JP4395404B2 - Fluid hardener - Google Patents

Fluid hardener Download PDF

Info

Publication number
JP4395404B2
JP4395404B2 JP2004131743A JP2004131743A JP4395404B2 JP 4395404 B2 JP4395404 B2 JP 4395404B2 JP 2004131743 A JP2004131743 A JP 2004131743A JP 2004131743 A JP2004131743 A JP 2004131743A JP 4395404 B2 JP4395404 B2 JP 4395404B2
Authority
JP
Japan
Prior art keywords
fluid
cement
curing material
organic solvent
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004131743A
Other languages
Japanese (ja)
Other versions
JP2005314140A (en
Inventor
裕 中島
高央 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2004131743A priority Critical patent/JP4395404B2/en
Publication of JP2005314140A publication Critical patent/JP2005314140A/en
Application granted granted Critical
Publication of JP4395404B2 publication Critical patent/JP4395404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、表面塗布又は亀裂充填用に使用する流体状硬化材あって、混練を必要としない硬化材に関する。   The present invention relates to a hardened material that is used for surface coating or crack filling and does not require kneading.

セメント系材料は、水と混練することによりコンクリートとして硬化するものであるため、混練工程を避けることはできず、作業性の低下を招いていた。また、混練時にセメント等の粉体を取り扱うため、粉塵発生が作業環境上の問題となっていた。   Since the cementitious material is hardened as concrete by being kneaded with water, the kneading step cannot be avoided, resulting in a decrease in workability. Further, since powder such as cement is handled during kneading, generation of dust has been a problem in the working environment.

建築物の外壁やタイルのひび割れの補修用として、珪酸ソーダと無機系微粉末との混合物(ペースト状)及びアルカリ剤(液状)を使用時に混合することにより急激に硬化させた無機系補修材料が知られている(特許文献1参照)。この補修材料は、粉体を使用しないため、作業時の粉塵の発生は抑制できるが、当該2液を所定の配合量となるよう秤量し、これを混合する作業が必要であり、しかも混合後は急速に硬化するため、この作業を施工直前に行わねばならず、施工作業に多大な制約をもたらすこととなっている。   For repairing cracks in the outer walls of buildings and tiles, inorganic repair materials that are rapidly cured by mixing a mixture of silicate soda and inorganic fine powder (paste-like) and an alkaline agent (liquid) at the time of use It is known (see Patent Document 1). Since this repair material does not use powder, the generation of dust during operation can be suppressed, but it is necessary to weigh the two liquids to a predetermined blending amount and mix them, and after mixing Since it hardens rapidly, this work must be carried out immediately before the construction, resulting in great restrictions on the construction work.

また、コンクリート亀裂部の補修方法として、超速硬セメントをコンクリート亀裂内部に粉体のまま擦り込み、そこに水をしみ込ませて硬化させる方法が知られている(特許文献2参照)。この方法では、前記のような秤量及び混合作業は不要であるが、粉体を扱うため、粉塵発生の問題は避け難く、また亀裂内部への充填性が不充分となり易かった。   Further, as a method for repairing a concrete crack portion, there is known a method in which ultrafast cement is rubbed into a concrete crack as a powder and water is soaked therein to be hardened (see Patent Document 2). In this method, the weighing and mixing operations as described above are unnecessary, but since the powder is handled, the problem of dust generation is unavoidable, and the filling property into the cracks tends to be insufficient.

一方、セメント組成物に急硬性を付与する添加剤として、カルシウムアルミネートと液体の有機化合物を混合したペースト状の急硬材が知られている(特許文献3参照)。
特開平05-86354号公報 特開平11-130562号公報 特許第3192710号明細書
On the other hand, a paste-like rapid hardening material in which calcium aluminate and a liquid organic compound are mixed is known as an additive for imparting rapid hardening to a cement composition (see Patent Document 3).
JP 05-86354 A Japanese Patent Laid-Open No. 11-130562 Patent No. 3192710 specification

従って、本発明は、施工直前での秤量や混合操作がなく、粉塵の発生を抑制でき、しかも保管性に優れた流体状硬化材を提供することにある。   Therefore, the present invention is to provide a fluid curing material that is free from weighing and mixing operations just before construction, can suppress the generation of dust, and is excellent in storability.

本発明者は、斯かる実情に鑑み鋭意検討を行った結果、セメントとカルシウムアルミネートを特定の混合比で混合した特定の粒子間隙を有する混合粒子及び特定の有機溶媒を含む流体状硬化材が、上記課題を解決できることを見出し、本発明を完成させた。
すなわち、本発明は、ポルトランドセメント及び/又は混合セメントとカルシウムアルミネートを含む粒子間隙が45〜65容積%の混合粒子と、溶解度パラメーターが9.0以上の有機溶媒とを含有し、20℃での粘度が20Pa・s以下である流体状硬化材を提供するものである。
As a result of intensive studies in view of such circumstances, the present inventor has obtained a fluid curing material containing mixed particles having specific particle gaps in which cement and calcium aluminate are mixed at a specific mixing ratio and a specific organic solvent. The inventors have found that the above problems can be solved, and have completed the present invention.
That is, the present invention comprises a mixed particle having a particle gap of 45 to 65% by volume containing Portland cement and / or mixed cement and calcium aluminate, an organic solvent having a solubility parameter of 9.0 or more, and a viscosity at 20 ° C. The present invention provides a fluid curing material having a Pa of 20 Pa · s or less.

本発明はまた、上記記載の流体状硬化材を躯体面に塗布又は亀裂に充填した後、水を添加することを特徴とする流体状硬化材の施工方法、及び当該液体状硬化材を湿潤状態の躯体面に塗布、又は湿潤状態の亀裂に充填することを特徴とする流体状硬化材の施工方法を提供するものである。   The present invention also provides a method for applying a fluid curing material, wherein water is added after the fluid curing material described above is applied to a housing surface or filled in a crack, and the liquid curing material is in a wet state. The present invention provides a method for applying a fluid hardened material, characterized in that it is applied to the surface of the casing or filled in a wet crack.

本発明の流体状硬化材は、塗布又は充填後、施工表面に水を添加するだけで硬化させることができ、少なくとも製造から2ヶ月程度は、僅かな撹拌を行うだけで安定した品質の流体状硬化材となり、また撹拌後は少なくとも48時間程度は当該状態を保ち続けるため施工現場での作業が軽減できる。また流体状であるため、現場での粉塵発生がなく、亀裂等に充填する場合の充填性にも優れる。しかも保管性に優れる。   The fluid-curing material of the present invention can be cured by simply adding water to the construction surface after application or filling, and at least for about two months from production, it is a fluid with a stable quality with only a slight stirring. Since it becomes a hardener and keeps the state for at least 48 hours after stirring, work on the construction site can be reduced. Moreover, since it is fluid, there is no dust generation on site, and the filling property when filling a crack or the like is excellent. Moreover, it has excellent storage properties.

以下、本発明についてさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明で使用されるセメントは、ポルトランドセメント及び/又は混合セメントである。ポルトランドセメントとしては、普通、早強、超早強、中庸熱、低熱、耐硫酸塩等のいずれも使用できる。混合セメントとしては、高炉セメント、フライアッシュセメント等が使用できる。また、混合セメントの一部を石灰石粉末又はシリカヒュームで置換したセメント、混合セメントに石膏を添加したセメント等も使用できる。速硬性の点から、ポルトランドセメントが好ましく、より好ましくは、普通ポルトランドセメント、早強ポルトランドセメント又は白色ポルトランドセメント、特に早強ポルトランドセメント又は白色ポルトランドセメントが好ましい。   The cement used in the present invention is Portland cement and / or mixed cement. As the Portland cement, any of ordinary, early strength, very early strength, moderate heat, low heat, sulfate resistance, etc. can be used. As the mixed cement, blast furnace cement, fly ash cement, or the like can be used. Further, a cement obtained by replacing a part of the mixed cement with limestone powder or silica fume, a cement obtained by adding gypsum to the mixed cement, or the like can also be used. From the viewpoint of quick setting, Portland cement is preferable, and ordinary Portland cement, early-strength Portland cement or white Portland cement, particularly early-strength Portland cement or white Portland cement is preferable.

本発明では、セメントの水和を促進し、速硬性を付与するため、セメントに結晶性又は無定形のカルシウムアルミネートを添加する。本発明で使用される結晶性又は無定形のカルシウムアルミネートとしては、C127(12Ca0・7Al2O3)、CA(Ca0・Al2O3)、C3A(3Ca0・Al2O3)、アーゥイン(3Ca0・3Al2O3・CaSO4)、C117・CaF2(11Ca0・7Al2O3・CaF2)、NC83(Na2O・8CaO・3Al2O3)、アルミナセメント等が挙げられ、アルミナセメント又はC127が好ましい。C127としては、速硬性の点から、ガラスの含有量が40重量%以上のものが好ましく、より好ましくは50重量%以のもの、特に70重量%以上のものが好ましい。 In the present invention, crystalline or amorphous calcium aluminate is added to the cement in order to promote hydration of the cement and impart quick hardening. Examples of the crystalline or amorphous calcium aluminate used in the present invention include C 12 A 7 (12Ca0 · 7Al 2 O 3 ), CA (Ca0 · Al 2 O 3 ), C 3 A (3Ca0 · Al 2 O). 3 ), Erwin (3Ca0 · 3Al 2 O 3 · CaSO 4 ), C 11 A 7 · CaF 2 (11Ca0 · 7Al 2 O 3 · CaF 2 ), NC 8 A 3 (Na 2 O · 8CaO · 3Al 2 O 3 ), Alumina cement, and the like, and alumina cement or C 12 A 7 is preferable. As C 12 A 7 , the glass content is preferably 40% by weight or more, more preferably 50% by weight or less, and particularly preferably 70% by weight or more from the viewpoint of fast curing.

セメントとカルシウムアルミネートの混合割合は、速硬性の点から、セメントに対するカルシウムアルミネートの重量比で0.1〜1.8が好ましく、より好ましくは0.2〜1.5、特に0.2〜1.0が好ましい。ここで、カルシウムアルミネートの重量比は、配合するセメント自体に含有されているカルシウムアルミネートを除いた外部から配合せしめられるカルシウムアルミネートの重量比である。重量比が0.1未満では、カルシウムアルミネートのセメントへの水和促進効果が不足するため、好ましくない。重量比が1.8を超えると、硬化材中のセメントの割合が相対的に低下するため、速硬性が低下し、好ましくない。   The mixing ratio of cement and calcium aluminate is preferably 0.1 to 1.8, more preferably 0.2 to 1.5, and particularly preferably 0.2 to 1.0 in terms of the weight ratio of calcium aluminate to cement from the viewpoint of fast curing. Here, the weight ratio of calcium aluminate is the weight ratio of calcium aluminate blended from the outside excluding calcium aluminate contained in the cement itself to be blended. If the weight ratio is less than 0.1, the effect of promoting hydration of calcium aluminate to cement is insufficient, which is not preferable. When the weight ratio exceeds 1.8, the ratio of cement in the hardened material is relatively decreased, and thus the rapid curing is decreased, which is not preferable.

セメントとカルシウムアルミネートを含む混合粒子は、系全体でも静置状態で少なくとも48時間はその粒子間隙が45〜65容積%に留まるものであり、好ましくは45〜60容積%に留まるものである。また、長期間、例えば、2ヶ月程度静置状態にされても、1〜10分程度の攪拌によって容易に粒子間隙が45〜65容積%になり、品質変化を生じないものである。混合終了後静置し続けると、有機溶媒の一部が上方に分離してしまうことがあるが、本発明では少なくとも48時間は静置状態でも分離した有機溶媒を除いた沈降部分の粒子間隙が45容積%以上である必要がある。一方、45容積%未満にしかならないものでは、施工表面に添加した水が施工内部に浸透せず、硬化しない。また、65容積%を超えると、粒子間隙が多くなりすぎて、水和反応時に反応生成物が粒子間隙を埋めきれず、硬化しないか、硬化しても充分な硬化強度を発現できない。   The mixed particles containing cement and calcium aluminate have a particle gap of 45 to 65% by volume, preferably 45 to 60% by volume for at least 48 hours even in the entire system. Further, even when left standing for a long period of time, for example, for about 2 months, the particle gap easily becomes 45 to 65% by volume by stirring for about 1 to 10 minutes, and the quality does not change. If the mixture is allowed to stand after completion of mixing, a part of the organic solvent may be separated upward, but in the present invention, the particle gap in the settled portion excluding the separated organic solvent is left even in the stationary state for at least 48 hours. Must be 45% or more by volume. On the other hand, in the case of less than 45% by volume, water added to the construction surface does not penetrate into the construction and does not harden. On the other hand, when the volume exceeds 65% by volume, the particle gaps are excessive, and the reaction product cannot fill the particle gaps during the hydration reaction and does not cure, or even when cured, sufficient curing strength cannot be expressed.

静置しても粒子間隙が45容積%以上を保持するためには、混合粒子の粒度分布を制限することが望ましい。具体的には、混合粒子の90重量%が通過する篩径(D9)と10重量%が通過する篩径(D1)の比(D9/D1)を好ましくは8.0以下に、特に好ましくは6.5〜8.0に調整する。当該比を8.0以下にすると、粒度分布幅が狭くなり、沈殿・分離を生じることなく、粒子間隙を大きくすることができる。一方、6.5未満にすると、製造上、コストがかかり過ぎるので好ましくない。   In order to maintain the particle gap of 45% by volume or more even when left standing, it is desirable to limit the particle size distribution of the mixed particles. Specifically, the ratio (D9 / D1) of the sieve diameter (D9) through which 90% by weight of the mixed particles passes and the sieve diameter (D1) through which 10% by weight passes is preferably 8.0 or less, particularly preferably 6.5 to Adjust to 8.0. When the ratio is 8.0 or less, the particle size distribution width is narrowed, and the particle gap can be increased without causing precipitation / separation. On the other hand, if it is less than 6.5, it is not preferable because it is too expensive in production.

本発明に使用される有機溶媒は、水との親和性が高いという点から、溶解度パラメーターが9.0以上の溶媒である。有機溶媒としては、一価アルコール、多価アルコール又は一価又は多価アルコールのアルキレンオキサイド付加物が挙げられる。本明細書において、「有機溶媒の溶解度パラメーター」(SP値)とは、親水性か否かの指標因子であり、次式で算出される。   The organic solvent used in the present invention is a solvent having a solubility parameter of 9.0 or more because it has a high affinity with water. Examples of the organic solvent include monohydric alcohols, polyhydric alcohols, and alkylene oxide adducts of monohydric or polyhydric alcohols. In the present specification, the “solubility parameter of organic solvent” (SP value) is an index factor for determining whether or not the solvent is hydrophilic, and is calculated by the following equation.

SP値=(dH−R・T)1/2/V1/2
dH:蒸発潜熱(cal/ml)
V:モル容積(cc/mol)
R:気体定数
T:温度(K)
SP value = (dH−R · T) 1/2 / V 1/2
dH: latent heat of vaporization (cal / ml)
V: molar volume (cc / mol)
R: Gas constant T: Temperature (K)

このような一価アルコールとしては、炭素数1〜6のアルコールが好ましく、例えば、メタノール(SP値 14.5。但し、293Kでの値であり、以下同様。)、エタノール(SP値 12.7)、n-プロパノール(SP値 11.4)、イソプロパノール(SP値 11.5)、n-ブタノール(SP値 11.4)、tert-ブタノール(SP値 10.6)、n-ヘキシルアルコール(SP値 10.7)、シクロヘキサノール(SP値 11.4)等が挙げられる。また、このような多価アルコールとしては、炭素数2〜10の多価アルコールが好ましく、例えば、エチレングリコール(SP値 14.1)、ジエチレングリコール(SP値 12.1)、グリセリン(SP値 13.7)、ソルビトール(SP値 14.0)等が挙げられる。   Such a monohydric alcohol is preferably an alcohol having 1 to 6 carbon atoms. For example, methanol (SP value 14.5, where 293K, the same applies hereinafter), ethanol (SP value 12.7), n- Propanol (SP value 11.4), isopropanol (SP value 11.5), n-butanol (SP value 11.4), tert-butanol (SP value 10.6), n-hexyl alcohol (SP value 10.7), cyclohexanol (SP value 11.4), etc. Is mentioned. Such polyhydric alcohols are preferably polyhydric alcohols having 2 to 10 carbon atoms, such as ethylene glycol (SP value 14.1), diethylene glycol (SP value 12.1), glycerin (SP value 13.7), sorbitol (SP Value 14.0).

また、一価アルコールのアルキレンオキサイド付加物としては、その付加モル数が1〜10のものが好ましく、特に2〜8のものが好ましい。このようなアルキレンオキサイド付加物としては、例えば、一般式:
1O(AO)a
[式中、R1は水素原子又は炭素数1〜6のアルキル基;Aは炭素数2〜3の1種又は2種のアルキレン基;aは1〜100の整数。]で示されるものが挙げられる。また、多価アルコールのアルキレンオキサイド付加物としては、その付加モル数が1〜30のものが好ましく、このようなアルキレンオキサイド付加物としては、例えば、一般式:
2−((−AO−)mH)c
[式中、R2はc個の活性水素を有する化合物の残基;Aは炭素数2〜3の1種又は2種のアルキレン基;mは1〜15の整数;cは2〜8の整数。]で示されるものが挙げられる。
Moreover, as the alkylene oxide adduct of monohydric alcohol, those having 1 to 10 addition moles are preferable, and those having 2 to 8 are particularly preferable. Examples of such an alkylene oxide adduct include, for example, a general formula:
R 1 O (AO) a H
[Wherein, R 1 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; A is one or two alkylene groups having 2 to 3 carbon atoms; a is an integer of 1 to 100. ] Are shown. In addition, the alkylene oxide adduct of polyhydric alcohol preferably has an addition mole number of 1 to 30, and such alkylene oxide adduct includes, for example, a general formula:
R 2 — ((— AO—) m H) c
Wherein R 2 is a residue of a compound having c active hydrogens; A is one or two alkylene groups having 2 to 3 carbon atoms; m is an integer of 1 to 15; c is 2 to 8 integer. ] Are shown.

これらの有機溶媒のうち、一価アルコールのアルキレンオキサイド付加物又は多価アルコールが好ましく、特に一価アルコールのアルキレンオキサイド付加物(太平洋マテリアル株式会社製「テトラガード」SP値 9.7)、エチレングリコール(SP値 14.1)又はジエチレングリコール(SP値 12.1)が好ましい。上記有機溶媒は、一種又は二種以上を組み合わせて使用してもよい。   Of these organic solvents, monohydric alcohol alkylene oxide adducts or polyhydric alcohols are preferred, and in particular, monohydric alcohol alkylene oxide adducts (“Tetragard” SP value 9.7 manufactured by Taiheiyo Materials Co., Ltd.), ethylene glycol (SP The value 14.1) or diethylene glycol (SP value 12.1) is preferred. You may use the said organic solvent in combination of 1 type, or 2 or more types.

溶解度パラメーターが9.0以上の有機溶媒は、水との親和性が高く、施工表面に添加された水が有機溶媒と置換されて施工物内部に浸透する。一方、9.0未満の場合には、親水性が低く、水を添加しても内部へ浸透せず、硬化しない。溶解度パラメーターの上限は特に制限されないが、15.0を超えると、親水性が高くなりすぎることがあり、硬化材の保管時に空気中の水分を吸湿してしまい、硬化材の粘性が上昇したり、硬化時間が遅延したり、更には保管時に硬化してしまうおそれがある。   An organic solvent having a solubility parameter of 9.0 or more has high affinity with water, and water added to the construction surface is replaced with the organic solvent and penetrates into the construction. On the other hand, when it is less than 9.0, the hydrophilicity is low, and even if water is added, it does not penetrate into the inside and does not cure. The upper limit of the solubility parameter is not particularly limited, but if it exceeds 15.0, the hydrophilicity may become too high, absorbing moisture in the air during storage of the cured material, increasing the viscosity of the cured material, or curing There is a risk that the time will be delayed, and further, it may be hardened during storage.

上記有機溶媒の常温における表面張力は、50dyn/cm以下が好ましい。左官用途等では硬化剤は、施工表面に薄く塗ることが多く、乾燥し易い状態となっているが、水を添加して硬化した後に乾燥が生じた場合、有機溶媒の表面張力が50dyn/cm以下であれば、表面張力降下による収縮やひび割れの低減を期待できる。   The surface tension of the organic solvent at normal temperature is preferably 50 dyn / cm or less. In plastering applications, etc., the curing agent is often applied thinly on the construction surface, and it is easy to dry, but when drying occurs after adding water to harden the surface tension of the organic solvent is 50 dyn / cm Below, reduction of shrinkage and cracking due to surface tension drop can be expected.

また、上記有機溶媒の常温における粘性は、50mPa・s以下が好ましい。粘性が高いと、混合粉末と有機溶媒とを均質に混合することが困難となり、水の添加後の硬化材強度が不均質となり、ひび割れの発生の原因となる可能性があるので好ましくない。   The viscosity of the organic solvent at room temperature is preferably 50 mPa · s or less. If the viscosity is high, it is difficult to homogeneously mix the mixed powder and the organic solvent, and the strength of the hardened material after the addition of water becomes inhomogeneous, which may cause cracking.

また、粒子間隙を45容積%以上に容易に保持できる点から、上記有機溶媒に水を0.01〜0.1重量%含有させることが好ましい。極少量の水が混合粒子と反応すると、混合粒子の微粉部分を粗粉に付着させるため、混合粒子の粒度分布幅が狭くなり、沈殿・分離を生じさせることなく、粒子間隙を大きくすることができ、また長期間静置させて粒子間隙が狭くなったものでも極短時間の撹拌を行うだけで容易に大きな粒子間隙の状態に戻すことができる。一方、水の含有量が0.01重量%未満では粒子間隙を顕著に大きくすることができない。また、0.1重量%を超えると、硬化材の粘性が高くなりすぎて、塗布が困難となるため好ましくない。更に多量に水を存在させると、塗布前に硬化してしまうおそれがあるので好ましくない。   Moreover, it is preferable to contain 0.01 to 0.1 weight% of water in the said organic solvent from the point which can maintain a particle | grain gap | interval easily to 45 volume% or more. When a very small amount of water reacts with the mixed particles, the fine particle portion of the mixed particles adheres to the coarse powder, so the particle size distribution width of the mixed particles becomes narrow, and the particle gap can be increased without causing precipitation / separation. In addition, even if the particle gap is narrowed by standing for a long period of time, it can be easily returned to a large particle gap state only by stirring for a very short time. On the other hand, when the water content is less than 0.01% by weight, the particle gap cannot be remarkably increased. On the other hand, if it exceeds 0.1% by weight, the viscosity of the hardened material becomes too high and it becomes difficult to apply it. Further, if a large amount of water is present, it is not preferable because it may be cured before coating.

本発明の流体状硬化材は、B型粘度計による20℃での粘度が20Pa・s以下であり、好ましくは0.1〜19Pa・sであり、特に1〜17Pa・sが好ましい。20Pa・sを超えると、施工時に水を添加しても、施工物内部に水が極めて浸透し難くなり、硬化しない場合があるので、好ましくない。また、粘性が0.1Pa・s未満では、施工表面が概ね水平でなく傾斜している面の場合に、硬化材が硬化前に垂れ落ちる可能性が高くなる。   The fluid curing material of the present invention has a viscosity at 20 ° C. of 20 Pa · s or less, preferably 0.1 to 19 Pa · s, more preferably 1 to 17 Pa · s, as measured by a B-type viscometer. If it exceeds 20 Pa · s, even if water is added at the time of construction, it is not preferable because water hardly penetrates into the construction and may not be cured. In addition, when the viscosity is less than 0.1 Pa · s, there is a high possibility that the hardened material drips before curing when the construction surface is a surface that is not horizontal and inclined.

本発明の流体状硬化材には、更に、石膏、炭酸アルカリ、アルミン酸アルカリ、硫酸アルミニウム等の従来より使用されている硬化促進剤を添加することができる。また、骨材等のコンクリート用に使用されている材料も添加することができる。骨材としては、川砂、海砂、山砂、砕砂、これらの混合物等が挙げられる。   Conventionally used curing accelerators such as gypsum, alkali carbonate, alkali aluminate, and aluminum sulfate can be added to the fluid curing material of the present invention. Moreover, the material currently used for concrete, such as aggregate, can also be added. Aggregates include river sand, sea sand, mountain sand, crushed sand, and mixtures thereof.

本発明の流体状硬化材の製造方法は特に制限されないが、その好適な一例を示すと次の通りである。例えば、慣用の粉体用ミキサーでセメントとカルシウムアルミネートを所定量混合して得られた混合粒子及び有機溶媒をホバートミキサー、パン型ミキサー等の慣用のモルタルやコンクリート混練用のミキサーで混合する方法が挙げられる。   Although the manufacturing method of the fluid hardening material of this invention is not restrict | limited in particular, It is as follows when the suitable example is shown. For example, a method of mixing mixed particles and an organic solvent obtained by mixing a predetermined amount of cement and calcium aluminate with a conventional powder mixer with a conventional mortar such as a Hobart mixer or a bread mixer, or a mixer for mixing concrete Is mentioned.

本発明の流体状硬化材の施工方法としては、本発明の流体状硬化材を躯体面に塗布又は亀裂に充填した後に水を添加する方法;流体状硬化材を湿潤状態の躯体面に塗布又は湿潤状態の亀裂に充填する方法が挙げられる。水の添加方法としては、霧吹き等による噴霧が好ましい。これらの方法により、特に水との混練作業を行うことなく流体状硬化材を硬化させることができる。   As a method for applying the fluid curing material of the present invention, a method of adding water after applying the fluid curing material of the present invention to the housing surface or filling a crack; applying the fluid curing material to a wet housing surface or There is a method of filling a wet crack. As a method for adding water, spraying by spraying or the like is preferable. By these methods, the fluid curing material can be cured without particularly performing a kneading operation with water.

本発明の流体状硬化材は、家屋の内装の補修、タイルのひび割れの補修等、家庭用に手軽に使用できる。   The fluid curing material of the present invention can be easily used for home use such as repairing interiors of houses and repairing cracks in tiles.

以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.

実施例1〜24、比較例1〜6
表1に記載の流体状硬化材を製造し、粒子間隙、硬化性、粉塵の発生、粘度及び保管性を評価した。
Examples 1-24, Comparative Examples 1-6
The fluid hardened material shown in Table 1 was produced, and the particle gap, curability, dust generation, viscosity and storage were evaluated.

<流体状硬化材の製造>
流体状硬化材の製造に使用した原料は以下の通りであった。
(1)セメント
A1:普通ポルトランドセメント(太平洋セメント社製)
A2:早強ポルトランドセメント(太平洋セメント社製)
A3:白色ポルトランドセメント(太平洋セメント社製)
(2)カルシウムアルミネート
B1:アルミナセメント(太平洋マテリアル社製)
B2:C127(純薬からの焼成品、ガラス40%)
B3:C127(純薬からの焼成品、ガラス70%)
(3)混合粉末は、上記セメントとカルシウムアルミネートを混合又は混合粉砕して製造した。
(4)有機溶媒
C1:一価のアルコールのアルキレンオキサイド付加物(商品名:テトラガード、太平洋マテリアル社製、溶解度パラメーター(SP値)9.7、粘度20.0mPa・s、表面張力37.5dyn/cm)
C2:エチレングリコール(SP値14.1、粘度19.9mPa・s、表面張力48.4dyn/cm)
C3:ジエチレングリコール(溶解度パラメーター12.1、粘度35.7mPa・s、表面張力45.2dyn/cm)
C4:キシレン(SP値8.8、粘度0.3mPa・s、表面張力18.4dyn/cm)
C5:ヘキサン(SP値7.3、粘度0.8mPa・s、表面張力30.3dyn/cm)
C6:エタノール(SP値12.7、粘度1.2mPa・s、表面張力22.4dyn/cm)
C7:メタノール(SP値14.5、粘度0.6mPa・s、表面張力22.5dyn/cm)
C8:n-ブタノール(SP値11.4、粘度3.0mPa・s、表面張力25.4dyn/cm)
C9:イソプロパノール(SP値11.5、粘度2.4mPa・s、表面張力21.3dyn/cm)
C10:エチレングリコールのプロピレンオキサイド 3モル及びエチレンオキサイド 3モル付加物(SP値10.1、粘度48.9mPa・s、表面張力39.7dyn/cm)
<Manufacture of fluid hardener>
The raw materials used for the production of the fluid curing material were as follows.
(1) Cement
A1: Ordinary Portland cement (manufactured by Taiheiyo Cement)
A2: Early strong Portland cement (manufactured by Taiheiyo Cement)
A3: White Portland cement (manufactured by Taiheiyo Cement)
(2) Calcium aluminate
B1: Alumina cement (Pacific Material)
B2: C 12 A 7 (fired product from pure drug, glass 40%)
B3: C 12 A 7 (fired product from pure drug, glass 70%)
(3) The mixed powder was produced by mixing or mixing and grinding the cement and calcium aluminate.
(4) Organic solvent
C1: Alkylene oxide adduct of monohydric alcohol (trade name: Tetragard, Taiheiyo Materials, solubility parameter (SP value) 9.7, viscosity 20.0 mPa · s, surface tension 37.5 dyn / cm)
C2: Ethylene glycol (SP value 14.1, viscosity 19.9mPa · s, surface tension 48.4dyn / cm)
C3: Diethylene glycol (solubility parameter 12.1, viscosity 35.7mPa · s, surface tension 45.2dyn / cm)
C4: Xylene (SP value 8.8, viscosity 0.3mPa · s, surface tension 18.4dyn / cm)
C5: Hexane (SP value 7.3, viscosity 0.8mPa · s, surface tension 30.3dyn / cm)
C6: Ethanol (SP value 12.7, viscosity 1.2mPa · s, surface tension 22.4dyn / cm)
C7: Methanol (SP value 14.5, viscosity 0.6mPa · s, surface tension 22.5dyn / cm)
C8: n-butanol (SP value 11.4, viscosity 3.0mPa · s, surface tension 25.4dyn / cm)
C9: Isopropanol (SP value 11.5, viscosity 2.4 mPa · s, surface tension 21.3 dyn / cm)
C10: Propylene oxide 3 mol and ethylene oxide 3 mol adduct of ethylene glycol (SP value 10.1, viscosity 48.9 mPa · s, surface tension 39.7 dyn / cm)

混合粉末と有機溶媒は、ハンドミキサーを用いて、120秒間混合し、本発明の流体状(ペースト状)硬化材を得た。   The mixed powder and the organic solvent were mixed for 120 seconds using a hand mixer to obtain a fluid (paste-like) cured material of the present invention.

<評価>
(粒子間隙)
粒子間隙は、φ41mmのガラス製メスシリンダー内に、300mLの上記本発明の流体状硬化材を入れて60分間静置した。その時点で、原料分離が生じていない場合は原料全体の容積を、原料分離が生じている場合は、メスシリンダー内の沈降物上面の高さより沈降物容積を測定し、流体状硬化材中の混合粉末部分の投入量(容積)より、粒子間隙を求めた。
<Evaluation>
(Particle gap)
As for the particle gap, 300 mL of the above-mentioned fluid curing material of the present invention was placed in a glass graduated cylinder having a diameter of 41 mm and allowed to stand for 60 minutes. At that time, if the raw material separation has not occurred, the volume of the whole raw material is measured. If the raw material separation has occurred, the sediment volume is measured from the height of the upper surface of the sediment in the graduated cylinder. The particle gap was determined from the input amount (volume) of the mixed powder portion.

(硬化性)
硬化性状は、モルタル平板表面に前記流体状硬化材を10cm×10cm×厚さ1mmに塗布し、60分後に霧吹きで表面を充分に湿らせた後、20℃恒温室内で静置し、指触により硬化を確認した。霧吹き後30分経過後に指で押しても全くへこまないものは○(良)、それ以外の状態となったものについては再度霧吹きで表面を充分に湿らせた後、20℃、相対湿度80%の恒温室内で更に3時間(計3.5時間)静置し、この時点で指で押しても全くへこまないものは○(良)、それ以外の状態となったものは全て×(不良)とした。
(Curable)
Curing properties were applied to the surface of the mortar plate 10cm x 10cm x 1mm in thickness, and after 60 minutes, the surface was thoroughly moistened with a mist sprayer, then left in a constant temperature room at 20 ° C and touched. To confirm the curing. ○ (good) if it does not become depressed even if it is pressed with a finger after 30 minutes have passed after spraying. For those other than that, the surface is thoroughly moistened again with spraying, then 20 ° C, relative humidity 80% Leave still for 3 hours (3.5 hours in total) in this temperature chamber, and if it does not dent at all at this point, ○ (good) and all other conditions are marked as x (defect). .

(粉塵の発生)
前記流体状硬化材1kgを1mの高さより落下させ、粉塵発生を目視で評価した。粉塵発生が明確に認められたものを×、それ以外を○とした。
(Dust generation)
1 kg of the fluid curing material was dropped from a height of 1 m, and dust generation was visually evaluated. The case where dust generation was clearly recognized was rated as x, and the others were marked as o.

(粘度)
前記流体状硬化材の粘度は、混合粉末と有機溶媒を混合終了直後に、20℃でB型粘度計を用い、回転数6〜60rpmにて測定した。
(viscosity)
The viscosity of the fluid curing material was measured using a B-type viscometer at 20 ° C. immediately after the mixing of the mixed powder and the organic solvent at a rotational speed of 6 to 60 rpm.

(保管性)
前記流体状硬化材2kgをステンレス容器に密封し、20℃恒温室内に6ヶ月間静置した後開封し、ハンドミキサーで約3分間攪拌した。攪拌停止から30分放置した材料について前記の粒子間隙評価方法、粘度評価方法及び硬化性の確認方法とそれぞれ同様の方法で粒間隙、粘度を求め、また硬化性を確認した。粒子間隙が45〜65容積%で、粘度が0.1〜20Pa・sとなり、且つ硬化性が○(良)となったものについては、○(保管性有り)と判断し、それ以外は×(保管性無し)と判断した。
(Storage)
2 kg of the fluid hardened material was sealed in a stainless steel container, allowed to stand in a constant temperature room at 20 ° C. for 6 months, then opened, and stirred with a hand mixer for about 3 minutes. With respect to the material left for 30 minutes after the stirring was stopped, the particle gap and viscosity were determined in the same manner as the above-mentioned particle gap evaluation method, viscosity evaluation method and curability confirmation method, and curability was confirmed. For particles with a particle gap of 45 to 65% by volume, a viscosity of 0.1 to 20 Pa · s, and a curability of ○ (good), it is judged as ○ (with storage), and otherwise x (storage) It was judged that there was no sex.

Figure 0004395404
Figure 0004395404

表1から明らかなように、本発明の流体状硬化材は、硬化性及び保管性に優れ、しかも粉塵の発生を抑制できることが判明した。   As is clear from Table 1, it was found that the fluid curing material of the present invention is excellent in curability and storage properties and can suppress the generation of dust.

Claims (7)

ポルトランドセメント及び/又は混合セメントとカルシウムアルミネートを含む粒子間隙が45〜65容積%の混合粒子と、溶解度パラメーターが9.0以上の有機溶媒とを含有し、20℃での粘度が20Pa・s以下である流体状硬化材。   Portland cement and / or mixed cement and calcium aluminate containing mixed particles with a particle gap of 45-65% by volume and an organic solvent having a solubility parameter of 9.0 or more, and a viscosity at 20 ° C. of 20 Pa · s or less A fluid hardener. 混合粒子中のポルトランドセメント及び/又は混合セントに対するカルシウムアルミネートの重量比が0.1〜1.8である請求項1記載の流体状硬化材。   The fluid hardening material according to claim 1, wherein the weight ratio of calcium aluminate to Portland cement and / or mixed cent in the mixed particles is 0.1 to 1.8. 混合粒子の90重量%が通過する篩径(D9)と10重量%が通過する篩径(D1)の比(D9/D1)が6.5〜8.0である請求項1又は2記載の流体状硬化材。   The fluid hardening material according to claim 1 or 2, wherein the ratio (D9 / D1) of the sieve diameter (D9) through which 90% by weight of the mixed particles passes and the sieve diameter (D1) through which 10% by weight passes is 6.5 to 8.0. . 有機溶媒が、一価アルコール、多価アルコール及び一価又は多価アルコールのアルキレンオキサイド付加物から選ばれる少なくとも一種以上である請求項1〜3のいずれか1項記載の流体状硬化材。   The fluid curing material according to any one of claims 1 to 3, wherein the organic solvent is at least one selected from monohydric alcohols, polyhydric alcohols, and alkylene oxide adducts of monohydric or polyhydric alcohols. 有機溶媒が更に0.01〜0.1重量%の水を含有するものである請求項1〜4のいずれか1項の流体状硬化材。   The fluid curing material according to any one of claims 1 to 4, wherein the organic solvent further contains 0.01 to 0.1% by weight of water. 請求項1〜5のいずれか1項記載の流体状硬化材を躯体面に塗布又は亀裂に充填した後、水を添加することを特徴とする流体状硬化材の施工方法。   A method for constructing a fluid curing material, comprising adding water after applying the fluid curing material according to any one of claims 1 to 5 to a housing surface or filling a crack. 請求項1〜5のいずれか1項記載の流体状硬化材を湿潤状態の躯体面に塗布、又は湿潤状態の亀裂に充填することを特徴とする流体状硬化材の施工方法。   A construction method of a fluid curing material, comprising applying the fluid curing material according to any one of claims 1 to 5 to a wet casing surface or filling a wet crack.
JP2004131743A 2004-04-27 2004-04-27 Fluid hardener Expired - Fee Related JP4395404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131743A JP4395404B2 (en) 2004-04-27 2004-04-27 Fluid hardener

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004131743A JP4395404B2 (en) 2004-04-27 2004-04-27 Fluid hardener

Publications (2)

Publication Number Publication Date
JP2005314140A JP2005314140A (en) 2005-11-10
JP4395404B2 true JP4395404B2 (en) 2010-01-06

Family

ID=35441946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131743A Expired - Fee Related JP4395404B2 (en) 2004-04-27 2004-04-27 Fluid hardener

Country Status (1)

Country Link
JP (1) JP4395404B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945889B2 (en) * 2004-09-17 2012-06-06 凸版印刷株式会社 Manufacturing method of color filter substrate
JP2007191584A (en) * 2006-01-19 2007-08-02 Sumitomo Osaka Cement Co Ltd Cement-based aerosol product
JP5041719B2 (en) * 2006-03-28 2012-10-03 住友大阪セメント株式会社 Repair material for cross-section defects in concrete structures
JP2008156194A (en) * 2006-12-26 2008-07-10 Sumitomo Osaka Cement Co Ltd Repairing material for cross sectional deficit of concrete structure
JP5095202B2 (en) * 2006-12-26 2012-12-12 住友大阪セメント株式会社 Repair material for cross-section defects in concrete structures
JP5475224B2 (en) * 2007-11-08 2014-04-16 花王株式会社 Method for producing cement-based solidified material
JP2020158311A (en) * 2017-07-26 2020-10-01 デンカ株式会社 Cement based composition not requiring blending, and method of using the same

Also Published As

Publication number Publication date
JP2005314140A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP2017149595A (en) Hardening method of waste gypsum
KR102196634B1 (en) Mortar composition for repairing concrete structures with excellent chemical resistance and durability and seismic performance, and the method for repairing and reinforcing concrete structures using the same
TWI414504B (en) Hydraulic composition
JP2015531737A (en) Multi-purpose mortar or cement composition for building applications
JP2013512168A (en) Inorganic binder systems for the production of chemically resistant building chemicals
WO2012030884A1 (en) Easy mix mortar/grout composition, method of making and using thereof
JP5595482B2 (en) Dust-removed powdery building material composition
JP2006131488A (en) Acid resistant grout composition
WO2020183429A1 (en) A mortar composition and a process for its preparation
JP4395404B2 (en) Fluid hardener
JP5954684B2 (en) Powdery drying shrinkage reducing agent for premix cement
JP2009057226A (en) Method for manufacturing autoclaved lightweight concrete
JP4862462B2 (en) Polymer cement composition
KR20230079421A (en) Cementitious binder based on early steel slag
JP5811461B2 (en) Powdery drying shrinkage reducing agent for premix cement
JP2011195402A (en) Hydraulic composition
JP2008201605A (en) Rapid-hardening material for highly flowable hydraulic composition and highly flowable hydraulic composition
JP2014015356A (en) Cement admixture, cement composition, and cement mortar using them
JP2006182619A (en) Cement admixture and cement composition
KR101750831B1 (en) Low viscosity-low heat generation binder and Low viscosity-low heat generation-high strength concrete composition using the same
JP7321057B2 (en) Polymer cement composition and polymer cement mortar
JP7403342B2 (en) Cement composition and its manufacturing method, and mortar
JP3026406B2 (en) Manufacturing method and construction method of self-smoothing cement mortar composition
JP7182511B2 (en) shrinkage reducing agent
JP5954778B2 (en) Molding aid for cement composition and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

R150 Certificate of patent or registration of utility model

Ref document number: 4395404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees