JP4396909B2 - Sports tubular body made of fiber reinforced resin - Google Patents

Sports tubular body made of fiber reinforced resin Download PDF

Info

Publication number
JP4396909B2
JP4396909B2 JP2000331752A JP2000331752A JP4396909B2 JP 4396909 B2 JP4396909 B2 JP 4396909B2 JP 2000331752 A JP2000331752 A JP 2000331752A JP 2000331752 A JP2000331752 A JP 2000331752A JP 4396909 B2 JP4396909 B2 JP 4396909B2
Authority
JP
Japan
Prior art keywords
layer
axial length
length direction
reinforcing fibers
tubular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000331752A
Other languages
Japanese (ja)
Other versions
JP2002137316A (en
Inventor
寿久 岡本
秀行 内藤
智弘 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Globeride Inc
Original Assignee
Globeride Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Globeride Inc filed Critical Globeride Inc
Priority to JP2000331752A priority Critical patent/JP4396909B2/en
Publication of JP2002137316A publication Critical patent/JP2002137316A/en
Application granted granted Critical
Publication of JP4396909B2 publication Critical patent/JP4396909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Golf Clubs (AREA)
  • Laminated Bodies (AREA)
  • Fishing Rods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、合成樹脂をマトリックスとし、強化繊維で強化した繊維強化樹脂製のスポーツ用管状体に関する。
【0002】
【従来の技術】
繊維強化樹脂製のスポーツ用管状体は、釣竿やゴルフクラブ等のように撓み変形を受ける。このため、軸長方向に指向した強化繊維を主体とした管状体として、撓み変形に対する耐久性(剛性)を付与している。然しながら、管状体には撓み変形のみならず、軸長方向に沿って割れが発生したり、管状体の横断面における潰れ変形等も生じ得て、こうした割れや変形を防止するために、軸長方向に対して交差する円周方向や傾斜方向に指向した強化繊維を主体とする層を追加して管状体を形成することが行われている。
【0003】
【発明が解決しようとする課題】
然しながら、マトリックス樹脂が少なくて強化繊維密度が高い繊維強化樹脂の管状体の場合は、強化繊維が交差する層同士の境界では、強化繊維が同一方向に指向した層同士の境界よりも、境界における隣接繊維間に大きな空間が形成される。当該空間にはマトリックスとしての合成樹脂が充填されるはずであるが、合成樹脂内にボイドを含んだ状態になることもあり、より大きな空間にはより多くの樹脂を充填しなければならず、このためボイドが含まれる確率が高くなると共に、ボイドが含まれた場合、より大きなボイドとなる確率が高い。ボイドを含めば、管状体が変形を受けた際にその部位から破損し易くなり、管状体の強度低下をもたらす。
依って本発明は、強化繊維方向の交差する層同士の境界部からの破損を防止できるスポーツ用管状体の提供を目的とする。
【0004】
【課題を解決するための手段】
上記目的に鑑みて本発明は請求項1において、強化繊維一の方向に指向した第1層と、強化繊維他の方向に指向した第2層と、該第1層と第2層との間に位置する第3層とを具備し、第3層強化繊維の指向方向が前記第1層か第2層の何れかの層強化繊維の方向と一致すると共に、第3層強化繊維の平均繊維径が、前記一致する層の前記強化繊維の平均繊維径よりも小さいことを特徴とする繊維強化樹脂製のスポーツ用管状体を提供する。
【0005】
請求項1は、繊維方向が交差する第1層と第2層との間に、これらの何れかと繊維方向を概ね一致させた第3層を介在させており、該一致する層に比べて第3層の平均繊維径を小さく構成しているので、第1層と第2層とを直接に隣接させる場合よりも、層境界における隣接繊維間の空間が小さくなって、強度が向上する。
第3層の層厚は前記一致する層の層厚と同程度や半分程度としてもよい。半分程度とは、約40〜約60%である。また、その他任意の厚さ関係にしてもよい。
【0006】
請求項2において、強化繊維の指向方向軸長方向である層を有し、該軸長方向層に隣接している層を少なくとも1層有し、該層内強化繊維が軸長方向に対して交差する方向に指向しており、該交差層の厚さが前記軸長方向層の層厚に比べて相当に薄く、前記軸長方向層内であって、前記交差層に隣接した位置に隣接層を有し、該隣接層内の軸長方向強化繊維の平均繊維径が、前記軸長方向層の該隣接層を除いた残りの軸長方向強化繊維の平均繊維径よりも小さいと共に、隣接層の厚さが、軸長方向層から該隣接層を除いた残りの層の厚さよりも相当に薄いことを特徴とする繊維強化樹脂製のスポーツ用管状体を提供する。相当に薄いとは、半分程度以下の薄さをいい、好ましくは4分の1程度以下の薄さをいう。
【0007】
軸長方向層によって管状体の撓み剛性を持たせ、これに交差する方向の強化繊維の交差層によって潰れ等を防止する構造である。この両層の境界部位の、軸長方向層の一部を隣接層にし、この隣接層の平均繊維径を、軸長方向層の残りの軸長方向強化繊維の平均繊維径よりも小さく構成し、また、隣接層の厚さも軸長方向層の残りよりも相当に薄く形成し、管状体の撓み特性を、隣接層を除いた軸長方向層の残りによって主に支配し、隣接層の存在によって、交差層との境界における隣接繊維間の空間を小さくできて管状体の強度を向上させる。
【0008】
【発明の実施の形態】
以下、本発明を添付図面に示す実施形態例に基づき、更に詳細に説明する。
図1は本発明に係る管状体の第1実施形態例の要部横断面図である。肉厚方向の中央の層10Aに直径の大きな強化繊維DSを概ね軸長方向に指向するように配設し、その外側に薄肉の隣接層10Bを設け、前記強化繊維DSに比較して小径の強化繊維SSを概ね軸長方向に指向するように配設している。また、この例では、中央層の内側にも薄肉の隣接層10Cを設け、前記強化繊維DSに比較して小径の強化繊維SS’を概ね軸長方向に指向するように配設している。
【0009】
前記3つの層10A,10B,10Cを併せて軸長方向層10といえ、この外側と内側に、夫々、強化繊維が概ね円周方向に指向し、軸長方向層に比較して薄肉の交差層12,12’を設けている。大径強化繊維DSとしてボロン等の金属繊維を使用し、小径強化繊維SS,SS’として炭素繊維やガラス繊維等の、金属繊維を除く無機繊維を使用することができる。これによって、円周方向に指向した交差層と接する層の繊維を、径の大きな金属繊維とする場合よりも、境界における隣接繊維間の空間を小さくできてボイドの発生を防止でき、管状体の強度が向上する。
【0010】
また、中央層10Aは、隣接層10B,10Cよりも相当に厚く、軸長方向強化繊維の中で、金属繊維である大径強化繊維DSの割合が相当に多いため、管状体の撓み特性として金属繊維が大きく支配する。撓みを生じた場合に、撓んだ管状体の外側半分には引張り荷重が作用し、内側半分には圧縮荷重が作用するが、撓みが大きいと、外側の引張り荷重よりも、内側の圧縮荷重による管状体の座屈破壊が先に起こることが多い。しかし、軸長方向強化繊維として、圧縮強度の高い金属繊維を多く使用しているため、圧縮強度が強くなり、大きく撓んでも内側からの破損が防止でき、その分、大撓みが可能となる。即ち、強度が向上したといえる。
【0011】
各層10A,10B,10C,12,12’の具体的な層厚例として、順次、0.2mm,0.05mm,0.05mm,0.05mm,0.05mm等があり、隣接層10B,10Cの各層厚は、中央層10Aの層厚の1/4程度以下にすると、中央層の金属繊維DSの特性が管状体の撓み特性の支配的繊維となる。また、各層10A,10B,10C,12,12’の具体的な層厚例として、順次、0.1mm,0.05mm,0.05mm,0.05mm,0.05mm等、即ち、隣接層10B,10Cの各層厚を中央層10Aの層厚の1/2程度にしてもよい。大径繊維としての金属繊維DSの繊維径は15〜125ミクロン程度であり、小径繊維としての炭素繊維SS,SS’が中実繊維の場合、繊維径は4〜10ミクロン程度であり、好ましくは4〜7ミクロン程度である。
【0012】
大径繊維の強化繊維DSとして、金属繊維の代わりに中空状炭素繊維を使用でき、その繊維径は6〜15ミクロン程度であり、隣接層の存在で上記と同様に境界部におけるボイド発生の防止を行い、また、中空状炭素繊維は中実炭素繊維と同じように金属繊維よりも縦弾性率が高く、また、比重も小さいため、軽量な管状体であって、撓み剛性を大きくできる。即ち、比剛性を向上できる。中空状炭素繊維の平均繊維径が、中実炭素繊維のそれよりも大きいように繊維径を選択する。更には、大径強化繊維DSとして中実炭素繊維を使用し、小径強化繊維としても中実炭素繊維を使用できる。前述の4〜10ミクロン程度の中で、大きい径の物を大径強化繊維DSとし、小さい径の物を小径強化繊維とすればよい。
【0013】
図2は、他の実施形態例であり、図1の場合と異なるのは、軸長方向層10が、夫々の層厚が大きく異なることのない中央層10Aと2つの隣接層10B,10Cとから構成されていることである。従って、管状体としての撓み特性は3層10A,10B,10Cの夫々によって支配される。その他は図1の形態例と同様である。
【0014】
また、以上2つの形態例では、交差層を管状体の内外に設けているが、一方(外側又は内側)だけでもよい。外側の交差層12だけの場合、隣接層は10Bのみであり、10Cは不要である。また、内側の交差層12’だけの場合、隣接層は10Cのみであり、10Bは不要である。更には、交差層は繊維方向が円周方向以外でもよく、傾斜方向に指向していてもよく、軸長方向に対して交差していればよい。また、マトリックス樹脂としては特に制限はないが、熱硬化性樹脂としてのエポキシ樹脂が好適である。また、繊維断面が楕円形状等の場合は、断面積の等しい円に置き換え、その直径を繊維径とする。
【0015】
本発明は、管状体の軸長方向繊維が緻密に並んだ場合において、小径繊維の層である隣接層の存在意義が高い。繊維が緻密に並ぶということは、繊維間空間を埋めるマトリックス樹脂がそれだけ少ない場合ということであり、軸長方向層10の樹脂比率が10〜25体積%程度という低樹脂比率の場合にボイドが発生し易いが、隣接層の存在によって交差層との境界部のボイド発生を防止でき、管状体の強度が向上する。
【0016】
【発明の効果】
以上の説明から明らかなように本発明によれば、強化繊維方向の交差する層同士の境界部からの破損を防止できるスポーツ用管状体が提供可能となる。
【図面の簡単な説明】
【図1】図1は本発明に係る管状体の第1形態例の要部横断面図である。
【図2】図2は本発明に係る管状体の第2形態例の要部横断面図である。
【符号の説明】
10 軸長方向層
10A 中央層(大径繊維層)
10B,10C 隣接層(小径繊維層)
12,12’ 交差層(円周方向層)
DS 大径強化繊維
SS,SS’ 小径強化繊維
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sports tubular body made of fiber reinforced resin using a synthetic resin as a matrix and reinforced with reinforcing fibers.
[0002]
[Prior art]
A sports tubular body made of fiber reinforced resin is bent and deformed like a fishing rod or a golf club. For this reason, durability (rigidity) against bending deformation is imparted as a tubular body mainly composed of reinforcing fibers oriented in the axial length direction. However, the tubular body may not only bend and deform, but may also crack along the axial length direction, or may be crushed and deformed in the cross-section of the tubular body. It has been practiced to form a tubular body by adding a layer mainly composed of reinforcing fibers oriented in a circumferential direction or an inclined direction intersecting the direction.
[0003]
[Problems to be solved by the invention]
However, in the case of a fiber reinforced resin tubular body having a low matrix resin and a high reinforcing fiber density, the boundary between the layers where the reinforcing fibers intersect is greater than the boundary between the layers where the reinforcing fibers are directed in the same direction. A large space is formed between adjacent fibers. The space should be filled with a synthetic resin as a matrix, but there may be voids in the synthetic resin, and a larger space must be filled with more resin, For this reason, the probability that a void is included increases, and when a void is included, the probability that a void becomes larger is high. If a void is included, when the tubular body is deformed, the tubular body is easily damaged from the portion, and the strength of the tubular body is reduced.
Therefore, an object of the present invention is to provide a sports tubular body that can prevent breakage from the boundary portion between layers intersecting in the direction of reinforcing fibers.
[0004]
[Means for Solving the Problems]
In the present invention of claim 1 In view of the above object, a first layer reinforcing fibers are oriented in one direction, a second layer reinforcing fibers are oriented in the other direction, and the first and second layers ; and a third layer located between, together with orientation of the reinforcing fibers of the third layer is coincident with the direction of the reinforcing fibers in any layer of the first layer or second layer, the third layer Provided is a fiber reinforced resin sports tubular body characterized in that the average fiber diameter of the reinforcing fibers is smaller than the average fiber diameter of the reinforcing fibers of the matching layer.
[0005]
According to the first aspect, the third layer having the fiber direction substantially coincided with any one of the first layer and the second layer intersecting with each other in the fiber direction is interposed. Since the average fiber diameter of the three layers is made small, the space between adjacent fibers at the layer boundary becomes smaller and the strength is improved than when the first layer and the second layer are directly adjacent to each other.
The layer thickness of the third layer may be about the same as or half the layer thickness of the matching layers. About half is about 40 to about 60%. Further, any other thickness relationship may be used.
[0006]
In claim 2, the orientation direction of the reinforcing fiber has a layer which is the axial direction, the layer adjacent to the axial length direction layer has at least one layer, the reinforcing fibers axial direction in the layer The crossing layer is oriented in a direction intersecting with it, the thickness of the crossing layer is considerably smaller than the layer thickness of the axial length direction layer, and the position within the axial length direction layer and adjacent to the crossing layer An average fiber diameter of the axial length direction reinforcing fibers in the adjacent layer is smaller than an average fiber diameter of the remaining axial length direction reinforcing fibers excluding the adjacent layer of the axial length direction layer. The present invention provides a sports tubular body made of a fiber reinforced resin, wherein the thickness of the adjacent layer is considerably thinner than the thickness of the remaining layer obtained by removing the adjacent layer from the axial length direction layer. The term “thinly thin” refers to a thickness of about half or less, preferably about a quarter or less.
[0007]
This is a structure in which the tubular body has a bending rigidity by an axial length direction layer, and is prevented from being crushed by a crossing layer of reinforcing fibers in a direction crossing the tubular body. A part of the axial length direction layer of the boundary portion between the two layers is an adjacent layer, and the average fiber diameter of the adjacent layer is configured to be smaller than the average fiber diameter of the remaining axial length direction reinforcing fibers of the axial length direction layer. In addition, the thickness of the adjacent layer is also made considerably thinner than the remainder of the axial length layer, and the bending characteristics of the tubular body are mainly governed by the remainder of the axial length direction layer excluding the adjacent layer. Thus, the space between adjacent fibers at the boundary with the intersecting layer can be reduced, and the strength of the tubular body is improved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail based on an embodiment shown in the accompanying drawings.
FIG. 1 is a cross-sectional view of an essential part of a first embodiment of a tubular body according to the present invention. A reinforcing fiber DS having a large diameter is arranged in the central layer 10A in the thickness direction so as to be oriented substantially in the axial length direction, and a thin adjacent layer 10B is provided on the outer side thereof, and has a smaller diameter than the reinforcing fiber DS. The reinforcing fibers SS are arranged so as to be generally oriented in the axial length direction. In this example, a thin adjacent layer 10C is also provided inside the center layer, and the reinforcing fibers SS ′ having a smaller diameter than the reinforcing fibers DS are arranged so as to be oriented substantially in the axial length direction.
[0009]
The three layers 10A, 10B, and 10C are collectively referred to as an axial length direction layer 10. On the outer side and the inner side, the reinforcing fibers are generally oriented in the circumferential direction, and are thinner than the axial length direction layer. Layers 12 and 12 'are provided. Metal fibers such as boron can be used as the large-diameter reinforcing fibers DS, and inorganic fibers other than metal fibers such as carbon fibers and glass fibers can be used as the small-diameter reinforcing fibers SS and SS ′. This makes it possible to reduce the space between adjacent fibers at the boundary and prevent the generation of voids, compared to the case where the fibers in the layer in contact with the circumferentially oriented intersection layer are made of metal fibers having a large diameter. Strength is improved.
[0010]
Further, the central layer 10A is considerably thicker than the adjacent layers 10B and 10C, and the ratio of the large-diameter reinforcing fibers DS that are metal fibers in the axial length direction reinforcing fibers is considerably large. Metal fibers dominate. When bending occurs, a tensile load acts on the outer half of the deformed tubular body and a compressive load acts on the inner half. However, if the deflection is large, the inner compressive load is larger than the outer tensile load. In many cases, buckling failure of the tubular body due to the above occurs first. However, since many metal fibers with high compressive strength are used as the reinforcing fibers in the axial direction, the compressive strength becomes strong, and even if it bends greatly, it can be prevented from being damaged from the inside, so that a large amount of bending is possible. . That is, it can be said that the strength has been improved.
[0011]
Specific examples of the layer thickness of each of the layers 10A, 10B, 10C, 12, 12 ′ include 0.2 mm, 0.05 mm, 0.05 mm, 0.05 mm, 0.05 mm, etc. in order, and the adjacent layers 10B, 10C. When each layer thickness is set to about ¼ or less of the layer thickness of the central layer 10A, the characteristics of the metal fibers DS in the center layer become the dominant fibers of the bending characteristics of the tubular body. Further, specific examples of the layer thickness of each of the layers 10A, 10B, 10C, 12, 12 ′ are sequentially 0.1 mm, 0.05 mm, 0.05 mm, 0.05 mm, 0.05 mm, etc., that is, the adjacent layer 10B. , 10C may be about ½ of the thickness of the central layer 10A. The fiber diameter of the metal fiber DS as the large diameter fiber is about 15 to 125 microns, and when the carbon fibers SS and SS ′ as the small diameter fibers are solid fibers, the fiber diameter is about 4 to 10 microns, preferably It is about 4-7 microns.
[0012]
A hollow carbon fiber can be used in place of the metal fiber as the reinforcing fiber DS of the large diameter fiber, the fiber diameter is about 6 to 15 microns, and the presence of the adjacent layer prevents the generation of voids at the boundary as described above. Moreover, since the hollow carbon fiber has a higher longitudinal elastic modulus and a lower specific gravity than the metal fiber, as with the solid carbon fiber, it is a lightweight tubular body, and the flexural rigidity can be increased. That is, the specific rigidity can be improved. The fiber diameter is selected so that the average fiber diameter of the hollow carbon fiber is larger than that of the solid carbon fiber. Furthermore, a solid carbon fiber can be used as the large diameter reinforcing fiber DS, and a solid carbon fiber can be used as the small diameter reinforcing fiber. Of the aforementioned 4 to 10 microns, a large diameter article may be a large diameter reinforcing fiber DS, and a small diameter article may be a small diameter reinforcing fiber.
[0013]
FIG. 2 is another example of the embodiment, and the difference from the case of FIG. 1 is that the axial direction layer 10 includes a central layer 10A and two adjacent layers 10B and 10C whose thicknesses are not greatly different. It is composed of Therefore, the bending characteristic as a tubular body is governed by each of the three layers 10A, 10B, and 10C. Others are the same as the embodiment of FIG.
[0014]
In the above two embodiments, the intersecting layer is provided inside and outside the tubular body, but only one (outside or inside) may be provided. In the case of only the outer intersecting layer 12, the adjacent layer is only 10B, and 10C is unnecessary. Further, in the case of only the inner intersecting layer 12 ′, the adjacent layer is only 10C, and 10B is unnecessary. Furthermore, the crossing layer may have a fiber direction other than the circumferential direction, may be oriented in the inclined direction, and only needs to cross the axial length direction. Moreover, there is no restriction | limiting in particular as matrix resin, However, The epoxy resin as a thermosetting resin is suitable. Further, when the fiber cross section is elliptical or the like, it is replaced with a circle having the same cross-sectional area, and the diameter is defined as the fiber diameter.
[0015]
In the present invention, when the axial length direction fibers of the tubular body are densely arranged, the existence significance of the adjacent layer which is a layer of small diameter fibers is high. The fact that the fibers are densely arranged means that the matrix resin that fills the space between the fibers is so small that voids are generated when the resin ratio of the axial length direction layer 10 is a low resin ratio of about 10 to 25% by volume. However, the presence of the adjacent layer can prevent the occurrence of voids at the boundary with the intersecting layer, thereby improving the strength of the tubular body.
[0016]
【The invention's effect】
As apparent from the above description, according to the present invention, it is possible to provide a sports tubular body capable of preventing breakage from the boundary portion between layers intersecting in the reinforcing fiber direction.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part of a first embodiment of a tubular body according to the present invention.
FIG. 2 is a cross-sectional view of an essential part of a second embodiment of a tubular body according to the present invention.
[Explanation of symbols]
10 axial length direction layer 10A center layer (large diameter fiber layer)
10B, 10C Adjacent layer (small diameter fiber layer)
12,12 'intersecting layer (circumferential layer)
DS Large diameter reinforcing fiber SS, SS 'Small diameter reinforcing fiber

Claims (2)

強化繊維一の方向に指向した第1層と、強化繊維他の方向に指向した第2層と、該第1層と第2層との間に位置する第3層とを具備し、第3層強化繊維の指向方向が前記第1層か第2層の何れかの層強化繊維の方向と一致すると共に、第3層強化繊維の平均繊維径が、前記一致する層の前記強化繊維の平均繊維径よりも小さいことを特徴とする繊維強化樹脂製のスポーツ用管状体。Comprising a first layer reinforcing fibers are oriented in one direction, a second layer reinforcing fibers are oriented in the other direction, and a third layer located between the first layer and the second layer, The direction of orientation of the reinforcing fibers of the third layer matches the direction of the reinforcing fibers of either the first layer or the second layer, and the average fiber diameter of the reinforcing fibers of the third layer is equal to that of the matching layers. A sports tubular body made of fiber reinforced resin, characterized in that it is smaller than the average fiber diameter of the reinforcing fibers . 強化繊維の指向方向軸長方向である層を有し、該軸長方向層に隣接している層を少なくとも1層有し、該層内強化繊維が軸長方向に対して交差する方向に指向しており、該交差層の厚さが前記軸長方向層の層厚に比べて相当に薄く、前記軸長方向層内であって、前記交差層に隣接した位置に隣接層を有し、該隣接層内の軸長方向強化繊維の平均繊維径が、前記軸長方向層の該隣接層を除いた残りの軸長方向強化繊維の平均繊維径よりも小さいと共に、隣接層の厚さが、軸長方向層から該隣接層を除いた残りの層の厚さよりも相当に薄いことを特徴とする繊維強化樹脂製のスポーツ用管状体。 A direction in which the reinforcing fiber is oriented in the axial length direction, at least one layer adjacent to the axial length direction layer, and a direction in which the reinforcing fibers in the layer intersect the axial length direction The thickness of the intersecting layer is considerably smaller than the layer thickness of the axial length direction layer, and there is an adjacent layer in the axial length direction layer at a position adjacent to the intersecting layer. And the average fiber diameter of the axial length direction reinforcing fibers in the adjacent layer is smaller than the average fiber diameter of the remaining axial length direction reinforcing fibers excluding the adjacent layer of the axial length direction layer, and the thickness of the adjacent layer. A sports tubular body made of fiber-reinforced resin, wherein the thickness is considerably smaller than the thickness of the remaining layer excluding the adjacent layer from the axial length direction layer.
JP2000331752A 2000-10-31 2000-10-31 Sports tubular body made of fiber reinforced resin Expired - Fee Related JP4396909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331752A JP4396909B2 (en) 2000-10-31 2000-10-31 Sports tubular body made of fiber reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331752A JP4396909B2 (en) 2000-10-31 2000-10-31 Sports tubular body made of fiber reinforced resin

Publications (2)

Publication Number Publication Date
JP2002137316A JP2002137316A (en) 2002-05-14
JP4396909B2 true JP4396909B2 (en) 2010-01-13

Family

ID=18808051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331752A Expired - Fee Related JP4396909B2 (en) 2000-10-31 2000-10-31 Sports tubular body made of fiber reinforced resin

Country Status (1)

Country Link
JP (1) JP4396909B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133013A1 (en) * 2011-03-29 2012-10-04 東洋紡績株式会社 Layered molded article of fiber-reinforced thermoplastic resin

Also Published As

Publication number Publication date
JP2002137316A (en) 2002-05-14

Similar Documents

Publication Publication Date Title
US6764419B1 (en) Composite baseball bat having an interface section in the bat barrel
US4061806A (en) Flexible hollow fishing rod
JP4784968B2 (en) Fishing rod
US7384354B2 (en) Single wall ball bat including quartz structural fiber
JP2008304179A (en) Archery bow having multiple tube structure
JP2007009028A (en) Member made of fiber-reinforced resin
JP4396909B2 (en) Sports tubular body made of fiber reinforced resin
JPH11137752A (en) Bat for baseball or softball
JP3716136B2 (en) fishing rod
JP3511559B2 (en) Through fishing rod
JPH1175630A (en) Fishing rod
JP3346889B2 (en) Fishing rod
JP3652764B2 (en) Golf club shaft
CN113283037A (en) Metal composite component based on fiber reinforcement and manufacturing method thereof
JP4636630B2 (en) Baseball or softball bat
JP3154805B2 (en) Tubular body
JP3171311B2 (en) Through fishing rod
JP3553365B2 (en) fishing rod
JPH11254562A (en) Tubular body and prepreg
US11844987B1 (en) Baseball bat having an inner barrel technology insert
JP3154322B2 (en) Through fishing rod
JPH1189973A (en) Racket frame
TWM613813U (en) Composite structure racket frame, racket frame group and racket
JPH11155424A (en) Fishing rod
JPH06165844A (en) Golf club shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4396909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees