FIG. 7 is characterized in that the plate-like member 104 does not have a fixed end. In the etching of the sacrificial layer in FIG. When the second sacrificial layer 108 is removed by etching, the plate-like member 104 is released from the strain and stretched according to the film stress and the elastic modulus. At this time, unless the film stress is non-uniform in the film thickness direction, the single-layer film releases the strain uniformly, so that the plate-like member 104 does not greatly warp. That is, the flatness does not deteriorate. On the other hand, when the plate-like member 104 is composed of two layers, each film releases the amount of strain according to the elastic modulus and film stress of each film. FIG. 12 schematically shows a state in which the plate-like member is composed of two layers and the strain is released during the sacrifice layer etching. In FIG. 12, when the constituent films 201 and 202 have elastic moduli E1 and E2 and residual tensile stresses σ1 and σ2, respectively, the respective strain amounts are σ1 / E1 and σ2 / E2. As shown by the size of the white arrow, when the constituent film 201 is larger, the plate-like member receives a bending moment as shown by the black arrow in FIG. 12, and warps to the 201 side. It becomes. That is, the flatness of the plate member is reduced. This defect becomes more prominent as the total film thickness of the plate-like member becomes thinner. For example, when the total film thickness is 300 nm or less, it is considered an important problem.

本発明はこれらの問題点を解決するためのものであり、光偏向装置の板状部材の平面性を確保したまま薄膜化し、軽量ミラーを達成し、低電圧駆動を達成できる、光偏向装置、光偏向アレイ、画像形成装置及び画像投影表示装置を提供することを目的とする。   The present invention is for solving these problems, the optical deflecting device, which can be thinned while ensuring the flatness of the plate-like member of the optical deflecting device, achieve a lightweight mirror, and can achieve low voltage driving, An object is to provide a light deflection array, an image forming apparatus, and an image projection display apparatus.

前記問題点を解決するために、本発明の光偏向装置は、基板と、複数の規制部材と、支点部材と、板状部材と、複数の電極とを有している。そして、複数の規制部材はそれぞれ上部にストッパを有し、基板の複数の端部にそれぞれ設けられている。また、支点部材は頂部を有し、基板の上面に設けられている。更に、板状部材は固定端を持たず、かつ支点部材の頂部上に接するように配置され、上面に光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、基板と支点部材とストッパの間の空間内で可動的に配置され、複数の電極は板状部材の導電体層とほぼ対向して基板上にそれぞれ設けられている。このような構成を有する本発明の光偏向装置は、板状部材が支点部材を中心として静電引力により傾斜変位することにより、光反射領域に入射する光束が反射方向を変えて光偏向を行う。更に、本発明の光偏向装置では、板状部材が、弾性を有する第1の膜と、反射面を有する第2の膜の2層の積層構造で構成され、第1の膜の膜応力の向きと第2の膜応力の向きが同じであって第1の膜の膜応力に起因する歪量と、第2の膜の膜応力に起因する歪量を同等とすることに特徴がある。よって、第2の膜において入射光に対する反射光を効率良く反射させることができ、第1の膜において製造プロセス中や光偏向動作時における板状部材の変形、すなわち平面性の低下を抑制することができることにより、高反射性及び高平面性を両立した薄膜な光偏向装置を提供できる。 In order to solve the above problems, the optical deflection apparatus of the present invention includes a substrate, a plurality of regulating members, a fulcrum member, a plate member, and a plurality of electrodes. Each of the plurality of restricting members has a stopper at the top, and is provided at each of the plurality of end portions of the substrate. The fulcrum member has a top and is provided on the upper surface of the substrate. Further, the plate-like member does not have a fixed end, is disposed so as to contact the top of the fulcrum member, has a light reflection region on the upper surface, and has a conductor layer made of a conductive member at least partially. and is movably arranged in the space between the substrate and the fulcrum member and the stopper, the plurality of electrodes are provided on the substrate substantially opposite the conductive layer of the plate member. In the optical deflecting device of the present invention having such a configuration, the plate-like member is tilted and displaced by electrostatic attraction around the fulcrum member, so that the light beam incident on the light reflecting region changes the reflection direction and deflects the light. . Furthermore, in the optical deflecting device of the present invention, the plate-like member is constituted by a two-layer laminated structure of a first film having elasticity and a second film having a reflecting surface , and the film stress of the first film. The direction of the second film stress and the direction of the second film stress are the same, and the amount of strain caused by the film stress of the first film is equal to the amount of strain caused by the film stress of the second film. . Therefore, the reflected light with respect to the incident light can be efficiently reflected by the second film, and the deformation of the plate-like member during the manufacturing process or the light deflection operation, that is, the decrease in flatness can be suppressed by the first film. Therefore, it is possible to provide a thin-film optical deflecting device that achieves both high reflectivity and high flatness.

また、本発明の光偏向装置では、板状部材が、弾性を有する第1の膜と、反射面を有する第2の膜と、少なくとも1層以上の歪量調整膜との積層構造で構成され、第1の膜の膜応力の向きと第2の膜応力の向きが同じであってかつ歪量調整膜の膜応力の向きは第1、第2の膜応力の向きと逆向きであり、第1の膜の膜応力に起因する歪量と第2の膜の膜応力に起因する歪量の差分を歪量調整膜の膜応力に起因する歪量で相殺することに特徴がある。よって、第1の膜又は第2の膜のわずかな歪量のずれをなくし、より高平面性でかつ薄膜な光偏向装置を提供できる。 In the optical deflecting device of the present invention, the plate-like member has a laminated structure of a first film having elasticity , a second film having a reflecting surface , and at least one strain amount adjusting film. The direction of the film stress of the first film is the same as the direction of the second film stress, and the direction of the film stress of the strain adjustment film is opposite to the direction of the first and second film stresses, It is characterized in that the difference between the strain amount caused by the film stress of the first film and the strain amount caused by the film stress of the second film is offset by the strain amount caused by the film stress of the strain amount adjustment film. Therefore, it is possible to provide a light deflecting device having a higher planarity and a thin film by eliminating a slight displacement of the strain amount of the first film or the second film.

更に、第1のとしてシリコン窒化膜、アルミニウム窒化膜、アルミニウム合金の窒化膜、クロム膜又はクロム合金膜を用いることにより、高い引張応力を有する板状部材を提供でき、板状部材の薄膜化及び高い平面性の確保を実現できる。 Furthermore , by using a silicon nitride film, an aluminum nitride film, an aluminum alloy nitride film, a chromium film or a chromium alloy film as the first layer , a plate member having high tensile stress can be provided, and the plate member can be made thin. In addition, high flatness can be ensured.

また、歪量調整としてシリコン酸化膜又はクロム酸化膜を用いることにより、低い圧縮応力を有する歪量調整を提供することができ、第1のと第2のの任意の順に膜厚を最適化して積層でき、よって板状部材の平面性を向上させることができる。 Further, by using a silicon oxide film or a chromium oxide film as a strain amount adjusting film, it is possible to provide a distortion amount adjustment film having a low compressive stress, the film thickness in any order of the first film and the second film Can be laminated, and thus the planarity of the plate-like member can be improved.

また、別の発明としての光偏向アレイは、上記記載の光偏向装置を複数、任意の基板上に1次元又は2次元アレイ状に配置したことに特徴がある。よって、低電圧駆動が可能な光偏向アレイを提供できる。   Another feature of an optical deflection array according to another invention is that a plurality of the optical deflection devices described above are arranged in a one-dimensional or two-dimensional array on an arbitrary substrate. Therefore, an optical deflection array that can be driven at a low voltage can be provided.

更に、別の発明としての画像形成装置は、上記記載の光偏向アレイを、ライン露光型の潜像形成手段である光書込みユニットとして用いることに特徴がある。よって、低電圧駆動が可能な画像形成装置を提供できる。   Furthermore, an image forming apparatus as another invention is characterized in that the above-described optical deflection array is used as an optical writing unit which is a line exposure type latent image forming means. Therefore, an image forming apparatus that can be driven at a low voltage can be provided.

また、別の発明としての画像投影表示装置は、上記記載の光偏向アレイを、光源からの光束を画像情報に応じて目的の方向へ反射させる表示ユニットとして用いることに特徴がある。   According to another aspect of the present invention, an image projection display device is characterized in that the light deflection array described above is used as a display unit that reflects a light beam from a light source in a target direction according to image information.

本発明によれば、光偏向装置の板状部材を構成する膜種及び膜特性(弾性率及び膜応力)を最適化して各膜の歪量を調整することにより、板状部材の平面性を確保したまま薄膜化することができる。それにより軽量な光偏向装置を提供でき、固定端を持たない軽量な光偏向装置を傾斜変位させる駆動電圧を低下させることができ、高反射性及び高平面性を両立した薄膜な光偏向装置を提供でき、かつ低電圧駆動を達成することができる。   According to the present invention, the planarity of the plate-like member can be improved by optimizing the film type and film characteristics (elastic modulus and film stress) constituting the plate-like member of the light deflection apparatus and adjusting the strain amount of each film. The film can be thinned while being secured. As a result, it is possible to provide a light deflecting device that is lightweight, and to reduce the driving voltage for tilting displacement of the light deflecting device that does not have a fixed end, and to provide a thin film light deflecting device that achieves both high reflectivity and high flatness. And low voltage drive can be achieved.

本発明によれば、固定端を持たず、かつ支点部材の頂部上に接するように配置され、上面に光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、基板と支点部材とストッパの間の空間内で可動的に配置された板状部材を、弾性を有する第1の膜と、反射面を有する第2の膜の2層の積層構造で構成され、第1の膜の膜応力の向きと第2の膜応力の向きが同じであって第1の膜の膜応力に起因する歪量と、第2の膜の膜応力に起因する歪量を同等とする。 According to the present invention, a conductor layer made of a member that does not have a fixed end and is disposed so as to be in contact with the top of the fulcrum member, has a light reflection region on the upper surface, and has conductivity at least partially. and a movably arranged plate-shaped member in the space between the substrate and the fulcrum member and the stopper, a first film having elasticity, a stacked structure of two layers of the second film having a reflective surface The amount of strain caused by the film stress of the first film, the direction of the film stress of the first film being the same as the direction of the film stress of the first film, and the strain caused by the film stress of the second film Make the amount equal.

図1は本発明の第1の実施例に係る光偏向装置の構成を示す図であり、同図の(a)は平面図であり、同図の(b)は図1の(a)のB−B’線断面図である。但し、支点部材103及び電極105a,105b,105c,105dに関しては透過して記載している。図1において、図7と同じ参照符号は同じ構成要素を示す。図1に示す本実施例の光偏向装置300は、図7に示す従来の光偏向装置と異なる構成要素として、板状部材301が高弾性率を有する第1の部材302、高反射率を有する第2の部材303の2層で構成されている。また、板状部材301を構成する、高弾性率を有する第1の部材302の膜応力に起因する歪量と、高反射率を有する第2の部材303の膜応力に起因する歪量とはほぼ同等とする。更に、高弾性率を有する第1の部材302としてシリコン窒化膜、アルミニウム窒化膜またはアルミニウム合金の窒化膜、あるいはクロム膜またはクロム合金膜を用いている。なお、本実施例の光偏向装置の構成及び製造方法は、図7に示した従来の光偏向装置と同様であるのでここでは省略する。   FIG. 1 is a diagram showing a configuration of an optical deflecting device according to a first embodiment of the present invention. FIG. 1 (a) is a plan view, and FIG. 1 (b) is a diagram of FIG. It is a BB 'line sectional view. However, the fulcrum member 103 and the electrodes 105a, 105b, 105c, and 105d are described in a transparent manner. 1, the same reference numerals as those in FIG. 7 denote the same components. The optical deflecting device 300 of this embodiment shown in FIG. 1 has a first member 302 having a high elastic modulus as a component different from the conventional optical deflecting device shown in FIG. The second member 303 is composed of two layers. Further, the amount of strain caused by the film stress of the first member 302 having a high elastic modulus and the amount of strain caused by the film stress of the second member 303 having a high reflectance constituting the plate-like member 301 are as follows. Almost the same. Further, a silicon nitride film, an aluminum nitride film or an aluminum alloy nitride film, or a chromium film or a chromium alloy film is used as the first member 302 having a high elastic modulus. The configuration and the manufacturing method of the optical deflecting device of this embodiment are the same as those of the conventional optical deflecting device shown in FIG.

図2において、板状部材301は高反射率を有する第2の部材303と高弾性率を有する第1の部材302の積層により構成される。このように構成とすることにより、高い反射性を有するミラーが総膜厚300nm以下の薄膜にて平面性を確保して形成することができる。以下に、高弾性率を有する部材が、製造プロセス中の凝着や光偏向動作時の固着や平面性不良を抑制できる理由を簡単に説明する。上述のように、弾性率とはヤング率のことであり、高弾性率としては200GPa以上をいう。上述のε=σ/Eは膜中の残留膜応力についてのみ該当するわけではなく、外力に対しても歪を表すことができる。すなわち一定の外力に対して、膜の弾性率が2倍になると歪は2分の1となる。すなわちそれだけ変形を抑制することができるわけで、上記平面性不良を抑制する理由である。   In FIG. 2, the plate-like member 301 is configured by stacking a second member 303 having a high reflectance and a first member 302 having a high elastic modulus. By adopting such a configuration, a mirror having high reflectivity can be formed with a thin film having a total film thickness of 300 nm or less while ensuring flatness. The reason why a member having a high elastic modulus can suppress adhesion during a manufacturing process, sticking during a light deflection operation, and poor flatness will be briefly described below. As described above, the elastic modulus is Young's modulus, and the high elastic modulus is 200 GPa or more. The above-mentioned ε = σ / E does not correspond only to the residual film stress in the film, but can also represent strain with respect to an external force. That is, when the elastic modulus of the film is doubled for a certain external force, the strain is halved. That is, deformation can be suppressed accordingly, and this is the reason for suppressing the above-described poor flatness.

次に、下記の表1に、高弾性率を有する膜として使用される膜の弾性率及び膜応力及び上述のε=σ/Eから算出される歪量を記載する。   Next, Table 1 below lists the elastic modulus and film stress of a film used as a film having a high elastic modulus, and the amount of strain calculated from the above-mentioned ε = σ / E.

Figure 0004397236
Figure 0004397236

この表1において、膜応力の+は引張応力を示し、−は圧縮応力を示す。また、歪量の+は引張応力に起因し縮む方に作用する歪量であり、−は圧縮応力に起因し伸びる方に作用する歪量である。膜応力は第1の部材302、第2の部材303の堆積後の製造プロセスにおける熱過程を経た後の応力値である。上記表1において、アルミニウム窒化膜1は、DCマグネトロンスパッタ法にて、アルミニウムをターゲットとしてAr、N混合ガスにより反応性スパッタされて形成された膜である。アルミニウム窒化膜2は、DCマグネトロンスパッタ法にて、アルミニウム3チタン1合金(AlTi)をターゲットとしてAr、N混合ガスにより反応性スパッタされて形成された膜である。アルミニウム窒化膜3は、DCマグネトロンスパッタ法にて、アルミニウムーネオジウム合金をターゲットとしてAr、N混合ガスにより反応性スパッタされて形成された膜である。更に、シリコン窒化膜1は、低圧CVD法によりシラン及びアンモニアガスを原料として830℃の高温で形成された膜である。シリコン窒化膜2は、低温高密度プラズマCVD法によりシラン及びアンモニアガスを原料として300℃の低温で形成された膜である。クロム膜はDCマグネトロンスパッタ法にて、クロムをターゲットとしてArガスによりスパッタされて形成された膜である。上記表1に記載のように弾性率が200〜380GPaまでの任意の弾性率を有する部材が提供できる。また、この部材以外にも必要に応じて、弾性率400GPaの高い値を有するアルミニウム酸化膜、及び弾性率450GPaの高い値を有するシリコン炭化膜を用いることができる。上記表1に記載の高弾性率を有する膜は、膜厚250Nm以下の膜厚で用いられる。 In Table 1, + of the film stress indicates tensile stress, and-indicates compressive stress. Further, + of the strain amount is a strain amount acting on the contraction direction due to the tensile stress, and-is a strain amount acting on the stretch direction due to the compressive stress. The film stress is a stress value after undergoing a thermal process in the manufacturing process after deposition of the first member 302 and the second member 303. In Table 1 above, the aluminum nitride film 1 is a film formed by reactive sputtering with a mixed gas of Ar and N 2 using aluminum as a target by a DC magnetron sputtering method. The aluminum nitride film 2 is a film formed by reactive sputtering using a mixed gas of Ar and N 2 with an aluminum 3 titanium 1 alloy (Al 3 Ti) as a target by a DC magnetron sputtering method. The aluminum nitride film 3 is a film formed by reactive sputtering with a mixed gas of Ar and N 2 using an aluminum-neodymium alloy as a target by a DC magnetron sputtering method. Further, the silicon nitride film 1 is a film formed at a high temperature of 830 ° C. using silane and ammonia gas as raw materials by a low pressure CVD method. The silicon nitride film 2 is a film formed at a low temperature of 300 ° C. using silane and ammonia gas as raw materials by a low-temperature high-density plasma CVD method. The chromium film is a film formed by sputtering with Ar gas using chromium as a target by a DC magnetron sputtering method. As described in Table 1 above, a member having an arbitrary elastic modulus of 200 to 380 GPa can be provided. In addition to this member, an aluminum oxide film having a high elastic modulus of 400 GPa and a silicon carbide film having a high elastic modulus of 450 GPa can be used as necessary. The film | membrane which has the high elasticity modulus of the said Table 1 is used by the film thickness of 250 Nm or less.

次に、下記の表2に、高反射率を有する膜として使用される膜の反射率及び弾性率及び膜応力及び上述のε=σ/Eから算出される歪量を記載する。   Next, Table 2 below shows the amount of strain calculated from the reflectance, elastic modulus, film stress, and ε = σ / E of the film used as a film having a high reflectance.

Figure 0004397236
Figure 0004397236

ここで、反射率は一般的に高反射ミラー膜として用いられるアルミニウム膜の波長400〜800nmの入射光に対する反射率を100%とした相対的な値である。弾性率及び膜応力を表1と同様な記載である。アルミニウム膜は、DCマグネトロンスパッタ法にて、アルミニウムをターゲットとしてArガスによりスパッタされて形成された膜である。アルミニウム合金膜1はDCマグネトロンスパッタ法にて、アルミニウム−シリコン合金をターゲットとしてArガスによりスパッタされて形成された膜である。アルミニウム合金膜2はDCマグネトロンスパッタ法にて、アルミニウム−ネオジウム合金をターゲットとしてArガスによりスパッタされて形成された膜である。上記表2に記載されている膜は97%以上の高い反射率を有しつつ、膜応力に起因する歪量を幾つか選択することができる。なお、高反射率を有する膜は上記の表2に記載の膜組成に限定されるものではない。例えば、アルミニウム−シリコン−銅合金膜やアルミニウム−シリコン−チタン合金膜やアルミニウム−チタン合金膜であっても良い。各組成を選択することにより、高い反射率を確保しつつ膜応力に起因する歪量を3.0〜6.0×10―3で任意に選択できる。高反射率を有する膜は反射性を確保するために30nm以上の膜厚で構成され、板状部材の総膜厚を300nm以下とする膜厚で用いられる。なお、上記高反射率を有する膜は、アルミニウム系合金膜であることに起因して、本実施例の光偏向装置の板状部材に要求される要件である導電性を有することを兼ねている。上記の表1及び表2から最適な組み合わせの具体例1及び具体例2の構成及び実際の板状部材の反りを、以下の表3に記載する。表3において、板状部材の反りは、光偏向装置の特徴である固定端を有しない板状部材が犠牲層エッチング後に開放された後に、代表的なミラーとしての大きさである10μm×10μmの大きさの板状部材の反り量を測定した値である。 Here, the reflectance is a relative value in which the reflectance with respect to incident light with a wavelength of 400 to 800 nm of an aluminum film generally used as a highly reflective mirror film is 100%. The elastic modulus and film stress are the same as in Table 1. The aluminum film is a film formed by sputtering with Ar gas using aluminum as a target by a DC magnetron sputtering method. The aluminum alloy film 1 is a film formed by sputtering with Ar gas using an aluminum-silicon alloy as a target by a DC magnetron sputtering method. The aluminum alloy film 2 is a film formed by sputtering with Ar gas using an aluminum-neodymium alloy as a target by a DC magnetron sputtering method. While the film described in Table 2 has a high reflectance of 97% or more, several strains due to the film stress can be selected. The film having a high reflectance is not limited to the film composition described in Table 2 above. For example, an aluminum-silicon-copper alloy film, an aluminum-silicon-titanium alloy film, or an aluminum-titanium alloy film may be used. By selecting each composition, the amount of strain due to film stress can be arbitrarily selected from 3.0 to 6.0 × 10 −3 while ensuring high reflectance. The film having high reflectivity is formed with a film thickness of 30 nm or more in order to ensure reflectivity, and is used with a film thickness that makes the total film thickness of the plate-like member 300 nm or less. The film having high reflectivity also has conductivity, which is a requirement required for the plate-like member of the optical deflecting device of this embodiment, due to being an aluminum-based alloy film. . Table 3 below shows the configurations of specific examples 1 and 2 and the actual warpage of the plate-like member in the optimum combinations from Tables 1 and 2 above. In Table 3, the warpage of the plate-like member is 10 μm × 10 μm, which is a typical mirror size after the plate-like member having no fixed end, which is a feature of the optical deflector, is released after the sacrifice layer etching. It is the value which measured the curvature amount of the plate-shaped member of a magnitude | size.

Figure 0004397236
Figure 0004397236

具体例1においては、表1に記載のクロム膜と表2に記載のアルミニウム膜を板状部材301の第1の部材302及び第2の部材303として用い、具体例2では、表1に記載のシリコン窒化膜1と表2に記載のアルミニウム合金膜1を板状部材301の第1の部材302及び第2の部材303として用いた。この部材共に膜応力に起因する歪量が同等となる構成とすることにより、図2の(a)に模式的に示したように積層膜の歪量の差が生じないので曲げモーメント(図12の黒色の矢印)が発生せず、板状部材の反り量(図12に反り量の定義を図示)も0.1μm以下と小さな値が得られた。   In Specific Example 1, the chromium film described in Table 1 and the aluminum film described in Table 2 were used as the first member 302 and the second member 303 of the plate-shaped member 301. In Specific Example 2, the chromium film described in Table 1 was used. The silicon nitride film 1 and the aluminum alloy film 1 listed in Table 2 were used as the first member 302 and the second member 303 of the plate member 301. By adopting a configuration in which the amount of strain caused by the film stress is the same for both members, there is no difference in the amount of strain in the laminated film as schematically shown in FIG. No black arrow) occurred, and the warpage amount of the plate-like member (the definition of the warpage amount is shown in FIG. 12) was as small as 0.1 μm or less.

なお、上記高弾性率を有する膜は、必要に応じて導電性を有するクロム膜、絶縁性を有するアルミニウム窒化膜、シリコン窒化膜が選択される。   As the film having a high elastic modulus, a chromium film having conductivity, an aluminum nitride film having insulation, and a silicon nitride film are selected as necessary.

次に、図3は本発明の第2の実施例に係る光偏向装置の構成を示す図であり、同図の(a)は平面図であり、図3の(b)は図3の(a)のB−B’線断面図である。但し、支点部材103及び電極105a,105b,105c,105dに関しては透過して記載している。第1の実施例と主に異なる点は板状部材401が高弾性率を有する第1の部材402と、高反射率を有する第2の部材403と、少なくとも1層以上の歪量調整部材404で構成されており、かつ板状部材401を構成する各部材内または部材間の歪量の差を、歪量調整部材404の歪量で補正する点である。また、歪量調整部材404としてシリコン酸化膜あるいはクロム酸化膜を用いている。図3において、歪量調整部材404は第1の部材402と第2の部材403の間に設けられているが、第1の部材402の上層であっても良いし、第2の部材403の下層であっても良い。また、必ずしも1層でなくて良い。上述した第1の実施例では高弾性率を有する第1の部材302と高反射率を有する第2の部材303の歪量をほぼ同等とすることにより板状部材301の平面性の向上を図ったが、必ずしも第1の部材302と第2の部材303の歪量を合わせるだけで改善されない場合もあり得る。例えば、第1の部材402や第2の部材403が、堆積手段や膜種によってそれぞれの膜厚方向に膜応力に分布を有する場合である。この傾向は下地基板との熱膨張係数差が大きい場合に顕著となり、第1の部材402及び第2の部材403の膜厚を例えば100nm以下に薄膜化すると影響が大きくなり、第2の実施例の構成のみで改善されないこともある。また、第1の部材402及び第2の部材403の歪量がわずかなずれを生じる場合もあり得る。このような構成において、板状部材401の反りを抑制するために歪量調整部材404を配置する。前述の表2に見られるように、高反射率を有する第2の部材403としてアルミニウム系合金を用いた場合、その膜は低い引張応力を有する。また、高弾性率を有する第1の部材402も前述のように比較的強い引張応力であることが望まれる。すなわち第1の部材402及び第2の部材403共に引張応力の部材で構成されることが好ましく、その歪量を調整するために効果的な膜としては膜応力が圧縮応力を有することが望まれる。すなわち歪量調整部材404としては、圧縮応力を有する膜が望ましい。下記の表4に、歪量調整部材としてクロム酸化膜を用いた具体例3、シリコン酸化膜を用いた具体例4の構成と板状部材の反り量を記載する。   Next, FIG. 3 is a diagram showing a configuration of an optical deflection apparatus according to the second embodiment of the present invention, in which (a) of FIG. 3 is a plan view, and (b) of FIG. It is BB 'sectional view taken on the line of a). However, the fulcrum member 103 and the electrodes 105a, 105b, 105c, and 105d are shown in a transparent manner. The main difference from the first embodiment is that the plate member 401 has a first member 402 having a high elastic modulus, a second member 403 having a high reflectance, and a strain amount adjusting member 404 having at least one layer. The difference in the amount of distortion within or between each member constituting the plate-like member 401 is corrected by the strain amount of the strain amount adjusting member 404. Further, a silicon oxide film or a chromium oxide film is used as the strain amount adjusting member 404. In FIG. 3, the strain amount adjusting member 404 is provided between the first member 402 and the second member 403, but it may be an upper layer of the first member 402 or the second member 403. It may be a lower layer. Further, it is not always necessary to have one layer. In the first embodiment described above, the planarity of the plate-like member 301 is improved by making the amount of strain of the first member 302 having a high elastic modulus and the second member 303 having a high reflectance substantially equal. However, there may be a case in which the improvement is not necessarily achieved only by matching the strain amounts of the first member 302 and the second member 303. For example, this is a case where the first member 402 and the second member 403 have a distribution of film stress in the respective film thickness directions depending on the deposition means and film type. This tendency becomes conspicuous when the difference in thermal expansion coefficient from the base substrate is large. When the film thickness of the first member 402 and the second member 403 is reduced to, for example, 100 nm or less, the influence becomes large. It may not be improved only by the configuration. Further, there may be a case where the amount of distortion of the first member 402 and the second member 403 is slightly shifted. In such a configuration, the strain amount adjusting member 404 is disposed in order to suppress the warpage of the plate-like member 401. As can be seen from Table 2 above, when an aluminum-based alloy is used as the second member 403 having a high reflectance, the film has a low tensile stress. The first member 402 having a high elastic modulus is also desired to have a relatively strong tensile stress as described above. That is, it is preferable that both the first member 402 and the second member 403 are composed of tensile stress members, and it is desirable that the film stress has a compressive stress as an effective film for adjusting the amount of strain. . That is, the strain amount adjusting member 404 is preferably a film having a compressive stress. Table 4 below shows the configuration of specific example 3 using a chromium oxide film as a strain amount adjusting member and the configuration of specific example 4 using a silicon oxide film and the amount of warpage of the plate member.

Figure 0004397236
Figure 0004397236

なお、表4中、具体例3の第1の部材402の層と第2の部材403の層は具体例1の実施例1の各層と同一の膜種であり、第2の部材403の層の膜厚を薄膜化した場合を示している。また、具体例4の第1の部材402の層と第2の部材403の層は前述の具体例2の各層と同一膜種であり、第2の部材403の層の膜厚を薄膜化した場合を示している。表4における板状部材401の反りは表3と同様な評価手段による。具体例3及び具体例4共に、板状部材401の総膜厚が150nm程度であるにかかわらず、反りが約0.1μmと抑制されていることがわかる。具体例3に用いた歪量調整部材404のクロム酸化膜は、RFマグネトロンスパッタ法にて、クロムをターゲットとしてAr、O混合ガスにより反応性スパッタされて形成された膜であり、−2.0GPa程度の高い圧縮応力を膜応力として有する膜である。この膜は非常に薄膜にて歪量調整が可能であるだけでなく、高弾性率を有する膜としてクロム膜を用いた場合は同一のウェットエッチングで加工できる利点もある。具体例4に用いた歪量調整部材404のシリコン酸化膜は、プラズマCVD法にて、シラン、2窒化酸素ガスを原料として300℃の成膜温度で堆積された膜であり、−0.4GPa程度の低い圧縮応力を膜応力として有する膜である。この膜は応力値が比較的低いので歪量調整を膜厚で制御しやすい利点がある。歪調整部材を配置する効果を模式的に示した図3の(b)によれば、薄膜化により顕著となる高弾性率を有する第1の部材402の膜応力の膜厚分布を歪量調整部材404を配置して相殺、補正することにより、曲げモーメントを発生させず、反りを抑制している。この歪量調整部材による反りの抑制は板状部材の総膜厚が小さい場合すなわち薄膜における抑制なので、膜厚の最適化が重要である。 In Table 4, the layer of the first member 402 and the layer of the second member 403 of the specific example 3 are the same film type as each layer of the first example of the specific example 1, and the layer of the second member 403 This shows a case where the film thickness of the film is reduced. Further, the layer of the first member 402 and the layer of the second member 403 in Example 4 are the same film type as each layer of Example 2 described above, and the film thickness of the layer of the second member 403 is reduced. Shows the case. The warpage of the plate-like member 401 in Table 4 is based on the same evaluation means as in Table 3. It can be seen that in both the specific example 3 and the specific example 4, the warpage is suppressed to about 0.1 μm regardless of the total film thickness of the plate-like member 401 being about 150 nm. The chromium oxide film of the strain amount adjusting member 404 used in the specific example 3 is a film formed by reactive sputtering using a mixed gas of Ar and O 2 with chromium as a target by RF magnetron sputtering. It is a film having a high compressive stress of about 0 GPa as a film stress. This film is not only a very thin film and the amount of strain can be adjusted, but when a chromium film is used as a film having a high elastic modulus, there is an advantage that it can be processed by the same wet etching. The silicon oxide film of the strain amount adjusting member 404 used in the specific example 4 is a film deposited at a film forming temperature of 300 ° C. using silane dioxygen dioxide gas as a raw material by a plasma CVD method, and is −0.4 GPa. It is a film having a low compressive stress as a film stress. Since this film has a relatively low stress value, there is an advantage that the strain amount adjustment can be easily controlled by the film thickness. According to FIG. 3B schematically showing the effect of disposing the strain adjusting member, the film thickness distribution of the film stress of the first member 402 having a high elastic modulus that becomes conspicuous by thinning is adjusted for the amount of strain. By arranging and canceling the member 404, the bending moment is not generated and the warp is suppressed. Since the warpage suppression by the strain amount adjusting member is suppressed when the total film thickness of the plate-like member is small, that is, suppression in the thin film, optimization of the film thickness is important.

次に、図4は別の発明の一実施例に係る光偏向アレイの構成を示す平面図である。本発明の光偏向アレイは、上述した光偏向装置を複数個、1次元または2次元アレイ状に配置したものである。図4の(a)は、図1の光偏向装置を光偏向面方向に対して垂直方向に複数個、一列に整列して配置した光偏向アレイの平面図であり、つまり1次元アレイである。図4の(b)は、図1の光偏向装置を光偏向面方向と垂直方向に複数個整列してアレイ状に配置した光偏向アレイの平面図であり、つまり2次元アレイである。このように上述した光偏向装置を複数個、1次元または2次元アレイ状に配置することにより、低電圧駆動ができる光偏向アレイを提供することができる。   Next, FIG. 4 is a plan view showing the configuration of an optical deflection array according to another embodiment of the present invention. An optical deflection array according to the present invention is obtained by arranging a plurality of the optical deflection devices described above in a one-dimensional or two-dimensional array. FIG. 4A is a plan view of an optical deflection array in which a plurality of the optical deflection devices of FIG. 1 are arranged in a line in a direction perpendicular to the optical deflection surface direction, that is, a one-dimensional array. . FIG. 4B is a plan view of a light deflection array in which a plurality of the light deflection devices in FIG. 1 are aligned in the direction perpendicular to the light deflection surface and arranged in an array, that is, a two-dimensional array. Thus, by arranging a plurality of the above-described optical deflection devices in a one-dimensional or two-dimensional array, an optical deflection array that can be driven at a low voltage can be provided.

次に、図5は別の発明の一実施例に係る画像形成装置の構成を示す概略断面図である。同図に示す本実施例の画像形成装置500は、図4に示す光偏向アレイである光偏向アレイ503をライン露光型の潜像形成手段である光書込みユニット502として用いている。電子写真プロセスにより光書き込みを行って画像を形成する画像形成装置500は、図中の矢印D方向に回転可能に保持されて形成画像を担持し、ドラム形状の感光体である画像担持体501を有し、帯電手段504で均一に帯電された画像担持体501上を光偏向アレイ503からなる光書込みユニット502で光書き込みを行って潜像を形成する。そして、この潜像を現像手段505により画像担持体501上にトナー画像として形成し、その後トナー画像を転写手段506で被転写体507に転写して、被転写体507に転写されたトナー画像を定着手段508で定着した後に、被転写体507を排紙トレイ509に排紙して収納される。一方、トナー画像を転写手段507で被転写体507に転写した後の画像担持体501は、クリーニング手段510でクリーニングされて次工程の画像形成に備えるようになっている。光書込みユニット502は、光源511からの入射光束512を、第1のレンズシステム513を介して光偏向アレイ503に照射し、各光偏向装置は画像情報に応じて傾斜変位し反射光方向を変え、入射光束512を第2のレンズシステム514を通じて画像担持体501上の表面に結像させるようになっている。このように、図4に示す光偏向アレイを光書込みユニットとして用いることにより、低電圧駆動が可能な画像形成装置を提供できる。   Next, FIG. 5 is a schematic sectional view showing the structure of an image forming apparatus according to an embodiment of another invention. The image forming apparatus 500 of this embodiment shown in the figure uses the optical deflection array 503 that is the optical deflection array shown in FIG. 4 as the optical writing unit 502 that is a line exposure type latent image forming means. An image forming apparatus 500 that forms an image by performing optical writing by an electrophotographic process holds the formed image so as to be rotatable in the direction of arrow D in the figure, and includes an image carrier 501 that is a drum-shaped photoconductor. A latent image is formed by performing optical writing on the image carrier 501 that is uniformly charged by the charging unit 504 by the optical writing unit 502 including the optical deflection array 503. The latent image is formed as a toner image on the image carrier 501 by the developing unit 505, and then the toner image is transferred to the transfer target 507 by the transfer unit 506, and the toner image transferred to the transfer target 507 is transferred. After fixing by the fixing unit 508, the transfer target 507 is discharged onto the discharge tray 509 and stored. On the other hand, the image carrier 501 after the toner image is transferred to the transfer target 507 by the transfer unit 507 is cleaned by the cleaning unit 510 to prepare for image formation in the next process. The optical writing unit 502 irradiates the light deflection array 503 with the incident light beam 512 from the light source 511 via the first lens system 513, and each light deflection device is tilted and displaced in accordance with the image information to change the reflected light direction. The incident light beam 512 is imaged on the surface of the image carrier 501 through the second lens system 514. As described above, by using the optical deflection array shown in FIG. 4 as an optical writing unit, an image forming apparatus capable of low voltage driving can be provided.

次に、図6は別の発明の一実施例に係る画像投影表示装置の構成を示す概略図である。画像投影表示装置600は、光源601からの光束608を画像情報に応じて目的の方向へ反射させる表示ユニット603として図4に示した光偏向アレイを用いている。図6において、光源601は白色光源などの、レーザ光源に比べ安価な光源である。光学系602は光源601からの光束608を光偏向アレイ603に導く照明光学系である。光偏向アレイ603は図4に示した光偏向アレイである。投影光学系604、605は、表示画面の垂直方向の画素列及び水平方向の画素列に対応して2次元に配置された光偏向アレイ603により目的方向に偏向された光束を、拡大投影する投影光学系である。制御システム606は光偏向アレイ603の動作を制御する制御システムであり、電子回路により構成される。図中に点線で示す光束608の一部を示したが、光源601から発せられた光は照明光学系602により光偏向アレイ603上に導かれ、光偏向アレイ603で偏向された光束は投影光学系604、605により、2次元画像として投影される。なお、図6において、回転カラーホィール607は、光偏向アレイ603に導かれる入射光束の波長を選択するために用いられる。このように、本発明の画像投影表示装置によれば、上述した光偏向アレイを表示ユニットとして用いていることから、低電圧駆動が可能となる。   Next, FIG. 6 is a schematic diagram showing the configuration of an image projection display device according to another embodiment of the present invention. The image projection display device 600 uses the light deflection array shown in FIG. 4 as a display unit 603 that reflects the light beam 608 from the light source 601 in a target direction according to image information. In FIG. 6, a light source 601 is a cheap light source such as a white light source as compared with a laser light source. The optical system 602 is an illumination optical system that guides the light beam 608 from the light source 601 to the light deflection array 603. The optical deflection array 603 is the optical deflection array shown in FIG. Projection optical systems 604 and 605 are projections for enlarging and projecting light beams deflected in a target direction by a light deflection array 603 arranged two-dimensionally corresponding to the vertical pixel columns and the horizontal pixel columns of the display screen. It is an optical system. The control system 606 is a control system that controls the operation of the light deflection array 603 and is configured by an electronic circuit. Although a part of a light beam 608 indicated by a dotted line is shown in the drawing, the light emitted from the light source 601 is guided onto the light deflection array 603 by the illumination optical system 602, and the light beam deflected by the light deflection array 603 is projected optically. Projected as a two-dimensional image by the systems 604 and 605. In FIG. 6, a rotating color wheel 607 is used to select the wavelength of the incident light beam guided to the light deflection array 603. As described above, according to the image projection display device of the present invention, since the above-described light deflection array is used as a display unit, low voltage driving is possible.

なお、各発明は上記実施例に限定されるものではなく、特許請求の範囲内の記載であれば多種の変形や置換可能であることは言うまでもない。   Each invention is not limited to the above-described embodiments, and it goes without saying that various modifications and substitutions are possible as long as they are described within the scope of the claims.

本発明の第1の実施例に係る光偏向装置の構成を示す図である。It is a figure which shows the structure of the optical deflection | deviation apparatus based on 1st Example of this invention. 板状部材の構成を示す断面図である。It is sectional drawing which shows the structure of a plate-shaped member. 本発明の第2の実施例に係る光偏向装置の構成を示す平面図である。It is a top view which shows the structure of the optical deflection | deviation apparatus based on 2nd Example of this invention. 別の発明の一実施例に係る光偏向アレイの構成を示す平面図である。It is a top view which shows the structure of the optical deflection | deviation array which concerns on one Example of another invention. 別の発明の一実施例に係る画像形成装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the image forming apparatus which concerns on one Example of another invention. 別の発明の一実施例に係る画像投影表示装置の構成を示す概略図である。It is the schematic which shows the structure of the image projection display apparatus which concerns on one Example of another invention. 従来の光偏向装置の構成を示す図である。It is a figure which shows the structure of the conventional optical deflection | deviation apparatus. 従来の光偏向装置の駆動の様子を示す図である。It is a figure which shows the mode of the drive of the conventional optical deflection | deviation apparatus. 各電極に印加する電位のタイミングと板状部材の傾斜変位の関係を示す図である。It is a figure which shows the relationship between the timing of the electric potential applied to each electrode, and the inclination displacement of a plate-shaped member. 従来の光偏向装置の製造プロセスの一例を示す工程断面図である。It is process sectional drawing which shows an example of the manufacturing process of the conventional optical deflection | deviation apparatus. ON動作後に起きた不具合の様子を示す断面図である。It is sectional drawing which shows the mode of the malfunction which occurred after ON operation. 板状部材が2層で構成され犠牲層エッチング時に歪が開放された様子を示す断面図である。It is sectional drawing which shows a mode that the plate-shaped member was comprised by 2 layers and distortion was released at the time of sacrificial layer etching.

符号の説明Explanation of symbols

300;光偏向装置、301,401;板状部材、
302,402;第1の部材、303,403;第2の部材、
304,404;歪量調整部材、500;画像形成装置、
503,603;光偏向アレイ、600;画像投影表示装置。

300; light deflection device; 301, 401; plate-like member;
302, 402; first member, 303, 403; second member,
304, 404; distortion amount adjusting member, 500; image forming apparatus,
503, 603; light deflection array, 600; image projection display device.

Claims (7)

基板と、複数の規制部材と、支点部材と、板状部材と、複数の電極とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、かつ前記支点部材の頂部上に接するように配置され、上面に光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記複数の電極は前記板状部材の導電体層とほぼ対向して基板上にそれぞれ設けられ、前記板状部材が前記支点部材を中心として静電引力により傾斜変位することにより、前記光反射領域に入射する光束が反射方向を変えて光偏向を行う光偏向装置において、
前記板状部材が、弾性を有する第1の膜と、反射面を有する第2の膜の2層の積層構造で構成され、前記第1の膜の膜応力の向きと前記第2の膜応力の向きが同じであって前記第1の膜の膜応力に起因する歪量と、前記第2の膜の膜応力に起因する歪量を同等とすることを特徴とする光偏向装置。
A substrate, a plurality of restricting members, a fulcrum member, a plate-like member, and a plurality of electrodes, each of the plurality of restricting members having a stopper on the top and provided at each of a plurality of ends of the substrate The fulcrum member has a top and is provided on the upper surface of the substrate, the plate-like member does not have a fixed end and is disposed so as to contact the top of the fulcrum member , and has a light reflection region on the upper surface. A conductive layer made of a conductive member at least partially, and is movably disposed in a space between the substrate, the fulcrum member, and the stopper, and the plurality of electrodes are in the form of a plate The plate member is provided on the substrate substantially opposite to the conductor layer of the member, and the plate member is inclined and displaced by electrostatic attraction around the fulcrum member, so that the light beam incident on the light reflecting region changes the reflection direction. In an optical deflection device that deflects light Te,
The plate-like member, the first and the membrane, consists of a two-layer structure of the second film having a reflecting surface, orientation as the second layer of film stress of the first film having an elastic and the amount of distortion direction of stress caused by the film stress of the first film have the same light deflecting device, characterized in that equal the amount of distortion caused by the film stress of the second film.
基板と、複数の規制部材と、支点部材と、板状部材と、複数の電極とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、かつ前記支点部材の頂部上に接するように配置され、上面に光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記複数の電極は前記板状部材の導電体層とほぼ対向して基板上にそれぞれ設けられ、前記板状部材が前記支点部材を中心として静電引力により傾斜変位することにより、前記光反射領域に入射する光束が反射方向を変えて光偏向を行う光偏向装置において、
前記板状部材が、弾性を有する第1の膜と、反射面を有する第2の膜と、少なくとも1層以上の歪量調整膜との積層構造で構成され、前記第1の膜の膜応力の向きと前記第2の膜応力の向きが同じであってかつ前記歪量調整膜の膜応力の向きは前記第1、第2の膜応力の向きと逆向きであり、前記第1の膜の膜応力に起因する歪量と前記第2の膜の膜応力に起因する歪量の差分を前記歪量調整膜の膜応力に起因する歪量で相殺することを特徴とする光偏向装置。
A substrate, a plurality of restricting members, a fulcrum member, a plate-like member, and a plurality of electrodes, each of the plurality of restricting members having a stopper on the top and provided at each of a plurality of ends of the substrate The fulcrum member has a top and is provided on the upper surface of the substrate, the plate-like member does not have a fixed end and is disposed so as to contact the top of the fulcrum member , and has a light reflection region on the upper surface. A conductive layer made of a conductive member at least partially, and is movably disposed in a space between the substrate, the fulcrum member, and the stopper, and the plurality of electrodes are in the form of a plate The plate member is provided on the substrate substantially opposite to the conductor layer of the member, and the plate member is inclined and displaced by electrostatic attraction around the fulcrum member, so that the light beam incident on the light reflecting region changes the reflection direction. In an optical deflection device that deflects light Te,
The plate-like member has a laminated structure of a first film having elasticity , a second film having a reflective surface , and at least one strain amount adjusting film, and the film stress of the first film And the direction of the second film stress is the same, and the direction of the film stress of the strain adjustment film is opposite to the direction of the first film stress and the second film stress. An optical deflection apparatus characterized in that the difference between the strain amount caused by the film stress of the second film and the strain amount caused by the film stress of the second film is offset by the strain amount caused by the film stress of the strain amount adjustment film.
前記第1の膜としてシリコン窒化膜、アルミニウム窒化膜、アルミニウム合金の窒化膜、クロム膜又はクロム合金膜を用いる請求項1又は2に記載の光偏向装置。   3. The optical deflecting device according to claim 1, wherein a silicon nitride film, an aluminum nitride film, an aluminum alloy nitride film, a chromium film, or a chromium alloy film is used as the first film. 前記歪量調整膜としてシリコン酸化膜又はクロム酸化膜を用いる請求項2記載の光偏向装置。   The optical deflection apparatus according to claim 2, wherein a silicon oxide film or a chromium oxide film is used as the strain amount adjusting film. 請求項1〜4のいずれかに記載の光偏向装置を複数、任意の基板上に1次元又は2次元アレイ状に配置したことを特徴とする光偏向アレイ。   An optical deflection array comprising a plurality of optical deflection devices according to claim 1 arranged in a one-dimensional or two-dimensional array on an arbitrary substrate. 請求項5記載の光偏向アレイを、ライン露光型の潜像形成手段である光書込みユニットとして用いることを特徴とする画像形成装置。   6. An image forming apparatus, wherein the optical deflection array according to claim 5 is used as an optical writing unit which is a line exposure type latent image forming means. 請求項5記載の光偏向アレイを、光源からの光束を画像情報に応じて目的の方向へ反射させる表示ユニットとして用いることを特徴とする画像投影表示装置。   6. An image projection display device, wherein the light deflection array according to claim 5 is used as a display unit that reflects a light beam from a light source in a target direction according to image information.
JP2004000111A 2004-01-05 2004-01-05 Optical deflection apparatus, optical deflection array, image forming apparatus, and image projection display apparatus Expired - Fee Related JP4397236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000111A JP4397236B2 (en) 2004-01-05 2004-01-05 Optical deflection apparatus, optical deflection array, image forming apparatus, and image projection display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000111A JP4397236B2 (en) 2004-01-05 2004-01-05 Optical deflection apparatus, optical deflection array, image forming apparatus, and image projection display apparatus

Publications (2)

Publication Number Publication Date
JP2005195721A JP2005195721A (en) 2005-07-21
JP4397236B2 true JP4397236B2 (en) 2010-01-13

Family

ID=34816046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000111A Expired - Fee Related JP4397236B2 (en) 2004-01-05 2004-01-05 Optical deflection apparatus, optical deflection array, image forming apparatus, and image projection display apparatus

Country Status (1)

Country Link
JP (1) JP4397236B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688130B2 (en) 2004-10-20 2011-05-25 株式会社リコー Optical system, color information display method, light deflection apparatus, and image projection display apparatus
JP2006323358A (en) 2005-04-20 2006-11-30 Ricoh Co Ltd Light deflector, light deflection array, optical system, image projection display apparatus, and image forming apparatus
JP2018122391A (en) 2017-01-31 2018-08-09 株式会社リコー MEMS element
JP7035323B2 (en) 2017-03-15 2022-03-15 株式会社リコー Movable diffractive element and spectroscopic device

Also Published As

Publication number Publication date
JP2005195721A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
Madec Overview of deformable mirror technologies for adaptive optics and astronomy
US9785054B2 (en) Mirror, more particularly for a microlithographic projection exposure apparatus
US7607786B2 (en) Light deflector, light deflection array, optical system, image forming device, and projection type image display apparatus
JP4400855B2 (en) Optical deflection apparatus, optical deflection apparatus manufacturing method, optical deflection array, image forming apparatus, and image projection display apparatus
JP4262723B2 (en) Diffractive light modulator
KR20050106428A (en) Micromirrors and off-diagonal hinge structures for micromirror arrays in projection displays
US20070053052A1 (en) Spatial Light Modulator Multi-layer Mirror Plate
US11187990B2 (en) Mirror for a microlithographic projection exposure apparatus, and method for operating a deformable mirror
US20040027701A1 (en) Optical multilayer structure and its production method, optical switching device, and image display
TW378325B (en) Hinge for micro-mechanical device
KR20010072681A (en) Multilayer Optical Element
US11809085B2 (en) Mirror, in particular for a microlithographic projection exposure apparatus
JP6809018B2 (en) Light deflector, light scanning device, image forming device and image projection device
JP4397236B2 (en) Optical deflection apparatus, optical deflection array, image forming apparatus, and image projection display apparatus
JP4830183B2 (en) Optical multilayer structure, optical switching element, and image display device
JP4364043B2 (en) Optical deflection apparatus, optical deflection array, image forming apparatus, and image projection display apparatus
US7261430B1 (en) Thermal and intrinsic stress compensated micromirror apparatus and method
US7277217B1 (en) Optical deflecting device, optical deflecting device manufacturing method, and optical projecting device
US11366395B2 (en) Mirror, in particular for a microlithographic projection exposure system
US20050169156A1 (en) Optical deflection device
JP4614027B2 (en) Optical multilayer structure, optical switching element, and image display device
US20230122333A1 (en) Mirror, in particular for a microlithographic projection exposure apparatus
JP4544574B2 (en) Optical deflection device
EP2089773A1 (en) Movable phase step micro mirror having a multilayer substrate and a method for its manufacture
KR100208688B1 (en) Actuated mirror arrays having enhanced light efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees