JP4394625B2 - Mold surface protection film - Google Patents

Mold surface protection film Download PDF

Info

Publication number
JP4394625B2
JP4394625B2 JP2005274054A JP2005274054A JP4394625B2 JP 4394625 B2 JP4394625 B2 JP 4394625B2 JP 2005274054 A JP2005274054 A JP 2005274054A JP 2005274054 A JP2005274054 A JP 2005274054A JP 4394625 B2 JP4394625 B2 JP 4394625B2
Authority
JP
Japan
Prior art keywords
phase
protective film
film
tialn
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005274054A
Other languages
Japanese (ja)
Other versions
JP2006118043A (en
Inventor
正照 野瀬
誠一 政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Original Assignee
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University filed Critical Toyama University
Priority to JP2005274054A priority Critical patent/JP4394625B2/en
Publication of JP2006118043A publication Critical patent/JP2006118043A/en
Application granted granted Critical
Publication of JP4394625B2 publication Critical patent/JP4394625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、金型の表面に形成する保護膜に関する。
The present invention relates to a protective film formed on the surface of a mold .

ダイカストや熱間押し出し等に用いられる金型表面には、従来、TiNやTiAlN等の遷移金属窒化物からなる硬質な保護膜を形成してあった。ところが、上記の保護膜は硬質であるが、潤滑性が不十分で、且つ濡れ性が良いため、耐久性に問題があった。つまり、溶融金属と反応がおき、溶融金属の一部が溶着するために製品精度に問題が生じると共に、金型のメンテナンスが必要となり、長時間の連続操業が困難であった。また、その溶着部から保護膜および金型自体の損耗が発生し、金型の寿命が十分とはいえなかった。   Conventionally, a hard protective film made of a transition metal nitride such as TiN or TiAlN has been formed on the surface of a mold used for die casting or hot extrusion. However, although the above protective film is hard, there is a problem in durability because of insufficient lubricity and good wettability. In other words, the reaction with the molten metal occurs, and a part of the molten metal is deposited, which causes a problem in product accuracy and requires maintenance of the mold, making it difficult to operate continuously for a long time. Further, the protective film and the mold itself were worn out from the welded portion, and the life of the mold was not sufficient.

また、別の技術としては、TiNとTiB2との混合相であるTiBN膜が存在する(特許文献1)。
特開2004−1215号公報
As another technique, there is a TiBN film that is a mixed phase of TiN and TiB 2 (Patent Document 1).
JP 2004-1215 A

ところが、TiNとTiB2は硬質膜同士であって、硬質膜同士の組み合わせによって硬度を上昇させるものであり、金型表面用保護膜としては他の材料と同様に耐久性に問題があった。 However, TiN and TiB 2 are hard films, and increase the hardness by the combination of the hard films. As a protective film for the mold surface, there is a problem in durability like other materials.

別の技術としては、絶縁耐力を有する加工液中で導電性を有する電極と被処理材との間に電圧を印加して放電を発生させ、放電の熱作用により被処理材の表面に処理層を形成する放電表面処理方法があり、電極と加工液の構成材料に硬質材料としてTiAlNを、潤滑材料としてBNを含有するものが存在する(特許文献2)。
特開2001−279465号公報(請求項7)
As another technique, a voltage is applied between a conductive electrode and a material to be processed in a working fluid having a dielectric strength to generate a discharge, and a treatment layer is formed on the surface of the material to be processed by the thermal action of the discharge. There is a discharge surface treatment method that forms Ti and a constituent material of an electrode and a working fluid that contains TiAlN as a hard material and BN as a lubricating material (Patent Document 2).
JP 2001-279465 A (Claim 7)

放電表面処理方法の原理は、放電加工の電極をTi等の金属(導電体)とすることにより、電極のTiと油中の炭素が反応してTiCとなり、被処理材に付着するものである。従って、上述した放電表面処理方法には、Ti、Al、N、及びBNからなる膜ができるかのように記載してあるが、実際には電気抵抗の大きな材料であるTiAlNの電極を製作することは困難であり、その上、BNのような潤滑材料も絶縁体であることから、この方法でTiAlN中にBNを分散させることは困難と考えられる。   The principle of the electrical discharge surface treatment method is that the electrode for electrical discharge machining is made of a metal (conductor) such as Ti, so that Ti in the electrode reacts with carbon in the oil to become TiC and adheres to the material to be treated. . Therefore, although the discharge surface treatment method described above is described as if a film made of Ti, Al, N, and BN is formed, an electrode of TiAlN that is a material having a large electric resistance is actually manufactured. In addition, it is difficult to disperse BN in TiAlN by this method because the lubricating material such as BN is also an insulator.

請求項1の発明は上記実情を考慮して開発されたもので、その目的は、金型の耐久性を向上させるべく、ある程度の高硬度を有すると共に、潤滑性を向上させ、且つ濡れ性や反応性、溶着性を低下させる金型表面用保護膜を形成することである。   The invention of claim 1 has been developed in consideration of the above circumstances, and its purpose is to improve the durability of the mold, to have a certain degree of high hardness, to improve lubricity, and to improve wettability. It is to form a protective film for the mold surface that reduces the reactivity and weldability.

請求項1の発明は、気相薄膜形成法によって金属表面にTi、B、及びNを必須元素とし、AlまたはSiのうち1種又は2種の元素を含む硬質の保護膜を形成し、前記硬質の保護膜は、TiとNを必須元素とし、AlまたはSiのうち1種又は2種の元素を含むNaCl型の結晶相と、非結晶構造もしくは微結晶の六方晶構造を有するBN相とから構成され、NaCl型の結晶相とBN相が三次元的に混じり合う混合膜であって、アルミ又はマグネシウムのダイカスト用又は押し出し用金型に用いられる、金型表面用保護膜である。
The invention of claim 1 comprises forming a hard protective film containing Ti, B, and N as essential elements on a metal surface by a vapor phase thin film forming method, and containing one or two elements of Al or Si, The hard protective film consists of a NaCl-type crystal phase containing Ti and N as essential elements and one or two elements of Al or Si, and a BN phase having an amorphous or microcrystalline hexagonal structure. Is a mixed film in which a NaCl-type crystal phase and a BN phase are three-dimensionally mixed, and is a protective film for a mold surface used for an aluminum or magnesium die casting or extrusion mold.

「TiとNを必須元素とし、AlまたはSiのうち1種又は2種の元素を含むNaCl型の結晶相」とは、TiAlN相、TiAlSiN相、又はTiSiN相のことをいう。TiAlN相は、30GPa程度の高い塑性変形硬さと、高い耐酸化性を有する。TiAlSiN相、及びTiSiN相も同様のことが言えると共に、耐酸化性がTiAlN相よりも向上する。またこれらのNaCl型の結晶はX線回折法から求めた結晶粒サイズが概ね30nm以下であることが高硬度を維持するために望ましい。   “A NaCl-type crystal phase containing Ti and N as essential elements and containing one or two elements of Al or Si” refers to a TiAlN phase, a TiAlSiN phase, or a TiSiN phase. The TiAlN phase has a high plastic deformation hardness of about 30 GPa and a high oxidation resistance. The same can be said for the TiAlSiN phase and the TiSiN phase, and the oxidation resistance is improved as compared with the TiAlN phase. In order to maintain high hardness, it is desirable that these NaCl-type crystals have a crystal grain size of approximately 30 nm or less determined by X-ray diffraction.

BN相は、非結晶構造もしくは六方晶構造を有する微結晶からなり、塑性変形硬さが1GPa以下で非常に柔らかく、膜の硬度を高める効果は殆どないが、固体潤滑性を有し、大半の金属との濡れ性が悪いため、金属の溶着を防止できる。なお、本発明の目的達成のためにNaCl型の結晶相とBN相の両者がそれぞれの機能を発揮できる程度に混在していればよく、この二つの相の成分を完全に分離することは必要ない。また、製膜プロセスにおいても上記NaCl型の結晶相とBN相は界面で相互に交じり合うため、二つの相を完全に分離することは不可能である。したがって、NaCl型の結晶と非晶質構造または六方晶構造を有する微結晶からなるBN相との間に相互に成分が若干混入することは当然ありえることである。   The BN phase consists of microcrystals having an amorphous structure or a hexagonal structure, and is very soft with a plastic deformation hardness of 1 GPa or less and has almost no effect of increasing the hardness of the film, but has a solid lubricity, Since the wettability with metal is poor, metal welding can be prevented. In order to achieve the object of the present invention, it is sufficient that both the NaCl-type crystal phase and the BN phase are mixed to the extent that they can perform their respective functions, and it is necessary to completely separate the components of these two phases. Absent. Further, in the film forming process, the NaCl-type crystal phase and the BN phase cross each other at the interface, so that it is impossible to completely separate the two phases. Therefore, it is naturally possible that some components are mixed in between the NaCl-type crystal and the BN phase composed of a microcrystal having an amorphous structure or a hexagonal structure.

BN相は固体潤滑性を有し、金属との濡れを阻害するので、BN相の割合が体積比で多い方がこれらの効果を得られるが、その反面、硬度が低下するので、場合によってはその硬度が金型としては不十分となるおそれもある。これらを防止するには、10GPa以上の塑性変形硬さHplを得られるように、BN相の割合が体積比で0%よりも多く50%以下であることが望ましい。また、BN相の効果をよりよく発揮させるにはBN相の割合が5%以上であることが望ましく、さらに望ましくは10%以上がよい。他方、より大きな圧力がかかる金型の部分においては、塑性変形硬さは10GPa以上であることが望ましく、より硬い保護膜にするためにBN相の割合が40%以下が望ましく、さらに望ましくは35%以下がよい。   Since the BN phase has solid lubricity and inhibits wetting with metals, these effects can be obtained when the volume ratio of the BN phase is large, but on the other hand, the hardness decreases, so in some cases The hardness may be insufficient for a mold. In order to prevent these, the volume ratio of the BN phase is preferably more than 0% and 50% or less so that a plastic deformation hardness Hpl of 10 GPa or more can be obtained. In order to make the BN phase effect more effective, the proportion of the BN phase is preferably 5% or more, and more preferably 10% or more. On the other hand, the plastic deformation hardness is desirably 10 GPa or more in the portion of the mold to which a greater pressure is applied, and the proportion of the BN phase is desirably 40% or less, and more desirably 35 in order to obtain a harder protective film. % Or less is good.

金型関係の適用範囲としては、アルミダイカスト用金型やマグネシウムダイカスト用金型(可動型、固定型、及び鋳抜きピン)、或いはアルミニウム押し出し金型等が具体的に挙げられる。   Specific examples of the application range related to the die include an aluminum die casting die, a magnesium die casting die (movable die, fixed die, and cast pin), an aluminum extrusion die, and the like.

上記TiとNを必須元素とし、AlまたはSiのうち1種又は2種の元素を含むNaCl型の結晶相とBN相は、それぞれの相が三次元的に混じり合う混合膜である。
The NaCl-type crystal phase and BN phase containing Ti and N as essential elements and containing one or two elements of Al or Si are mixed films in which the respective phases are three-dimensionally mixed .

請求項1の発明は、TiAlN相、TiAlSiN相、又はTiSiN相の利点と、BN相の双方の利点を膜の表面に兼備することにより、ある程度の高硬度を保ちながらも、潤滑性の良さ、濡れ性の悪さが発揮され、溶融金属の金型への溶着が抑制され、金型の耐久性が向上すると共に、金型のメンテナンスが長期間不要となる。
The invention of claim 1 has good lubricity while maintaining a certain degree of high hardness by combining the advantages of the TiAlN phase, TiAlSiN phase or TiSiN phase and the advantages of both the BN phase on the film surface . Poor wettability is exhibited, welding of molten metal to the mold is suppressed, the durability of the mold is improved, and maintenance of the mold becomes unnecessary for a long time.

請求項2の発明は、10GPa以上の塑性変形硬さが得られつつも、潤滑性の良さ及び濡れ性の悪さを一段と向上させることができる。
The invention of claim 2 can further improve the good lubricity and the poor wettability while achieving a plastic deformation hardness of 10 GPa or more.

Ti-Al(Ti51.0%-Al49.5%残部不純物)ターゲットと純度99.0%のh-BNターゲットを用いて2元同時スパッタするとともに、ターゲットに対向する基板を30rpmの回転速度で連続回転することにより基板表面に保護膜を製作した。アルゴンと窒素の混合ガス(混合比10:25)を流し、ガス圧力0.1〜0.5Paの範囲で、Ti-AlターゲットにはDC電源を、h-BNターゲットには高周波電源を接続し、それぞれ約1kWの電力を投入し、基板には鋼製工具(鋳ぬきピン)を用い、基板表面に厚さ3ミクロンのTiAlBN混合膜の製膜を行った。TiAlNとh-BNの製膜レートから見積られる混合比はTiAlN:h-BN=7:1であった。   Using a Ti-Al (Ti51.0% -Al49.5% residual impurity) target and a 99.0% h-BN target, two-way simultaneous sputtering is performed, and the substrate facing the target is continuously rotated at a rotation speed of 30 rpm. This produced a protective film on the substrate surface. Flow a mixed gas of argon and nitrogen (mixing ratio 10:25), connect a DC power source to the Ti-Al target and a high-frequency power source to the h-BN target at a gas pressure range of 0.1 to 0.5 Pa. A power of 1 kW was applied, and a TiAlBN mixed film having a thickness of 3 microns was formed on the surface of the substrate using a steel tool (casting pin). The mixing ratio estimated from the film formation rate of TiAlN and h-BN was TiAlN: h-BN = 7: 1.

上述した実施例1の保護膜を他の保護膜と比較したのが下記の表1である。比較例としては、実施例1と同一の基板を用い、スパッタによって厚さ3ミクロンのCrN、TiN、TiAlNの各保護膜を付けたもの、背景技術に記載した放電表面処理法(EDC法)によるTiCの保護膜を付けたもの、基板に窒化処理のみを施したものを用いた。実施例1と比較例の保護膜が付いた基板を、アルミニウムダイカスト用鋳ぬきピンとして3000回の鋳造をそれぞれ行った後、比較した。比較は、アルミニウム及びその酸化物などが付着している状態を目視で判定すると共に、付着物の重量を測定した。

Figure 0004394625
*:窒化処理材は2300回で使用不能になる程度に溶湯が付着した。○:良、△:可(使用可能)、×:不可(使用不能)。 Table 1 below compares the protective film of Example 1 described above with other protective films. As a comparative example, the same substrate as in Example 1 was used, and each protective film of CrN, TiN, and TiAlN with a thickness of 3 microns was attached by sputtering, or by the discharge surface treatment method (EDC method) described in the background art. The one with a TiC protective film and one with only nitriding applied to the substrate were used. The substrates with the protective films of Example 1 and the comparative example were compared after casting 3000 times as cast pins for aluminum die casting. In comparison, the state in which aluminum and oxides thereof were adhered was visually determined, and the weight of the deposit was measured.
Figure 0004394625
*: The molten material adhered to the extent that the nitriding material could not be used after 2300 times. ○: Good, Δ: Acceptable (usable), ×: Impossible (unusable).

Ti-Al(Ti51.0%-Al49.5%残部不純物)ターゲットと純度99.0%のh-BNターゲットを用いて2元同時スパッタするとともに、基板を一定角度毎に間欠的に回転することにより、TiAlN膜とh-BN膜とが交互に基板表面に積み重なった積層保護膜を製膜した。アルゴンと窒素の混合ガス(混合比10:25)を流し、ガス圧力0.1〜0.5Paの範囲で、TiAlターゲットにはDC電源を、h-BNターゲットには高周波電源を接続し、DC電源には約1.2kW、高周波電源には約700Wの電力を投入し、基板には鋼製工具(直径10φの円柱状鋳ぬきピン)を用い、基板表面に厚さ3ミクロンのTiAlN/h-BN積層膜の製膜を行った。TiAlNとh-BNの各層の膜厚はそれぞれ5nmと1nmであり、それを500回(1000層)繰り返し製膜した。   By using the Ti-Al (Ti51.0% -Al49.5% remaining impurity) target and the 99.0% h-BN target to carry out dual simultaneous sputtering and rotating the substrate intermittently at a fixed angle, A laminated protective film in which TiAlN films and h-BN films were alternately stacked on the substrate surface was formed. Flow a mixed gas of argon and nitrogen (mixing ratio 10:25), connect a DC power source to the TiAl target, a high-frequency power source to the h-BN target, and a high frequency power source to the DC power source. About 1.2 kW, about 700 W of power is applied to the high frequency power supply, a steel tool (cylindrical cast pin with a diameter of 10φ) is used for the substrate, and a 3 micron thick TiAlN / h-BN laminated film on the substrate surface The film was formed. The thickness of each layer of TiAlN and h-BN was 5 nm and 1 nm, respectively, and this was repeated 500 times (1000 layers).

上述した実施例2の保護膜を他の保護膜と比較したのが下記の表2である。比較例としては、実施例2と同一の基板を用い、スパッタによって厚さ3ミクロンのCrN、TiN、TiAlNの各保護膜を付けたもの、PCVD法によって厚さ3ミクロンのTiNの保護膜を付けたものを用いた。実施例2と比較例の保護膜が付いた基板を、マグネシウムダイカスト用鋳ぬきピンとして3000回使用した後、溶湯との接触部の中央部分を切断し、その断面円周部を走査型電子顕微鏡で観察し、欠陥部分の個数と長さを計測し、その結果を比較した。

Figure 0004394625
Table 2 below compares the protective film of Example 2 described above with other protective films. As a comparative example, the same substrate as in Example 2 was used, and a protective film of CrN, TiN, TiAlN with a thickness of 3 microns was attached by sputtering, and a protective film of TiN with a thickness of 3 microns was attached by the PCVD method. Used. After the substrate with the protective film of Example 2 and the comparative example was used 3000 times as a casting pin for magnesium die casting, the central portion of the contact portion with the molten metal was cut, and the circumferential portion of the cross section was scanned with an electron microscope Was observed, and the number and length of defect portions were measured, and the results were compared.
Figure 0004394625

Ti-Al(Ti51.0%-Al49.5%残部不純物)のターゲットと純度99.0%のh-BNターゲットを用いて2元同時スパッタするとともに、基板を30rpmの回転速度で連続回転することにより混合膜を製膜した。アルゴンと窒素の混合ガス(混合比10:25)を流し、ガス圧力0.1〜0.5Paの範囲で、TiAlターゲットにはDC電源を、h-BNターゲットには高周波電源を接続し、DC電源には1.0kW、高周波電源には800Wの電力をそれぞれ投入し、基板には鋼製工具(中子ピン)を用い、基板表面に厚さ3ミクロンのTiAlBN混合膜の製膜を行った。TiAlNとh-BNの製膜レートから見積もられる混合比はTiAlN:h-BN=9:1であった。   Simultaneous sputtering with Ti-Al (Ti51.0% -Al49.5% remaining impurities) target and 99.0% purity h-BN target and mixing by rotating the substrate continuously at a rotation speed of 30 rpm A membrane was formed. Flow a mixed gas of argon and nitrogen (mixing ratio 10:25), connect a DC power source to the TiAl target, a high frequency power source to the h-BN target, and a high frequency power source to the DC power source in a gas pressure range of 0.1 to 0.5 Pa. A power of 1.0 kW and 800 W was applied to the high-frequency power source, and a steel tool (core pin) was used for the substrate, and a 3 micron thick TiAlBN mixed film was formed on the substrate surface. The mixing ratio estimated from the film formation rate of TiAlN and h-BN was TiAlN: h-BN = 9: 1.

上述した実施例3の保護膜を他の保護膜と比較したのが下記の表3である。比較例としては、実施例3と同一の基板を用い、スパッタによって厚さ3ミクロンのCrN、TiN、TiAlNの各保護膜を付けたものを用いた。実施例3と比較例の保護膜が付いた基板を亜鉛(ZDC1)ダイカスト用中子ピンとして用い、40000回の鋳造を行った後、基板のキャビティー部断面を走査型電子顕微鏡で調べ、欠陥部分の合計長さを比較した。

Figure 0004394625
Table 3 below compares the protective film of Example 3 described above with other protective films. As a comparative example, the same substrate as in Example 3 was used, and a protective film of CrN, TiN, TiAlN having a thickness of 3 microns was attached by sputtering. Using the substrate with the protective film of Example 3 and the comparative example as a core pin for zinc (ZDC1) die casting, after casting 40,000 times, the cross section of the cavity part of the substrate was examined with a scanning electron microscope. The total length of the parts was compared.
Figure 0004394625

Ti-Al-Si(Ti51.1at%-Al38.1at%-Si10.3at%残部不純物)のターゲットと純度99.0%のh-BNターゲットを用いて2元同時スパッタするとともに、基板を一定角度間欠的に回転することにより積層膜を製膜した。アルゴンと窒素の混合ガス(混合比10:25)を流し、ガス圧力0.1〜0.5Paの範囲で、TiAlターゲットにはDC電源を、h-BNターゲットには高周波電源を接続し、DC電源には約1.2kW、高周波電源には約700Wの電力を投入し、基板には鋼製工具(鋳ぬきピン)を用い、基板表面に厚さ3ミクロンのTiAlN/h-BN積層膜の製膜を行った。TiAlSiNとh-BNの各層の膜厚はそれぞれ5nmと1nmであり、それを500回(1000層)繰り返し製膜した。   Simultaneous sputtering with Ti-Al-Si (Ti51.1at% -Al38.1at% -Si10.3at% balance impurity) target and 99.0% purity h-BN target, and substrate intermittently at a constant angle The laminated film was formed by rotating the film. Flow a mixed gas of argon and nitrogen (mixing ratio 10:25), connect a DC power source to the TiAl target, a high-frequency power source to the h-BN target, and a high frequency power source to the DC power source. About 1.2 kW, about 700 W of power is applied to the high-frequency power supply, and a steel tool (casting pin) is used for the substrate, and a 3 micron thick TiAlN / h-BN multilayer film is formed on the substrate surface. It was. The thickness of each layer of TiAlSiN and h-BN was 5 nm and 1 nm, respectively, and this was repeated 500 times (1000 layers).

上述した実施例4の保護膜を他の保護膜と比較したのが下記の表4である。比較例としては、実施例4と同一の基板を用い、スパッタによって厚さ3ミクロンのCrN、TiN、TiAlSiNの各保護膜を付けたものを用いた。実施例3と比較例の保護膜が付いた基板をマグネシウムダイカスト用鋳ぬきピンとして用い、基板に対する付着物(マグネシウムおよびその酸化物など)の厚さが1mmを超えるまでの鋳造回数を比較した。比較例はいずれも2万〜8万回程度で1mm以上となっているが、実施例4は10万回を超えても未だ1mm未満である。

Figure 0004394625
○:1mm未満、△:1mm以上 Table 4 below compares the protective film of Example 4 described above with other protective films. As a comparative example, the same substrate as in Example 4 was used, and a protective film of CrN, TiN, TiAlSiN having a thickness of 3 microns was attached by sputtering. The substrates with protective films of Example 3 and Comparative Example were used as casting pins for magnesium die casting, and the number of castings until the thickness of deposits (magnesium and oxides thereof) on the substrate exceeded 1 mm was compared. Although all the comparative examples are about 20,000 to 80,000 times and are 1 mm or more, Example 4 is still less than 1 mm even if it exceeds 100,000 times.
Figure 0004394625
○: Less than 1mm, △: 1mm or more

本発明は、比較実験により上記した4つの実施例のいずれにおいても、良好な結果が得られたことにより、金型表面用保護膜として好適であり、潤滑性の向上及び濡れ性の悪化が得られたものと判断できる。上記実施例で得られた本発明の保護膜をX線回折法で分析し、X線回折ピークの半値幅からScherrerの式を用いて計算したところ、TiAlN相、TiAlSiN相、又はTiSiN相の平均結晶粒サイズは20nm以下であると求められた。なお、結晶粒サイズは測定法により誤差が出てくるので、かかる誤差を考慮すればTiAlN相、TiAlSiN相、又はTiSiN相の平均結晶粒サイズは30nm以下であることが、保護膜の高い硬度を得るには必要であると考えられ、20nm以下であることが望ましい。   The present invention is suitable as a protective film for the mold surface by obtaining good results in any of the four examples described above by comparative experiments, and improved lubricity and deterioration of wettability are obtained. Can be judged. The protective film of the present invention obtained in the above example was analyzed by the X-ray diffraction method, and calculated from the half width of the X-ray diffraction peak using the Scherrer equation. The average of the TiAlN phase, TiAlSiN phase, or TiSiN phase The crystal grain size was determined to be 20 nm or less. In addition, since an error appears in the crystal grain size depending on the measurement method, if such an error is taken into consideration, the average crystal grain size of the TiAlN phase, TiAlSiN phase, or TiSiN phase is 30 nm or less. It is thought that it is necessary to obtain, and it is desirable that it is 20 nm or less.

上記実施例に示すように本発明の金型表面用保護膜は、Ti、Al、B、及びNを主成分とする混合膜であっても良いし、また、実施例では示していないが、Ti、Al、Si、B、及びNを主成分とする混合膜であっても良いし、Ti、Si、B、及びNを主成分とする混合膜であっても良い。なお、TiAlSiN自体の耐酸化性が優れていることについての本発明者らによる実験結果があり、これにBNを複合化した保護膜の特性が優れていることは予想できることから、Ti、Si、B、及びNを主成分とする混合膜であっても、同様の効果が得られると予想できる。
Mold surface protective film of the present invention as shown in the above embodiment, Ti, Al, B, and to N may be a mixed layer composed mainly of, Although not shown in the examples, Ti, Al, Si, B, and to N may be a mixed layer composed mainly of, Ti, Si, B, and N may be a mixed film composed mainly of. In addition, there is an experimental result by the present inventors about the excellent oxidation resistance of TiAlSiN itself, and since it can be expected that the characteristics of the protective film composited with BN are excellent, Ti, Si, Even with a mixed film containing B and N as main components, the same effect can be expected .

上述したように、BNが非常に柔らかいため、硬度の上昇は殆ど見られないと考えていたが、金型表面用保護膜の塑性硬さをBNの体積比を変化させた場合について調査したところ、意外な事実が判明した。図1のグラフに示すように、サンプル数は6個であるが、BN相の体積比率を0〜30%の前後で変化させたところ、BN相の体積比率が0%(TiAlNの単層の場合)の塑性硬さ30GPaよりも硬くなる範囲があった。BN相の体積比17%のサンプルと28%のサンプル間のカーブの描き方にもよるが、少なくとも17%以下の場合にはTiAlNの単層の場合と同等以上の塑性硬さが得られることが示された。また、前述した実施例3の表3からは、BN相の体積比が10%の場合にはぬれ性、密着性、反応性、潤滑性が向上していると言える。従って、10%以上にBN相の体積比率を増やせば、BN相自体の特性としてぬれ性から潤滑性が一段と向上すると推測できる。実施例3と4の結果をまとめれば、BN相の体積比率が10%〜17%の場合には、ぬれ性、密着性、反応性、潤滑性だけでなく、TiAlNの単層の場合と同等以上の塑性硬さが得られる。なお、図1のグラフからは、同一サンプルを製造直後と製造から半年後の2回、測定しても、特性の劣化が殆ど見られないことが読みとれる。
As mentioned above, since BN was very soft, it was thought that there was almost no increase in hardness. However, when the volume ratio of BN was changed, the plastic hardness of the protective film for the mold surface was investigated. An unexpected fact was found. As shown in the graph of FIG. 1, the number of samples is 6, but when the volume ratio of the BN phase is changed around 0 to 30%, the volume ratio of the BN phase is 0% (TiAlN monolayer). There was a range that became harder than the plastic hardness of 30 GPa. Depending on how the curve is drawn between the BN phase 17% volume sample and the 28% sample, if it is at least 17% or less, a plastic hardness equivalent to or higher than that of a TiAlN single layer can be obtained. It has been shown. From Table 3 of Example 3 described above, it can be said that the wettability, adhesion, reactivity, and lubricity are improved when the volume ratio of the BN phase is 10%. Therefore, if the volume ratio of the BN phase is increased to 10% or more, it can be estimated that the lubricity is further improved from the wettability as a characteristic of the BN phase itself. When the results of Examples 3 and 4 are summarized, when the volume ratio of the BN phase is 10% to 17%, not only wettability, adhesion, reactivity, and lubricity, but also the same as the case of a single layer of TiAlN. The above plastic hardness is obtained. Note that it can be seen from the graph of FIG. 1 that even if the same sample is measured twice immediately after production and half a year after production, the characteristics are hardly deteriorated.

なお、本発明の金型表面用保護膜は気相薄膜形成法によって製作されるもので、上述した実施例にはPVD法が用いられているが、条件を整えればCVD法を用いることも可能である。
The protective film for the mold surface of the present invention is manufactured by the vapor-phase thin film forming method, and the PVD method is used in the above-described embodiments. However, the CVD method may be used if the conditions are adjusted. Is possible.

BN混合比による金型表面用保護膜の塑性硬さの変化を示すグラフである。It is a graph which shows the change of the plastic hardness of the protective film for metal mold | die surfaces by BN mixing ratio.

Claims (2)

気相薄膜形成法によって金属表面にTi、B、及びNを必須元素とし、AlまたはSiのうち1種又は2種の元素を含む硬質の保護膜を形成し、前記硬質の保護膜は、TiとNを必須元素とし、AlまたはSiのうち1種又は2種の元素を含むNaCl型の結晶相と、非結晶構造もしくは微結晶の六方晶構造を有するBN相とから構成され、NaCl型の結晶相とBN相が三次元的に混じり合う混合膜であって、アルミ又はマグネシウムのダイカスト用又は押し出し用金型に用いられる、金型表面用保護膜。
A hard protective film containing Ti, B, and N as essential elements and containing one or two elements of Al or Si is formed on the metal surface by a vapor phase thin film forming method, and the hard protective film is made of Ti. And N is an essential element, and consists of a NaCl-type crystal phase containing one or two elements of Al or Si and a BN phase having an amorphous structure or a microcrystalline hexagonal structure. A protective film for a mold surface, which is a mixed film in which a crystal phase and a BN phase are mixed three-dimensionally, and is used for an aluminum or magnesium die casting or extrusion mold.
BN相の割合が体積比で5〜50%の範囲内にある請求項1記載の金型表面用保護膜。The protective film for a mold surface according to claim 1, wherein the ratio of the BN phase is in the range of 5 to 50% by volume.
JP2005274054A 2004-09-24 2005-09-21 Mold surface protection film Active JP4394625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274054A JP4394625B2 (en) 2004-09-24 2005-09-21 Mold surface protection film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004277050 2004-09-24
JP2005274054A JP4394625B2 (en) 2004-09-24 2005-09-21 Mold surface protection film

Publications (2)

Publication Number Publication Date
JP2006118043A JP2006118043A (en) 2006-05-11
JP4394625B2 true JP4394625B2 (en) 2010-01-06

Family

ID=36536189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274054A Active JP4394625B2 (en) 2004-09-24 2005-09-21 Mold surface protection film

Country Status (1)

Country Link
JP (1) JP4394625B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208560B2 (en) 2007-10-12 2017-09-20 Hitachi Tool Engineering, Ltd. Process for the production of the member covered with hard coating
JP6857298B2 (en) * 2017-06-26 2021-04-14 三菱マテリアル株式会社 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer

Also Published As

Publication number Publication date
JP2006118043A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP5060714B2 (en) Hard coating excellent in wear resistance and oxidation resistance, and target for forming the hard coating
JP4966580B2 (en) Coated tool
EP1726390B1 (en) Surface-coated cutting tool
KR101170396B1 (en) Hard coating and its production method
JP2013534186A (en) Cutting tool with multilayer coating
JP5695720B2 (en) Hard coating with excellent wear and oxidation resistance
JP2008240079A (en) Coated member
JP5395454B2 (en) Surface coated cutting tool
JP5640242B2 (en) Surface coated cutting tool
JP5373781B2 (en) Tool having a multilayer metal oxide coating and method of manufacturing the coated tool
JP2006342414A (en) Hard coating
JP2008296337A (en) Hard coating for cutting tool
EP2031090B1 (en) Hard covering film for cutting tool
JP4253169B2 (en) Hard coating with excellent wear resistance, method for producing the same, cutting tool, and target for forming hard coating
JP4394625B2 (en) Mold surface protection film
JP5668262B2 (en) Surface coated cutting tool
JP4107433B2 (en) α-type aluminum oxide coated member
JP5640243B2 (en) Surface coated cutting tool
Li et al. Optimization of interlayer/CrWN bilayer films fabricated and monitored under Shewhart control
WO2014115846A1 (en) Laminated coating film having excellent abrasion resistance
JP5321360B2 (en) Surface coated cutting tool
JP2007056324A (en) Hard film
JP2006138008A (en) Protective film for surface of die and protective film for surface of metal working tool
JP2007056323A (en) Hard film
JP2005314758A (en) Metallic member coated with diamond like carbon film and coating formation method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250