JP4394101B2 - LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE - Google Patents

LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE Download PDF

Info

Publication number
JP4394101B2
JP4394101B2 JP2006231995A JP2006231995A JP4394101B2 JP 4394101 B2 JP4394101 B2 JP 4394101B2 JP 2006231995 A JP2006231995 A JP 2006231995A JP 2006231995 A JP2006231995 A JP 2006231995A JP 4394101 B2 JP4394101 B2 JP 4394101B2
Authority
JP
Japan
Prior art keywords
light emitting
transistor
emitting element
light
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006231995A
Other languages
Japanese (ja)
Other versions
JP2007025713A (en
Inventor
肇 木村
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2006231995A priority Critical patent/JP4394101B2/en
Publication of JP2007025713A publication Critical patent/JP2007025713A/en
Application granted granted Critical
Publication of JP4394101B2 publication Critical patent/JP4394101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は発光素子を用いた発光装置の技術に関する。   The present invention relates to a technology of a light emitting device using a light emitting element.

近年、画像の表示を行う表示装置の開発が進められている。表示装置としては、液晶素子を用いて画像の表示を行う液晶表示装置が、高画質、薄型、軽量などの利点を活かして、携帯電話の表示画面として幅広く用いられている。   In recent years, development of display devices that display images has been promoted. As a display device, a liquid crystal display device that displays an image using a liquid crystal element is widely used as a display screen of a mobile phone, taking advantage of high image quality, thinness, and light weight.

一方、発光素子を用いた発光装置の開発も近年進められている。発光装置は、既存の液晶表示装置がもつ利点の他、応答速度が速く動画表示に優れ、視野特性が広いなどの特徴も有しており、動画コンテンツが利用できる次世代小型モバイル用フラットパネルディスプレイとして注目されている。   On the other hand, development of a light-emitting device using a light-emitting element has been advanced in recent years. In addition to the advantages of existing liquid crystal display devices, the light-emitting device has features such as fast response speed, excellent video display, and wide viewing characteristics. It is attracting attention as.

発光素子は、有機材料、無機材料、薄膜材料、バルク材料及び分散材料などの広汎にわたる材料により構成される。そのうち、主に有機材料により構成される有機発光ダイオード(Organic Light Emitting Diode : OLED)は代表的な発光素子として挙げられる。発光素子は、陽極及び陰極、並びに前記陽極と前記陰極との間に発光層が挟まれた構造を有する。発光層は、上記材料から選択された1つ又は複数の材料により構成される。なお発光素子の両電極間を流れる電流量と発光輝度は正比例の関係にある。   A light-emitting element includes a wide variety of materials such as an organic material, an inorganic material, a thin film material, a bulk material, and a dispersion material. Among them, organic light emitting diodes (OLEDs) mainly composed of organic materials are listed as typical light emitting elements. The light emitting element has an anode and a cathode, and a structure in which a light emitting layer is sandwiched between the anode and the cathode. The light emitting layer is made of one or more materials selected from the above materials. Note that the amount of current flowing between both electrodes of the light emitting element and the light emission luminance are in a directly proportional relationship.

発光装置には、発光素子と少なくとも2つのトランジスタを有する画素が複数個設けられている場合が多い。前記画素において、発光素子と直列に接続されたトランジスタ(以下駆動用トランジスタと表記)は、該発光素子の発光を制御する役目を担う。駆動用トランジスタのゲート・ソース間電圧(以下VGSと表記)と、ソース・ドレイン間電圧(以下VDSと表記)を適宜変化させると、該駆動用トランジスタを主に線形領域で動作させたり、主に飽和領域で動作させたりすることが出来る。 In many cases, a light-emitting device includes a plurality of pixels each having a light-emitting element and at least two transistors. In the pixel, a transistor (hereinafter referred to as a driving transistor) connected in series with the light emitting element plays a role of controlling light emission of the light emitting element. When the gate-source voltage (hereinafter referred to as V GS ) and the source-drain voltage (hereinafter referred to as V DS ) of the driving transistor are appropriately changed, the driving transistor is operated mainly in a linear region, It can be operated mainly in the saturation region.

駆動用トランジスタを主に線形領域(|VGS-Vth|>|VDS|)で動作させると、発光素子の両電極間に流れる電流量は、|VGS|と|VDS|の両者の値によって変化する。なお駆動用トランジスタを主に線形領域で動作させる駆動方式は、定電圧駆動と呼ばれる。図7(B)は、定電圧駆動が適用される画素の概略図である。定電圧駆動では、駆動用トランジスタをスイッチとして用いて、必要なときに電源線と発光素子とをショートすることによって、発光素子に電流を流す。 When the driving transistor is operated mainly in the linear region (| V GS -V th |> | V DS |), the amount of current flowing between both electrodes of the light emitting element is both | V GS | and | V DS |. Varies depending on the value of. A driving method in which the driving transistor is operated mainly in a linear region is called constant voltage driving. FIG. 7B is a schematic diagram of a pixel to which constant voltage driving is applied. In the constant voltage driving, a current is passed through the light emitting element by using a driving transistor as a switch and shorting the power supply line and the light emitting element when necessary.

一方、駆動用トランジスタを主に飽和領域(|VGS-Vth|<|VDS|)で動作させると、発光素子の両電極間に流れる電流量は、駆動用トランジスタの|VGS|の変化に大きく依存し、|VDS|の変化に対しては依存しない。なお駆動用トランジスタを主に飽和領域で動作させる駆動方式は定電流駆動と呼ばれる。図7(A)は、定電流駆動が適用される画素の概略図である。定電流駆動では、駆動用トランジスタのゲート電圧を制御することによって、必要な電流量を発光素子に流す。つまり、駆動用トランジスタを電圧制御電流源として用いており、電源線と発光素子の間に一定の電流が流れるように設定されている。 On the other hand, when the driving transistor is operated mainly in the saturation region (| V GS -V th | <| V DS |), the amount of current flowing between both electrodes of the light emitting element is equal to that of the driving transistor | V GS |. It depends heavily on the change, not on the change in | V DS |. A driving method in which the driving transistor is operated mainly in the saturation region is called constant current driving. FIG. 7A is a schematic diagram of a pixel to which constant current driving is applied. In constant current driving, a necessary amount of current is caused to flow through the light emitting element by controlling the gate voltage of the driving transistor. That is, the driving transistor is used as a voltage-controlled current source, and is set so that a constant current flows between the power supply line and the light emitting element.

上述した定電圧駆動を適用した発光装置では、経時変化による発光素子の劣化の影響を受けていた。より詳しくは、経時変化により発光素子の電圧電流特性が劣化すると、発光素子の両電極間に流れる電流量が少なくなってしまい、所望の発光輝度を得ることができなかった。   In the light emitting device to which the above-described constant voltage driving is applied, the light emitting element is affected by the deterioration with time. More specifically, when the voltage-current characteristics of the light-emitting element deteriorate due to changes over time, the amount of current flowing between both electrodes of the light-emitting element decreases, and a desired light emission luminance cannot be obtained.

一方、定電流駆動を適用した発光装置では、発光素子の両電極間には設定された電流を供給するため、発光素子の経時変化による劣化の影響を抑制することは可能であった。しかしながら、駆動用トランジスタの移動度やしきい値などの特性にバラツキが生じると、発光素子に供給する電流量にバラツキが生じてしまっていた。つまり、駆動用トランジスタの特性バラツキは、表示画面にそのまま影響を及ぼし、表示画面はムラだらけになってしまっていた。   On the other hand, in a light emitting device to which constant current driving is applied, since a set current is supplied between both electrodes of the light emitting element, it is possible to suppress the influence of deterioration due to a change with time of the light emitting element. However, when the characteristics such as mobility and threshold value of the driving transistor vary, the amount of current supplied to the light emitting element varies. That is, the characteristic variation of the driving transistor directly affects the display screen, and the display screen is full of unevenness.

また、図7(A)(B)において、スイッチング用トランジスタはnチャネル型トランジスタを用い、駆動用トランジスタはソース接地の関係からpチャネル型トランジスタを用いる場合が多かった。そのため、絶縁表面上又は半導体基板上に異なる導電型のトランジスタを作製するため、その複雑な工程は歩留まり低下とコスト上昇を招いていた。   In FIGS. 7A and 7B, an n-channel transistor is often used as a switching transistor, and a p-channel transistor is often used as a driving transistor because of a source-ground relationship. Therefore, in order to fabricate transistors having different conductivity types on an insulating surface or a semiconductor substrate, the complicated process leads to a decrease in yield and an increase in cost.

本発明は上述の問題点を鑑みてなされたものであり、経時変化による発光素子の劣化の影響を抑制した発光装置を提供する。また本発明は駆動用トランジスタの特性バラツキの影響を抑制した発光装置を提供する。さらに本発明は、異なる導電型のトランジスタを同一の絶縁表面上に作製することに起因した複雑な作製工程を簡略化することができる発光装置を提供する。   The present invention has been made in view of the above-described problems, and provides a light-emitting device that suppresses the influence of deterioration of a light-emitting element due to change over time. The present invention also provides a light emitting device that suppresses the influence of variation in characteristics of driving transistors. Furthermore, the present invention provides a light-emitting device that can simplify a complicated manufacturing process resulting from manufacturing transistors of different conductivity types over the same insulating surface.

本発明は、経時変化による発光素子の劣化の影響を抑制するために、一定の電荷を発光素子の両電極間に流す電気回路を各画素に設けた発光装置を提供する。また本発明では、各画素に設けられるトランジスタを線形領域で動作させ、且つ全てスイッチとしてのみ用いることで、トランジスタの特性バラツキの影響を受けない発光装置を提供する。   The present invention provides a light-emitting device in which each pixel is provided with an electric circuit that allows a constant charge to flow between both electrodes of the light-emitting element in order to suppress the influence of deterioration of the light-emitting element due to change over time. In addition, the present invention provides a light-emitting device which is not affected by variations in transistor characteristics by operating transistors in each pixel in a linear region and using them only as switches.

さらに本発明では、各画素に設けられるトランジスタは全てスイッチとして用いるため、その導電型は特に限定されない。したがって、各画素を単一極性のトランジスタで構成することが可能となり、作製工程を削減することができる。その結果、作製工程における歩留まりが向上し、作製費用を抑制することができる。   Furthermore, in the present invention, since all transistors provided in each pixel are used as switches, the conductivity type is not particularly limited. Therefore, each pixel can be formed of a single polarity transistor, and the number of manufacturing steps can be reduced. As a result, the yield in the manufacturing process can be improved and manufacturing cost can be suppressed.

本発明の発光装置に設けられる画素の概略について図8(A)を用いて説明する。図8(A)において、111、112はスイッチ、120は発光素子、121は信号線、122は走査線、123は電源線、125は昇圧回路である。昇圧回路125に設けられた容量素子は、発光素子120に並列に接続されている。そして本発明では、昇圧回路125に設けられたスイッチを用いて、該容量素子に一定の電荷を蓄積して、その蓄積された電荷を発光素子120の両電極間に流すようにする。   An outline of a pixel provided in the light-emitting device of the present invention will be described with reference to FIG. In FIG. 8A, 111 and 112 are switches, 120 is a light emitting element, 121 is a signal line, 122 is a scanning line, 123 is a power supply line, and 125 is a booster circuit. The capacitor provided in the booster circuit 125 is connected to the light emitting element 120 in parallel. In the present invention, a constant charge is accumulated in the capacitor using a switch provided in the booster circuit 125, and the accumulated charge flows between both electrodes of the light emitting element 120.

発光素子120の電流電圧特性を図8(B)に示す。図8(B)から、発光素子120の両電極間を流れる電流量は、発光素子の120の両電極間に印加される電圧によって制御されていることがわかる。しかしながら、発光素子120の両電極間に流れる電流量と印加される電圧は比例関係ではない。   A current-voltage characteristic of the light-emitting element 120 is illustrated in FIG. FIG. 8B shows that the amount of current flowing between both electrodes of the light-emitting element 120 is controlled by the voltage applied between both electrodes of the light-emitting element 120. However, the amount of current flowing between both electrodes of the light emitting element 120 and the applied voltage are not proportional.

ここで、図8(B)において180で示す領域の拡大図を図8(C)に示す。そうすると、発光素子120に印加される電圧がある一定の電圧Vth以下の場合には、ほとんど電流は流れず、Vthを超えたところからほぼ線形に電流が増加し始めている。本明細書では、発光素子120の両電極間に流れる電流値が線形に増加しはじめたときの電圧値を発光開始電圧Vthと称する。言い換えると、発光素子120の印加電圧を増大せしめて、発光素子を発光開始電圧(立上り電圧)Vth以上にすると、発光素子120は発光を開始する。 Here, an enlarged view of a region indicated by 180 in FIG. 8B is shown in FIG. Then, when the voltage applied to the light emitting element 120 is equal to or lower than a certain voltage V th , almost no current flows, and the current starts to increase almost linearly after exceeding V th . In this specification, the voltage value when the value of the current flowing between both electrodes of the light emitting element 120 starts to increase linearly is referred to as the light emission start voltage Vth . In other words, when the voltage applied to the light emitting element 120 is increased so that the light emitting element becomes equal to or higher than the light emission start voltage (rising voltage) V th , the light emitting element 120 starts to emit light.

本発明は、容量素子と、発光素子とを有する画素が複数個設けられた発光装置であって、 前記容量素子の電位差が電源電位Vddと同じ値になるまで当該容量素子に電荷を供給する手段(以下第1の手段と表記)と、前記容量素子の電位差が前記発光素子の発光開始電圧Vthと同じ値になるまで、前記発光素子に電荷を供給する手段(以下第2の手段と表記)とを有し、 前記容量素子の比例係数Cと、前記発光素子の両電極間に流れる電荷Aは、A=C×(Vdd-Vth)を満たすことを特徴とする。 The present invention is a light-emitting device provided with a plurality of pixels each having a capacitor and a light-emitting element, and supplies a charge to the capacitor until the potential difference of the capacitor becomes the same value as the power supply potential V dd Means (hereinafter referred to as first means) and means for supplying electric charges to the light emitting element (hereinafter referred to as second means) until the potential difference of the capacitive element becomes the same value as the light emission start voltage V th of the light emitting element. The proportional coefficient C of the capacitor and the charge A flowing between both electrodes of the light emitting element satisfy A = C × (V dd −V th ).

本発明は、第1及び第2の容量素子が備えられた昇圧回路と、発光素子とを有する画素が複数個設けられた発光装置であって、 前記昇圧回路は、前記第1の容量素子の電位差が電源電位Vddと同じ値になるまで、当該第1の容量素子に電荷を供給する手段(以下第3の手段と表記)と、前記第2の容量素子の電位差が電源電位Vdd及び前記発光素子の発光開始電圧Vthの和と同じ値になるまで、前記第1の容量素子に保持されている電荷を前記第2の容量素子に転送する手段(以下第4の手段と表記)と、前記第2の容量素子の電位差が前記発光素子の発光開始電圧Vthと同じ値になるまで、前記発光素子に電荷を供給する手段(以下第5の手段と表記)とを有し、 前記第1の容量素子の比例定数C1及び電位差V1と、前記第2の容量素子の比例定数C2及び電位差V2、並びに前記発光素子の両電極間を流れる電荷Aは、A=C2×{(2×C1×Vdd)/(C1+C2)-(C1×Vth)/(C1+C2)}を満たすことを特徴とする。 The present invention is a light-emitting device provided with a plurality of pixels each having a booster circuit including first and second capacitor elements and a light-emitting element, and the booster circuit includes the first capacitor element. Until the potential difference reaches the same value as the power supply potential V dd , the potential difference between the first capacitive element (hereinafter referred to as third means) and the second capacitive element is the power supply potential V dd and Means for transferring the charge held in the first capacitor element to the second capacitor element until the same value as the sum of the light emission start voltages V th of the light emitting elements (hereinafter referred to as fourth means) And means for supplying electric charges to the light emitting element (hereinafter referred to as fifth means) until the potential difference of the second capacitor element becomes the same value as the light emission start voltage V th of the light emitting element. a proportionality constant C 1 and the potential difference V 1 of the first capacitive element, the proportional constant of said second capacitor C 2 and the potential difference V 2, and charges A flowing between both electrodes of the light emitting element, A = C 2 × {( 2 × C 1 × V dd) / (C 1 + C 2) - (C 1 × V th ) / (C 1 + C 2 )}.

前記第1乃至第5の手段とは、画素内に設けられたスイッチ、前記スイッチを制御する駆動回路及び前記画素に電流を供給する電流供給手段などに相当する。また本発明の発光装置に設けられた画素は複数のスイッチを有し、前記複数のスイッチは単一極性の複数のトランジスタであることを特徴とする。   The first to fifth means correspond to a switch provided in the pixel, a driving circuit for controlling the switch, a current supply means for supplying a current to the pixel, and the like. In addition, the pixel provided in the light emitting device of the present invention includes a plurality of switches, and the plurality of switches are a plurality of transistors having a single polarity.

本発明は、経時変化による発光素子の劣化の影響を抑制するために、一定の電荷を発光素子の両電極間に流す電気回路を各画素に設けた発光装置を提供する。また本発明では、各画素に設けられるトランジスタを線形領域で動作させ、且つ全てスイッチとしてのみ用いることで、トランジスタの特性バラツキの影響を受けない発光装置を提供する。   The present invention provides a light-emitting device in which each pixel is provided with an electric circuit that allows a constant charge to flow between both electrodes of the light-emitting element in order to suppress the influence of deterioration of the light-emitting element due to change over time. In addition, the present invention provides a light-emitting device which is not affected by variations in transistor characteristics by operating transistors in each pixel in a linear region and using them only as switches.

さらに本発明では、各画素に設けられるトランジスタは全てスイッチとして用いるため、その導電型は特に限定されない。したがって、各画素を単一極性のトランジスタで構成することが可能となり、作製工程を削減することができる。その結果、作製工程における歩留まりが向上し、作製費用を抑制することができる。   Furthermore, in the present invention, since all transistors provided in each pixel are used as switches, the conductivity type is not particularly limited. Therefore, each pixel can be formed of a single polarity transistor, and the number of manufacturing steps can be reduced. As a result, the yield in the manufacturing process can be improved and manufacturing cost can be suppressed.

(実施の形態1)
本実施の形態では、本発明の発光装置に設けられる画素の構成とその動作について図4(B)を用いて説明する。
(Embodiment 1)
In this embodiment, the structure and operation of a pixel provided in the light-emitting device of the present invention will be described with reference to FIG.

最初に、本実施の形態における画素101の詳しい構成を図4(B)を用いて説明する。画素101において、111〜114、126はスイッチ、120は発光素子、121は信号線、122は走査線、123は電源線、119、127は容量素子である。   First, a detailed structure of the pixel 101 in this embodiment is described with reference to FIG. In the pixel 101, 111 to 114 and 126 are switches, 120 is a light emitting element, 121 is a signal line, 122 is a scanning line, 123 is a power supply line, and 119 and 127 are capacitive elements.

スイッチ111、126は直列に接続され、スイッチ112〜114は直列に接続されている。また容量素子119と発光素子120は並列に接続されている。なおスイッチ111〜スイッチ114、126にはスイッチング機能を有する素子を用いればよく、好ましくはトランジスタを用いる。スイッチ111〜スイッチ114、126としてトランジスタを用いる場合には、各スイッチのオン又はオフを制御する信号を入力するために、各スイッチに走査線を設けることが必要となるが、図4(B)においては図示を省略する。なおスイッチ113、114にはダイオードやゲート・ドレイン間を接続したトランジスタを用いてもよい。また本実施の形態においては、電源線の電位はVdd、発光素子120の発光開始電圧(しきい値電圧)はVthとする。また容量素子119の電荷はQ3、比例係数はC3、電位差はV3とする。 The switches 111 and 126 are connected in series, and the switches 112 to 114 are connected in series. Further, the capacitor element 119 and the light emitting element 120 are connected in parallel. Note that elements having a switching function may be used for the switches 111 to 114 and 126, and transistors are preferably used. In the case where transistors are used as the switches 111 to 114 and 126, a scan line needs to be provided for each switch in order to input a signal for controlling on or off of each switch. In FIG. Note that a diode or a transistor in which a gate and a drain are connected may be used for the switches 113 and 114. In this embodiment mode, the potential of the power supply line is V dd , and the light emission start voltage (threshold voltage) of the light emitting element 120 is V th . The charge of the capacitor 119 is Q 3 , the proportionality coefficient is C 3 , and the potential difference is V 3 .

なお図4(B)に示す画素101において、スイッチ111は画素101に対する映像信号の入力を制御し、スイッチ112は発光素子120と容量素子119の間の導通又は非導通を制御している。また容量素子127は画素101に入力される映像信号を保持し、スイッチ126は容量素子127に保持された電荷を放電することでスイッチ112をオフにして発光素子120の発光を停止せしめる機能を有する。このように、3つのスイッチ(トランジスタ)、容量素子及び発光素子を各画素に設けた発光装置のより詳しい説明については、特開2001-343933号公報に記載されているので、参考にするとよい。また、図1、2に示す各画素101においてスイッチ113、114及び容量素子119を除いたときにおける動作は、前記公報に記載された発光装置の動作に準ずるので、参考にするとよい。   Note that in the pixel 101 illustrated in FIG. 4B, the switch 111 controls input of a video signal to the pixel 101, and the switch 112 controls conduction or non-conduction between the light-emitting element 120 and the capacitor 119. In addition, the capacitor 127 holds a video signal input to the pixel 101, and the switch 126 has a function of turning off the switch 112 to stop light emission of the light-emitting element 120 by discharging the charge held in the capacitor 127. . As described above, a more detailed description of a light-emitting device in which three switches (transistors), a capacitor element, and a light-emitting element are provided in each pixel is described in Japanese Patent Laid-Open No. 2001-343933. The operation when the switches 113 and 114 and the capacitor 119 are removed from each pixel 101 shown in FIGS. 1 and 2 conforms to the operation of the light-emitting device described in the above publication, and may be referred to.

次いで、図4(B)に示した画素101の動作について説明する。   Next, operation of the pixel 101 illustrated in FIG. 4B is described.

まず、スイッチ111がオンになると、信号線121に入力されている映像信号は、スイッチ112に入力される。そして、該映像信号の電位に従って、スイッチ112のオン又はオフが決定する。ここでは、スイッチ112がオンになる映像信号が画素101に入力され、容量素子127にはスイッチ112がオンの状態を維持する所定の電荷が保持されているとする。   First, when the switch 111 is turned on, the video signal input to the signal line 121 is input to the switch 112. Then, on or off of the switch 112 is determined in accordance with the potential of the video signal. Here, it is assumed that a video signal for turning on the switch 112 is input to the pixel 101, and the capacitor 127 holds a predetermined charge for maintaining the switch 112 on.

なお各画素101に入力される映像信号によって、各画素101が有する発光素子120の発光又は非発光が決定される。より詳しくは、各画素101に入力される映像信号によって、スイッチ112がオンになると、発光素子120は発光する。またスイッチ112がオフであると、発光素子120は非発光となる。   Note that light emission or non-light emission of the light-emitting element 120 included in each pixel 101 is determined by a video signal input to each pixel 101. More specifically, when the switch 112 is turned on by a video signal input to each pixel 101, the light emitting element 120 emits light. When the switch 112 is off, the light emitting element 120 does not emit light.

この状態において、スイッチ114をオンにして、スイッチ111、113、126はオフにする。そうすると、電源線123からスイッチ114を介して、容量素子119に向かって電流が流れる。電流が流れると、容量素子119の両電極間には電位差が生じ始め、徐々に電荷が蓄積される。この電荷の蓄積は、容量素子119の両電極間の電位差が電源線123の電位Vddと同じ値になるまで続けられる。そして、容量素子119に対する電荷の蓄積が終了すると、Q3は以下の式(1)を満たす。 In this state, the switch 114 is turned on and the switches 111, 113, and 126 are turned off. Then, current flows from the power supply line 123 to the capacitor 119 via the switch 114. When a current flows, a potential difference starts to occur between both electrodes of the capacitor 119, and charges are gradually accumulated. This charge accumulation is continued until the potential difference between both electrodes of the capacitor 119 becomes the same value as the potential V dd of the power supply line 123. Then, when the accumulation of charges in the capacitive element 119 ends, Q 3 satisfies the following expression (1).

Q3=C3×Vdd・・・(1) Q 3 = C 3 × V dd (1)

次いで、スイッチ113をオンにして、スイッチ111、114、126はオフにする。なおここでは、スイッチ112は画素101に入力された映像信号によってオンになっているとする。そうすると、容量素子119、スイッチ113、112を介して発光素子120の両電極間に電流が流れる。このとき、容量素子119の電位差が発光素子120の発光開始電圧と同じ値になるまで、発光素子120の両電極間には電流が流れる。つまり、式(1)に示した容量素子119の電位差から、発光素子120の発光開始電圧を引いた値が発光素子120に流れる電荷に相当する。この電荷をAとおくと、電荷Aは以下の式(2)を満たす。   Next, the switch 113 is turned on, and the switches 111, 114, and 126 are turned off. Here, it is assumed that the switch 112 is turned on by a video signal input to the pixel 101. Then, a current flows between both electrodes of the light emitting element 120 through the capacitive element 119 and the switches 113 and 112. At this time, current flows between both electrodes of the light emitting element 120 until the potential difference of the capacitor 119 reaches the same value as the light emission start voltage of the light emitting element 120. That is, a value obtained by subtracting the light emission start voltage of the light emitting element 120 from the potential difference of the capacitor 119 shown in Expression (1) corresponds to the charge flowing through the light emitting element 120. When this charge is A, the charge A satisfies the following formula (2).

A=C3×(Vdd-Vth)・・・(2) A = C 3 × (V dd -V th ) (2)

このようにして一定の電荷Aが発光素子120の両電極間に流れると、スイッチ113をオフにし、さらにスイッチ114をオンにして上述した動作を繰り返す。なおこの動作は、所定の期間中繰り返して行われる。所定の期間とは、スイッチ112がオンである期間に相当し、言い換えるとスイッチ126が選択されて、容量素子127に保持された電荷が放電されるまでの期間に相当する。   When a constant charge A flows between both electrodes of the light emitting element 120 in this way, the switch 113 is turned off and the switch 114 is turned on to repeat the above-described operation. This operation is repeated during a predetermined period. The predetermined period corresponds to a period in which the switch 112 is on. In other words, the predetermined period corresponds to a period from when the switch 126 is selected until the charge held in the capacitor 127 is discharged.

このように本発明は、一定の電荷を発光素子の両電極間に流す回路を各画素に設けることにより、経時変化による発光素子の劣化の影響を抑制することができる。また本発明では、各画素に設けられるトランジスタは、線形領域で動作させ、且つ全てスイッチとしてのみ用いることで、トランジスタの特性バラツキの影響を抑制することができる。また本発明では、各画素に設けられるトランジスタは全てスイッチとして用いるため、その導電型は特に限定されない。したがって、各画素を単一極性のトランジスタで構成することが可能となり、作製工程を削減することができる。その結果、作製工程における歩留まりが向上し、また作製費用を抑制することができる。   As described above, the present invention can suppress the influence of deterioration of the light emitting element due to the change with time by providing each pixel with a circuit that allows a constant charge to flow between both electrodes of the light emitting element. In the present invention, the transistor provided in each pixel operates in a linear region and is used only as a switch, so that the influence of variations in transistor characteristics can be suppressed. In the present invention, since all transistors provided in each pixel are used as switches, the conductivity type is not particularly limited. Therefore, each pixel can be formed of a single polarity transistor, and the number of manufacturing steps can be reduced. As a result, the yield in the manufacturing process can be improved and the manufacturing cost can be suppressed.

(実施の形態2)
本実施の形態では、本発明の発光装置に設けられる画素の詳しい構成とその動作について図1、2を用いて説明する。
(Embodiment 2)
In this embodiment mode, a detailed structure and operation of a pixel provided in the light-emitting device of the present invention will be described with reference to FIGS.

最初に、本実施の形態における画素101の詳しい構成を図1(A)を用いて説明する。画素101において、111、112、126はスイッチ、120は発光素子、121は信号線、122は走査線、123は電源線、125は昇圧回路(charge pump)、127は容量素子である。昇圧回路125は、スイッチ113〜スイッチ117と容量素子118、119を有する。   First, a detailed structure of the pixel 101 in this embodiment is described with reference to FIG. In the pixel 101, 111, 112, and 126 are switches, 120 is a light emitting element, 121 is a signal line, 122 is a scanning line, 123 is a power supply line, 125 is a booster circuit (charge pump), and 127 is a capacitor element. The booster circuit 125 includes switches 113 to 117 and capacitors 118 and 119.

スイッチ111、126は直列に接続され、スイッチ112〜115は直列に接続され、スイッチ116、117は直列に接続されている。また容量素子118、119は並列に接続されている。なおスイッチ111〜スイッチ117、126にはスイッチング機能を有する素子を用いればよく、好ましくはトランジスタを用いる。なおスイッチ113〜スイッチ117、126としてトランジスタを用いる場合には、その導電型は特に限定されない。また各スイッチのオン又はオフを制御する信号を入力するために、各スイッチに走査線を設けることが必要となるが、図1、2においては図示を省略する。昇圧回路125が有するスイッチ113〜117には、ダイオードやゲート・ドレイン間を接続したトランジスタを用いてもよい。また本実施の形態においては、容量素子118の電荷はQ1、比例係数はC1、容量素子119の電荷はQ2、比例係数はC2とする。さらに電源線の電位はVdd、発光素子120の発光開始電圧はVthとする。 The switches 111 and 126 are connected in series, the switches 112 to 115 are connected in series, and the switches 116 and 117 are connected in series. The capacitive elements 118 and 119 are connected in parallel. Note that elements having a switching function may be used for the switches 111 to 117 and 126, and transistors are preferably used. Note that in the case where transistors are used as the switches 113 to 117 and 126, their conductivity types are not particularly limited. Further, in order to input a signal for controlling on / off of each switch, it is necessary to provide a scanning line for each switch, but the illustration is omitted in FIGS. As the switches 113 to 117 included in the booster circuit 125, a diode or a transistor in which a gate and a drain are connected may be used. In this embodiment mode, the charge of the capacitor 118 is Q 1 , the proportionality coefficient is C 1 , the charge of the capacitive element 119 is Q 2 , and the proportionality coefficient is C 2 . Further, the potential of the power supply line is V dd , and the light emission start voltage of the light emitting element 120 is V th .

次いで、本発明の発光装置に設けられる画素101の動作について図1、2を用いて説明する。   Next, the operation of the pixel 101 provided in the light emitting device of the present invention will be described with reference to FIGS.

まず、スイッチ111がオンになると、信号線121に入力されている映像信号は、スイッチ112に入力される。そして、該映像信号の電位に従って、スイッチ112のオン又はオフが決定する。ここでは、スイッチ112がオンになる映像信号が画素101に入力され、容量素子127にはスイッチ112がオンの状態を維持する所定の電荷が保持されているとする。   First, when the switch 111 is turned on, the video signal input to the signal line 121 is input to the switch 112. Then, on or off of the switch 112 is determined in accordance with the potential of the video signal. Here, it is assumed that a video signal for turning on the switch 112 is input to the pixel 101, and the capacitor 127 holds a predetermined charge for maintaining the switch 112 on.

この状態において、容量素子119には発光素子120の発光開始電圧が保存されているとする。そして図1(A)に示すように、昇圧回路125において、スイッチ115、116をオンにして、それ以外のスイッチをオフにする。そうすると、電源線123からスイッチ115、容量素子119を介して、スイッチ116に向かって電流が流れる。電流が流れると、容量素子118の両電極間には電位差が生じ始め、徐々に電荷が蓄積される。この電荷の蓄積は、容量素子118の両電極間の電位差が電源線123の電位Vddと同じ値になるまで続けられる。そして、容量素子118に対する電荷の蓄積が終了すると、電荷Q1と電荷Q2は以下の式(3)、(4)を満たす。 In this state, it is assumed that the light emission start voltage of the light emitting element 120 is stored in the capacitor 119. As shown in FIG. 1A, in the booster circuit 125, the switches 115 and 116 are turned on and the other switches are turned off. Then, current flows from the power supply line 123 to the switch 116 via the switch 115 and the capacitor 119. When a current flows, a potential difference starts to occur between both electrodes of the capacitor 118, and electric charges are gradually accumulated. This charge accumulation is continued until the potential difference between both electrodes of the capacitor 118 reaches the same value as the potential V dd of the power supply line 123. When the accumulation of charges in the capacitor 118 ends, the charges Q 1 and Q 2 satisfy the following expressions (3) and (4).

Q1=C1×Vdd・・・(3) Q 1 = C 1 × V dd (3)

Q2=C2×Vth・・・(4) Q 2 = C 2 × V th (4)

次いで、図1(B)に示すように、昇圧回路125において、スイッチ114、117をオンにして、それ以外のスイッチはオフにする。そうすると、電源線123からスイッチ117、容量素子119を介し、スイッチ114を介して容量素子118に向かって電流が流れる。電流が流れると、容量素子118に蓄積されていた電荷は、容量素子119に転送される。この転送される電荷をΔQ、容量素子118の電位差をV1、容量素子119の電位差をV2とすると、以下の式(5)、(6)が成立する。 Next, as shown in FIG. 1B, in the booster circuit 125, the switches 114 and 117 are turned on, and the other switches are turned off. Then, a current flows from the power supply line 123 through the switch 117 and the capacitive element 119 to the capacitive element 118 through the switch 114. When current flows, the charge accumulated in the capacitor 118 is transferred to the capacitor 119. When this transferred charge is ΔQ, the potential difference of the capacitive element 118 is V 1 , and the potential difference of the capacitive element 119 is V 2 , the following equations (5) and (6) are established.

-(Q1-ΔQ)=C1×V1・・・(5) -(Q 1 -ΔQ) = C 1 × V 1 (5)

Q2+ΔQ=C2×V2・・・(6) Q 2 + ΔQ = C 2 × V 2 (6)

容量素子118、119の両電極間の電位差V1とV2を足した値は、電源線125の電位に等しいことから、以下の式(7)が成立する。 Since the value obtained by adding the potential differences V 1 and V 2 between the electrodes of the capacitive elements 118 and 119 is equal to the potential of the power supply line 125, the following equation (7) is established.

Vdd=V1+V2・・・(7) V dd = V 1 + V 2 (7)

そして上記の式(3)〜(7)から、以下の式(8)に示すように容量素子119の電位差V2を求めることができる。 From the above equations (3) to (7), the potential difference V 2 of the capacitor 119 can be obtained as shown in the following equation (8).

V2=(C2×Vth)/(C1+C2)+(2×C1×Vdd)/(C1+C2)・・・(8) V 2 = (C 2 × V th ) / (C 1 + C 2 ) + (2 × C 1 × V dd ) / (C 1 + C 2 ) (8)

続いて、図2(A)に示すように、昇圧回路125においてスイッチ113をオンにして、それ以外のスイッチはオフにする。このとき、スイッチ112は画素101に入力された映像信号によって、オンになっている。そうすると、容量素子119、スイッチ113、112を介して発光素子120の両電極間に電流が流れる。このとき、容量素子119の電位差が発光素子120の発光開始電圧と同じ値になるまで、発光素子120の両電極間には電流が流れる。つまり、式(8)に示した容量素子119の電位差から、発光素子120の発光開始電圧を引いた値が発光素子120に流れる電荷に相当する。この電荷をAとおくと、電荷Aは以下の式(9)を満たす。   Subsequently, as shown in FIG. 2A, the switch 113 is turned on in the booster circuit 125, and the other switches are turned off. At this time, the switch 112 is turned on by the video signal input to the pixel 101. Then, a current flows between both electrodes of the light emitting element 120 through the capacitive element 119 and the switches 113 and 112. At this time, current flows between both electrodes of the light emitting element 120 until the potential difference of the capacitor 119 reaches the same value as the light emission start voltage of the light emitting element 120. That is, a value obtained by subtracting the light emission start voltage of the light emitting element 120 from the potential difference of the capacitor 119 shown in Expression (8) corresponds to the charge flowing through the light emitting element 120. When this charge is A, the charge A satisfies the following formula (9).

A=C2×{(2×C1×Vdd)/(C1+C2)-(C1×Vth)/(C1+C2)}・・・(9) A = C 2 × {(2 × C 1 × V dd ) / (C 1 + C 2 ) − (C 1 × V th ) / (C 1 + C 2 )} (9)

続いて、一定の電荷Aが発光素子120の両電極間に流れると、図2(B)に示すように、スイッチ113をオフにする。このときスイッチ112以外のスイッチもオフを維持する。このようにして、図2(B)に示す状態になったら、再び図1(A)の状態に戻って、上述した動作を繰り返す。   Subsequently, when a constant charge A flows between both electrodes of the light emitting element 120, the switch 113 is turned off as shown in FIG. At this time, the switches other than the switch 112 are also kept off. When the state shown in FIG. 2B is obtained in this way, the state returns to the state shown in FIG. 1A again and the above-described operation is repeated.

なお図1(A)から図2(B)に示した動作は所定の期間中繰り返して行われる。所定の期間とは、スイッチ112がオンである期間に相当し、言い換えるとスイッチ126が選択されて、容量素子127に保持された電荷が放電されるまでの期間に相当する。例えば、時間階調方式が適用された発光装置では、サブフレーム期間に相当する。   Note that the operations shown in FIGS. 1A to 2B are repeated during a predetermined period. The predetermined period corresponds to a period in which the switch 112 is on. In other words, the predetermined period corresponds to a period from when the switch 126 is selected until the charge held in the capacitor 127 is discharged. For example, a light-emitting device to which a time gray scale method is applied corresponds to a subframe period.

このように本発明は、一定の電荷を発光素子の両電極間に流す昇圧回路を各画素に設けることにより、経時変化による発光素子の劣化の影響を抑制することができる。また本発明では、各画素に設けられるトランジスタは、線形領域で動作させ、且つ全てスイッチとしてのみ用いることで、トランジスタの特性バラツキの影響を抑制することができる。また本発明では、各画素に設けられるトランジスタは全てスイッチとして用いるため、その導電型は特に限定されない。したがって、各画素を単一極性のトランジスタで構成することが可能となり、作製工程を削減することができる。その結果、作製工程における歩留まりが向上し、また作製費用を抑制することができる。   As described above, according to the present invention, by providing each pixel with a booster circuit that allows a constant charge to flow between both electrodes of the light-emitting element, it is possible to suppress the influence of deterioration of the light-emitting element due to aging. In the present invention, the transistor provided in each pixel operates in a linear region and is used only as a switch, so that the influence of variations in transistor characteristics can be suppressed. In the present invention, since all transistors provided in each pixel are used as switches, the conductivity type is not particularly limited. Therefore, each pixel can be formed of a single polarity transistor, and the number of manufacturing steps can be reduced. As a result, the yield in the manufacturing process can be improved and the manufacturing cost can be suppressed.

なお上記の昇圧回路125の構成は一つの実施の形態であり、本発明はこれに限定されない。本発明の発光装置には、公知の如何なる構成の昇圧回路を適用することができる。   The configuration of the booster circuit 125 is one embodiment, and the present invention is not limited to this. Any known booster circuit can be applied to the light emitting device of the present invention.

(実施の形態3)
本実施の形態では、上述した実施の形態とは異なる画素101の構成について図3、4(A)を用いて説明する。
(Embodiment 3)
In this embodiment, a structure of the pixel 101 which is different from that in the above embodiment is described with reference to FIGS.

図3(A)に示す画素101は、図1、2に示した画素101においてスイッチ116、117を除いた構成になっており、また容量素子118の一方の電極には、クロック信号が直接入力されるようになっている。図3(A)に示す画素101の構成とその動作の詳しい説明は、上述の実施の形態に準ずるので、ここでは省略する。   A pixel 101 illustrated in FIG. 3A has a structure in which the switches 116 and 117 are removed from the pixel 101 illustrated in FIGS. 1 and 2, and a clock signal is directly input to one electrode of the capacitor 118. It has come to be. A detailed description of the structure and operation of the pixel 101 illustrated in FIG. 3A is the same as that of the above embodiment, and thus is omitted here.

図3(B)に示す画素101は、図1、2に示した画素101に、容量素子141、スイッチ142〜144を追加して、昇圧回路125の段数が1段増えて3段の構成になっている。該画素101においては、発光素子120に流れる電荷Aは以下の式(10)のように示すことができる。   The pixel 101 illustrated in FIG. 3B has a three-stage configuration in which the capacitor 141 and the switches 142 to 144 are added to the pixel 101 illustrated in FIGS. It has become. In the pixel 101, the electric charge A flowing through the light emitting element 120 can be expressed by the following formula (10).

A=C2×{(3×C1×Vdd)/(C1+C2)-(C1×Vth)/(C1+C2)}・・・(10) A = C 2 × {(3 × C 1 × V dd ) / (C 1 + C 2 ) − (C 1 × V th ) / (C 1 + C 2 )} (10)

上記の式(10)では、Vddの項の係数は3となっているため、電荷Aに対するVthの項の依存は小さくなる。電荷Aに対するVthの項の依存が小さくなると、発光素子120の発光開始電圧Vthに対する依存が小さくなるため、発光素子120の経時変化による劣化の影響をさらに抑制することができる。なお図3(B)に示す画素101の構成とその動作の詳しい説明は、上述の実施の形態に準ずるので、ここでは省略する。 In the above formula (10), since the coefficient of the term V dd is 3, the dependence of the term V th on the charge A is reduced. When the dependence of the term V th on the charge A is reduced, the dependence on the light emission start voltage V th of the light emitting element 120 is reduced, so that it is possible to further suppress the influence of deterioration of the light emitting element 120 due to aging. Note that a detailed description of the structure and operation of the pixel 101 illustrated in FIG. 3B is the same as that of the above embodiment mode, and thus is omitted here.

図4(A)に示す画素101は、161、162、176はスイッチ、170は発光素子、171は信号線、172は走査線、173は電源線、125は昇圧回路(charge pump)、177は容量素子である。昇圧回路125は、スイッチ163〜スイッチ167と容量素子168、169を有する。図4(A)に示す画素101の動作の詳しい説明は、上述の実施の形態に準ずるので、ここでは省略する。   4A, 161, 162, and 176 are switches, 170 is a light emitting element, 171 is a signal line, 172 is a scanning line, 173 is a power supply line, 125 is a booster circuit (charge pump), and 177 is It is a capacitive element. The booster circuit 125 includes switches 163 to 167 and capacitive elements 168 and 169. A detailed description of the operation of the pixel 101 illustrated in FIG. 4A is the same as that of the above embodiment mode, and thus is omitted here.

なお本実施の形態において、図3(A)では2段の昇圧回路125を有する画素101を示し、図3(B)では3段の昇圧回路125を有する画素101を示したが、本発明はこれに限定されない。画素101が有する昇圧回路125の段数は特に限定されない。   Note that in this embodiment mode, the pixel 101 having the two-stage booster circuit 125 is shown in FIG. 3A, and the pixel 101 having the three-stage booster circuit 125 is shown in FIG. 3B. It is not limited to this. The number of stages of the booster circuit 125 included in the pixel 101 is not particularly limited.

(実施の形態4)
本実施の形態では、図1(A)に示した画素101を実際にレイアウトした例について、図9を用いて説明する。
(Embodiment 4)
In this embodiment, an example in which the pixel 101 illustrated in FIG. 1A is actually laid out will be described with reference to FIGS.

図9において、111〜117、126はトランジスタであり、スイッチとして用いられる。122、182〜187は走査線、121は信号線、123は電源線、181はグラウンド線である。118、119、127は容量素子であり、半導体とゲート配線との間の容量が用いられている。188は画素電極である。該画素電極188上には、発光層と対向電極とが積層して形成されるが、図9では図示を省略する。   In FIG. 9, reference numerals 111 to 117 and 126 denote transistors, which are used as switches. 122, 182-187 are scanning lines, 121 is a signal line, 123 is a power supply line, and 181 is a ground line. Reference numerals 118, 119, and 127 denote capacitive elements, and capacitors between the semiconductor and the gate wiring are used. Reference numeral 188 denotes a pixel electrode. A light emitting layer and a counter electrode are stacked on the pixel electrode 188, but the illustration is omitted in FIG.

トランジスタ111のソース領域又はドレイン領域の一方は、発光素子120(図示せず)の一方の電極に接続される。そして本実施の形態では、発光素子120から発せられる光は、基板とは反対側の面に出射される。図1(A)に示すように、画素101内に設けられている素子の数が多い場合には、発光素子120から発せられる光は、基板とは反対側の面に出射するようにすることが好ましい。   One of a source region and a drain region of the transistor 111 is connected to one electrode of the light-emitting element 120 (not shown). In this embodiment mode, light emitted from the light emitting element 120 is emitted to the surface opposite to the substrate. As shown in FIG. 1A, when the number of elements provided in the pixel 101 is large, light emitted from the light-emitting element 120 is emitted to the surface opposite to the substrate. Is preferred.

また本発明では、容量素子118、119に保持することができる電荷の総量が重要になる。図9に示す画素101では、容量素子118、119の画素101に対する占有面積は同程度であるが、本発明はこれに限定されない。各容量素子の画素101に対する占有面積は特に限定されない。   In the present invention, the total amount of charges that can be held in the capacitors 118 and 119 is important. In the pixel 101 illustrated in FIG. 9, the occupied areas of the capacitor elements 118 and 119 with respect to the pixel 101 are approximately the same, but the present invention is not limited to this. The area occupied by each capacitor element for the pixel 101 is not particularly limited.

(実施の形態5)
本実施の形態では、本発明の発光装置に適用される駆動方式について簡単に説明する。
(Embodiment 5)
In this embodiment mode, a driving method applied to the light-emitting device of the present invention will be briefly described.

多階調の画像を表示するときの駆動方式としては、大別してアナログ階調方式とデジタル階調方式が挙げられるが、本発明の発光装置では両方式を適用することが出来る。両方式の相違点は、発光素子の発光、非発光の各状態において該発光素子を制御する方法にある。前者のアナログ階調方式は、発光素子に流れる電流量を制御して階調を得るという方式である。また後者のデジタル階調方式は、発光素子がオン状態(輝度がほぼ100%である状態)と、オフ状態(輝度がほぼ0%である状態)の2つの状態のみによって駆動するという方式である。   Driving methods for displaying a multi-gradation image are roughly classified into an analog gradation method and a digital gradation method, but both methods can be applied to the light emitting device of the present invention. The difference between the two systems is in the method of controlling the light emitting element in each of the light emitting and non-light emitting states of the light emitting element. The former analog gradation method is a method of obtaining gradation by controlling the amount of current flowing through the light emitting element. The latter digital gradation method is a method in which the light emitting element is driven only in two states: an on state (a state where the luminance is approximately 100%) and an off state (a state where the luminance is approximately 0%). .

デジタル階調方式においては、多階調の画像を表現するためにデジタル階調方式と面積階調方式とを組み合わせた方式(以下面積階調方式と表記)やデジタル階調方式と時間階調方式とを組み合わせた方式(以下時間階調方式と表記)が提案されている。   In the digital gradation method, in order to express a multi-gradation image, a method combining a digital gradation method and an area gradation method (hereinafter referred to as an area gradation method) or a digital gradation method and a time gradation method. Has been proposed (hereinafter referred to as a time gradation method).

面積階調方式とは、1画素を複数の副画素に分割し、各副画素で発光、又は非発光を選択することで、1画素において発光している面積と、それ以外の面積との差をもって階調を表現する方式である。また時間階調方式とは、特開2001-5426号にて報告されているように、発光素子が発光している時間を制御することにより、階調表現を行う方式である。具体的には、1フレーム期間を長さの異なる複数のサブフレーム期間に分割し、各期間での発光素子の発光又は非発光を選択することで、1フレーム期間内で発光した時間の長さの差をもって階調を表現する。   In the area gradation method, one pixel is divided into a plurality of subpixels, and light emission or non-light emission is selected in each subpixel, so that the difference between the area emitting light in one pixel and the other areas This is a method for expressing gradations. The time gradation method is a method for performing gradation expression by controlling the time during which the light emitting element emits light, as reported in Japanese Patent Application Laid-Open No. 2001-5426. Specifically, one frame period is divided into a plurality of subframe periods having different lengths, and light emission or non-light emission of the light-emitting element in each period is selected, thereby the length of time during which light is emitted within one frame period The gradation is expressed with the difference of.

本発明の発光装置は、アナログ階調方式、デジタル階調方式のいずれも適用することができる。但し、アナログ階調方式を適用する場合には、各画素に電位の異なる電源線を複数本設けるか、又は各画素に入力する信号に合わせて電源線の電位を変える必要が生ずる。一方、デジタル階調方式を適用する場合には、各画素の電源線の電位は全て同じで構わないため、隣接する画素間で電源線を共有することができる。   The light emitting device of the present invention can apply both an analog gradation method and a digital gradation method. However, when the analog gray scale method is applied, it is necessary to provide a plurality of power supply lines having different potentials for each pixel or to change the potential of the power supply line in accordance with a signal input to each pixel. On the other hand, when the digital gray scale method is applied, the power supply lines of each pixel may have the same potential, so that the power supply lines can be shared between adjacent pixels.

なお多色表示を行う発光装置においては、1画素にRGBの各色に対応した複数の副画素が設けられる。各副画素は、RGBの各材料の電流密度やカラーフィルタなどの透過率の相違により、同じ電圧を印加したとしても発せられる光の輝度は異なってしまうことがある。そのため、各色に対応した各副画素で電源線の電位を変えることが好ましい。   Note that in a light-emitting device that performs multicolor display, a plurality of subpixels corresponding to RGB colors are provided in one pixel. Even if the same voltage is applied to each sub-pixel, the luminance of the emitted light may differ depending on the current density of each of the RGB materials and the transmittance of the color filter. Therefore, it is preferable to change the potential of the power supply line in each subpixel corresponding to each color.

本実施の形態は、実施の形態1〜3と任意に組み合わせることが可能である。   This embodiment can be arbitrarily combined with Embodiments 1 to 3.

(実施の形態6)
本実施の形態では、本発明の発光装置の概略について図5を用いて説明する。
(Embodiment 6)
In this embodiment mode, an outline of a light-emitting device of the present invention will be described with reference to FIG.

図5(A)に示すように、本発明の発光装置は基板107上に複数の画素101がマトリクス状に配置された画素部102を有する。画素部102の周辺には、信号線駆動回路103、第1の走査線駆動回路104及び第2の走査線駆動回路105を有する。信号線駆動回路103と、第1の走査線駆動回路104及び第2の走査線駆動回路105には、FPC106を介して外部より信号が供給される。   As shown in FIG. 5A, the light-emitting device of the present invention includes a pixel portion 102 in which a plurality of pixels 101 are arranged in a matrix over a substrate 107. In the periphery of the pixel portion 102, a signal line driver circuit 103, a first scan line driver circuit 104, and a second scan line driver circuit 105 are provided. Signals are supplied from the outside to the signal line driver circuit 103, the first scan line driver circuit 104, and the second scan line driver circuit 105 through the FPC 106.

図5(A)においては、1組の信号線駆動回路103と、2組の走査線駆動回路104、105を有しているが、本発明はこれに限定されない。駆動回路の個数は、画素101の構成に応じて任意に設計することができる。また図5(A)においては、画素部102の周辺に設けられる駆動回路は、同一基板上に画素部102と一体形成されているが、本発明はこれに限定されない。駆動回路は、画素部102が形成された基板107の外部に配置してもよい。   In FIG. 5A, one set of signal line driver circuits 103 and two sets of scanning line driver circuits 104 and 105 are provided; however, the present invention is not limited to this. The number of driving circuits can be arbitrarily designed according to the configuration of the pixel 101. In FIG. 5A, the driver circuit provided around the pixel portion 102 is formed integrally with the pixel portion 102 over the same substrate; however, the present invention is not limited to this. The driver circuit may be disposed outside the substrate 107 on which the pixel portion 102 is formed.

なお本明細書における発光装置とは、発光素子を有する画素部及び駆動回路を基板とカバー材との間に封入した発光パネル、前記発光パネルにIC等を実装した発光モジュール、表示装置として用いられる発光ディスプレイなどを範疇に含む。つまり発光装置は、発光パネル、発光モジュール及び発光ディスプレイなどの総称に相当する。   Note that the light-emitting device in this specification is used as a light-emitting panel in which a pixel portion having a light-emitting element and a driving circuit are sealed between a substrate and a cover material, a light-emitting module in which an IC or the like is mounted on the light-emitting panel, and a display device. Includes light-emitting displays. That is, the light emitting device corresponds to a generic term for a light emitting panel, a light emitting module, a light emitting display, and the like.

次いで、本発明の発光装置に設けられる信号線駆動回路103について図5(B)を用いて説明する。信号線駆動回路103は、シフトレジスタ131、第1のラッチ回路132及び第2のラッチ回路133を有する。動作を簡単に説明すると、シフトレジスタ131は、フリップフロップ回路(FF)等を複数列用いて構成され、クロック信号(S-CLK)、スタートパルス(S-SP)、クロック反転信号(S-CLKb)が入力される。これらの信号のタイミングに従って、順次サンプリングパルスが出力される。   Next, the signal line driver circuit 103 provided in the light-emitting device of the present invention will be described with reference to FIG. The signal line driver circuit 103 includes a shift register 131, a first latch circuit 132, and a second latch circuit 133. The operation will be briefly described. The shift register 131 is configured by using a plurality of columns of flip-flop circuits (FF) and the like, and includes a clock signal (S-CLK), a start pulse (S-SP), and a clock inversion signal (S-CLKb). ) Is entered. Sampling pulses are sequentially output according to the timing of these signals.

シフトレジスタ131により出力されたサンプリングパルスは、第1のラッチ回路132に入力される。第1のラッチ回路132には、デジタルビデオ信号が入力されており、サンプリングパルスが入力されるタイミングに従って、各列でビデオ信号を保持していく。   The sampling pulse output from the shift register 131 is input to the first latch circuit 132. A digital video signal is input to the first latch circuit 132, and the video signal is held in each column in accordance with the timing at which the sampling pulse is input.

第1のラッチ回路132において、最終列までビデオ信号の保持が完了すると、水平帰線期間中に、第2のラッチ回路133にラッチパルスが入力され、第1のラッチ回路132に保持されていたビデオ信号は、一斉に第2のラッチ回路133に転送される。そうすると、第2のラッチ回路133に保持されたビデオ信号は、1行分が同時に信号線S1〜Smに入力される。 When the first latch circuit 132 completes holding the video signal up to the last column, a latch pulse is input to the second latch circuit 133 and held in the first latch circuit 132 during the horizontal blanking period. The video signals are transferred all at once to the second latch circuit 133. Then, the video signal held in the second latch circuit 133 is input to the signal lines S 1 to S m for one row at the same time.

第2のラッチ回路133に保持されたビデオ信号が信号線S1〜Smに入力されている間、シフトレジスタ131においては再びサンプリングパルスが出力される。以後この動作を繰り返す。 While the video signal held in the second latch circuit 133 is input to the signal lines S 1 to S m , the shift register 131 outputs a sampling pulse again. Thereafter, this operation is repeated.

次いで、第1及び第2の走査線駆動回路104、105について図5(C)を用いて説明する。第1及び第2の走査線駆動回路104、105は、シフトレジスタ134、バッファ135をそれぞれ有する。動作を簡単に説明すると、シフトレジスタ134は、クロック信号(G-CLK)、スタートパルス(G-SP)及びクロック反転信号(G-CLKb)に従って、順次サンプリングパルスを出力する。その後バッファ135で増幅されたサンプリングパルスは、走査線に入力されて1行ずつ選択状態にしていく。   Next, the first and second scan line driver circuits 104 and 105 will be described with reference to FIG. The first and second scan line driver circuits 104 and 105 each include a shift register 134 and a buffer 135. Briefly describing the operation, the shift register 134 sequentially outputs sampling pulses in accordance with a clock signal (G-CLK), a start pulse (G-SP), and a clock inversion signal (G-CLKb). Thereafter, the sampling pulse amplified by the buffer 135 is input to the scanning line and selected one row at a time.

なおシフトレジスタ134と、バッファ135の間にはレベルシフタを配置してもよい。レベルシフタを配置することによって、ロジック回路部とバッファ部の電圧振幅を変えることが出来る。   Note that a level shifter may be disposed between the shift register 134 and the buffer 135. By arranging the level shifter, the voltage amplitude of the logic circuit portion and the buffer portion can be changed.

本実施の形態は、実施の形態1〜4と任意に組み合わせることが可能である。   This embodiment can be arbitrarily combined with Embodiments 1 to 4.

(実施の形態7)
本発明の発光装置の駆動方法が適用される電子機器として、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、ノート型パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDigital Versatile Disc(DVD)等の記録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられる。それらの電子機器の具体例を図6に示す。
(Embodiment 7)
Electronic devices to which the driving method of the light emitting device of the present invention is applied include a video camera, a digital camera, a goggle type display (head mounted display), a navigation system, an audio playback device (car audio, audio component, etc.), and a notebook type personal computer. , Game devices, portable information terminals (mobile computers, mobile phones, portable game machines, electronic books, etc.), image playback devices equipped with recording media (specifically, digital Versatile Disc (DVD) and other recording media) And a device provided with a display capable of displaying the image). Specific examples of these electronic devices are shown in FIGS.

図6(A)は発光装置であり、筐体2001、支持台2002、表示部2003、スピーカー部2004、ビデオ入力端子2005等を含む。本発明は表示部2003に適用することができる。また本発明により、図6(A)に示す発光装置が完成される。発光装置は自発光型であるためバックライトが必要なく、液晶ディスプレイよりも薄い表示部とすることができる。なお、発光装置は、パソコン用、TV放送受信用、広告表示用などの全ての情報表示用表示装置が含まれる。   FIG. 6A illustrates a light emitting device, which includes a housing 2001, a support base 2002, a display portion 2003, a speaker portion 2004, a video input terminal 2005, and the like. The present invention can be applied to the display portion 2003. Further, according to the present invention, the light emitting device shown in FIG. 6A is completed. Since the light-emitting device is a self-luminous type, a backlight is not necessary and a display portion thinner than a liquid crystal display can be obtained. Note that the light emitting device includes all display devices for displaying information such as for personal computers, for receiving TV broadcasts, and for displaying advertisements.

図6(B)はデジタルスチルカメラであり、本体2101、表示部2102、受像部2103、操作キー2104、外部接続ポート2105、シャッター2106等を含む。本発明は、表示部2102に適用することができる。また本発明により、図6(B)に示すデジタルスチルカメラが完成される。   FIG. 6B illustrates a digital still camera, which includes a main body 2101, a display portion 2102, an image receiving portion 2103, operation keys 2104, an external connection port 2105, a shutter 2106, and the like. The present invention can be applied to the display portion 2102. Further, according to the present invention, the digital still camera shown in FIG. 6B is completed.

図6(C)はノート型パーソナルコンピュータであり、本体2201、筐体2202、表示部2203、キーボード2204、外部接続ポート2205、ポインティングマウス2206等を含む。本発明は、表示部2203に適用することができる。また本発明により、図6(C)に示す発光装置が完成される。   FIG. 6C illustrates a laptop personal computer, which includes a main body 2201, a housing 2202, a display portion 2203, a keyboard 2204, an external connection port 2205, a pointing mouse 2206, and the like. The present invention can be applied to the display portion 2203. Further, according to the present invention, the light-emitting device shown in FIG. 6C is completed.

図6(D)はモバイルコンピュータであり、本体2301、表示部2302、スイッチ2303、操作キー2304、赤外線ポート2305等を含む。本発明は、表示部2302に適用することができる。また本発明により、図6(D)に示すモバイルコンピュータが完成される。   FIG. 6D illustrates a mobile computer, which includes a main body 2301, a display portion 2302, a switch 2303, operation keys 2304, an infrared port 2305, and the like. The present invention can be applied to the display portion 2302. Further, according to the present invention, the mobile computer shown in FIG. 6D is completed.

図6(E)は記録媒体を備えた携帯型の画像再生装置(具体的にはDVD再生装置)であり、本体2401、筐体2402、表示部A2403、表示部B2404、記録媒体(DVD等)読み込み部2405、操作キー2406、スピーカー部2407等を含む。表示部A2403は主として画像情報を表示し、表示部B2404は主として文字情報を表示するが、本発明は表示部A、B2403、2404に適用することができる。なお、記録媒体を備えた画像再生装置には家庭用ゲーム機器なども含まれる。また本発明により図6(E)に示す画像表示装置が完成される。   FIG. 6E illustrates a portable image reproducing device (specifically, a DVD reproducing device) provided with a recording medium, which includes a main body 2401, a housing 2402, a display portion A2403, a display portion B2404, and a recording medium (DVD or the like). A reading unit 2405, operation keys 2406, a speaker unit 2407, and the like are included. Although the display portion A 2403 mainly displays image information and the display portion B 2404 mainly displays character information, the present invention can be applied to the display portions A, B 2403, and 2404. Note that an image reproducing device provided with a recording medium includes a home game machine and the like. Further, the image display device shown in FIG. 6E is completed by the present invention.

図6(F)はゴーグル型ディスプレイ(ヘッドマウントディスプレイ)であり、本体2501、表示部2502、アーム部2503を含む。本発明は、表示部2502に適用することができる。また本発明により、図6(F)に示すゴーグル型ディスプレイが完成される。   FIG. 6F illustrates a goggle type display (head mounted display), which includes a main body 2501, a display portion 2502, and an arm portion 2503. The present invention can be applied to the display portion 2502. Further, according to the present invention, the goggle type display shown in FIG. 6F is completed.

図6(G)はビデオカメラであり、本体2601、表示部2602、筐体2603、外部接続ポート2604、リモコン受信部2605、受像部2606、バッテリー2607、音声入力部2608、操作キー2609等を含む。本発明は、表示部2602に適用することができる。また本発明により、図6(G)に示すビデオカメラが完成される。   FIG. 6G illustrates a video camera, which includes a main body 2601, a display portion 2602, a housing 2603, an external connection port 2604, a remote control receiving portion 2605, an image receiving portion 2606, a battery 2607, an audio input portion 2608, operation keys 2609, and the like. . The present invention can be applied to the display portion 2602. Further, according to the present invention, the video camera shown in FIG. 6G is completed.

図6(H)は携帯電話であり、本体2701、筐体2702、表示部2703、音声入力部2704、音声出力部2705、操作キー2706、外部接続ポート2707、アンテナ2708等を含む。本発明は、表示部2703に適用することができる。なお、表示部2703は黒色の背景に白色の文字を表示することで携帯電話の消費電流を抑えることができる。また本発明により、図6(H)に示す携帯電話が完成される。   FIG. 6H illustrates a mobile phone, which includes a main body 2701, a housing 2702, a display portion 2703, an audio input portion 2704, an audio output portion 2705, operation keys 2706, an external connection port 2707, an antenna 2708, and the like. The present invention can be applied to the display portion 2703. Note that the display portion 2703 can suppress current consumption of the mobile phone by displaying white characters on a black background. In addition, the mobile phone shown in FIG. 6H is completed by the present invention.

なお、将来的に発光材料の発光輝度が高くなれば、出力した画像情報を含む光をレンズ等で拡大投影してフロント型若しくはリア型のプロジェクターに用いることも可能となる。   If the emission luminance of the luminescent material is increased in the future, the light including the output image information can be enlarged and projected by a lens or the like to be used for a front type or rear type projector.

また、上記電子機器はインターネットやCATV(ケーブルテレビ)などの電子通信回線を通じて配信された情報を表示することが多くなり、特に動画情報を表示する機会が増してきている。発光材料の応答速度は非常に高いため、発光装置は動画表示に好ましい。   In addition, the electronic devices often display information distributed through electronic communication lines such as the Internet and CATV (cable television), and in particular, opportunities to display moving image information are increasing. Since the response speed of the light emitting material is very high, the light emitting device is preferable for displaying moving images.

また、発光装置は発光している部分が電力を消費するため、発光部分が極力少なくなるように情報を表示することが望ましい。従って、携帯情報端末、特に携帯電話や音響再生装置のような文字情報を主とする表示部に発光装置を用いる場合には、非発光部分を背景として文字情報を発光部分で形成するように駆動することが望ましい。   Further, since the light emitting part consumes power in the light emitting device, it is desirable to display information so that the light emitting part is minimized. Therefore, when a light emitting device is used for a display unit mainly including character information, such as a portable information terminal, particularly a mobile phone or a sound reproduction device, it is driven so that character information is formed by the light emitting part with the non-light emitting part as the background. It is desirable to do.

以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器に用いることが可能である。また本実施の形態の電子機器は、実施の形態1〜5に示したいずれの構成の発光装置を用いても良い。   As described above, the applicable range of the present invention is so wide that it can be used for electronic devices in various fields. In addition, the electronic device of this embodiment mode may use any of the light-emitting devices shown in Embodiment Modes 1 to 5.

本発明の発光装置に具備される画素の構成とその動作を説明する図。3A and 3B each illustrate a structure and operation of a pixel included in a light-emitting device of the present invention. 本発明の発光装置に具備される画素の構成とその動作を説明する図。3A and 3B each illustrate a structure and operation of a pixel included in a light-emitting device of the present invention. 本発明の発光装置に具備される画素の構成を示す図。FIG. 14 illustrates a structure of a pixel included in a light-emitting device of the present invention. 本発明の発光装置に具備される画素の構成を示す図。FIG. 14 illustrates a structure of a pixel included in a light-emitting device of the present invention. 本発明の発光装置を示す図。The figure which shows the light-emitting device of this invention. 本発明の発光装置が適用される電子機器を示す図。FIG. 11 illustrates an electronic device to which a light-emitting device of the present invention is applied. 定電流駆動と定電圧駆動の概念図。The conceptual diagram of a constant current drive and a constant voltage drive. 本発明の発光装置に具備される画素の構成を示す図。FIG. 14 illustrates a structure of a pixel included in a light-emitting device of the present invention. 本発明の発光装置に具備される画素のレイアウト図。FIG. 6 is a layout diagram of pixels included in the light-emitting device of the present invention.

Claims (4)

発光素子と、第一乃至第四のトランジスタと、第一及び第二の容量素子とを有し、
前記発光素子の第一の電極は、前記第一のトランジスタのソース又はドレインの一方と電気的に接続され、前記第一のトランジスタのソース又はドレインの他方は前記第三のトランジスタのソース又はドレインの一方と電気的に接続され、
前記第三のトランジスタのソース又はドレインの他方は、前記第四のトランジスタのソース又はドレインの一方と電気的に接続され、
前記第四のトランジスタのソース又はドレインの他方は、第一の配線と電気的に接続され、
前記第一のトランジスタのゲートは、前記第二のトランジスタを介して第二の配線と電気的に接続され、
前記第一の容量素子の第一の電極は、前記発光素子の第二の電極と電気的に接続され、第二の電極は、前記第3のトランジスタのソース又はドレインの他方と電気的に接続され、
前記第二の容量素子の第一の電極は、前記第一のトランジスタのゲートと電気的に接続され、
前記第一及び第二の容量素子は、半導体と、ゲート配線と、前記半導体と前記ゲート配線との間の容量を用いて形成され、
前記第二の容量素子の面積は、前記第一の容量素子の面積よりも小さく、
前記第二の配線及び前記第二のトランジスタを介して、映像信号が前記第一のトランジスタのゲートに入力され、
前記第一の配線には、電源電位が与えられることを特徴とする発光装置。
A light emitting element, first to fourth transistors, and first and second capacitor elements;
The first electrode of the light emitting element is electrically connected to one of the source and the drain of the first transistor, and the other of the source and the drain of the first transistor is the source or the drain of the third transistor. Electrically connected to one side,
The other of the source and the drain of the third transistor is electrically connected to one of the source and the drain of the fourth transistor;
The other of the source and the drain of the fourth transistor is electrically connected to the first wiring;
A gate of the first transistor is electrically connected to a second wiring through the second transistor;
The first electrode of the first capacitor element is electrically connected to the second electrode of the light emitting element, and the second electrode is electrically connected to the other of the source and the drain of the third transistor. And
A first electrode of the second capacitive element is electrically connected to a gate of the first transistor;
It said first and second capacitive element includes a semiconductor, and the gate wiring layer is formed by using a capacitance between the semiconductor and the gate wiring layer,
The area of the second capacitive element is smaller than the area of the first capacitive element,
A video signal is input to the gate of the first transistor through the second wiring and the second transistor,
The light emitting device is characterized in that a power supply potential is applied to the first wiring.
発光素子と、第一乃至第四のトランジスタと、第一及び第二の容量素子とを有し、
前記発光素子の第一の電極は、前記第一のトランジスタのソース又はドレインの一方と電気的に接続され、前記第一のトランジスタのソース又はドレインの他方は前記第三のトランジスタのソース又はドレインの一方と電気的に接続され、
前記第三のトランジスタのソース又はドレインの他方は、前記第四のトランジスタのソース又はドレインの一方と電気的に接続され、
前記第四のトランジスタのソース又はドレインの他方は、第一の配線と電気的に接続され、
前記第一のトランジスタのゲートは、前記第二のトランジスタを介して第二の配線と電気的に接続され、
前記第一の容量素子の第一の電極は、前記発光素子の第二の電極と電気的に接続され、第二の電極は、前記第3のトランジスタのソース又はドレインの他方と電気的に接続され、
前記第二の容量素子の第一の電極は、前記第一のトランジスタのゲートと電気的に接続され、
前記第一及び第二の容量素子は、半導体と、ゲート配線と、前記半導体と前記ゲート配線との間の容量を用いて形成され、
前記第一の容量素子は、前記発光素子の第一の電極と、少なくとも一部を重畳して設けられ、
前記第二の容量素子の面積は、前記第一の容量素子の面積よりも小さく、
前記第二の配線及び前記第二のトランジスタを介して、映像信号が前記第一のトランジスタのゲートに入力され、
前記第一の配線には、電源電位が与えられ、
前記発光素子は、発光層を有し、
前記発光素子から発せられる光は、前記発光素子の第二の電極の方向から出射されることを特徴とする発光装置。
A light emitting element, first to fourth transistors, and first and second capacitor elements;
The first electrode of the light emitting element is electrically connected to one of the source and the drain of the first transistor, and the other of the source and the drain of the first transistor is the source or the drain of the third transistor. Electrically connected to one side,
The other of the source and the drain of the third transistor is electrically connected to one of the source and the drain of the fourth transistor;
The other of the source and the drain of the fourth transistor is electrically connected to the first wiring;
A gate of the first transistor is electrically connected to a second wiring through the second transistor;
The first electrode of the first capacitor element is electrically connected to the second electrode of the light emitting element, and the second electrode is electrically connected to the other of the source and the drain of the third transistor. And
A first electrode of the second capacitive element is electrically connected to a gate of the first transistor;
It said first and second capacitive element includes a semiconductor, and the gate wiring layer is formed by using a capacitance between the semiconductor and the gate wiring layer,
The first capacitive element is provided so as to overlap at least partly with the first electrode of the light emitting element,
The area of the second capacitive element is smaller than the area of the first capacitive element,
A video signal is input to the gate of the first transistor through the second wiring and the second transistor,
A power supply potential is applied to the first wiring,
The light emitting element has a light emitting layer,
The light emitted from the light emitting element is emitted from the direction of the second electrode of the light emitting element.
請求項1又は請求項2において、
前記第一乃至第四のトランジスタは、いずれも同じ導電型のトランジスタであることを特徴とする発光装置。
In claim 1 or claim 2,
The first to fourth transistors are all transistors having the same conductivity type.
請求項1乃至請求項3のいずれか一に記載の発光装置と、操作キー又はスピーカーとを具備したことを特徴とする電子機器。
An electronic apparatus comprising the light emitting device according to claim 1 and an operation key or a speaker.
JP2006231995A 2006-08-29 2006-08-29 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE Expired - Fee Related JP4394101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231995A JP4394101B2 (en) 2006-08-29 2006-08-29 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231995A JP4394101B2 (en) 2006-08-29 2006-08-29 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002127703A Division JP3908084B2 (en) 2002-04-26 2002-04-26 Light emitting device, electronic equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008109962A Division JP4906119B2 (en) 2008-04-21 2008-04-21 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Publications (2)

Publication Number Publication Date
JP2007025713A JP2007025713A (en) 2007-02-01
JP4394101B2 true JP4394101B2 (en) 2010-01-06

Family

ID=37786439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231995A Expired - Fee Related JP4394101B2 (en) 2006-08-29 2006-08-29 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Country Status (1)

Country Link
JP (1) JP4394101B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689917B2 (en) * 1994-08-10 1997-12-10 日本電気株式会社 Active matrix type current control type light emitting element drive circuit
JP3619299B2 (en) * 1995-09-29 2005-02-09 パイオニア株式会社 Light emitting element drive circuit
JP3259774B2 (en) * 1999-06-09 2002-02-25 日本電気株式会社 Image display method and apparatus
WO2003025894A2 (en) * 2001-09-18 2003-03-27 Pioneer Corporation Driving circuit for light emitting elements
JP3908084B2 (en) * 2002-04-26 2007-04-25 株式会社半導体エネルギー研究所 Light emitting device, electronic equipment

Also Published As

Publication number Publication date
JP2007025713A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP3908084B2 (en) Light emitting device, electronic equipment
KR101089050B1 (en) Semiconductor device
US9620060B2 (en) Semiconductor device including transistors, switches and capacitor, and electronic device utilizing the same
JP4628447B2 (en) Semiconductor device
JP3986051B2 (en) Light emitting device, electronic equipment
US8593381B2 (en) Method of driving light-emitting device
US20060232218A1 (en) Display device and electronic device using the same
JP4558509B2 (en) Semiconductor device, display device, and electronic device
JP2002049354A (en) Self-luminescence device and electric appliance using the same
JP4394101B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP4467900B2 (en) Driving method of light emitting device
JP4906119B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP4869688B2 (en) Active matrix light emitting device
JP4105212B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091014

R150 Certificate of patent or registration of utility model

Ref document number: 4394101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees