JP4394415B2 - Plate thickness relative comparison method and plate thickness relative comparison apparatus using electromagnetic pulses - Google Patents

Plate thickness relative comparison method and plate thickness relative comparison apparatus using electromagnetic pulses Download PDF

Info

Publication number
JP4394415B2
JP4394415B2 JP2003365113A JP2003365113A JP4394415B2 JP 4394415 B2 JP4394415 B2 JP 4394415B2 JP 2003365113 A JP2003365113 A JP 2003365113A JP 2003365113 A JP2003365113 A JP 2003365113A JP 4394415 B2 JP4394415 B2 JP 4394415B2
Authority
JP
Japan
Prior art keywords
value
plate thickness
gradient
relative comparison
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003365113A
Other languages
Japanese (ja)
Other versions
JP2005127920A (en
Inventor
晃史 佐々木
雅司 森
雅己 兵藤
健一 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Non Destructive Inspection Co Ltd
Original Assignee
Showa Shell Sekiyu KK
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK, Non Destructive Inspection Co Ltd filed Critical Showa Shell Sekiyu KK
Priority to JP2003365113A priority Critical patent/JP4394415B2/en
Publication of JP2005127920A publication Critical patent/JP2005127920A/en
Application granted granted Critical
Publication of JP4394415B2 publication Critical patent/JP4394415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、例えば断熱材に覆われた鋼管等の腐食を検出することの可能な電磁波パルスによる板厚相対比較方法及び板厚相対比較装置に関する。さらに詳しくは、複数の測定箇所において、電磁波パルスの送信子及び受信子から隔たった位置に存在する鋼材に前記送信子から電磁波パルスを送信すると共に前記受信子で受信し、各測定箇所における受信パルスを用いて前記鋼材の板厚を相対比較する電磁波パルスによる板厚相対比較方法に関する。   The present invention relates to a plate thickness relative comparison method and a plate thickness relative comparison apparatus using electromagnetic wave pulses capable of detecting corrosion of, for example, a steel pipe covered with a heat insulating material. More specifically, at a plurality of measurement points, the electromagnetic wave pulse is transmitted from the transmitter to a steel material located at a position separated from the transmitter and receiver of the electromagnetic wave pulse and received by the receiver, and the received pulse at each measurement point. The present invention relates to a plate thickness relative comparison method using an electromagnetic wave pulse for relatively comparing plate thicknesses of the steel materials.

電磁波パルスを用いた上述の如き板厚相対比較方法としては、例えば特許文献1に記載の如き発明が知られている。同発明では、同明細書の図4に示されるように、減衰時間と振幅との関係において無限に厚い導体壁では真っ直ぐな応答を生じるが、板厚が薄くなるに従って、途中で下方向に湾曲を始め、大きな割合で減衰することが知られている。
特開平1−202654号公報
As a plate thickness relative comparison method using an electromagnetic wave pulse as described above, for example, an invention as described in Patent Document 1 is known. In the invention, as shown in FIG. 4 of the same specification, an infinitely thick conductor wall produces a straight response in the relationship between the decay time and the amplitude. It is known to attenuate at a large rate.
JP-A-1-202654

したがって、減衰波形の変曲点を求めることで、板厚を相対比較することが予想されるが、その具体的な手法は上記公報には何ら開示されていなかった。しかも、この変曲点は受信波形において明確に表れる訳ではなく、なだらかで変曲点自身の特定が非常に困難であった。また、実際には受信波形にノイズが多く、近似により上記変曲点を安定して推定することが極めて困難であった。   Therefore, it is expected that the plate thicknesses are relatively compared by obtaining the inflection point of the attenuation waveform, but the specific technique is not disclosed in the above publication. In addition, this inflection point does not appear clearly in the received waveform, and it is very difficult to identify the inflection point itself. In fact, the received waveform has a lot of noise, and it has been extremely difficult to stably estimate the inflection point by approximation.

本発明の目的は、ノイズ環境下でも安定して板厚を相対比較することの可能な電磁波パルスによる板厚相対比較方法及び板厚相対比較装置を提供することにある。   An object of the present invention is to provide a plate thickness relative comparison method and a plate thickness relative comparison apparatus using electromagnetic wave pulses capable of relatively comparing plate thicknesses even under noisy environments.

上記課題を解決するため、本発明に係る電磁波パルスによる板厚相対比較方法の特徴は、複数の測定箇所において、電磁波パルスの送信子及び受信子から隔たった位置に存在する鋼材に前記送信子から電磁波パルスを送信すると共に前記受信子で受信し、各測定箇所における受信パルスを用いて前記鋼材の板厚を相対比較する電磁波パルスによる板厚相対比較方法であって、実質的に時間及び振幅の軸をそれぞれ対数目盛で表示し直線近似と二次曲線とにより受信パルスを近似すると共に、前記二次曲線における勾配の基準値を前記直線の勾配を下回る値に定め、二次曲線近似部分における勾配が前記勾配の基準値と一致する点での時間軸の値を前記各測定箇所毎に求め、それら時間軸の値又は時間軸の値に基づく板厚相当値により前記鋼材の板厚を相対比較することにある。   In order to solve the above-described problem, the feature of the relative thickness comparison method using electromagnetic pulses according to the present invention is that a plurality of measurement points are formed from the transmitter to a steel material existing at positions separated from the transmitter and receiver of the electromagnetic pulse. A method for comparing relative thicknesses of electromagnetic waves by transmitting electromagnetic waves and receiving them by the receiver and relatively comparing the thicknesses of the steel materials using the received pulses at each measurement location. Each axis is displayed on a logarithmic scale, and the received pulse is approximated by a linear approximation and a quadratic curve, and the gradient reference value in the quadratic curve is set to a value lower than the gradient of the straight line, and the gradient in the quadratic curve approximation portion Is obtained for each of the measurement points, and the steel material is determined based on the value of the time axis or the plate thickness equivalent value based on the value of the time axis. It is to relative comparison thickness.

同特徴によれば、変曲点は、直線近似部分と曲線近似部分との境界近傍において求められる。得られたデータの曲線近似を精度良く行うには、より自由度の高い高次パラメーターを含みうる曲線を用いて近似を行うことが理想的である。しかし、発明者らの実験によれば、高次元の曲線近似がノイズの影響を受けやすく、精度の高い曲線近似を行う割に当該変曲点の位置評定が不正確となることが判明した。三次曲線近似でもかかる傾向は見られたが、二次曲線近似を用いることにより、変曲点の位置評定が著しく正確に行われることが判明した。すなわち、二次曲線を使用した場合には、三次曲線近似のようにノイズの影響で変曲点付近の曲線近似がノイズに大幅に左右されることなく、全体としての二次曲線近似を巧みに利用して変曲点近傍におけるノイズの影響を実質的に打ち消すことに成功した。これにより、二次曲線近似部分における勾配が前記勾配の基準値と一致する点での時間軸の値が安定的に求められるようになった。なお、下限の入力部により受信パルスの振幅下限値を実質的に限定可能である。本発明の実施形態では、Y軸下限フィールドS2aにより受信パルスの振幅下限値を限定可能であり、ノイズ等による曲線近似の誤差を低減することができる。また、減衰の程度が推量可能である場合は、時間軸であるX軸フィールドS1bで実質的に受信パルスの振幅下限値を限定してもよい。   According to the same feature, the inflection point is obtained in the vicinity of the boundary between the straight line approximation portion and the curve approximation portion. In order to accurately perform curve approximation of the obtained data, it is ideal to perform approximation using a curve that can include higher-order parameters with a higher degree of freedom. However, according to experiments by the inventors, it has been found that high-dimensional curve approximation is easily affected by noise, and the position evaluation of the inflection point is inaccurate while performing high-precision curve approximation. Although such a tendency was also observed in the cubic curve approximation, it has been found that the position evaluation of the inflection point is performed remarkably accurately by using the quadratic curve approximation. In other words, when a quadratic curve is used, the curve approximation near the inflection point is not greatly influenced by noise due to the effect of noise as in the cubic curve approximation, and the quadratic curve approximation as a whole is skillfully performed. Using it, we succeeded in substantially canceling out the influence of noise near the inflection point. As a result, the value of the time axis at the point where the gradient in the quadratic curve approximation portion matches the reference value of the gradient can be obtained stably. Note that the lower limit amplitude of the received pulse can be substantially limited by the lower limit input unit. In the embodiment of the present invention, the amplitude lower limit value of the received pulse can be limited by the Y-axis lower limit field S2a, and an error in curve approximation due to noise or the like can be reduced. Further, when the degree of attenuation can be estimated, the amplitude lower limit value of the received pulse may be substantially limited by the X-axis field S1b which is a time axis.

前記板厚相当値は、 L=C・(10T1/2 により求めても構わない(但し、Lは板厚相当値、Cは板厚変換用の係数、Tは時間軸の値である。)。前記鋼材は、例えば断熱材と外装材に覆われていても板厚の相対比較が可能である。 The plate thickness equivalent value may be obtained by L = C · (10 T ) 1/2 (where L is a plate thickness equivalent value, C is a plate thickness conversion coefficient, and T is a time axis value. is there.). Even if the steel material is covered with, for example, a heat insulating material and an exterior material, the relative thickness can be compared.

上述の電磁波パルスによる板厚相対比較方法に用いることの可能な電磁波パルスによる板厚相対比較装置の特徴は、電磁波パルスの送信子と受信子とを有し、複数の測定箇所において、これら送信子及び受信子から隔たった位置に存在する鋼材に電磁波パルスを送受信し、実質的に時間及び振幅の軸をそれぞれ対数目盛で表示し直線近似と二次曲線とにより受信パルスを近似すると共に、前記二次曲線における勾配の基準値を前記直線の勾配を下回る値に定め、二次曲線近似部分における勾配が前記勾配の基準値と一致する点での時間軸の値を前記各測定箇所毎に求め、それら時間軸の値又は時間軸の値に基づく板厚相当値により前記鋼材の板厚を相対比較することにある。
The characteristic of the plate thickness relative comparison device using electromagnetic pulses that can be used in the above-described method for comparing plate thickness using electromagnetic pulses is characterized by having an electromagnetic pulse transmitter and receiver, and these transmitters at a plurality of measurement locations. And electromagnetic wave pulses are transmitted to and received from a steel material located at a position separated from the receiver, the time and amplitude axes are substantially displayed on a logarithmic scale, and the received pulses are approximated by a linear approximation and a quadratic curve. The reference value of the gradient in the quadratic curve is set to a value lower than the gradient of the straight line, and the value of the time axis at the point where the gradient in the quadratic curve approximation portion coincides with the reference value of the gradient is determined for each measurement point, The thickness of the steel material is relatively compared based on the value of the time axis or the value corresponding to the thickness based on the value of the time axis.

このように、本発明によれば、二次曲線近似を利用して、二次曲線近似部分における勾配が勾配の基準値と一致する点での時間軸の値が安定的に求められるようになった。その結果、ノイズ環境下でも板厚を相対比較することの可能な電磁波パルスによる板厚相対比較方法及び板厚相対比較装置を提供することが可能となった。   As described above, according to the present invention, using the quadratic curve approximation, the value of the time axis at the point where the gradient in the quadratic curve approximation portion matches the reference value of the gradient can be obtained stably. It was. As a result, it is possible to provide a plate thickness relative comparison method and a plate thickness relative comparison device using electromagnetic pulses that can be compared in a noise environment.

本発明の他の目的、構成及び効果については以下に示す発明を実施するための最良の形態において明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent in the best mode for carrying out the invention shown below.

次に、図1〜4を参照しながら、本発明の実施形態について説明する。図1に示す板厚相対比較装置1は、電磁波パルスを送信するための送信子2と、送信子2から送信された電磁波パルスにより励磁される鋼板101からの電磁波信号を受信する受信子3と、送信子2,受信子3を制御するための制御器4と、受信波形を解析するためのパーソナルコンピュータ5とを備えている。試験体Nは、欠陥部101aの形成された鋼板101を断熱材102で覆い、さらにその表面を外装材103で被覆している。通常、鋼板101は鋼管等であり、欠陥部101aは腐食等により鋼板101表面に形成される。   Next, an embodiment of the present invention will be described with reference to FIGS. A plate thickness relative comparison device 1 shown in FIG. 1 includes a transmitter 2 for transmitting an electromagnetic wave pulse, and a receiver 3 for receiving an electromagnetic wave signal from a steel plate 101 excited by the electromagnetic wave pulse transmitted from the transmitter 2. , A controller 4 for controlling the transmitter 2 and the receiver 3, and a personal computer 5 for analyzing the received waveform. The test body N covers the steel plate 101 on which the defective portion 101 a is formed with a heat insulating material 102, and further covers the surface with an exterior material 103. Usually, the steel plate 101 is a steel pipe or the like, and the defective portion 101a is formed on the surface of the steel plate 101 by corrosion or the like.

図3はパルスを送信した後における受信波形を示すグラフであり、横軸は時間軸、縦軸は受信強度を示すと共にいずれも対数目盛で表示してある点は以下同様である。また、1測定条件のみを代表して表示するが、後述の6条件は同スケールで殆ど重なって見えるほど近い値であるにも関わらず三次曲線近似では基準点を安定的に特定できないという問題を内在している。前半の平坦部分がパルス信号を意味し、減衰していく部分が解析対象となる。パーソナルコンピュータ5では、受信波形を図4に示すように境界点P1より前の部分を近似直線FLで近似し、境界点P1より後半部分を近似曲線FRで近似する。境界点P1よりも後半部分の近似曲線FRにおける境界点P1近傍において、近似曲線FRの勾配が勾配の基準値と一致する点である基準点P2を求め、この値に基づいて板厚を相対比較する。   FIG. 3 is a graph showing a received waveform after a pulse is transmitted, in which the horizontal axis represents the time axis, the vertical axis represents the received intensity, and both are displayed on a logarithmic scale. In addition, although only one measurement condition is displayed as a representative, there is a problem in that the reference point cannot be stably specified by cubic curve approximation even though the six conditions described later are close enough to appear to be almost overlapped on the same scale. is doing. The flat part in the first half means a pulse signal, and the part that attenuates becomes the object of analysis. In the personal computer 5, as shown in FIG. 4, the received waveform is approximated by the approximate straight line FL at the portion before the boundary point P1, and the second half from the boundary point P1 is approximated by the approximate curve FR. In the vicinity of the boundary point P1 in the approximate curve FR in the latter half of the boundary point P1, a reference point P2, which is the point at which the gradient of the approximate curve FR matches the reference value of the gradient, is obtained, and the plate thicknesses are relatively compared based on this value. To do.

図4でパーソナルコンピュータ5における解析のためのパラメーター入力事項を説明する。X軸範囲S1はX軸下限フィールドS1a,X軸上限フィールドS1bの入力部を有し、Y軸範囲S2はY軸下限フィールドS2a,Y軸上限フィールドS2bの入力部を有する。勾配フィールドS3は勾配の基準値Bを入力する部分であり、板厚係数フィールドS4は板厚変換用の係数Cの入力欄である。log時間フィールドS5には近似曲線FRの勾配が基準値Bと一致する点である基準点P2の時間Tが自動計算で表示され、リニア時間フィールドS6にはlog時間フィールドS5の値Tを10Tとした値が自動計算で表示され、板厚フィールドS7にはリニア時間フィールドS6の平方根に板厚係数フィールドS4を掛け合わせたものが表示される。 The parameter input items for analysis in the personal computer 5 will be described with reference to FIG. The X-axis range S1 has an input part for an X-axis lower limit field S1a and an X-axis upper limit field S1b, and the Y-axis range S2 has an input part for a Y-axis lower limit field S2a and a Y-axis upper limit field S2b. The gradient field S3 is a portion for inputting a gradient reference value B, and the plate thickness coefficient field S4 is an input column for a plate thickness conversion coefficient C. In the log time field S5, the time T of the reference point P2, which is the point where the slope of the approximate curve FR coincides with the reference value B, is displayed by automatic calculation, and the value T of the log time field S5 is set to 10 T in the linear time field S6. The value obtained by the automatic calculation is displayed, and the plate thickness field S7 is obtained by multiplying the square root of the linear time field S6 by the plate thickness coefficient field S4.

さらに図2、図4を参照しつつ、パーソナルコンピュータ5において板厚相当値の導出のために行われる処理手順を説明する。まず、X軸範囲S1,Y軸範囲S2にデータ範囲を指定する(ST1)。Y軸下限フィールドS2aはS/N比が小さい領域を取り込んでしまいノイズがフィッティングに悪影響を及ぼさぬよう、低S/N部分をカットする意味がある。そして、まず、図3の原減衰線Fに対して直線近似が行われ(ST2)、近似直線FLの終点である境界点P1が定められる(ST3)。   Further, with reference to FIGS. 2 and 4, a processing procedure performed for deriving a plate thickness equivalent value in the personal computer 5 will be described. First, a data range is designated for the X-axis range S1 and the Y-axis range S2 (ST1). The Y-axis lower limit field S2a has a meaning of cutting a low S / N portion so that a region having a small S / N ratio is taken in and noise does not adversely affect the fitting. First, linear approximation is performed on the original attenuation line F in FIG. 3 (ST2), and a boundary point P1 that is an end point of the approximate line FL is determined (ST3).

次に、原減衰線Fの境界点P1よりも後半部分に対して最小自乗法に基づいて二次曲線によるフィッティングが行われ(ST4)、近似曲線FRが決定される。ついで、境界点P1の近傍で近似曲線FRにおいて先の勾配の基準値Bと一致する点である基準点P2を求める(ST5)。そして、次式により板厚相当値Lを推定する(ST6)。   Next, fitting by a quadratic curve is performed on the latter half of the boundary point P1 of the original attenuation line F based on the least square method (ST4), and the approximate curve FR is determined. Next, a reference point P2, which is a point that coincides with the reference value B of the previous gradient in the approximate curve FR in the vicinity of the boundary point P1, is obtained (ST5). And the plate | board thickness equivalent value L is estimated by following Formula (ST6).

L=C・(10T1/2 L = C · (10 T ) 1/2

Tがlog時間フィールドS5に、10Tがリニア時間フィールドS6に、Lが板厚フィールドS7にそれぞれ表示されることになる。 T is displayed in the log time field S5, 10 T is displayed in the linear time field S6, and L is displayed in the plate thickness field S7.

実際の相対比較においては、板厚は健全部Nにおいて既知であるので、この健全部Nとの相対比較により求めることができる。健全部Nにおける板厚相当値Lが寸法測定された厚みL1となるように先の勾配の基準値Bと板厚係数Cとを調整すれば、欠陥部101aの存在とその部分の板厚相当値L2と欠陥部101aの深さ相当値とを検出することが可能となる。   In actual relative comparison, the plate thickness is known in the healthy part N, and can be obtained by relative comparison with the healthy part N. If the reference value B and the plate thickness coefficient C of the previous gradient are adjusted so that the plate thickness equivalent value L in the sound portion N becomes the measured thickness L1, the presence of the defective portion 101a and the plate thickness equivalent of that portion It is possible to detect the value L2 and the value corresponding to the depth of the defect portion 101a.

次に、図1,3〜7を参照しながら、実施例1について説明する。 図1において、L1=10mm厚の鋼板101に、円形減肉である欠陥部101aを形成した。欠陥部101aの深さL3=4mm、直径d=50mmφ、100φ、150mmφの3種類とし、断熱材102の厚さL4=100mm、ブリキ製の外装材103上から測定したデータを図3に示す。   Next, Example 1 will be described with reference to FIGS. In FIG. 1, a defective portion 101a having a circular thinning was formed on a steel plate 101 having a thickness L1 = 10 mm. FIG. 3 shows data measured from above the exterior material 103 made of tin with the depth L3 = 4 mm and the diameter d = 50 mmφ, 100φ, and 150 mmφ of the defective portion 101a, the thickness L4 of the heat insulating material 102 = 100 mm.

以下本実施例において、データ番号1,2は直径50mmφのデータ、3,4は直径100mmφ、5,6は150mmφのデータである。勾配の基準値B=1.8,板厚係数C=1としてフィッティングを行った。データ番号1〜6に対して、二次曲線によるフィッティングと三次曲線によるフィッティングの双方を行った。図4はデータ番号1に対して二次曲線のフィッティング、図5はデータ番号1に対して三次曲線のフィッティング、図6はデータ番号4に対して三次曲線のフィッティング、図7はデータ番号6に対して三次曲線のフィッティングを行った結果をそれぞれ示す。

Figure 0004394415
In the present embodiment, data numbers 1 and 2 are data with a diameter of 50 mmφ, 3 and 4 are data with a diameter of 100 mmφ, and 5 and 6 are data with a diameter of 150 mmφ. The fitting was performed with the gradient reference value B = 1.8 and the plate thickness coefficient C = 1. For data numbers 1 to 6, fitting by a quadratic curve and fitting by a cubic curve were both performed. 4 is a quadratic curve fitting for data number 1, FIG. 5 is a cubic curve fitting for data number 1, FIG. 6 is a cubic curve fitting for data number 4, and FIG. The results of fitting a cubic curve to each are shown.
Figure 0004394415

三次式によるフィッティングは標準偏差の値で示されるように、データとのフィッティング性は二次式より優れている。しかし、実際に解析を行い、減肉部板厚相当の変化点である基準点P2を求めた場合、データ1,2のように三次式フィッティングでは適切な値として決定できなかったり、ばらつきが大きくなる特徴がある。図5の三次データ番号1では、境界点P1において既に勾配の基準値Bの値を傾きが下回っており、基準点P2を決定することができない。一方、二次式によるフィッティングでは、基準点P2を安定して決定することができ、ばらつきも三次式の場合より、小さい結果が得られた。このようにフィッティング解析を二次式で行うことにより、定量的で安定した板厚の相対比較が可能となる。   As the fitting by the cubic equation is indicated by the standard deviation value, the fitting property with the data is superior to the quadratic equation. However, when the analysis is actually performed and the reference point P2, which is a change point corresponding to the thickness of the thinned portion, is obtained, it cannot be determined as an appropriate value by cubic fitting as in data 1 and 2, or the variation is large. There is a characteristic. In the tertiary data number 1 in FIG. 5, the slope is already lower than the value of the slope reference value B at the boundary point P1, and the reference point P2 cannot be determined. On the other hand, in the fitting by the quadratic equation, the reference point P2 can be determined stably, and the variation is smaller than in the case of the cubic equation. Thus, by performing the fitting analysis with a quadratic expression, a quantitative and stable relative thickness comparison can be performed.

次に、図8〜12を参照しながら、第二実施例を説明する。図8の受信波形も1測定条件のみを代表して表示するが、後述の8条件は同スケールで殆ど重なって見えるほど近い値であるにも関わらず三次曲線近似では基準点を安定的に特定できないという問題は先の第一実施形態と同様である。本実施例では、工場内の鋼管の周りを断熱材で覆い、さらに亜鉛鉄板で覆った稼動中の現場配管について同一場所で8回測定を繰り返し採取したデータである。保温厚さは60mmである。このデータに対して直線的減衰部分を特定し、曲線的減衰部分を決定した後、曲線部分について二次式によるフィッティングと三次式によるフィッティングの夫々について解析を行い減肉部板厚に相当する変化点時間を求めた。

Figure 0004394415
Next, a second embodiment will be described with reference to FIGS. Although the received waveform of FIG. 8 is also displayed representatively of only one measurement condition, the reference point cannot be stably identified by cubic curve approximation even though the following eight conditions are close enough to appear to almost overlap on the same scale. The problem is the same as in the first embodiment. In the present embodiment, the data is obtained by repeatedly collecting measurements at the same place eight times for the on-site piping in operation in which the periphery of the steel pipe in the factory is covered with a heat insulating material and further covered with a zinc iron plate. The insulation thickness is 60 mm. After identifying the linear attenuation part for this data and determining the curved attenuation part, the curve part is analyzed for the fitting by the quadratic expression and the fitting by the cubic expression, and the change corresponding to the thickness of the thinned part The point time was determined.
Figure 0004394415

標準偏差の点では、二次式よりも三次式を用いた近似の方が優れていることは上記表2からも明らかである。   It is clear from Table 2 that the approximation using the cubic equation is superior to the quadratic equation in terms of the standard deviation.

図8、図9の比較及び表2より、二次式を用いた場合は基準点P2を安定的に推定することが可能であることが伺える。一方、三次式を用いた場合、図11のデータ2のように基準点P2が容易に決定できる場合もある。しかし、図10のデータ1及び図12のデータ8では境界点P1では既に勾配の基準値Bを下回り、同点から隔たった位置が基準点P2と誤認されるようなこともあり、表2の結果にも示すように、基準点P2はこの場合も二次式を用いた近似の方が安定性に優れていることが伺える。   From the comparison of FIGS. 8 and 9 and Table 2, it can be seen that the reference point P2 can be stably estimated when the quadratic equation is used. On the other hand, when the cubic equation is used, the reference point P2 may be easily determined as data 2 in FIG. However, in the data 1 of FIG. 10 and the data 8 of FIG. 12, the boundary point P1 is already below the reference value B of the slope, and the position separated from the same point may be mistaken as the reference point P2. As can be seen, the reference point P2 is also excellent in stability in this case by approximation using a quadratic equation.

最後に本発明のその他の実施形態の可能性について言及する。
上記実施形態において、時間軸と信号強度とに対数軸を用いた。しかし、これら双方の軸に通常の10進法軸を用い、実質的に関数で対数が織り込まれるように構成することも可能である。
Finally, reference is made to the possibilities of other embodiments of the invention.
In the above embodiment, the logarithmic axis is used for the time axis and the signal intensity. However, it is also possible to use a normal decimal axis for both of these axes so that the logarithm is woven substantially as a function.

また、上記実施形態では、試験体Nとして平板状のものを用いた。しかし、本発明は、平板状のものに限らず、表面が屈曲した管や容器等、種々の形状のものに対しても適用可能である。   Moreover, in the said embodiment, the flat thing was used as the test body N. FIG. However, the present invention is not limited to a flat plate shape but can be applied to various shapes such as a tube or a container having a bent surface.

なお、特許請求の範囲の項に記入した符号は、あくまでも図面との対照を便利にするためのものにすぎず、該記入により本発明は添付図面の構成に限定されるものではない。   In addition, the code | symbol entered in the term of the claim is only for the convenience of contrast with drawing, and this invention is not limited to the structure of an accompanying drawing by this entry.

本発明は、複数の測定箇所において、送信子及び受信子から隔たった位置に存在する鋼材に電磁波パルスを送受信し、受信パルスを用いて鋼材の板厚を相対比較する電磁波パルスによる板厚相対比較方法であり、例えば、保温材に保護された配管や容器等の腐食検査に用いることができる。   The present invention transmits and receives an electromagnetic wave pulse to a steel material existing at positions separated from a transmitter and a receiver at a plurality of measurement locations, and compares the thickness of the steel material relative to each other using the received pulse. For example, it can be used for corrosion inspection of pipes and containers protected by a heat insulating material.

本発明に係る板厚相対比較方法を実施するための板厚相対比較装置のブロック図である。It is a block diagram of the board thickness relative comparison apparatus for enforcing the board thickness relative comparison method concerning the present invention. 板厚相対比較装置における解析手順を示すフローチャートである。It is a flowchart which shows the analysis procedure in a plate | board thickness relative comparison apparatus. 受信子による受信信号を示し、横軸は時間軸、縦軸は受信強度を示すグラフである。The received signal by a receiver is shown, a horizontal axis is a time axis, and a vertical axis | shaft is a graph which shows receiving intensity. 図3のグラフの直線及び二次曲線による近似グラフである。It is an approximate graph by the straight line and quadratic curve of the graph of FIG. 図3のグラフの直線及び三次曲線による近似グラフである。It is an approximate graph by the straight line and cubic curve of the graph of FIG. 図3のグラフの直線及び三次曲線による他の近似グラフである。It is another approximate graph by the straight line and cubic curve of the graph of FIG. 図3のグラフの直線及び三次曲線によるさらに他の近似グラフである。FIG. 6 is still another approximate graph by a straight line and a cubic curve of the graph of FIG. 3. 他の実施例における受信子による受信信号を示し、横軸は時間軸、縦軸は受信強度を示すグラフである。The horizontal axis | shaft is a time axis | shaft and the vertical axis | shaft is a graph which shows a receiving strength. 図8のグラフの直線及び二次曲線による近似グラフである。It is an approximate graph by the straight line and quadratic curve of the graph of FIG. 図8のグラフの直線及び三次曲線による近似グラフである。It is an approximate graph by the straight line and cubic curve of the graph of FIG. 図8のグラフの直線及び三次曲線による他の近似グラフである。It is another approximate graph by the straight line and the cubic curve of the graph of FIG. 図8のグラフの直線及び三次曲線によるさらに他の近似グラフである。FIG. 9 is still another approximate graph using straight lines and cubic curves in the graph of FIG. 8.

符号の説明Explanation of symbols

1:板厚相対比較装置、2:送信子、3:受信子、4:制御器、5:パーソナルコンピュータ、101:鋼板、101a:欠陥部、102:保温材、103:外装材、S1:X軸範囲、S1a:X軸下限フィールド、S1b:X軸上限フィールド、S2:Y軸範囲、S2a:Y軸下限フィールド、S2b:Y軸上限フィールド、S3:勾配フィールド、S4:板厚係数フィールド、S5:log時間フィールド、S6:リニア時間フィールド、S7:板厚フィールド、F:原減衰線、FL:近似直線、FR:近似曲線、P1:境界点、P2:基準点、B:勾配の基準値、C:板厚係数、d:直径、N:試験体、T:基準点P2の時間 1: Thickness relative comparison device, 2: Transmitter, 3: Receiver, 4: Controller, 5: Personal computer, 101: Steel plate, 101a: Defect, 102: Insulating material, 103: Exterior material, S1: X Axis range, S1a: X axis lower limit field, S1b: X axis upper limit field, S2: Y axis range, S2a: Y axis lower limit field, S2b: Y axis upper limit field, S3: Gradient field, S4: Sheet thickness coefficient field, S5 : Log time field, S6: linear time field, S7: plate thickness field, F: original attenuation line, FL: approximate line, FR: approximate curve, P1: boundary point, P2: reference point, B: reference value of gradient, C: Plate thickness coefficient, d: Diameter, N: Specimen, T: Time of reference point P2

Claims (4)

複数の測定箇所において、電磁波パルスの送信子及び受信子から隔たった位置に存在する鋼材に前記送信子から電磁波パルスを送信すると共に前記受信子で受信し、各測定箇所における受信パルスを用いて前記鋼材の板厚を相対比較する電磁波パルスによる板厚相対比較方法であって、
実質的に時間及び振幅の軸をそれぞれ対数目盛で表示し直線近似と二次曲線とにより受信パルスを近似すると共に、前記二次曲線における勾配の基準値を前記直線の勾配を下回る値に定め、二次曲線近似部分における勾配が前記勾配の基準値と一致する点での時間軸の値を前記各測定箇所毎に求め、それら時間軸の値又は時間軸の値に基づく板厚相当値により前記鋼材の板厚を相対比較する電磁波パルスによる板厚相対比較方法。
In a plurality of measurement locations, an electromagnetic pulse is transmitted from the transmitter to the steel material present at a position separated from the transmitter and receiver of the electromagnetic pulse and received by the receiver, and the received pulse at each measurement location is used to A relative thickness comparison method using electromagnetic pulses for comparing relative thicknesses of steel materials,
The time and amplitude axes are substantially displayed in logarithmic scales, and the received pulse is approximated by linear approximation and a quadratic curve, and the reference value of the gradient in the quadratic curve is set to a value below the gradient of the straight line, The value of the time axis at the point where the gradient in the quadratic curve approximation portion matches the reference value of the gradient is determined for each measurement location, and the value of the time axis or the thickness equivalent value based on the value of the time axis A plate thickness relative comparison method using electromagnetic pulses to relatively compare the plate thicknesses of steel materials.
前記板厚相当値は、次式により求まる請求項1記載の電磁波パルスによる板厚相対比較方法。
L=C・(10T1/2
(但し、Lは板厚相当値、Cは板厚変換用の係数、Tは時間軸の値である。)
2. The plate thickness relative comparison method using electromagnetic pulses according to claim 1, wherein the plate thickness equivalent value is obtained by the following equation.
L = C · (10 T ) 1/2
(However, L is a plate thickness equivalent value, C is a plate thickness conversion coefficient, and T is a time axis value.)
前記鋼材が断熱材と外装材に覆われている請求項1又は2記載の電磁波パルスによる板厚相対比較方法。 The plate | board thickness relative comparison method by the electromagnetic wave pulse of Claim 1 or 2 with which the said steel materials are covered with the heat insulating material and the exterior material. 請求項1〜3のいずれかに記載の電磁波パルスによる板厚相対比較方法に用いることの可能な電磁波パルスによる板厚相対比較装置であって、
電磁波パルスの送信子と受信子とを有し、複数の測定箇所において、これら送信子及び受信子から隔たった位置に存在する鋼材に電磁波パルスを送受信し、実質的に時間及び振幅の軸をそれぞれ対数目盛で表示し直線近似と二次曲線とにより受信パルスを近似すると共に、前記二次曲線における勾配の基準値を前記直線の勾配を下回る値に定め、二次曲線近似部分における勾配が前記勾配の基準値と一致する点での時間軸の値を前記各測定箇所毎に求め、それら時間軸の値又は時間軸の値に基づく板厚相当値により前記鋼材の板厚を相対比較する電磁波パルスによる板厚相対比較装置。
A plate thickness relative comparison device using electromagnetic pulses that can be used in the plate thickness relative comparison method according to any one of claims 1 to 3,
It has a transmitter and a receiver for electromagnetic pulse, and at a plurality of measurement points, transmits and receives the electromagnetic pulse to a steel material located at a position separated from the transmitter and receiver, and substantially sets the time and amplitude axes respectively. The logarithmic scale is used to approximate the received pulse by linear approximation and a quadratic curve, and the gradient reference value in the quadratic curve is set to a value lower than the gradient of the straight line, and the gradient in the quadratic curve approximation portion is the gradient. An electromagnetic wave pulse that obtains a value of a time axis at a point that matches the reference value of each of the measurement points, and compares the thickness of the steel material relative to the value of the time axis or a thickness equivalent value based on the value of the time axis By plate thickness relative comparison device.
JP2003365113A 2003-10-24 2003-10-24 Plate thickness relative comparison method and plate thickness relative comparison apparatus using electromagnetic pulses Expired - Lifetime JP4394415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365113A JP4394415B2 (en) 2003-10-24 2003-10-24 Plate thickness relative comparison method and plate thickness relative comparison apparatus using electromagnetic pulses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365113A JP4394415B2 (en) 2003-10-24 2003-10-24 Plate thickness relative comparison method and plate thickness relative comparison apparatus using electromagnetic pulses

Publications (2)

Publication Number Publication Date
JP2005127920A JP2005127920A (en) 2005-05-19
JP4394415B2 true JP4394415B2 (en) 2010-01-06

Family

ID=34643897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365113A Expired - Lifetime JP4394415B2 (en) 2003-10-24 2003-10-24 Plate thickness relative comparison method and plate thickness relative comparison apparatus using electromagnetic pulses

Country Status (1)

Country Link
JP (1) JP4394415B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017038B2 (en) * 2007-09-26 2012-09-05 株式会社日立製作所 Eddy current inspection apparatus and eddy current inspection method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592524Y2 (en) * 1978-03-22 1984-01-24 原電子測器株式会社 Automatic distance sensitivity correction device for electromagnetic induction flaw detection
JPS592524A (en) * 1982-06-25 1984-01-09 住友電気工業株式会社 Circuit protecting system
US4843320A (en) * 1987-12-17 1989-06-27 Atlantic Richfield Company Transient electromagnetic method for detecting corrosion on conductive containers
US4839593A (en) * 1987-12-17 1989-06-13 Atlantic Richfield Company Transient electromagnetic method for directly detecting corrosion on conductive containers
JP3174973B2 (en) * 1992-06-19 2001-06-11 綜合警備保障株式会社 Security heat source identification device
US6291992B1 (en) * 1996-07-12 2001-09-18 Shell Oil Company Eddy current inspection technique
JP2005518534A (en) * 2002-02-26 2005-06-23 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Measuring the surface profile of an object

Also Published As

Publication number Publication date
JP2005127920A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
US7779693B2 (en) Method for nondestructive testing of pipes for surface flaws
KR20090005293A (en) Measuring apparatus and methods of using them
US5513531A (en) Ultrasonic system for measurement of thin layers
CN102221580B (en) Automatic calibration error detection for ultrasonic inspection devices
US8446796B2 (en) Method and system for processing echo signals
CN108802181B (en) Defect detection method and device
WO2020232244A1 (en) Detection of blockage in a porous member using pressure waves
JP5112942B2 (en) Ultrasonic flaw detection method and apparatus
CN112154324B (en) Using multimode acoustic signals to detect, monitor and determine the location of changes in metal structures
JP4394415B2 (en) Plate thickness relative comparison method and plate thickness relative comparison apparatus using electromagnetic pulses
JP2006200901A (en) Ultrasonic inspection method and device
CN111189513B (en) Ultrasonic liquid level measurement method and device and ultrasonic liquid level meter
JP2006300854A (en) Piping plate thickness measuring device
CN113639804B (en) Method and system for detecting quality of cable conduit
AU2018309644B2 (en) Ultrasonic corrosion monitoring
SA517390041B1 (en) Tools for the calibration of an ultrasound inspection device
JP5612535B2 (en) Material judgment method of laying cast iron pipe and laying cast iron pipe material judgment system
US6807860B1 (en) Multiple alloy rotor transition zone measurement system and method
CN115380199A (en) System and method for corrosion and erosion monitoring of fixed equipment
JPS6229023B2 (en)
CN108955564A (en) Laser data method for resampling and system
US11567194B1 (en) Sonar transducer system and method of processing data
JP2024011534A (en) Eddy current flaw detection test device and method for running eddy current flaw detection test
JP2022006529A (en) Disaster prevention main pipe thickness measurement device and method thereof
Medeiros et al. Application of Genetic Algorithms to Identify Ultrasonic Echoes for Thickness Measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091015

R150 Certificate of patent or registration of utility model

Ref document number: 4394415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151023

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250