JP4393601B2 - Cutting groove surface finishing method of quartz glass member and automatic groove heating device - Google Patents

Cutting groove surface finishing method of quartz glass member and automatic groove heating device Download PDF

Info

Publication number
JP4393601B2
JP4393601B2 JP15792898A JP15792898A JP4393601B2 JP 4393601 B2 JP4393601 B2 JP 4393601B2 JP 15792898 A JP15792898 A JP 15792898A JP 15792898 A JP15792898 A JP 15792898A JP 4393601 B2 JP4393601 B2 JP 4393601B2
Authority
JP
Japan
Prior art keywords
groove
quartz glass
burner
glass member
finishing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15792898A
Other languages
Japanese (ja)
Other versions
JPH11349338A (en
Inventor
秀樹 渡邊
孝治 中川
誠一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Tosoh Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp filed Critical Tosoh Quartz Corp
Priority to JP15792898A priority Critical patent/JP4393601B2/en
Publication of JPH11349338A publication Critical patent/JPH11349338A/en
Application granted granted Critical
Publication of JP4393601B2 publication Critical patent/JP4393601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/045Tools or apparatus specially adapted for re-forming tubes or rods in general, e.g. glass lathes, chucks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/043Heating devices specially adapted for re-forming tubes or rods in general, e.g. burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石英ガラス部材に設けた切削溝の表面仕上げ方法及びその装置、さらに詳しくは、半導体ウエーハの熱処理もしくはウエーハの洗浄や移送時にウエーハを保持する石英ガラス製治具、たとえばウエーハボートなどの支持部材の切削溝の表面仕上げ方法及びその装置に関する。
【0002】
【従来の技術】
半導体装置の製造工程では、高純度の安定した材料として石英ガラス製治具が用いられている。半導体製造用として用いられる石英ガラス製治具のうち、ウエーハボートや石英ガラス製洗浄用治具は、ウエーハを載置するための支持部材として用いられており、この支持部としてウエーハ保持用の溝が設けられている。
【0003】
これらのウエーハ保持用の溝は、通常、ダイヤモンドホイール等のカッターで切削形成されるため、溝の表面状態は不透明な砂目状に粗面化されており塵埃などが付着し易い状態である。また、溝表面が粗面であるため、ウエーハ出し入れの際の接触によって削られ、チッピングによるパーティクルが発生し、ウエーハを汚染してしまう。
また、溝表面にマイクロクラックや切削によるツールマークが残っていると、化学薬品による洗浄の際にそれらの部分のエッチング速度が速くなり、表面により深い凹凸が生じ、寿命を著しく短くする。
【0004】
ウエーハボートなどでは、ウエーハが溝に直接接触するため、純度が高い石英ガラスであることは勿論、チッピングなどによるパーティクル発生を防止し、熱処理、移送、洗浄の際に生じる塵埃を極力抑制して、半導体ウエーハの汚染を防止することが必要で、石英ガラス部材の表面からもこうした塵埃が発生しないようにすることが必要である。
【0005】
塵埃の発生を抑制長期に渡って使用可能な治具を提供することを目的として、特公昭62−8933号公報では、結晶質石英焼結体からなる切削部分を再溶融して所定の厚さの石英ガラス層を形成して、表面を緻密且つ平滑化することが提案されている。
また、特開平3−209722号では、バーナーで加熱し定期的にウエーハ保持部材を焼きなまして表面を滑らかにして塵埃の発生を低減させることが提案されている。
さらに、特開平9−186223号公報では、切削支持部の表面の開口縁が滑らかな曲面になるように、先端部が直径略0.5mmのガスバーナーで加熱することが開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、特公昭62−8933号公報の石英ガラス製治具においては、治具中心部が結晶質石英の焼結体からなるため、結晶形態がα相からβ相に変態する温度573℃を超える温度で使用すると、急激な体積変化が生じ、治具が破損するという問題があり、また切削部表面を所定の厚さにガラス化するため、LPCVD処理後、フッ酸等を含む酸溶液による数回の洗浄により表面のガラス層は除去され、内部の結晶質石英焼結体が露出し、平滑面が実質上無くなり、再度、表面処理する必要が生ずる。
【0007】
特開平3−209722号は、溝を含めて保持部材全体をバーナーで焼きなますため、溝山の薄いピッチ幅の小さいものの場合、火炎が強すぎると溝山の形状が崩れてしまい、治具として使用できなくなる。逆に、形状維持を優先して火炎を弱くすると、溝山上部は焼くことができても溝下部や溝底部分を十分に焼けず、マイクロクラックを消滅させることができない。
【0008】
また、近年においては、半導体生産性向上のため1台のウエーハボートに大量のウエーハを搭載させる必要性が生じている。このためウエーハボートに限らず洗浄用のキャリアボートなど、石英ガラス部材のウエーハを保持する溝の間隔を短くして、搭載量を増すために溝山の部分がほとんどない保持治具が使用されるようになってきている。
【0009】
しかしながら、特開平9−186223号のように、部材の焼くべき箇所をそのままガスバーナーで上方より焼く方法は、溝山の幅が3.5〜5mmといった通常の溝ピッチでは、バーナーの火炎噴出流をシャープにしてバーナー先端の口径を絞ることによりある程度の対応は可能になるが、溝山の幅が2.5mmや1mm幅といった程度の山幅の狭い支持部材となると、溝の山が潰れたり、溝形状の変形やピッチの変動が生じてウエーハの出し入れに支障を来たすこととなる。さらにまた、支持部材自体も加熱により反りが生じてしまうという欠点があった。
【0010】
本発明は、ピッチの密な溝山の幅の小さな石英ガラス部材においても、溝の形状を損なうことなく、溝を均一に加熱し、加熱による石英ガラス部材の反りが発生しないようにする石英ガラス部材の表面処理方法及びその装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
石英ガラス部材の溝壁面にバーナーを5〜45度の角度にし、溝上方より加熱処理することにより溝壁面を充分焼くことができると共に、溝の山部に火炎が直接当たることがないので溝の山が崩れるのを防止している。また、円柱状もしくは角柱状の支持部材の溝を処理する場合は、溝のエッジから一定の距離を保ってバーナーをエッジに沿って移動させて加熱処理する。
また、溝底部から溝頂部に向かって移動する時のバーナーの移動速度が、溝頂部から反対側の底部に向かう時の速度よりも小さい移動速度にして、均一に仕上げるようにする。
複数の溝を連続して加熱する場合は、溝の一壁面を加熱した後、バーナーを反転して溝の他方の壁面を加熱し、次いで、バーナーを反転と共に移動して隣の溝山の一壁面を加熱し、さらにバーナーを反転して溝の他方の壁面を加熱し、順次バーナーの反転と移動を重ねながら石英ガラス部材の複数の溝を繰り返し加熱する。
バーナーの先端口径は、溝幅の最大距離に対して1/6〜1/2とするのが好ましい。
【0012】
石英ガラス部材の加熱による反りを防止するため、石英ガラス部材の溝部とその背面にあたる部分を加熱する。
溝部と背面部は、溝部を加熱するバーナー部を保護するため交互に加熱する。そして、石英ガラス部材の溝部背面は均一に加熱するため、ノズルを直線状に並べたラインバーナーで加熱する。
背面部の加熱は、1つのラインバーナーで加熱する代わりに、背面部の左右方向より複数のバーナーで加熱しても差し支えない。
【0013】
また、石英ガラス部材を支持、反転させるワーク支持・回転手段と、溝加熱用バーナーと石英ガラス部材の底面加熱用バーナーを有し、これらのバーナーを支持、反転、移動制御させるバーナー支持・回転・移動制御手段と、バーナーへのガスの供給を一定にするガス流量制御手段とを備えた石英ガラス部材の溝表面仕上装置を用いれば、精度、再現性良く支持部材を表面処理することができる。
【0014】
【発明の実施の形態】
バーナー3は、酸素・可燃性ガス混合バーナーで、内部混合型、外部混合型いずれの形式のものであっても良いが、火炎に不純物が混入したりすると、石英ガラス部材1に影響があるので、クリーンで制御のし易い酸水素ガスによる内部混合型のバーナーが好ましい。
また狭い溝を焼くので細径で注射針のようなノズルが好ましく、その先端口径は0.5〜2mm程度が実用的である。
溝に対する火炎角度(θ)は、5〜45度とする。5度未満では単に上から加熱する従来の方法と同じように溝壁面21ばかりでなく溝全体に火炎がかかり溝形状を維持しながら十分に加熱することが難しくなる。また、45度を超えると、溝壁面エッジ23にそそがれた火炎が溝壁面下方から底部へ向かう火炎流と共に壁面上部の方へ逃げる火炎が増加し、溝の山部分がだれて形状維持が困難になるため好ましくない。
また、図1に示したように、5〜45度の角度で火炎を溝壁面21へ照射することにより、火炎が溝底部へ反射流として伝わり、溝底部24を充分焼くと共に、次に加熱する部分である溝の他方の壁面25まで輻射熱として伝わり他方壁面25の本加熱前の予熱効果も合わせ持つ。
【0015】
図3に示すように溝焼きを溝底部aから開始し、エッジの溝底部aから溝頂部bに向かって移動する時のバーナーの移動速度は、溝頂部bから反対側の底部cに向かう時の速度よりも小さい移動速度とすれば、均一に仕上げることができる。
【0016】
ガスバーナー3の先端位置は、溝のエッジ23より2〜20mmの範囲内で一定の距離Lを保ちながら均一な加熱をおこなう。2mm未満では輻射熱が強すぎ、20mmを超えると照射範囲が広くなり不必要な部分への影響が大きくなるため安定した加熱をおこなうには2〜20mmが好ましく、4〜12mmとするのがさらに望ましい。
【0017】
複数の溝が設けられた石英ガラス部材の加熱は、ガスバーナーを溝の一壁面21に対して所定の角度に設定して加熱し、次にガスバーナーの支持軸を回転して反転し、溝の他方の壁面25を同様の角度、距離で加熱する。次いでガスバーナーを反転と共に移動し、隣の溝の一壁面26を加熱し、さらにバーナーを反転して溝の他方の壁面27を加熱し、順次バーナーの反転と移動を重ねながら石英ガラス部材全体の溝を加熱する。
なお、一壁面の溝底部aから溝頂部bに向かって移動する時のバーナーの移動速度は、他方の壁面の溝底部a’から溝頂部b’に向かう時の速度よりも小さくすると熱を効率的に使用でき、均一に仕上げることができる。
【0018】
ガスバーナーの先端口径は、溝幅の最大距離Dに対して1/6〜1/2とすることが好ましい。これにより溝全体を焼くことなく、溝壁面を片方ずつ加熱し、溝底面24を火炎で直接加熱しなくても、溝壁面からの火炎反射により、十分に溝を焼くことができる。
【0019】
また、溝の加熱と共に、溝部の背面となる石英ガラス部材底面4を別のバーナーで加熱することにより反りの発生を抑制できる。これは上部となる溝部を従来のようにそのまま上方より加熱するだけでは、溝部の背面側となる底面4に火炎が当たらず熱膨張差等により反りが生じたが、上部、下部を相互に加熱することで反りを防止する。
また、部材の上下を同時に上下双方から加熱すると上部の溝焼きバーナーを損傷しかねないので、この場合は、上部、下部をバランス良く周期的に交互に加熱する。また、底面側から加熱できない場合は、底面4を左右両側より複数のバーナーで加熱しても差し支えない。ただし左又は右方向のいずれか片面のみから加熱すると反対側に反るためこの場合は左右両側から加熱することにより反りのない支持部材を得ることができる。
【0020】
溝壁面21を加熱するガスバーナーは、狭い溝を焼くので細径で注射針のようなノズルに限定されるが、溝以外の部位を焼くバーナー、特に、支持部材溝部の背面となる底面4を加熱する時は、ノズルを直線状に並べたラインバーナー9を用い、一定距離から等量のガス炎で全体を均一に加熱する。
【0021】
溝ピッチが1mm未満の場合、本発明の方法を手作業で長時間、同一条件を維持するのには限界がある。このため、溝を自動的に加熱する自動溝加熱装置を使用する。
自動溝加熱装置を図6に基づいて説明する。
図に示すように、2段に形成された基台5の上段51に間隔をおいて回転ヘッド53、54が設けてある。回転ヘッド53、54は、ガイドレール55を移動することができ、それらの間隔をワーク1(石英ガラス部材)の長さに応じて変更することができ、ワークである石英ガラス部材を支持する保持部71、72が設けてある。基台5の下段52にはガイドレール56が設けてあり、ガイドレール56上を移動台57がY方向に移動する。移動台57にはロボット6が搭載され、このロボット6は、アーム61がX方向に、及びアーム62がZ方向に伸縮し、さらにアーム61は矢印Bに示すように回転することができる。
【0022】
アーム61の先端にバーナー取付部8が設けてあり、溝加熱用の第1バーナー31と溝底面を加熱する第2バーナー32が取り付けてあり、取付部8は、矢印Tで示すように回転可能である。
従って、バーナー31、32は、X、Y、Zの3軸方向の移動に加えてX方向を軸とする回転(B方向)とZ方向を軸とする回転(T方向)が可能である。
また、バーナー31、32へのガスの供給を一定にするガス流量制御手段が装備されている。
【0023】
自動溝加熱装置を使用した溝焼きを説明する。
まず、回転ヘッド53、54の間隔を調整し、保持部71、72でワーク1を保持する。予め、移動制御手段に溝のピッチ及び溝幅などを入力しておく。ロボット6が設定値に従って移動し、第1バーナー31の溝壁に対する角度、溝のエッジまでの距離を設定した値となるようにする。
入力した設定速度でロボット及び第1バーナー31を所定の位置に移動して、溝を加熱する。
【0024】
1つの溝壁の加熱が終了すると、アーム61が回転して対向する溝壁に対してもバーナーが所定の角度になるようにし、溝を加熱する。ロボットは次の溝に移動して加熱動作を同様におこなう。この工程を繰り返し全溝の加熱を終了する。ある程度の数の溝を加熱したら、バーナー取付部8をT方向に回転して第2バーナー32がワークに対向するようにし、回転ヘッド53、54を回転させて溝底面を上側にして移動台57を往復運動させて溝底面を加熱し、ワークを上下面で均等に加熱して反るのを防止する。
【0025】
又は、ワークはそのままの状態としてロボット6のアーム62を縮めてアーム61を180℃回転(B方向)して第2バーナー32をワークの下側に入り込ませて同様に溝底面を加熱する。
この自動溝加熱装置を使用することで、溝山幅0.5mmのものであっても溝形状を損なったり焼きムラや反りを生じることなしに、精度、再現性良く溝焼きをおこなうことができる。
【0026】
【実施例】
実施例1
20mmφ×800mmの石英ガラス丸棒部材を用いて、ダイヤモンドホイールで溝ピッチ5.6mm、溝幅3.6mm、溝の山幅2mmの溝を120個形成した。
先端の口径が1.5mmである内部混合型の酸水素炎ガスバーナーを用いて、ガスバーナーの先端位置を第一の溝の一壁面21に対して15度とし、溝壁面エッジ23の位置より7mmの距離を保ち、酸水素炎ガスバーナーを溝底部aから溝壁頂部bに移動させながら溝壁面を加熱した。
ガスの流量は、水素ガスが3〜6リットル/分、酸素ガスは1〜4リットル/分が好ましく、この実施例では、水素ガス3.5リットル/分、酸素ガス1.8リットル/分で加熱した。
【0027】
次にガスバーナーを上部へ引き上げて反転し溝の他方の壁面25に対し15度となるようにし、溝の他方の壁面25も同様の条件で溝焼きをおこなった。
なお、ガスバーナー移動速度はエッジ溝底部aから溝頂部bまでは1.5mm/秒とした。頂部bから底部cまでは2.0mm/秒とした。また、溝の他方の壁面25は、溝底部a’から溝頂部b’ 2.2mm/秒、頂部b’から底部c’までは2.6mm/秒とした。
この操作を複数の溝に対して繰り返した。
溝壁面の加熱を溝数が20個となったところで中断して、支持部材の第1溝から第20溝の背面部を底面4側から酸水素火炎によりラインバーナーで加熱した。この作業を120溝に至るまで順次繰り返し溝焼きを完了した。
【0028】
実施例2
12mm角×800mmの石英ガラス角棒部材を用いて、ダイヤモンドホイールにより溝ピッチ3.6mm、溝幅2.8mm、溝の山幅0.8mmを有する溝を180個形成した。
先端の口径が0.9mmである内部混合型の酸水素炎ガスバーナーを用い、ガスバーナーの先端位置を第一の溝の溝一壁面に対して10度とし、溝壁面のエッジから5.5mmの距離を保ち、ガスバーナーを溝壁面エッジに沿って移動させて火炎で加熱した。
以下、実施例1に準じて支持部材を加熱したが、溝底面の加熱は、30溝毎にラインバーナーで往復直線動作でおこない、180溝に至るまで繰り返して、溝焼きを完了した。
【0029】
実施例1、2とも溝山の崩れなど溝形状に変化はなく、溝のあらゆる場所に焼けムラは認められなかった。
また、支持部材の反りも発生しておらず、溝ピッチについても加熱の前後で変化なく、累積で±0.1mmという高精度の溝ピッチにも充分耐えられる結果となっていた。
【0030】
【発明の効果】
従来のように角度を設けずにそのままピッチの狭い溝を加熱すると、溝山が変形したり支持部材が反ってしまい高精度を要求される溝ピッチに狂いが生ずる問題があったが、照射面に対して角度をつけ、バーナーと照射面の距離を一定にし、溝の背面部を溝部と分割して相互に順次加熱していくことにより、反りを防止することができる。
そして、溝のピッチの小さいウエーハボートにおいても、溝の形状を損なうことなく、溝を均一に加熱でき、石英ガラス製品の反りの発生もなく、高精度の溝ピッチを保持したまま表面処理を行え、半導体熱処理用治具としてパーティクル発生のない、また洗浄用治具として発塵がなく洗浄薬品との表面反応を低減して製品の長寿命化を可能にした石英ガラス部材の表面処理方法及びその装置を提供するこができる。
さらに溝底部から溝頂部に向かって移動する時のバーナーの移動速度が、溝頂部から反対側の底部に向かう時の速度よりも小さい移動速度にすることにより、熱を効率的に使用し、均一に仕上げることができる。
【図面の簡単な説明】
【図1】溝を有する石英ガラス部材の加熱方法の概念図
【図2】加熱工程説明図
【図3】バーナーの軌跡説明図
【図4】ウエーハボートの斜視図
【図5】ウエーハボートの支持部材の斜視図
【図6】自動溝加熱装置の斜視図
【符号の説明】
1石英ガラス部材
2:溝
21:溝壁面
22:溝山
23:エッジ
24:溝底部
25:溝の他方の壁面
26:隣の溝の溝壁面
27:隣の溝の他方の壁面
3:バーナー
4:底面
9:ラインバーナー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for finishing a surface of a cutting groove provided in a quartz glass member, and more particularly, a quartz glass jig for holding a wafer during heat treatment or cleaning or transfer of a semiconductor wafer, such as a wafer boat. The present invention relates to a surface finishing method and an apparatus for cutting grooves of a support member.
[0002]
[Prior art]
In the manufacturing process of a semiconductor device, a quartz glass jig is used as a stable material with high purity. Of the quartz glass jigs used for semiconductor manufacturing, wafer boats and quartz glass cleaning jigs are used as support members for placing wafers, and wafer holding grooves are used as support parts. Is provided.
[0003]
Since these wafer holding grooves are usually formed by cutting with a cutter such as a diamond wheel, the surface state of the grooves is roughened to an opaque grain shape, and dust and the like are easily attached thereto. Further, since the groove surface is rough, it is scraped by contact when the wafer is taken in and out, and particles are generated by chipping, which contaminates the wafer.
In addition, if microcracks or tool marks due to cutting remain on the groove surface, the etching rate of those portions is increased during cleaning with chemicals, deep irregularities are generated on the surface, and the life is remarkably shortened.
[0004]
In wafer boats, etc., because the wafer is in direct contact with the groove, it is not only high-purity quartz glass, but also prevents particle generation due to chipping, etc., and suppresses dust generated during heat treatment, transfer, and cleaning as much as possible. It is necessary to prevent contamination of the semiconductor wafer, and it is necessary to prevent such dust from being generated from the surface of the quartz glass member.
[0005]
For the purpose of providing a jig that can be used for a long period of time while suppressing the generation of dust, Japanese Patent Publication No. 62-8933 discloses that a cutting portion made of a crystalline quartz sintered body is remelted to have a predetermined thickness. It has been proposed to form a quartz glass layer having a thickness to smooth and smooth the surface.
Japanese Patent Application Laid-Open No. 3-209722 proposes that a wafer holding member is periodically annealed to smooth the surface and reduce the generation of dust.
Furthermore, Japanese Patent Application Laid-Open No. 9-186223 discloses that the tip portion is heated by a gas burner having a diameter of about 0.5 mm so that the opening edge of the surface of the cutting support portion becomes a smooth curved surface.
[0006]
[Problems to be solved by the invention]
However, in the quartz glass jig disclosed in Japanese Examined Patent Publication No. 62-8933, the center of the jig is made of a sintered material of crystalline quartz, so that the crystal form exceeds a temperature of 573 ° C. for transforming from the α phase to the β phase. When used at a temperature, there is a problem that a rapid volume change occurs and the jig is damaged, and the surface of the cut portion is vitrified to a predetermined thickness. The glass layer on the surface is removed by the washing, the internal crystalline quartz sintered body is exposed, the smooth surface is substantially eliminated, and the surface treatment needs to be performed again.
[0007]
In JP-A-3-209722, since the entire holding member including the groove is annealed with a burner, if the groove pitch is small and the pitch width is small, the shape of the groove peak will collapse if the flame is too strong. Can no longer be used. Conversely, if the flame is weakened with priority given to shape maintenance, the upper part of the groove mountain can be burned, but the lower part of the groove and the bottom part of the groove are not sufficiently burned, and the microcracks cannot be extinguished.
[0008]
In recent years, it has become necessary to mount a large number of wafers on one wafer boat in order to improve semiconductor productivity. For this reason, not only wafer boats but also carrier boats for cleaning, etc., holding jigs with almost no groove portions are used to shorten the interval between grooves for holding wafers of quartz glass members and increase the mounting amount. It has become like this.
[0009]
However, as disclosed in Japanese Patent Laid-Open No. 9-186223, the method of burning the portion to be baked as it is with a gas burner from the upper side is that the burner flame jet flows at a normal groove pitch such that the groove width is 3.5 to 5 mm. It is possible to cope to some extent by sharpening the diameter of the burner tip, but if the groove has a narrow crest such as 2.5 mm or 1 mm, the crest of the groove may be crushed. As a result, the groove shape is deformed and the pitch is changed, which hinders the loading and unloading of the wafer. Furthermore, the support member itself has a drawback that it is warped by heating.
[0010]
The present invention provides a quartz glass that uniformly heats a groove and prevents the quartz glass member from being warped by heating without impairing the shape of the groove even in a quartz glass member having a narrow pitch and a narrow groove crest. An object of the present invention is to provide a member surface treatment method and apparatus.
[0011]
[Means for Solving the Problems]
The groove wall surface of the quartz glass member is set at an angle of 5 to 45 degrees, and the groove wall surface can be sufficiently baked by heat treatment from above the groove, and the groove does not directly hit the peak of the groove. It prevents the mountain from collapsing. Further, when processing the groove of the cylindrical or prismatic support member, the heat treatment is performed by moving the burner along the edge while keeping a certain distance from the edge of the groove.
Further, the moving speed of the burner when moving from the groove bottom toward the groove top is smaller than the speed when moving from the groove top toward the opposite bottom so that the finish is uniform.
When heating a plurality of grooves continuously, after heating one wall surface of the groove, the burner is inverted to heat the other wall surface of the groove, and then the burner is moved together with the inversion to move one of the adjacent groove peaks. The wall surface is heated, the burner is inverted and the other wall surface of the groove is heated, and the plurality of grooves of the quartz glass member are repeatedly heated while sequentially reversing and moving the burner.
The tip diameter of the burner is preferably 1/6 to 1/2 with respect to the maximum distance of the groove width.
[0012]
In order to prevent warping due to heating of the quartz glass member, the groove portion of the quartz glass member and the portion corresponding to the back surface thereof are heated.
The groove portion and the back surface portion are alternately heated to protect the burner portion that heats the groove portion. And in order to heat uniformly the groove part back surface of a quartz glass member, it heats with the line burner which arranged the nozzle in the shape of a straight line.
The heating of the back surface portion may be performed with a plurality of burners from the left and right directions of the back surface portion, instead of heating with one line burner.
[0013]
Also, it has a work support / rotation means for supporting and reversing the quartz glass member, a groove heating burner and a bottom surface heating burner for the quartz glass member, and a burner support / rotation / rotation control for supporting, reversing and moving these burners. By using a quartz glass member groove surface finishing device provided with a movement control means and a gas flow rate control means for making the gas supply to the burner constant, the support member can be surface-treated with high accuracy and reproducibility.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The burner 3 is an oxygen / combustible gas mixing burner, and may be of either internal mixing type or external mixing type. However, if impurities are mixed into the flame, the quartz glass member 1 is affected. An internal mixing type burner using oxyhydrogen gas which is clean and easy to control is preferable.
Further, since a narrow groove is burned, a nozzle having a small diameter and like an injection needle is preferable, and the tip diameter is practically about 0.5 to 2 mm.
The flame angle (θ) with respect to the groove is 5 to 45 degrees. If it is less than 5 degrees, a flame is applied not only to the groove wall surface 21 but also to the entire groove as in the conventional method of simply heating from above, and it becomes difficult to sufficiently heat while maintaining the groove shape. If the angle exceeds 45 degrees, the flame spilled on the groove wall edge 23 escapes toward the top of the wall surface along with the flame flow from the bottom of the groove wall toward the bottom, so that the shape of the groove is difficult to maintain. This is not preferable.
Further, as shown in FIG. 1, by irradiating the groove wall surface 21 with a flame at an angle of 5 to 45 degrees, the flame is transmitted as a reflected flow to the groove bottom, and the groove bottom 24 is sufficiently baked and then heated. It is transmitted as radiant heat to the other wall surface 25 of the groove, which is a part, and also has a preheating effect before the main heating of the other wall surface 25.
[0015]
As shown in FIG. 3, when the groove firing starts from the groove bottom part a and moves from the groove bottom part a to the groove top part b, the moving speed of the burner is as follows. If the moving speed is smaller than this speed, a uniform finish can be achieved.
[0016]
The tip position of the gas burner 3 performs uniform heating while maintaining a constant distance L within a range of 2 to 20 mm from the edge 23 of the groove. If it is less than 2 mm, the radiant heat is too strong, and if it exceeds 20 mm, the irradiation range will be widened and the influence on unnecessary parts will increase, so 2 to 20 mm is preferable for stable heating, and 4 to 12 mm is more desirable. .
[0017]
The quartz glass member provided with a plurality of grooves is heated by setting the gas burner at a predetermined angle with respect to one wall surface 21 of the groove, and then rotating the support shaft of the gas burner to reverse the groove. The other wall surface 25 is heated at the same angle and distance. Next, the gas burner is moved with reversal, one wall surface 26 of the adjacent groove is heated, and the other wall surface 27 of the groove is further heated by reversing the burner. Heat the groove.
In addition, if the moving speed of the burner when moving from the groove bottom part a of one wall surface toward the groove top part b is lower than the speed when moving from the groove bottom part a ′ of the other wall surface to the groove top part b ′, heat is efficiently used. Can be used and can be finished uniformly.
[0018]
The tip diameter of the gas burner is preferably 1/6 to 1/2 with respect to the maximum distance D of the groove width. Accordingly, the groove wall can be sufficiently burned by the flame reflection from the groove wall surface without heating the entire groove surface one by one and heating the groove bottom surface 24 directly with a flame without burning the entire groove.
[0019]
Moreover, generation | occurrence | production of curvature can be suppressed by heating the quartz glass member bottom face 4 used as the back surface of a groove part with another burner with the heating of a groove | channel. This is because heating the upper groove portion as it is from the top as in the prior art does not hit the bottom surface 4 on the back side of the groove portion and the warp is caused by the difference in thermal expansion, but the upper and lower portions are heated mutually. To prevent warping.
In addition, if the upper and lower parts of the member are heated simultaneously from both the upper and lower sides, the upper groove burner may be damaged. In this case, the upper and lower parts are alternately heated with good balance. In addition, when heating cannot be performed from the bottom surface side, the bottom surface 4 may be heated by a plurality of burners from the left and right sides. However, if heated from only one side in the left or right direction, it warps in the opposite direction, and in this case, a support member without warping can be obtained by heating from both the left and right sides.
[0020]
The gas burner for heating the groove wall surface 21 burns a narrow groove and is limited to a nozzle having a small diameter such as an injection needle. However, the burner for burning portions other than the groove, particularly the bottom surface 4 serving as the back surface of the support member groove portion. When heating, a line burner 9 in which nozzles are arranged in a straight line is used, and the whole is heated uniformly with an equal amount of gas flame from a certain distance.
[0021]
When the groove pitch is less than 1 mm, there is a limit to maintaining the same conditions manually for a long time by the method of the present invention. For this reason, the automatic groove | channel heating apparatus which heats a groove | channel automatically is used.
An automatic groove | channel heating apparatus is demonstrated based on FIG.
As shown in the figure, rotary heads 53 and 54 are provided at an interval in the upper stage 51 of the base 5 formed in two stages. The rotary heads 53 and 54 can move the guide rail 55, change the distance between them according to the length of the workpiece 1 (quartz glass member), and hold the quartz glass member that is the workpiece. Portions 71 and 72 are provided. A guide rail 56 is provided on the lower stage 52 of the base 5, and the moving table 57 moves in the Y direction on the guide rail 56. A robot 6 is mounted on the moving table 57, and the robot 61 can expand and contract in the X direction and the arm 62 in the Z direction, and the arm 61 can rotate as indicated by an arrow B.
[0022]
A burner mounting portion 8 is provided at the tip of the arm 61. A first burner 31 for heating the groove and a second burner 32 for heating the bottom surface of the groove are mounted. The mounting portion 8 is rotatable as indicated by an arrow T. It is.
Therefore, the burners 31 and 32 are capable of rotating about the X direction (B direction) and rotating about the Z direction (T direction) in addition to the X, Y, and Z axis movements.
Further, a gas flow rate control means for making the gas supply to the burners 31 and 32 constant is provided.
[0023]
Groove baking using an automatic groove heater will be described.
First, the interval between the rotary heads 53 and 54 is adjusted, and the work 1 is held by the holding portions 71 and 72. In advance, the pitch and width of the groove are input to the movement control means. The robot 6 moves according to the set values so that the angle of the first burner 31 with respect to the groove wall and the distance to the edge of the groove are set.
The robot and the first burner 31 are moved to predetermined positions at the input set speed to heat the groove.
[0024]
When heating of one groove wall is completed, the arm 61 is rotated so that the burner has a predetermined angle with respect to the opposite groove wall, and the groove is heated. The robot moves to the next groove and performs the heating operation in the same manner. This process is repeated to finish the heating of all the grooves. When a certain number of grooves are heated, the burner mounting portion 8 is rotated in the T direction so that the second burner 32 faces the workpiece, and the rotary heads 53 and 54 are rotated so that the groove bottom faces upward, and the moving table 57 Is reciprocated to heat the groove bottom surface, and the workpiece is heated evenly on the top and bottom surfaces to prevent warping.
[0025]
Alternatively, the arm 62 of the robot 6 is contracted while the workpiece is left as it is, and the arm 61 is rotated by 180 ° C. (B direction) to cause the second burner 32 to enter the lower side of the workpiece and similarly heat the bottom surface of the groove.
By using this automatic groove heating device, even if the groove width is 0.5 mm, groove baking can be performed with high accuracy and reproducibility without damaging the groove shape or causing uneven baking or warping. .
[0026]
【Example】
Example 1
Using a quartz glass round bar member of 20 mmφ × 800 mm, 120 grooves having a groove pitch of 5.6 mm, a groove width of 3.6 mm, and a groove crest width of 2 mm were formed with a diamond wheel.
Using an internally mixed oxyhydrogen flame gas burner with a tip diameter of 1.5 mm, the tip position of the gas burner is set to 15 degrees with respect to one wall surface 21 of the first groove, and from the position of the groove wall edge 23. The groove wall surface was heated while moving the oxyhydrogen flame gas burner from the groove bottom a to the groove wall top b while maintaining a distance of 7 mm.
The gas flow rate is preferably 3 to 6 liters / minute for hydrogen gas and 1 to 4 liters / minute for oxygen gas. In this embodiment, hydrogen gas is 3.5 liters / minute and oxygen gas is 1.8 liters / minute. Heated.
[0027]
Next, the gas burner was pulled up and turned upside down to be 15 degrees with respect to the other wall surface 25 of the groove, and the other wall surface 25 of the groove was also baked under the same conditions.
The gas burner moving speed was 1.5 mm / second from the edge groove bottom part a to the groove top part b. The distance from the top b to the bottom c was 2.0 mm / sec. The other wall surface 25 of the groove was set to 2.6 mm / second from the groove bottom part a ′ to the groove top part b ′ of 2.2 mm / second and from the top part b ′ to the bottom part c ′.
This operation was repeated for a plurality of grooves.
The heating of the groove wall surface was interrupted when the number of grooves reached 20, and the back surface portion of the first to twentieth grooves of the support member was heated with a line burner from the bottom surface 4 side by an oxyhydrogen flame. This operation was sequentially repeated until 120 grooves were completed to complete groove baking.
[0028]
Example 2
180 quartz grooves having a groove pitch of 3.6 mm, a groove width of 2.8 mm, and a groove peak width of 0.8 mm were formed using a 12 mm square × 800 mm quartz glass square bar member by a diamond wheel.
Using an internally mixed oxyhydrogen flame gas burner with a tip diameter of 0.9 mm, the tip position of the gas burner is 10 degrees with respect to the groove wall surface of the first groove, and 5.5 mm from the edge of the groove wall surface. The gas burner was moved along the groove wall edge and heated with a flame.
Hereinafter, the support member was heated according to Example 1, but the bottom surface of the groove was heated by a reciprocating linear operation with a line burner every 30 grooves, and repeated until 180 grooves were completed to complete the groove baking.
[0029]
In both Examples 1 and 2, there was no change in the groove shape such as the collapse of the groove, and no burning unevenness was observed in any part of the groove.
Further, the support member was not warped, the groove pitch was not changed before and after heating, and the result was that it could sufficiently withstand a highly accurate groove pitch of ± 0.1 mm.
[0030]
【The invention's effect】
When a groove with a narrow pitch is heated as it is without providing an angle as in the conventional case, there is a problem that the groove pitch is deformed or the support member is warped, resulting in a deviation in the groove pitch that requires high accuracy. Can be prevented by making an angle with respect to each other, making the distance between the burner and the irradiation surface constant, dividing the back surface of the groove with the groove and sequentially heating them.
Even in a wafer boat with a small groove pitch, the groove can be heated uniformly without impairing the groove shape, and the surface treatment can be performed while maintaining a high-precision groove pitch without causing warpage of the quartz glass product. A surface treatment method for a quartz glass member that does not generate particles as a semiconductor heat treatment jig, and that does not generate dust as a cleaning jig and reduces the surface reaction with cleaning chemicals, thereby extending the product life and its A device can be provided.
In addition, by making the moving speed of the burner when moving from the groove bottom part toward the groove top part smaller than the speed when moving from the groove top part to the opposite bottom part, heat can be used efficiently and evenly. Can be finished.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a method for heating a quartz glass member having a groove. FIG. 2 is an explanatory diagram of a heating process. FIG. 3 is a trajectory explanatory diagram of a burner. FIG. 4 is a perspective view of a wafer boat. Perspective view of member [FIG. 6] Perspective view of automatic groove heating device [Explanation of symbols]
1 quartz glass member 2: groove 21: groove wall surface 22: groove mountain 23: edge 24: groove bottom portion 25: other wall surface 26 of the groove: groove wall surface 27 of the adjacent groove 3: other wall surface 3 of the adjacent groove 3: burner 4 : Bottom 9: Line burner

Claims (14)

石英ガラス部材の溝山幅が0.5〜2mmの溝壁面にバーナーを5〜45度の角度にし、溝上方より加熱処理する石英ガラス部材の切削溝表面仕上げ方法。 A cutting groove surface finishing method for a quartz glass member, wherein a groove wall of the quartz glass member has a groove wall width of 0.5 to 2 mm and a burner is formed at an angle of 5 to 45 degrees and heat treatment is performed from above the groove. 請求項1において、石英ガラス部材がウエーハボートの支持部材であり、溝のエッジから一定の距離を保ちながらバーナーをエッジに沿って移動して加熱処理する石英ガラス部材の切削溝表面仕上げ方法。 2. The cutting groove surface finishing method for a quartz glass member according to claim 1, wherein the quartz glass member is a support member for the wafer boat, and the heat treatment is performed by moving the burner along the edge while maintaining a certain distance from the edge of the groove. 請求項2において、支持部材が円柱もしくは角柱であり、エッジの加熱は、バーナーを溝底部から溝頂部、さらに反対側エッジの溝底部に向かって移動させる石英ガラス部材の切削溝表面仕上げ方法。 3. The cutting groove surface finishing method for a quartz glass member according to claim 2, wherein the support member is a cylinder or a prism and the edge is heated by moving the burner from the groove bottom to the groove top and further toward the groove bottom of the opposite edge. 請求項3において、溝底部から溝頂部に向かって移動する時のバーナーの移動速度が、溝頂部から反対側の底部に向かう時の速度よりも小さい移動速度である石英ガラス部材の切削溝表面仕上げ方法。 The surface finish of the cutting groove of the quartz glass member according to claim 3, wherein the moving speed of the burner when moving from the groove bottom toward the groove top is smaller than the speed when moving from the groove top toward the bottom on the opposite side. Method. 請求項2〜4のいずれかにおいて、溝の一壁面を加熱した後、溝の他方の壁面を5〜45度の火炎角度で加熱し、順次複数の溝を繰り返し加熱する石英ガラス部材の切削溝表面仕上げ方法。 The cutting groove of the quartz glass member according to any one of claims 2 to 4, wherein after heating one wall surface of the groove, the other wall surface of the groove is heated at a flame angle of 5 to 45 degrees, and the plurality of grooves are sequentially heated repeatedly. Surface finishing method. 請求項5において、一壁面の溝底部から溝頂部に向かって移動する時のバーナーの移動速度が、他方の壁面の溝底部から溝頂部に向かう時の速度よりも小さい移動速度である石英ガラス部材の切削溝表面仕上げ方法。 The quartz glass member according to claim 5, wherein the moving speed of the burner when moving from the groove bottom of one wall surface toward the groove top is smaller than the speed when moving from the groove bottom of the other wall surface to the groove top. Cutting groove surface finishing method. 請求項1〜6のいずれかにおいて、バーナー先端位置と溝エッジとの距離が2〜20mmである石英ガラス部材の切削溝表面仕上げ方法。 7. The cutting groove surface finishing method for a quartz glass member according to claim 1, wherein the distance between the burner tip position and the groove edge is 2 to 20 mm. 請求項1〜7のいずれかにおいて、ガスバーナーの先端口径が、溝幅の最大距離に対して1/6〜1/2である石英ガラス部材の切削溝表面仕上げ方法。 8. The cutting groove surface finishing method for a quartz glass member according to claim 1, wherein the tip diameter of the gas burner is 1/6 to 1/2 of the maximum distance of the groove width. 請求項1〜8のいずれかにおいて、石英ガラス部材の溝部とその背面にあたる部分とを加熱する石英ガラス部材の切削溝表面仕上げ方法。 9. The cutting groove surface finishing method for a quartz glass member according to any one of claims 1 to 8, wherein the groove portion of the quartz glass member and a portion corresponding to the back surface thereof are heated. 請求項8において、溝部の背面にあたる部分を一定間隔でノズルを直線状に並べたラインバーナーで加熱する石英ガラス部材の切削溝表面仕上げ方法。 9. The cutting groove surface finishing method for a quartz glass member according to claim 8, wherein a portion corresponding to the back surface of the groove portion is heated by a line burner in which nozzles are linearly arranged at regular intervals. 請求項9〜10のいずれかにおいて、溝部と溝部の背面部を交互に加熱する石英ガラス部材の切削溝表面仕上げ方法。 The cutting groove surface finishing method for a quartz glass member according to any one of claims 9 to 10, wherein the groove portion and the back portion of the groove portion are alternately heated. 基台上に間隔をおいて設けた回転ヘッド、3軸方向に移動可能で、かつ回転可能な溝加熱用バーナー、及び、回転ヘッドと溝加熱用バーナーの移動制御装置を備えた自動溝加熱装置。 Rotating head provided at intervals on the base, triaxially movable and rotatable groove heating burner, and automatic groove heating apparatus including movement control device for rotating head and groove heating burner . 請求項12において、溝部背面加熱用バーナーを備えた自動溝加熱装置。 The automatic groove | channel heating apparatus provided with the burner for a groove part back surface heating in Claim 12. 請求項12〜13のいずれかにおいて、バーナーへのガス供給量制御手段を備えた自動溝加熱装置。 The automatic groove heating apparatus according to any one of claims 12 to 13, comprising a gas supply amount control means for the burner.
JP15792898A 1998-06-05 1998-06-05 Cutting groove surface finishing method of quartz glass member and automatic groove heating device Expired - Lifetime JP4393601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15792898A JP4393601B2 (en) 1998-06-05 1998-06-05 Cutting groove surface finishing method of quartz glass member and automatic groove heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15792898A JP4393601B2 (en) 1998-06-05 1998-06-05 Cutting groove surface finishing method of quartz glass member and automatic groove heating device

Publications (2)

Publication Number Publication Date
JPH11349338A JPH11349338A (en) 1999-12-21
JP4393601B2 true JP4393601B2 (en) 2010-01-06

Family

ID=15660545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15792898A Expired - Lifetime JP4393601B2 (en) 1998-06-05 1998-06-05 Cutting groove surface finishing method of quartz glass member and automatic groove heating device

Country Status (1)

Country Link
JP (1) JP4393601B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200109582A (en) 2019-03-13 2020-09-23 주식회사 원익큐엔씨 Fire Polishing Device for Inner Surface of Edge Ring
KR20200109585A (en) 2019-03-13 2020-09-23 주식회사 원익큐엔씨 Fire Polishing Method for Inner Surface of Edge Ring

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895574A1 (en) 2005-06-16 2008-03-05 Shin-Etsu Quartz Products Co., Ltd. Quartz glass tool for heat treatment of silicon wafer and process for producing the same
KR101494197B1 (en) * 2013-05-03 2015-02-17 ㈜에이마크 Apparatus and method of chamfering a glass substrate
WO2015147456A1 (en) * 2014-03-26 2015-10-01 동우화인켐 주식회사 Method for cutting and chamfering tempered glass
KR102258106B1 (en) * 2014-03-26 2021-05-28 동우 화인켐 주식회사 Method of cutting and chamfering strengthened glass
CN111331262B (en) * 2020-03-23 2021-12-24 广州兴森快捷电路科技有限公司 Packaging carrier plate and method for processing inner groove of metal cavity
CN115448579B (en) * 2022-09-09 2023-10-31 浙江富乐德石英科技有限公司 Automatic precision burning equipment for quartz disc

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200109582A (en) 2019-03-13 2020-09-23 주식회사 원익큐엔씨 Fire Polishing Device for Inner Surface of Edge Ring
KR20200109585A (en) 2019-03-13 2020-09-23 주식회사 원익큐엔씨 Fire Polishing Method for Inner Surface of Edge Ring

Also Published As

Publication number Publication date
JPH11349338A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
EP0147190B1 (en) Method and apparatus for laser gear hardening
KR100821937B1 (en) Method and device for forming crack
CA1188747A (en) Method of cutting glass with a laser and an article made therewith
KR100582506B1 (en) Method for scribing substrate of brittle material and scriber
KR100949152B1 (en) Apparatus for cutting glass using laser
US5968382A (en) Laser cleavage cutting method and system
JP4393601B2 (en) Cutting groove surface finishing method of quartz glass member and automatic groove heating device
EP2450169A1 (en) Cutting method and cutting device for brittle material substrate, and vehicle window glass obtained by the cutting method
JP2013112554A (en) Glass plate polishing apparatus
WO2006082899A1 (en) Method of working sintered diamond, cutter wheel for substrate and method of working the same
KR100971042B1 (en) System for brittle material cutting process and method employed therein
KR100509651B1 (en) Method of forming scribe line on semiconductor wafer, and scribe line forming device
KR20100087371A (en) Method for chamfering/machining brittle material substrate and chamfering/machining apparatus
JP4134033B2 (en) Scribing apparatus and scribing method for brittle material substrate
US20170283298A1 (en) Laser sintering system and method for forming high purity, low roughness, low warp silica glass
TWI416600B (en) A heat treatment method for a vertical type heat treatment, and a heat treatment method using a semiconductor wafer of the crystal boat
JP2004511423A (en) Method and equipment for cutting glass semi-finished products
JP4111408B2 (en) Quartz glass bending machine
KR100551527B1 (en) Method and device for scribing brittle material substrate
CN110052899A (en) With the big ring polishing process of jagged quartz
JP2011121094A (en) Laser beam machining apparatus and laser beam machining method
KR102200462B1 (en) Method for fire polishing quartz tube
JP3751121B2 (en) Cleaving method
KR20230132521A (en) Substrate processing method and substrate processing device
SK281050B6 (en) Device for heat treating glassware and crystalware articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

EXPY Cancellation because of completion of term