JP4393165B2 - Aluminum alloy heat exchanger and method of manufacturing the same - Google Patents

Aluminum alloy heat exchanger and method of manufacturing the same Download PDF

Info

Publication number
JP4393165B2
JP4393165B2 JP2003402632A JP2003402632A JP4393165B2 JP 4393165 B2 JP4393165 B2 JP 4393165B2 JP 2003402632 A JP2003402632 A JP 2003402632A JP 2003402632 A JP2003402632 A JP 2003402632A JP 4393165 B2 JP4393165 B2 JP 4393165B2
Authority
JP
Japan
Prior art keywords
brazing
aluminum alloy
clad
mass
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003402632A
Other languages
Japanese (ja)
Other versions
JP2005161352A (en
Inventor
和光 菅野
知礼 山田
昭男 新倉
吉章 荻原
真樹 清水
健二 根倉
淳 福田
善彦 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Furukawa Sky Aluminum Corp
Original Assignee
Denso Corp
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Furukawa Sky Aluminum Corp filed Critical Denso Corp
Priority to JP2003402632A priority Critical patent/JP4393165B2/en
Publication of JP2005161352A publication Critical patent/JP2005161352A/en
Application granted granted Critical
Publication of JP4393165B2 publication Critical patent/JP4393165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は自動車用ラジエータのようなアルミニウム合金製熱交換器に関し、特にろう材側での外部耐食性を高め熱交換器の長寿命化を図った耐食性に優れた、冷媒を通すチューブを有する熱交換器及びその製造方法に関するものである。   The present invention relates to a heat exchanger made of an aluminum alloy such as a radiator for automobiles, and in particular, heat exchange having a tube through which a refrigerant passes and has excellent corrosion resistance which increases external corrosion resistance on the brazing filler metal side and extends the life of the heat exchanger. The present invention relates to a container and its manufacturing method.

一般に自動車用熱交換器では、軽量のアルミニウム合金材を素材として用い、これをろう付けすることによって組立を行っている。
ところで、上記熱交換器は周知のように厳しい腐食環境で使用されることが多い。そのため、良好な耐食性を有することが必要とされており、その解決策としてアルミニウム合金芯材に犠牲陽極効果を持たせたアルミニウム合金皮材(犠牲陽極皮材)をクラッドすることによって芯材の耐食性を高める方法が採られている。この犠牲陽極皮材は、アルミニウム中にZn、Sn、In等を適量含有させることによって犠牲陽極効果を持たせたものが開発されている。
In general, heat exchangers for automobiles are assembled by using a lightweight aluminum alloy material as a raw material and brazing it.
By the way, the heat exchanger is often used in a severe corrosive environment as is well known. Therefore, it is necessary to have good corrosion resistance. As a solution, the aluminum alloy core material (sacrificial anode skin material) that has a sacrificial anode effect is clad as a solution. The method of raising is taken. This sacrificial anode skin material has been developed that has a sacrificial anode effect by containing an appropriate amount of Zn, Sn, In, or the like in aluminum.

また、上記のクラッド材は通常は、犠牲陽極皮材と同時に他側面にAl-Si系合金ろう材がクラッドされており、そのろう材中にZnを少量含有し、そのろう材に犠牲陽極効果を持たせたものも開発され、これらの犠牲防食によって冷媒を通すチューブ自身を高耐食化させている。
また、熱交換器の外部耐食性という点では、一般的にフィン材とチューブ材表面との間に電位差を設けて、このフィン材による犠牲防食効果によってチューブの腐食を守る方法も行われている。
さらに、このアルミニウム合金クラッド材の内部におけるCu濃度について、板厚方向に勾配を持たせ、かつそのCu濃度勾配を適切に定めることによってチューブ自身の外部耐食性を向上させる方法がある(例えば、特許文献1参照。)。
Also, the above clad material is usually clad with an Al—Si alloy brazing material on the other side at the same time as the sacrificial anode skin material, and contains a small amount of Zn in the brazing material, and the sacrificial anode effect is included in the brazing material. In addition, these tubes have been developed, and these sacrificial anti-corrosion methods have made the tubes themselves that pass the refrigerant highly resistant to corrosion.
In terms of the external corrosion resistance of the heat exchanger, a method is generally employed in which a potential difference is provided between the fin material and the tube material surface, and the corrosion of the tube is protected by the sacrificial anticorrosive effect of the fin material.
Furthermore, there is a method for improving the external corrosion resistance of the tube itself by providing a gradient in the plate thickness direction with respect to the Cu concentration inside the aluminum alloy clad material and appropriately determining the Cu concentration gradient (for example, Patent Documents). 1).

しかしながら、上記のように犠牲防食効果を持たせたチューブ、あるいはフィン材による犠牲防食効果を利用したチューブを有する熱交換器においても、凍結防止剤等の腐食促進性のある液が付着するような特別な地域では、近年の熱交換器の軽量化のためにチューブ板厚が非常に薄くなっている状況で、その外部耐食性を十分満足出来ない問題が生じてきた。   However, even in a heat exchanger having a tube having a sacrificial anticorrosive effect as described above, or a tube using the sacrificial anticorrosive effect by the fin material, a liquid having a corrosion promoting property such as an antifreezing agent adheres. In special areas, the tube thickness has become very thin due to the recent weight reduction of heat exchangers, and there has been a problem that the external corrosion resistance cannot be sufficiently satisfied.

これは、チューブ材外部表面のろう材Siが芯材中へ拡散する際に、粒界に析出したSi系化合物によってこの粒界部が優先的に溶解し、これが板厚深くにまで進展し犠牲陽極皮材成分の拡散領域に入るとそこから孔食へ繋がり、チューブが致命的な貫通に至ってしまうものである。このような腐食形態は、フィン材による犠牲防食効果が全く働かない上、チューブ板厚がある程度薄くなった場合では、芯材中のCu拡散によって電位勾配をつけた場合などチューブ自身に犠牲防食能を持たせた場合においても、この腐食の進展は十分抑えることが出来ない。
したがって、さらに薄肉化しつつあるチューブを有する熱交換器の外部耐食性を十分満足させるためには、上述の腐食が全板厚に進展するのを防ぐ必要性がある。
This is because when the brazing filler metal Si on the outer surface of the tube material diffuses into the core material, the grain boundary part is preferentially dissolved by the Si-based compound precipitated at the grain boundary, and this progresses to a deep plate thickness and is sacrificed. When entering the diffusion region of the anode skin material component, it leads to pitting corrosion and the tube leads to fatal penetration. This type of corrosion does not have any sacrificial anti-corrosion effect due to the fin material, and when the tube plate thickness is reduced to some extent, the sacrificial anti-corrosion ability is applied to the tube itself, such as when a potential gradient is applied by Cu diffusion in the core material. Even in the case where it is given, the progress of this corrosion cannot be sufficiently suppressed.
Therefore, in order to sufficiently satisfy the external corrosion resistance of the heat exchanger having a tube that is becoming thinner, it is necessary to prevent the above-described corrosion from progressing to the full thickness.

特開平10-140278号公報Japanese Patent Laid-Open No. 10-140278

本発明は、外部耐食性を向上させたアルミニウム合金製熱交換器を提供することを目的とする。特に、本発明は、チューブが薄肉化した場合においても、凍結防止剤等の腐食促進性のある液が付着するような過酷な腐食環境下でも充分な外部耐食性を示す熱交換器を提供することを目的とする。   An object of this invention is to provide the heat exchanger made from an aluminum alloy which improved external corrosion resistance. In particular, the present invention provides a heat exchanger exhibiting sufficient external corrosion resistance even in a severe corrosive environment where corrosion-promoting liquid such as an antifreezing agent adheres even when the tube is thinned. With the goal.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、ろう付け加熱後のチューブ板厚内部において、ろう材からのSi拡散量及び犠牲材成分ZnあるいはMgの拡散量を一定量未満に規定した領域を適切に定めることによって、ある限られた板厚でのチューブの外部耐食性を著しく向上させることができることを見出した。本発明はこの知見に基づきなされるに至ったものである。   As a result of intensive studies to solve the above problems, the present inventors have made constant the amount of diffusion of Si from the brazing material and the amount of diffusion of the sacrificial material component Zn or Mg within the tube plate thickness after brazing heating. It has been found that the external corrosion resistance of the tube with a certain limited plate thickness can be significantly improved by appropriately defining the region defined below the amount. The present invention has been made based on this finding.

すなわち、本発明は、
(1)アルミニウム合金からなるSi含有量0.05〜1.0質量%の芯材の一方の面に5〜20質量%のSiを含有するAl-Si系ろう材がクラッドされ、もう一方の面に2〜10質量%のZnを含有する犠牲材がクラッドされた薄肉のアルミニウム合金クラッド材からなるチューブを有する熱交換器であって、ろう付け加熱後における該アルミニウム合金クラッド材のろう材側からのEPMAによる元素拡散プロファイルについて下記(1)式を満たすことを特徴とするアルミニウム合金製熱交換器
L−LSi−LZn≧40(μm) ……(1)
(式中、Lは、チューブ板厚(μm)を、LSiは、ろう材か芯材に拡散した、Si量で1.5質量%と1.0質量%とを結ぶ線の延長上と、芯材Si含有量を示す線との交点のろう材表面からの位置(μm)を、LZnは、犠牲材から芯材に拡散したZn量が0.5質量%以上である犠牲材表面からの拡散領域(μm)を示す。)、
That is, the present invention
(1) An Al—Si brazing material containing 5 to 20% by mass of Si is clad on one side of a core material made of an aluminum alloy and having an Si content of 0.05 to 1.0% by mass, and 2 to A heat exchanger having a tube made of a thin aluminum alloy clad material clad with a sacrificial material containing 10% by mass of Zn, by EPMA from the brazing material side of the aluminum alloy clad material after brazing heating Aluminum alloy heat exchanger characterized by satisfying the following formula (1) for the diffusion profile of each element
L-L Si -L Zn ≧ 40 (μm) …… (1)
(Wherein, L is the tube thickness to ([mu] m), L Si is diffused into the brazing material or al core, and on the extension of the line connecting the 1.5 wt% and 1.0 wt% in Si content, the core material The position (μm) from the surface of the brazing material at the intersection with the line indicating the Si content, L Zn is a diffusion region from the surface of the sacrificial material where the amount of Zn diffused from the sacrificial material to the core material is 0.5 mass% or more ( μm))),

(2)アルミニウム合金からなるSi含有量0.05〜1.0質量%の芯材の一方の面に5〜20質量%のSiを含有するAl-Si系ろう材がクラッドされ、もう一方の面に1〜5質量%のMgを含有する犠牲材がクラッドされた薄肉のアルミニウム合金クラッド材からなるチューブを有する熱交換器であって、ろう付け加熱後における該アルミニウム合金クラッド材のろう材側からのEPMAによる元素拡散プロファイルについて下記(2)式を満たすことを特徴とするアルミニウム合金製熱交換器
L−LSi−LMg≧5(μm) ……(2)
(式中、Lは、チューブ板厚(μm)を、LSiは、ろう材か芯材に拡散した、Si量で1.5質量%と1.0質量%とを結ぶ線の延長上と、芯材Si含有量を示す線との交点のろう材表面からの位置(μm)を、LMgは、犠牲材から芯材に拡散したMg量が0.05質量%以上である犠牲材表面からの拡散領域(μm)を示す。)、
(2) An Al—Si brazing material containing 5 to 20% by mass of Si is clad on one side of a core material made of an aluminum alloy and having an Si content of 0.05 to 1.0% by mass, and the other side is 1 to A heat exchanger having a tube made of a thin aluminum alloy clad material clad with a sacrificial material containing 5% by mass of Mg, by EPMA from the brazing material side of the aluminum alloy clad material after brazing heating An aluminum alloy heat exchanger characterized by satisfying the following formula (2) for the diffusion profile of each element
L−L Si −L Mg ≧ 5 (μm) …… (2)
(Wherein, L is the tube thickness to ([mu] m), L Si is diffused into the brazing material or al core, and on the extension of the line connecting the 1.5 wt% and 1.0 wt% in Si content, the core material The position (μm) from the surface of the brazing filler metal at the intersection with the line indicating the Si content, L Mg is the diffusion region from the sacrificial material surface where the amount of Mg diffused from the sacrificial material to the core material is 0.05 mass% or more ( μm))),

(3)アルミニウム合金からなるSi含有量0.05〜1.0質量%の芯材の一方の面に5〜20質量%のSiを含有するAl-Si系ろう材がクラッドされ、もう一方の面に2〜10質量%のZn及び1〜5質量%のMgを含有する犠牲材がクラッドされた薄肉のアルミニウム合金クラッド材からなるチューブを有する熱交換器であって、ろう付け加熱後における該アルミニウム合金クラッド材のろう材側からのEPMAによる元素拡散プロファイルについて下記(1)式及び(2)式を満たすことを特徴とするアルミニウム合金製熱交換器
L−LSi−LZn≧40(μm) ……(1)
(式中、Lは、チューブ板厚(μm)を、LSiは、ろう材か芯材に拡散した、Si量で1.5質量%と1.0質量%とを結ぶ線の延長上と、芯材Si含有量を示す線との交点のろう材表面からの位置(μm)を、LZnは、犠牲材から芯材に拡散したZn量が0.5質量%以上である犠牲材表面からの拡散領域(μm)を示す。)
L−LSi−LMg≧5(μm) ……(2)
(式中、L及びLSiは、(1)式中のものとそれぞれ同義であり、LMgは、犠牲材から芯材に拡散したMg量が0.05質量%以上である犠牲材表面からの拡散領域(μm)を示す。)、
(3) An Al—Si brazing material containing 5 to 20% by mass of Si is clad on one side of a core material made of an aluminum alloy and having a Si content of 0.05 to 1.0% by mass, and 2 to A heat exchanger having a tube made of a thin aluminum alloy clad material clad with a sacrificial material containing 10% by mass of Zn and 1-5% by mass of Mg, the aluminum alloy clad material after brazing heating An aluminum alloy heat exchanger characterized by satisfying the following formulas (1) and (2) for the diffusion profile of each element by EPMA from the brazing filler metal side
L-L Si -L Zn ≧ 40 (μm) …… (1)
(Wherein, L is the tube thickness to ([mu] m), L Si is diffused into the brazing material or al core, and on the extension of the line connecting the 1.5 wt% and 1.0 wt% in Si content, the core material The position (μm) from the surface of the brazing material at the intersection with the line indicating the Si content, L Zn is a diffusion region from the surface of the sacrificial material where the amount of Zn diffused from the sacrificial material to the core material is 0.5 mass% or more ( μm).)
L−L Si −L Mg ≧ 5 (μm) …… (2)
(In the formula, L and L Si have the same meanings as those in formula (1), and L Mg diffuses from the surface of the sacrificial material where the amount of Mg diffused from the sacrificial material to the core is 0.05 mass% or more. Area (μm).),

(4)(1)、(2)又は(3)項に記載のクラッド材成分範囲内で、ろう材クラッド率が7%以上13%未満、犠牲材クラッド率が4%以上16.5%未満であり、窒素雰囲気下600±5℃で3〜4分間保持後、550℃から200℃まで冷却速度50±5℃/minのろう付け加熱処理を行うことを特徴とするアルミニウム合金製熱交換器の製造方法、
(5)(1)、(2)又は(3)項に記載のクラッド材成分範囲内で、ろう材クラッド率が7%以上20%未満、犠牲材クラッド率が4%以上30%未満であり、窒素雰囲気にて到達温度600±5℃で3〜4分間保持する際に、400℃以上の時間が15分未満であるような急速加熱冷却ろう付け処理を行うことを特徴とするアルミニウム合金製熱交換器の製造方法、
(6)前記アルミニウム合金クラッド材の最終の冷間圧延率を25%以下とすることを特徴とする(4)又は(5)項に記載のアルミニウム合金製熱交換器の製造方法、及び、
(7)前記アルミニウム合金クラッド材の最終の冷間圧延率が25%以下であり、前記ろう付け加熱後におけるアルミニウム合金クラッド材の芯材の再結晶の平均結晶粒径が180μm以上230μm以下であることを特徴とする(1)、(2)又は(3)項に記載のアルミニウム合金製熱交換器
を提供するのものである。
(4) Within the cladding material component range described in (1), (2) or (3), the brazing material cladding rate is 7% or more and less than 13%, and the sacrificial material cladding rate is 4% or more and less than 16.5%. Production of an aluminum alloy heat exchanger characterized by performing brazing heat treatment at a cooling rate of 50 ± 5 ° C / min from 550 ° C to 200 ° C after holding at 600 ± 5 ° C for 3-4 minutes in a nitrogen atmosphere Method,
(5) Within the clad material component range described in (1), (2) or (3), the brazing material clad rate is 7% or more and less than 20%, and the sacrificial material clad rate is 4% or more and less than 30%. Made of aluminum alloy, which is characterized by performing rapid heating and cooling brazing so that the time of 400 ° C or more is less than 15 minutes when held at an ultimate temperature of 600 ± 5 ° C for 3 to 4 minutes in a nitrogen atmosphere Manufacturing method of heat exchanger,
(6) The method for producing an aluminum alloy heat exchanger according to (4) or (5), wherein the final cold rolling reduction of the aluminum alloy clad material is 25% or less, and
(7) The final cold rolling reduction of the aluminum alloy clad material is 25% or less, and the average crystal grain size of recrystallization of the core material of the aluminum alloy clad material after the brazing heating is 180 μm or more and 230 μm or less . An aluminum alloy heat exchanger as described in (1), (2) or (3) is provided.

本明細書においてクラッド率とは、クラッド材(ろう材あるいは犠牲材)の板全厚に占める厚さの割合をいい、(クラッド材の厚さ/チューブ材の厚さ)×100(%)の式で計算される。
また、本明細書においてEPMAとは、電子線マイクロアナライザーを意味する。
In this specification, the clad rate is the ratio of the thickness of the clad material (the brazing material or the sacrificial material) to the total thickness of the clad material (the thickness of the clad material / the thickness of the tube material) × 100 (%). Calculated by the formula.
Moreover, in this specification, EPMA means an electron beam microanalyzer.

本発明によれば、ろう付け加熱後のチューブ板厚内部において、ろう材からのSi拡散量及び犠牲材成分ZnあるいはMgの拡散量を一定量未満に規定した領域を適切に定めることによってある限られた板厚でのチューブの外部耐食性が著しく向上したアルミニウム合金製熱交換器を提供することができる。すなわち、薄肉化したチューブを有する熱交換器においても外部(大気側)からの腐食による板厚方向への貫通を抑制して、その腐食に対する寿命を従来よりも飛躍的に長くすることができる。特に薄肉化されたチューブを有する熱交換器において、過酷な腐食環境下でも充分な外部耐食性を示すことができる。
また、窒素雰囲気下600±5℃で3〜4分間保持後、550℃から200℃まで冷却速度50±5℃/minのろう付け加熱処理を行う場合、又は、窒素雰囲気にて到達温度600±5℃で3〜4分間保持する際に、400℃以上の時間が15分未満であるような急速加熱冷却ろう付け処理を行う場合に、アルミニウム合金クラッド材について最終の冷間圧延率を25%以下にすることで、ろう付け加熱後の芯材の再結晶の平均結晶粒径を180μm以上230μm以下とすることができる。また、アルミニウム合金クラッド材の最終の冷間圧延率を25%以下とし、ろう付け加熱後におけるアルミニウム合金クラッド材の芯材の再結晶の平均結晶粒径を180μm以上230μm以下とすることで、粒界腐食の板厚方向への進展を十分抑えることができる。
According to the present invention, within the tube plate thickness after brazing heating, there is a certain limit by appropriately determining regions in which the amount of Si diffusion from the brazing material and the amount of diffusion of the sacrificial material component Zn or Mg are defined to be less than a certain amount. It is possible to provide a heat exchanger made of an aluminum alloy in which the external corrosion resistance of the tube with the obtained plate thickness is remarkably improved. That is, even in a heat exchanger having a thinned tube, penetration in the plate thickness direction due to corrosion from the outside (atmosphere side) can be suppressed, and the life against the corrosion can be dramatically increased as compared with the conventional case. Particularly in a heat exchanger having a thinned tube, sufficient external corrosion resistance can be exhibited even in a severe corrosive environment.
Also, after holding for 3-4 minutes at 600 ± 5 ° C in a nitrogen atmosphere, brazing heat treatment is performed at a cooling rate of 50 ± 5 ° C / min from 550 ° C to 200 ° C, or an ultimate temperature of 600 ± in a nitrogen atmosphere When holding at 5 ° C for 3 to 4 minutes and performing rapid heating and cooling brazing such that the time of 400 ° C or more is less than 15 minutes, the final cold rolling reduction rate for aluminum alloy clad material is 25%. By making it below, the average crystal grain size of recrystallization of the core material after brazing heating can be made 180 μm or more and 230 μm or less. Further, the final cold rolling reduction rate of the aluminum alloy clad material is 25% or less, and the average crystal grain size of recrystallization of the core material of the aluminum alloy clad material after brazing heating is 180 μm or more and 230 μm or less. The progress of interfacial corrosion in the thickness direction can be sufficiently suppressed.

以下、本発明について詳細に説明する。
まず、本発明のアルミニウム合金製熱交換器において、ろう付け加熱後の芯材中の拡散元素量とその拡散領域の規定理由を以下に説明する。
Hereinafter, the present invention will be described in detail.
First, in the aluminum alloy heat exchanger of the present invention, the amount of diffusing elements in the core material after brazing heating and the reasons for defining the diffusion region will be described below.

一般に、熱交換器チューブを作製する際のろう付け加熱条件(窒素雰囲気下600±5℃で3〜4分間保持後、550℃から200℃まで冷却速度50±5℃/minのろう付け加熱)では、アルミニウム合金からなるSi含有量0.05〜0.8質量%の芯材の一方の面に5〜20質量%のSiを含有するAl-Si系ろう材がクラッド率にして12%以上クラッドされ、もう一方の面に2〜10質量%のZn又は1〜5質量%のMgを含有する犠牲材をクラッド率にして16.5%以上クラッドした板厚が薄肉の(例えば0.23mm以下の)アルミニウム合金クラッド材からなる熱交換器チューブにおいて、ろう材から芯材へのSi拡散並びに犠牲材から芯材へのZn又はMgの拡散が起こっている。   Generally, brazing heating conditions when producing heat exchanger tubes (brazing heating at a cooling rate of 50 ± 5 ° C / min from 550 ° C to 200 ° C after holding for 3-4 minutes at 600 ± 5 ° C under nitrogen atmosphere) Then, an Al-Si brazing material containing 5 to 20% by mass of Si is clad at a rate of 12% or more on one surface of a core material made of an aluminum alloy and having an Si content of 0.05 to 0.8% by mass. An aluminum alloy clad material with a thin plate thickness (for example, 0.23 mm or less) obtained by clad a sacrificial material containing 2 to 10% by mass of Zn or 1 to 5% by mass of Mg on one side with a cladding ratio of 16.5% or more In the heat exchanger tube made of, diffusion of Si from the brazing material to the core material and diffusion of Zn or Mg from the sacrificial material to the core material occur.

本発明者らは、外部耐食性を評価するべく実験を重ねた結果、次のことを見出した。すなわち、ろう材側芯材の粒界腐食に関してはこのろう材から芯材に拡散したSi量が多くなるほど粒界腐食感受性が高まる傾向にあることがわかった。また、芯材中央部の粒界腐食に関しては、犠牲材から拡散したZn量(以下、「犠牲材からの拡散Zn量」ともいう)が0.5質量%以上多くなるほど芯材中央部から孔食が進展することがわかった。さらに、犠牲材には機械強度向上のためにMgを添加する場合があるが、犠牲材から拡散したMg量(以下、「犠牲材からの拡散Mg量」ともいう)が0.05質量%以上多くなるほど粒界腐食感受性が高まることがわかった。
従って、全板厚に及ぶ腐食の進展を抑えるためには、限られた板厚内で上述の拡散成分量を規制する領域を設ける必要性が考えられる。
As a result of repeated experiments to evaluate the external corrosion resistance, the present inventors have found the following. That is, regarding the intergranular corrosion of the brazing filler metal side core material, it was found that the intergranular corrosion sensitivity tends to increase as the amount of Si diffused from the brazing material into the core material increases. Regarding the intergranular corrosion of the core central portion, the amount of Zn diffused from the sacrificial material (hereinafter, also referred to as "diffusion amount of Zn from sacrificial material") is pitting from the core central portion as increases above 0.5 wt% It turns out that progress is made. Additionally, although the addition of Mg for improvement in mechanical strength in the sacrificial anode material, the amount of Mg diffused from the sacrificial material (hereinafter, also referred to as "diffusion amount of Mg from sacrificial material") is indeed more than 0.05 wt% It was found that the intergranular corrosion sensitivity was increased.
Therefore, in order to suppress the progress of corrosion over the entire plate thickness, it may be necessary to provide a region for restricting the amount of diffusion component described above within a limited plate thickness.

そこで本発明では、アルミニウム合金からなるSi含有量0.05〜1.0質量%(好ましくは0.05〜0.8質量%)の芯材の一方の面に5〜20質量%(好ましくは8〜12質量%)のSiを含有するAl-Si系ろう材がクラッド率にして7%以上13%未満(好ましくは7%以上12%未満、さらに好ましくは7〜11%)クラッドされ、もう一方の面に2〜10質量%(好ましくは2〜7質量%)のZn及び/又は1〜5質量%(好ましくは1〜2.5質量%)のMgを含有する(好ましくはアルミニウム合金である)犠牲材をクラッド率にして4%以上16.5%未満(好ましくは8〜16.2%)クラッドした薄肉(好ましくは板厚0.23mm以下、さらに好ましくは板厚0.225mm以下)のアルミニウム合金クラッド材からなるろう付け加熱後の熱交換器チューブについてEPMAにより板厚方向内での拡散プロファイルを測定した場合において、ろう材側からSi量が1.5質量%と1.0質量%とを結ぶ線の延長上と芯材Si含有量を示す線との交点と、同時に犠牲材からの拡散Zn量が0.5質量%未満あるいは拡散Mg量が0.05質量%未満となる芯材位置との幅をそれぞれ40μm以上(好ましくは45μm以上200μm以下)あるいは5μm以上(好ましくは7μm以上200μm以下)に規定した。
ここで、このように規定した理由は、芯材のSi含有量以上に拡散したSi量と犠牲材成分のZnあるいはMgが腐食を誘発しない量であることが必要で、その規制された領域がある幅以上あれば全板厚に及ぶ腐食の進展が抑えられることを見出したことによる。
So, in this invention, 5-20 mass% (preferably 8-12 mass%) Si of the core material of the aluminum content 0.05-1.0 mass% (preferably 0.05-0.8 mass%) which consists of aluminum alloys is formed. Al-Si brazing filler metal containing 7% to less than 13% (preferably 7% to less than 12%, more preferably 7 to 11%) with a cladding ratio of 2 to 10 mass on the other surface % (Preferably 2 to 7% by mass) of Zn and / or 1 to 5% by mass (preferably 1 to 2.5% by mass) of Mg (preferably an aluminum alloy) with a cladding ratio of 4 % To less than 16.5% (preferably 8 to 16.2%) clad and thin-walled aluminum (preferably plate thickness 0.23 mm or less, more preferably plate thickness 0.225 mm or less) aluminum alloy cladding material after brazing heating The diffusion profile in the plate thickness direction was measured by EPMA. In this case, the amount of Zn diffused from the sacrificial material is 0.5 mass% at the intersection of the extension of the line connecting 1.5 mass% and 1.0 mass% of the Si content from the brazing filler metal side and the line indicating the Si content of the core material. And the width with respect to the core material position where the diffusion Mg amount is less than 0.05% by mass is specified to be 40 μm or more (preferably 45 μm or more and 200 μm or less) or 5 μm or more (preferably 7 μm or more and 200 μm or less).
Here, the reason specified in this way is that the amount of Si diffused more than the Si content of the core material and the amount of Zn or Mg of the sacrificial material component do not induce corrosion, and the restricted area is This is because it has been found that if the width exceeds a certain width, the progress of corrosion over the entire plate thickness can be suppressed.

すなわち、ろう付け加熱後のEPMAによる拡散プロファイルにおいて、ろう材側からSi量が1.5質量%と1.0質量%とを結ぶ線の延長上と芯材Si含有量を示す線との交点と、同時に犠牲材からの拡散Zn量が0.5質量%未満となる芯材位置との幅を40μm以上とした理由は、これが40μm未満であった場合には腐食の進展を抑えることが出来ないが、40μm以上であった場合には、腐食の進展を抑えることが可能となるためである。   That is, in the diffusion profile by EPMA after brazing heating, the intersection of the extension of the line connecting the Si content between 1.5% and 1.0% by mass from the brazing material side and the line indicating the Si content of the core material is sacrificed at the same time The reason why the width with the core position where the diffusion Zn amount from the material is less than 0.5% by mass is 40 μm or more is that if it is less than 40 μm, the progress of corrosion cannot be suppressed, but it is 40 μm or more. If so, it is possible to suppress the progress of corrosion.

また、ろう付け加熱後のEPMAによる拡散プロファイルにおいて、ろう材側からSi量が1.5質量%と1.0質量%とを結ぶ線の延長上と芯材Si含有量を示す線との交点と、同時に犠牲材からの拡散Mg量が0.05質量%未満となる芯材位置との幅を5μm以上とした理由は、これが5μm未満の場合では、粒界腐食の進展を抑えることが出来ないが、5μm以上であった場合にはこの粒界腐食を抑えることが可能となるためである。   In addition, in the diffusion profile by EPMA after brazing heating, the intersection of the extension of the line connecting the Si content from 1.5% by mass to 1.0% by mass and the line indicating the Si content of the core material is sacrificed at the same time The reason why the width with the core material position where the diffusion Mg amount from the material is less than 0.05% by mass is 5 μm or more is that if it is less than 5 μm, the progress of intergranular corrosion cannot be suppressed, but at 5 μm or more This is because it is possible to suppress this intergranular corrosion.

また、このように拡散量を抑えたチューブを有する熱交換器を作製するに際し、アルミニウム合金クラッド材(アルミニウム製ブレージングシート)の板厚を単に増加させて芯材中に上述の拡散量未満の領域を設けることで可能となることが推察できるが、本発明ではアルミニウム合金製ブレージングシートの板厚は特に増加させず薄肉とするもので、通常0.24mm以下、好ましくは0.23mm以下である。そして、その板厚内で芯材中でろう材Siの拡散量及び犠牲材ZnあるいはMgの拡散領域を規制するチューブ芯材厚を相対的に増加させる方法をとった。   Further, when producing a heat exchanger having a tube with a reduced amount of diffusion in this way, the thickness of the aluminum alloy clad material (aluminum brazing sheet) is simply increased so that the area less than the above amount of diffusion in the core material. However, in the present invention, the thickness of the aluminum alloy brazing sheet is not particularly increased and is thinned, and is usually 0.24 mm or less, preferably 0.23 mm or less. And the method of relatively increasing the tube core material thickness which regulates the diffusion amount of the brazing material Si and the diffusion region of the sacrificial material Zn or Mg in the core material within the plate thickness was adopted.

なお、ろう材には、必要に応じてCu、Znを発明の目的の効果を損わない範囲で含有してもよく、また、犠牲材には、必要に応じて、Fe、Si、Mn、Tiを発明の目的の効果を損わない範囲で含有してもよい。また、芯材には、必要に応じて、Fe、Mn、Cu、Tiを発明の目的の効果を損わない範囲で含有してもよい。   Note that the brazing material may contain Cu and Zn as necessary within a range not impairing the object effects of the invention, and the sacrificial material may contain Fe, Si, Mn, You may contain Ti in the range which does not impair the objective effect of invention. Further, the core material may contain Fe, Mn, Cu, and Ti as necessary, as long as the effects of the object of the invention are not impaired.

次に、この耐食性に優れたチューブを有する熱交換器の製造方法について説明する。
上記のアルミニウム合金クラッド材を用いて、熱交換器チューブを作製する際の一般的なろう付け加熱条件により該アルミニウム合金クラッド材をろう付け加熱して熱交換器を作製する。ろう付け加熱条件は、窒素雰囲気下600±5℃で3〜4分間保持後、550℃から200℃まで冷却速度50±5℃/minのろう付け加熱が好ましく、また、窒素雰囲気にて到達温度600±5℃で3〜4分間保持する際に、400℃以上の時間が15分未満であるような急速加熱冷却ろう付け処理が好ましい。特に、急速加熱冷却ろう付け処理においては、400℃以上の時間が10〜14分である場合がより好ましい。
Next, the manufacturing method of the heat exchanger which has this tube excellent in corrosion resistance is demonstrated.
A heat exchanger is produced by brazing and heating the aluminum alloy clad material under the general brazing heating conditions for producing a heat exchanger tube using the aluminum alloy clad material. Brazing heating conditions are preferably brazing heating at a cooling rate of 50 ± 5 ° C / min from 550 ° C to 200 ° C after holding at 600 ± 5 ° C for 3-4 minutes in a nitrogen atmosphere. A rapid heating / cooling brazing treatment in which a time of 400 ° C. or more is less than 15 minutes when held at 600 ± 5 ° C. for 3 to 4 minutes is preferable. In particular, in the rapid heating and cooling brazing treatment, it is more preferable that the time of 400 ° C. or more is 10 to 14 minutes.

ろう付け加熱条件により、ろう材及び犠牲材のクラッド率は異なる。
本発明者らは、前記のクラッド材成分範囲内でろう付け加熱後のEPMAによる拡散プロファイルにおいて、ろう材側からSi量が1.5質量%と1.0質量%とを結ぶ線の延長上と芯材Si含有量を示す線との交点と、同時に犠牲材からの拡散Zn量が0.5質量%未満あるいは拡散Mg量が0.05質量%未満となる芯材位置との幅をそれぞれ40μm以上あるいは5μm以上であるような領域をある厚さ以上確保でき、かつろう付け性を損なうことなく十分に熱交換器のろう付け接合可能となるろう材及び内部耐食性を十分満足できる犠牲材のクラッド率を見出した。以下に各クラッド率について説明する。
The clad rate of the brazing material and the sacrificial material varies depending on the brazing heating conditions.
In the diffusion profile by EPMA after brazing and heating within the above clad material component range, the inventors of the present invention have found that the amount of Si from the brazing material side extends on the extension of the line connecting 1.5 mass% and 1.0 mass% and the core material Si. The width between the intersection with the line indicating the content and the core material position where the diffusion Zn amount from the sacrificial material is less than 0.5 mass% or the diffusion Mg content is less than 0.05 mass% is 40 μm or more, or 5 μm or more, respectively. We have found a brazing material that can secure a certain area or more in thickness and that can sufficiently braze and join a heat exchanger without impairing the brazing property and a cladding ratio of a sacrificial material that can sufficiently satisfy internal corrosion resistance. Each cladding ratio will be described below.

まず、窒素雰囲気下600±5℃で3〜4分間保持後、550℃から200℃まで冷却速度50±5℃/minのろう付け加熱処理を行う場合では、前記の板厚及びクラッド材成分範囲内でろう材クラッド率が7%以上13%未満、犠牲材クラッド率が4%以上16.5%未満に規定した。好ましくは、ろう材クラッド率は7%以上12%未満(さらに好ましくは7〜11%)であり、犠牲材クラッド率は好ましくは8〜16.2%である。   First, in the case of brazing heat treatment at a cooling rate of 50 ± 5 ° C./min from 550 ° C. to 200 ° C. after holding at 600 ± 5 ° C. for 3 to 4 minutes in a nitrogen atmosphere, the above plate thickness and clad material component range The brazing material clad rate is specified to be 7% or more and less than 13%, and the sacrificial material clad rate is specified to be 4% or more and less than 16.5%. Preferably, the brazing material cladding rate is 7% or more and less than 12% (more preferably 7 to 11%), and the sacrificial material cladding rate is preferably 8 to 16.2%.

これにより、前記のろう付け加熱後におけるEPMAによる拡散プロファイルにおいて、ろう材側からSi量が1.5質量%と1.0質量%とを結ぶ線の延長上と芯材Si含有量を示す線との交点と、同時に犠牲材からの拡散Zn量又は拡散Mg量がそれぞれ0.5質量%未満又は0.05質量%未満となる芯材位置との間の領域(幅)をそれぞれ40μm以上又は5μm以上に設けることが可能となる。すなわち、この耐食性に優れたチューブを有する熱交換器の外部耐食性を十分向上させることができ、かつろう付け性を損なうことなく十分に熱交換器のろう付け接合可能となるろう材及び内部耐食性を十分満足できるチューブを有する熱交換器を作製することができる。   Thereby, in the diffusion profile by EPMA after the brazing heating described above, the intersection of the extension of the line connecting the Si content from 1.5% by mass to 1.0% by mass and the line indicating the core material Si content from the brazing material side At the same time, it is possible to provide a region (width) between the core material position where the diffusion Zn amount or diffusion Mg amount from the sacrificial material is less than 0.5 mass% or less than 0.05 mass%, respectively, at 40 μm or more, or 5 μm or more, respectively. Become. That is, the external corrosion resistance of the heat exchanger having a tube having excellent corrosion resistance can be sufficiently improved, and the brazing material and the internal corrosion resistance can be sufficiently brazed and joined to the heat exchanger without impairing the brazing performance. A heat exchanger having a sufficiently satisfactory tube can be produced.

一方、窒素雰囲気にて到達温度600±5℃で3〜4分間保持する際に、400℃以上の時間が15分未満であるような急速加熱冷却ろう付け処理を行う場合では、前記の板厚及びクラッド材成分範囲内でろう材クラッド率が7%以上20%未満、犠牲材クラッド率が4%以上30%未満に規定した。好ましくは、ろう材クラッド率は7〜16%、犠牲材クラッド率は8〜25%である。   On the other hand, in the case of performing rapid heating and cooling brazing treatment in which the time of 400 ° C. or more is less than 15 minutes when holding at an ultimate temperature of 600 ± 5 ° C. for 3 to 4 minutes in a nitrogen atmosphere, the above plate thickness Within the cladding material component range, the brazing material clad rate is specified to be 7% or more and less than 20%, and the sacrificial material clad rate is specified to be 4% or more and less than 30%. Preferably, the brazing material clad rate is 7 to 16% and the sacrificial material clad rate is 8 to 25%.

これにより、前記のろう付け加熱後におけるEPMAによる拡散プロファイルにおいて、ろう材側からSi量が1.5質量%と1.0質量%とを結ぶ線の延長上と芯材Si含有量を示す線との交点と、同時に犠牲材からの拡散Zn量又は拡散Mg量がそれぞれ0.5質量%未満又は0.05質量%未満となる芯材位置との幅をそれぞれ40μm以上又は5μm以上に設けることが可能となる。すなわち、この耐食性に優れたチューブを有する熱交換器の外部耐食性を十分向上させることができ、かつろう付け性を損なうことなく十分に熱交換器のろう付け接合可能となるろう材及び内部耐食性を十分満足できるチューブを有する熱交換器を作製することができる。   Thereby, in the diffusion profile by EPMA after the brazing heating, the intersection of the extension of the line connecting the Si content from 1.5% by mass and 1.0% by mass and the line indicating the core material Si content from the brazing material side, At the same time, it is possible to provide a width of 40 μm or more or 5 μm or more with respect to the core material position where the diffusion Zn amount or diffusion Mg amount from the sacrificial material is less than 0.5 mass% or less than 0.05 mass%, respectively. That is, the external corrosion resistance of the heat exchanger having a tube having excellent corrosion resistance can be sufficiently improved, and the brazing material and the internal corrosion resistance can be sufficiently brazed and joined to the heat exchanger without impairing the brazing performance. A heat exchanger having a sufficiently satisfactory tube can be produced.

また、窒素雰囲気下600±5℃で3〜4分間保持後、550℃から200℃まで冷却速度50±5℃/minのろう付け加熱処理を行う場合、又は、窒素雰囲気にて到達温度600±5℃で3〜4分間保持する際に、400℃以上の時間が15分未満であるような急速速加熱冷却ろう付け処理を行う場合においては、上述のアルミニウム合金クラッド材について最終の冷間圧延率を25%以下(通常、15%以上)にすることで、ろう付け加熱後の再結晶を結晶粒径の平均で180μm以上に粗大化することが可能となる。なお、本発明に用いられるアルミニウム合金クラッド材は、例えば、クラッド法で通常用いられる冷間圧延により製造することができる。アルミニウム合金クラッド材の最終の冷間圧延率が大きすぎると、前記ろう付け加熱処理又は急速加熱冷却ろう付け処理を行った後において、芯材の再結晶の結晶粒径を180μm以上にしにくくなり、粒界腐食の板厚方向への進展を十分抑えることが困難となる。このため、耐食性に優れたチューブを有する熱交換器の外部耐食性を十分向上させること、かつろう付け性を損なうことなく十分に熱交換器のろう付け接合可能となるろう材及び内部耐食性を十分満足できるチューブを有する熱交換器を作製することが困難となる。アルミニウム合金クラッド材の最終の冷間圧延率は、より好ましくは22%以下である。
また、前記のろう付け加熱後において、芯材の再結晶の平均結晶粒径は180μm以上であることが好ましい。再結晶の平均結晶粒径が180μm未満であると、粒界腐食の板厚方向への進展を十分抑えることが困難となる。再結晶の平均結晶粒径は、より好ましくは190μm以上400μm以下である。
なお、平均結晶粒径は、例えば、200倍の光学顕微鏡写真から通常の切片法により測定することができる。
Also, after holding for 3-4 minutes at 600 ± 5 ° C in a nitrogen atmosphere, brazing heat treatment is performed at a cooling rate of 50 ± 5 ° C / min from 550 ° C to 200 ° C, or an ultimate temperature of 600 ± in a nitrogen atmosphere When holding at 5 ° C. for 3 to 4 minutes and performing a rapid heating and cooling brazing treatment in which the time of 400 ° C. or more is less than 15 minutes, the final cold rolling is performed on the above-described aluminum alloy clad material. By making the rate 25% or less (usually 15% or more), it becomes possible to coarsen the recrystallization after brazing heating to 180 μm or more on average in the crystal grain size. In addition, the aluminum alloy clad material used for this invention can be manufactured by the cold rolling normally used by the clad method, for example. If the final cold rolling rate of the aluminum alloy clad material is too large, after performing the brazing heat treatment or the rapid heating and cooling brazing treatment, it becomes difficult to set the crystal grain size of the recrystallization of the core material to 180 μm or more, It becomes difficult to sufficiently suppress the progress of intergranular corrosion in the thickness direction. For this reason, the external corrosion resistance of the heat exchanger having a tube with excellent corrosion resistance is sufficiently improved, and the brazing material and the internal corrosion resistance are sufficiently satisfied so that the heat exchanger can be sufficiently brazed without impairing the brazing performance. It becomes difficult to produce a heat exchanger having a tube that can be made. The final cold rolling reduction of the aluminum alloy clad material is more preferably 22% or less.
In addition, after the brazing heating, the average crystal grain size of recrystallization of the core material is preferably 180 μm or more. When the average crystal grain size of recrystallization is less than 180 μm, it becomes difficult to sufficiently suppress the progress of intergranular corrosion in the thickness direction. The average crystal grain size of recrystallization is more preferably 190 μm or more and 400 μm or less.
The average crystal grain size can be measured by, for example, a normal section method from a 200-fold optical micrograph.

本発明のアルミニウム合金製熱交換器(例えばラジエータ等)としては、前記所定のアルミニウム合金クラッド材からなるチューブを有し、かつ、ろう付け加熱後における該アルミニウム合金クラッド材のろう材側からのEPMAによる元素拡散プロファイルについて前記(1)式及び/又は(2)式で規定する条件を満たすものであれば、その形態等に特に制限はなく、任意の種々の形態とすることができる。例えば、本発明のアルミニウム合金製熱交換器の一例としては、図3に示すものを挙げることができる。図3に示した熱交換器においては、複数本の偏平チューブ(1)の間にコルゲート状に加工した薄肉フィン(2)を一体に形成し、該偏平チューブ(1)の両端はヘッダー(3)とタンク(4)とで構成される空間にそれぞれ開口しており、一方のタンク側の空間から偏平チューブ(1)内を通して高温冷媒を他方のタンク(4)側の空間に送り、チューブ(1)およびフィン(2)の部分で熱交換して低温になった冷媒を再び循環させるものである。   The aluminum alloy heat exchanger (for example, a radiator) of the present invention has a tube made of the predetermined aluminum alloy clad material, and EPMA from the brazing material side of the aluminum alloy clad material after brazing heating As long as the element diffusion profile satisfying the condition defined by the above expression (1) and / or (2) is satisfied, the form thereof is not particularly limited, and any of various forms can be adopted. For example, as an example of the aluminum alloy heat exchanger of the present invention, the one shown in FIG. In the heat exchanger shown in FIG. 3, a thin fin (2) processed into a corrugated shape is integrally formed between a plurality of flat tubes (1), and both ends of the flat tube (1) are provided with headers (3 ) And the tank (4), respectively, and the high temperature refrigerant is sent from the space on the one tank side through the flat tube (1) to the space on the other tank (4) side. 1) and the fins (2) are used to recirculate the refrigerant that has undergone heat exchange and has reached a low temperature.

以下、実施例に基づき本発明をさらに詳細に説明する。
実施例1
表1に示された組成の合金No.1〜21を使用して、表2に示されたクラッド率でクラッドした全厚み0.225mmのブレージングシートを作製した。このブレージングシートを窒素雰囲気にて到達温度600±5℃で3〜4分間保持後、550℃から200℃まで冷却速度50±5℃/minのろう付け加熱処理を行った。その後、EPMAによる元素拡散プロファイルを測定した。プロファイルの例を図1及び2に示す。
Hereinafter, the present invention will be described in more detail based on examples.
Example 1
Using alloys Nos. 1 to 21 having the compositions shown in Table 1, brazing sheets having a total thickness of 0.225 mm clad with the cladding ratio shown in Table 2 were prepared. The brazing sheet was held in a nitrogen atmosphere at an ultimate temperature of 600 ± 5 ° C. for 3 to 4 minutes, and then brazed from 550 ° C. to 200 ° C. at a cooling rate of 50 ± 5 ° C./min. Then, the diffusion profile of each element by EPMA was measured. Examples of profiles are shown in FIGS.

図1は、アルミニウム合金からなるSi含有量0.05〜1.0質量%の芯材の一方の面にAl-Si系ろう材がクラッドされ、もう一方の面にZnを含有する犠牲材がクラッドされたブレージングシートについてEPMAによる元素拡散プロファイルの例を示す図である。縦軸は含有量(質量%)を、横軸は厚さ(μm)を示す。また、Lはチューブ板厚を示す。 FIG. 1 shows brazing in which an Al—Si brazing material is clad on one surface of a core material made of an aluminum alloy and having a Si content of 0.05 to 1.0 mass%, and a sacrificial material containing Zn is clad on the other surface. It is a figure which shows the example of the diffusion profile of each element by EPMA about a sheet | seat. The vertical axis represents the content (% by mass), and the horizontal axis represents the thickness (μm). L represents the tube plate thickness.

また、図2は、アルミニウム合金からなるSi含有量0.05〜1.0質量%の芯材の一方の面にAl-Si系ろう材がクラッドされ、もう一方の面にMgを含有する犠牲材がクラッドされたブレージングシートについてEPMAによる元素拡散プロファイルの例を示す図である。縦軸は含有量(質量%)を、横軸は厚さ(μm)を示す。また、Lはチューブ板厚を示す。 Also, FIG. 2 shows that an Al—Si brazing material is clad on one surface of a core material made of an aluminum alloy and having an Si content of 0.05 to 1.0 mass%, and a sacrificial material containing Mg is clad on the other surface. It is a figure which shows the example of the diffusion profile of each element by EPMA about the brazing sheet. The vertical axis represents the content (% by mass), and the horizontal axis represents the thickness (μm). L represents the tube plate thickness.

各試料について、図1における、ろう材Si量が1.5質量%と1.0質量%とを結ぶ線の延長上と芯材Si含有量を示す線との交点と、犠牲材Zn量が0.5質量%である点との幅(図1の幅A)を測定した。結果を表3に示す。
また各試料について、図2における、ろう材Si量が1.5質量%と1.0質量%とを結ぶ線の延長上と芯材Si含有量を示す線との交点と、犠牲材成分にMgが存在する場合に犠牲材Mg量が0.05質量%である点との幅(図2の幅B)を測定した。結果を表3に示す。
さらに各試料について、外部耐食性を評価するため、ろう材層側を5質量%NaCl溶液環境中に露出させた状態で電流を電流密度1mA/cm2で24時間流し続けて定電流電解試験を実施し、その後、試料断面を光学顕微鏡を用いて200倍の倍率にて観察した。結果を表3の腐食試験結果の欄に示す。表3においては、上述の定電流電解試験を行った板幅10mmの範囲内における任意の試料断面において、全く貫通も孔食も、また粒界腐食も観察されなかったものを良好であるとして◎で表し、極めて浅い孔食が観察されたもの、また極めて軽微な粒界腐食が観察されたものを○で表し、また、上述の定電流電解試験を行った板幅10mmの範囲内における任意の試料断面において、貫通孔食が一つでも観察されたもの、また粒界腐食があるものを×で表すものである。
For each sample, the intersection of the line connecting the 1.5% and 1.0% by mass brazing filler metal amounts in FIG. 1 and the line indicating the core Si content, and the sacrificial Zn content is 0.5% by mass. The width from a certain point (width A in FIG. 1) was measured. The results are shown in Table 3.
In addition, for each sample, Mg exists in the sacrificial material component at the intersection of the extension of the line connecting the brazing material Si amounts of 1.5 mass% and 1.0 mass% and the line indicating the core Si content in FIG. In this case, the width (width B in FIG. 2) with respect to the point where the amount of sacrificial material Mg was 0.05 mass% was measured. The results are shown in Table 3.
Furthermore, in order to evaluate the external corrosion resistance of each sample, a constant current electrolysis test was carried out by continuously applying a current at a current density of 1 mA / cm 2 for 24 hours with the brazing filler metal layer side exposed in a 5% by mass NaCl solution environment. Thereafter, the cross section of the sample was observed at a magnification of 200 times using an optical microscope. The results are shown in the column of corrosion test results in Table 3. In Table 3, if no penetration, pitting corrosion, or intergranular corrosion was observed in any sample cross section within the plate width of 10 mm in which the constant current electrolysis test was performed, , The one where extremely shallow pitting corrosion was observed, and the one where extremely slight intergranular corrosion was observed were represented by ◯, and any of the plate widths of 10 mm where the constant current electrolysis test was conducted In the sample cross section, the case where even one through-pitting corrosion is observed or the case where there is intergranular corrosion is indicated by x.

Figure 0004393165
Figure 0004393165

Figure 0004393165
Figure 0004393165

Figure 0004393165
Figure 0004393165

表3の結果から、従来例又は比較例では腐食が全板厚に進展しているが、本発明のアルミニウム合金製熱交換器に用いられるチューブ板では腐食はろう材層にとどまり、良好な外部耐食性を示すことがわかる。   From the results of Table 3, in the conventional example or the comparative example, the corrosion has progressed to the full thickness, but in the tube plate used in the aluminum alloy heat exchanger of the present invention, the corrosion remains in the brazing material layer, and a good external It turns out that it shows corrosion resistance.

実施例2
表4に示された組成の合金No.22〜42を使用して、表5に示されたクラッド率でクラッドした全厚み0.225mmのブレージングシートを作製した。このブレージングシートを窒素雰囲気にて到達温度600±5℃で3〜4分間保持する際に、400℃以上の時間が15分未満であるような急速加熱冷却ろう付け処理を行った。その後、実施例1と同様にしてEPMAによる元素拡散プロファイルを測定した。プロファイルの例は実施例1と同様に図1及び2に示される。
Example 2
Using alloys Nos. 22 to 42 having the compositions shown in Table 4, brazing sheets having a total thickness of 0.225 mm clad with the cladding ratio shown in Table 5 were prepared. When this brazing sheet was held at an ultimate temperature of 600 ± 5 ° C. for 3 to 4 minutes in a nitrogen atmosphere, a rapid heating and cooling brazing treatment was performed so that the time of 400 ° C. or more was less than 15 minutes. Thereafter, the diffusion profile of each element by EPMA was measured in the same manner as in Example 1. Examples of profiles are shown in FIGS. 1 and 2 as in the first embodiment.

各試料について、図1における、ろう材Si量が1.5質量%と1.0質量%とを結ぶ線の延長上と芯材Si含有量を示す線との交点と、犠牲材Zn量が0.5質量%である点との幅(図1の幅A)を測定した。結果を表6に示す。
また各試料について、図2における、ろう材Si量が1.5質量%と1.0質量%とを結ぶ線の延長上と芯材Si含有量を示す線との交点と、犠牲材成分にMgが存在する場合に犠牲材Mg量が0.05質量%である点との幅(図2の幅B)を測定した。結果を表6に示す。
さらに各試料について、外部耐食性を評価するため、ろう材層側を5質量%NaCl溶液環境中に露出させた状態で電流を電流密度1mA/cm2で24時間流し続けて定電流電解試験を実施し、その後、実施例1と同様に試料断面を観察した。結果を表6の腐食試験結果の欄に示す。表6に記載された記号は、表3における記号と同一のものを意味するものである。
For each sample, the intersection of the line connecting the 1.5% and 1.0% by mass brazing filler metal amounts in FIG. 1 and the line indicating the core Si content, and the sacrificial Zn content is 0.5% by mass. The width from a certain point (width A in FIG. 1) was measured. The results are shown in Table 6.
In addition, for each sample, Mg exists in the sacrificial material component at the intersection of the extension of the line connecting the brazing material Si amounts of 1.5 mass% and 1.0 mass% and the line indicating the core Si content in FIG. In this case, the width (width B in FIG. 2) with respect to the point where the amount of sacrificial material Mg was 0.05 mass% was measured. The results are shown in Table 6.
Furthermore, in order to evaluate the external corrosion resistance of each sample, a constant current electrolysis test was carried out by continuously applying a current at a current density of 1 mA / cm 2 for 24 hours with the brazing filler metal layer side exposed in a 5% by mass NaCl solution environment. Thereafter, the sample cross section was observed in the same manner as in Example 1. The results are shown in the column of corrosion test results in Table 6. The symbols described in Table 6 are the same as the symbols in Table 3.

Figure 0004393165
Figure 0004393165

Figure 0004393165
Figure 0004393165

Figure 0004393165
Figure 0004393165

表6の結果から、従来例又は比較例では腐食が全板厚に進展しているが、本発明のアルミニウム合金製熱交換器に用いられるチューブ板では腐食は板厚半分程度までに留まり、良好な外部耐食性を示すことがわかる。   From the results in Table 6, in the conventional example or the comparative example, the corrosion has progressed to the full thickness, but in the tube plate used in the aluminum alloy heat exchanger of the present invention, the corrosion is only about half the thickness, which is good. It can be seen that it exhibits excellent external corrosion resistance.

実施例3
表7に示す組成の合金No.43〜59を使用して、表8に示されるクラッド率でクラッドした全厚み0.225mmのブレージングシートを作製した。その際、最終の冷間圧延率を18〜45%で作製し、このブレージングシートを、合金No.43、44、47、48、51、53、57、58については窒素雰囲気にて到達温度600±5℃で3〜4分間保持後、550℃から200℃まで冷却速度50±5℃/minのろう付け加熱処理を、また、合金No.45、46、49、50、52、54、55、56、59については到達温度600±5℃で3〜4分間保持する際に、400℃以上の時間が15分未満であるような急速加熱冷却ろう付け処理を行った。その後、圧延面を表面から光学顕微鏡にて倍率100〜200の範囲で組織観察を行い、芯材の再結晶の平均結晶粒径を測定した。また、実施例1と同様にしてEPMAによる元素拡散プロファイルを測定した。それらの結果を表8に示す。
Example 3
Using alloy Nos. 43 to 59 having the composition shown in Table 7, brazing sheets having a total thickness of 0.225 mm clad with the cladding ratio shown in Table 8 were produced. At that time, the final cold rolling reduction was produced at 18 to 45%, and this brazing sheet was subjected to an ultimate temperature of 600 in a nitrogen atmosphere for Alloy Nos. 43, 44, 47, 48, 51, 53, 57, and 58. After holding at ± 5 ° C for 3-4 minutes, brazing heat treatment at a cooling rate of 50 ± 5 ° C / min from 550 ° C to 200 ° C, also alloy No. 45, 46, 49, 50, 52, 54, 55 , 56 and 59 were subjected to a rapid heating and cooling brazing treatment such that a time of 400 ° C. or more was less than 15 minutes when held at an ultimate temperature of 600 ± 5 ° C. for 3 to 4 minutes. Subsequently, the rolled surface was observed from the surface with an optical microscope at a magnification of 100 to 200, and the average crystal grain size of recrystallization of the core material was measured. Further, the element diffusion profile by EPMA was measured in the same manner as in Example 1. The results are shown in Table 8.

さらに各試料について、外部耐食性を評価するため、ろう材層側を5質量%NaCl溶液環境中に露出させた状態で電流を電流密度1mA/cm2で24時間流し続けて定電流電解試験を実施し、その後、実施例1と同様に試料断面を観察した。結果を表8に示す。表8中の記号のうち◎、○及び×は表3における◎、○及び×とそれぞれ同一のものを意味するものである。 Furthermore, in order to evaluate the external corrosion resistance of each sample, a constant current electrolysis test was carried out by continuously applying a current at a current density of 1 mA / cm 2 for 24 hours with the brazing filler metal layer side exposed in a 5% by mass NaCl solution environment. Thereafter, the sample cross section was observed in the same manner as in Example 1. The results are shown in Table 8. Among the symbols in Table 8, ◎, ○ and × mean the same as ×, ○ and × in Table 3, respectively.

Figure 0004393165
Figure 0004393165

Figure 0004393165
Figure 0004393165

表8の結果から、従来例では腐食が全板厚に進展しているが、本発明のアルミニウム合金製熱交換器に用いられるチューブ板では腐食は板厚半分程度までに留まり、良好な外部耐食性を示すことがわかる。   From the results in Table 8, in the conventional example, the corrosion has progressed to the full thickness, but in the tube plate used in the aluminum alloy heat exchanger of the present invention, the corrosion remains only about half the thickness, and good external corrosion resistance. It can be seen that

図1は、アルミニウム合金からなるSi含有量0.05〜1.0質量%の芯材の一方の面にAl-Si系ろう材がクラッドされ、もう一方の面にZnを含有する犠牲材がクラッドされたアルミニウム合金クラッド材についてEPMAによる元素拡散プロファイルを示す図である。FIG. 1 shows aluminum in which an Al—Si brazing material is clad on one surface of a core material made of an aluminum alloy and having a Si content of 0.05 to 1.0 mass%, and a sacrificial material containing Zn is clad on the other surface. It is a figure which shows the diffusion profile of each element by EPMA about an alloy clad material.

図2は、アルミニウム合金からなるSi含有量0.05〜1.0質量%の芯材の一方の面にAl-Si系ろう材がクラッドされ、もう一方の面にMgを含有する犠牲材がクラッドされたアルミニウム合金クラッド材についてEPMAによる元素拡散プロファイルを示す図である。FIG. 2 shows aluminum in which an Al—Si brazing material is clad on one surface of a core material made of an aluminum alloy and having a Si content of 0.05 to 1.0 mass%, and a sacrificial material containing Mg is clad on the other surface. It is a figure which shows the diffusion profile of each element by EPMA about an alloy clad material.

図3は、本発明のアルミニウム合金製熱交換器の一例を示す模式図である。FIG. 3 is a schematic view showing an example of an aluminum alloy heat exchanger according to the present invention.

Claims (7)

アルミニウム合金からなるSi含有量0.05〜1.0質量%の芯材の一方の面に5〜20質量%のSiを含有するAl-Si系ろう材がクラッドされ、もう一方の面に2〜10質量%のZnを含有する犠牲材がクラッドされた薄肉のアルミニウム合金クラッド材からなるチューブを有する熱交換器であって、ろう付け加熱後における該アルミニウム合金クラッド材のろう材側からのEPMAによる元素拡散プロファイルについて下記(1)式を満たすことを特徴とするアルミニウム合金製熱交換器。
L−LSi−LZn≧40(μm) ……(1)
(式中、Lは、チューブ板厚(μm)を、LSiは、ろう材か芯材に拡散した、Si量で1.5質量%と1.0質量%とを結ぶ線の延長上と、芯材Si含有量を示す線との交点のろう材表面からの位置(μm)を、LZnは、犠牲材から芯材に拡散したZn量が0.5質量%以上である犠牲材表面からの拡散領域(μm)を示す。)
An Al-Si brazing material containing 5 to 20% by mass of Si is clad on one side of a core material made of aluminum alloy and having a Si content of 0.05 to 1.0% by mass, and 2 to 10% by mass on the other side. sacrificial material containing Zn is a heat exchanger having a tube made of an aluminum alloy clad material thin which is clad, for each element by EPMA from brazing material side of the aluminum alloy clad material after brazing heating An aluminum alloy heat exchanger characterized by satisfying the following formula (1) for the diffusion profile.
L-L Si -L Zn ≧ 40 (μm) …… (1)
(Wherein, L is the tube thickness to ([mu] m), L Si is diffused into the brazing material or al core, and on the extension of the line connecting the 1.5 wt% and 1.0 wt% in Si content, the core material The position (μm) from the surface of the brazing material at the intersection with the line indicating the Si content, L Zn is a diffusion region from the surface of the sacrificial material where the amount of Zn diffused from the sacrificial material to the core material is 0.5 mass% or more ( μm).)
アルミニウム合金からなるSi含有量0.05〜1.0質量%の芯材の一方の面に5〜20質量%のSiを含有するAl-Si系ろう材がクラッドされ、もう一方の面に1〜5質量%のMgを含有する犠牲材がクラッドされた薄肉のアルミニウム合金クラッド材からなるチューブを有する熱交換器であって、ろう付け加熱後における該アルミニウム合金クラッド材のろう材側からのEPMAによる元素拡散プロファイルについて下記(2)式を満たすことを特徴とするアルミニウム合金製熱交換器。
L−LSi−LMg≧5(μm) ……(2)
(式中、Lは、チューブ板厚(μm)を、LSiは、ろう材か芯材に拡散した、Si量で1.5質量%と1.0質量%とを結ぶ線の延長上と、芯材Si含有量を示す線との交点のろう材表面からの位置(μm)を、LMgは、犠牲材から芯材に拡散したMg量が0.05質量%以上である犠牲材表面からの拡散領域(μm)を示す。)
An Al-Si brazing material containing 5 to 20% by mass of Si is clad on one side of a core material made of aluminum alloy and having a Si content of 0.05 to 1.0% by mass, and 1 to 5% by mass on the other side. sacrificial material containing Mg is a heat exchanger having a tube made of an aluminum alloy clad material thin which is clad, for each element by EPMA from brazing material side of the aluminum alloy clad material after brazing heating An aluminum alloy heat exchanger characterized by satisfying the following formula (2) for the diffusion profile.
L−L Si −L Mg ≧ 5 (μm) …… (2)
(Wherein, L is the tube thickness to ([mu] m), L Si is diffused into the brazing material or al core, and on the extension of the line connecting the 1.5 wt% and 1.0 wt% in Si content, the core material The position (μm) from the surface of the brazing filler metal at the intersection with the line indicating the Si content, L Mg is the diffusion region from the sacrificial material surface where the amount of Mg diffused from the sacrificial material to the core material is 0.05 mass% or more ( μm).)
アルミニウム合金からなるSi含有量0.05〜1.0質量%の芯材の一方の面に5〜20質量%のSiを含有するAl-Si系ろう材がクラッドされ、もう一方の面に2〜10質量%のZn及び1〜5質量%のMgを含有する犠牲材がクラッドされた薄肉のアルミニウム合金クラッド材からなるチューブを有する熱交換器であって、ろう付け加熱後における該アルミニウム合金クラッド材のろう材側からのEPMAによる元素拡散プロファイルについて下記(1)式及び(2)式を満たすことを特徴とするアルミニウム合金製熱交換器。
L−LSi−LZn≧40(μm) ……(1)
(式中、Lは、チューブ板厚(μm)を、LSiは、ろう材か芯材に拡散した、Si量で1.5質量%と1.0質量%とを結ぶ線の延長上と、芯材Si含有量を示す線との交点のろう材表面からの位置(μm)を、LZnは、犠牲材から芯材に拡散したZn量が0.5質量%以上である犠牲材表面からの拡散領域(μm)を示す。)
L−LSi−LMg≧5(μm) ……(2)
(式中、L及びLSiは、(1)式中のものとそれぞれ同義であり、LMgは、犠牲材から拡散したMg量が0.05質量%以上である犠牲材表面からの拡散領域(μm)を示す。)
An Al-Si brazing material containing 5 to 20% by mass of Si is clad on one side of a core material made of aluminum alloy and having a Si content of 0.05 to 1.0% by mass, and 2 to 10% by mass on the other side. A heat exchanger having a tube made of a thin-walled aluminum alloy clad material clad with a sacrificial material containing Zn and 1-5% by mass of Mg, and brazing the aluminum alloy clad material after brazing heating An aluminum alloy heat exchanger characterized by satisfying the following formulas (1) and (2) for the diffusion profile of each element by EPMA from the side:
L-L Si -L Zn ≧ 40 (μm) …… (1)
(Wherein, L is the tube thickness to ([mu] m), L Si is diffused into the brazing material or al core, and on the extension of the line connecting the 1.5 wt% and 1.0 wt% in Si content, the core material position from the braze surface of the intersection of the line indicating the Si content of the ([mu] m), L Zn is diffused region from the sacrificial material surface Zn amount diffused from the sacrificial material on the core material is not less than 0.5 mass% ( μm).)
L−L Si −L Mg ≧ 5 (μm) …… (2)
(In the formula, L and L Si have the same meanings as those in the formula (1), and L Mg is a diffusion region from the surface of the sacrificial material in which the amount of Mg diffused from the sacrificial material is 0.05 mass% or more (μm )
請求項1〜3のいずれか1項記載のクラッド材成分範囲内で、ろう材クラッド率が7%以上13%未満、犠牲材クラッド率が4%以上16.5%未満であり、窒素雰囲気下600±5℃で3〜4分間保持後、550℃から200℃まで冷却速度50±5℃/minのろう付け加熱処理を行うことを特徴とするアルミニウム合金製熱交換器の製造方法。   Within the clad material component range according to any one of claims 1 to 3, the brazing material clad rate is 7% or more and less than 13%, the sacrificial material clad rate is 4% or more and less than 16.5%, and 600 ± A method for producing an aluminum alloy heat exchanger, characterized by performing brazing heat treatment at a cooling rate of 50 ± 5 ° C / min from 550 ° C to 200 ° C after holding at 5 ° C for 3 to 4 minutes. 請求項1〜3のいずれか1項記載のクラッド材成分範囲内で、ろう材クラッド率が7%以上20%未満、犠牲材クラッド率が4%以上30%未満であり、窒素雰囲気にて到達温度600±5℃で3〜4分間保持する際に、400℃以上の時間が15分未満であるような急速加熱冷却ろう付け処理を行うことを特徴とするアルミニウム合金製熱交換器の製造方法。   The brazing material clad rate is 7% or more and less than 20% and the sacrificial material clad rate is 4% or more and less than 30% within the cladding material component range according to any one of claims 1 to 3, and reached in a nitrogen atmosphere. A method for producing an aluminum alloy heat exchanger, characterized by performing a rapid heating and cooling brazing process in which a time of 400 ° C. or more is less than 15 minutes when held at a temperature of 600 ± 5 ° C. for 3 to 4 minutes . 前記アルミニウム合金クラッド材の最終の冷間圧延率を25%以下とすることを特徴とする請求項4又は5記載のアルミニウム合金製熱交換器の製造方法。   6. The method for manufacturing an aluminum alloy heat exchanger according to claim 4, wherein a final cold rolling reduction of the aluminum alloy clad material is 25% or less. 前記アルミニウム合金クラッド材の最終の冷間圧延率が25%以下であり、前記ろう付け加熱後におけるアルミニウム合金クラッド材の芯材の再結晶の平均結晶粒径が180μm以上230μm以下であることを特徴とする請求項1〜3のいずれか1項記載のアルミニウム合金製熱交換器。 The final cold rolling reduction of the aluminum alloy clad material is 25% or less, and the average crystal grain size of recrystallization of the core material of the aluminum alloy clad material after the brazing heating is 180 μm or more and 230 μm or less. An aluminum alloy heat exchanger according to any one of claims 1 to 3.
JP2003402632A 2003-12-02 2003-12-02 Aluminum alloy heat exchanger and method of manufacturing the same Expired - Fee Related JP4393165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402632A JP4393165B2 (en) 2003-12-02 2003-12-02 Aluminum alloy heat exchanger and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402632A JP4393165B2 (en) 2003-12-02 2003-12-02 Aluminum alloy heat exchanger and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005161352A JP2005161352A (en) 2005-06-23
JP4393165B2 true JP4393165B2 (en) 2010-01-06

Family

ID=34726151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402632A Expired - Fee Related JP4393165B2 (en) 2003-12-02 2003-12-02 Aluminum alloy heat exchanger and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP4393165B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5577616B2 (en) 2009-04-06 2014-08-27 株式会社デンソー Heat exchanger tubes and heat exchangers
US8247084B2 (en) * 2010-05-18 2012-08-21 Kobe Steel, Ltd. Aluminum alloy brazing sheet
JP6262930B2 (en) * 2012-03-28 2018-01-17 三菱アルミニウム株式会社 Aluminum alloy clad material for heat exchanger
JP6509205B2 (en) 2013-06-26 2019-05-08 アーコニック インコーポレイテッドArconic Inc. Resistance welding fastener, apparatus and method
CA3067710C (en) 2014-02-03 2022-03-15 Arconic Inc. Resistance welding fastener, apparatus and methods
CA2964452C (en) 2014-10-13 2020-04-14 Arconic Inc. Brazing sheet
US10384296B2 (en) 2014-12-15 2019-08-20 Arconic Inc. Resistance welding fastener, apparatus and methods for joining similar and dissimilar materials
KR102319841B1 (en) 2015-09-16 2021-10-29 하우매트 에어로스페이스 인코포레이티드 Rivet feeding apparatus
US10593034B2 (en) 2016-03-25 2020-03-17 Arconic Inc. Resistance welding fasteners, apparatus and methods for joining dissimilar materials and assessing joints made thereby

Also Published As

Publication number Publication date
JP2005161352A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP2008240084A (en) Aluminum alloy-clad material for heat exchanger and brazing sheet
JP4393165B2 (en) Aluminum alloy heat exchanger and method of manufacturing the same
JP2004035966A (en) Aluminum alloy clad material and its manufacturing process
JP5302114B2 (en) Aluminum alloy brazing sheet for vacuum brazing
WO2019225512A1 (en) Aluminum alloy heat exchanger
US7247392B2 (en) Aluminum alloy heat exchanger and method of producing the same
JP2000167688A (en) Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance
JP2016182616A (en) Aluminum alloy cladding material and manufacturing method of the same
JP5184112B2 (en) Aluminum alloy clad material
JP2009074138A (en) Composite material of aluminum alloy, and heat exchanger
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP3217108B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2933382B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP3850082B2 (en) Aluminum alloy heat exchanger
JP4347145B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
JP3234619B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JPH11269588A (en) High corrosion resistant aluminum clad material for heat exchanger, and heat exchanger tube material using the same
EP1367353A1 (en) Aluminum alloy heat exchanger and method of producing the same
WO2019225511A1 (en) Aluminum alloy heat exchanger
JP3538507B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JP2000135591A (en) Aluminum alloy clad material for heat exchanger superior in corrosion resistance
JP2005015857A (en) Clad of aluminum alloy
JP2007297673A (en) High corrosion resistant aluminum alloy composite material for heat exchanger, and aluminum alloy heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Ref document number: 4393165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees