JP4393116B2 - Magnetic resonance imaging system - Google Patents

Magnetic resonance imaging system Download PDF

Info

Publication number
JP4393116B2
JP4393116B2 JP2003164580A JP2003164580A JP4393116B2 JP 4393116 B2 JP4393116 B2 JP 4393116B2 JP 2003164580 A JP2003164580 A JP 2003164580A JP 2003164580 A JP2003164580 A JP 2003164580A JP 4393116 B2 JP4393116 B2 JP 4393116B2
Authority
JP
Japan
Prior art keywords
refrigerant
magnetic field
cooling
magnetic resonance
transmission coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003164580A
Other languages
Japanese (ja)
Other versions
JP2005000269A5 (en
JP2005000269A (en
Inventor
賢治 滝口
弘隆 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003164580A priority Critical patent/JP4393116B2/en
Publication of JP2005000269A publication Critical patent/JP2005000269A/en
Publication of JP2005000269A5 publication Critical patent/JP2005000269A5/ja
Application granted granted Critical
Publication of JP4393116B2 publication Critical patent/JP4393116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、核磁気共鳴現象を利用して被検体の所望部位の断層画像を撮影する磁気共鳴イメージング装置に係り、特に、RF送信コイルの冷却に関する。
【0002】
【従来の技術】
磁気共鳴イメージング装置のRF送信コイルに電力が供給され高周波磁場を発生すると、コイルの構成要素であるダイオード、コンデンサ等の受動素子の発熱により、RF送信コイルの温度が上昇する。特に、高磁場になるほど高周波磁場の周波数が高くなるため、RF送信コイルの温度上昇が著しくなる。この様なRF送信コイルの温度上昇を放置するとRF送信コイルの性能が低下し、さらに照射コイルに接近している被検体に火傷等の熱的危害を与える可能性がある。したがって、RF送信コイルの性能を維持し、被検体の安全を守るため、RF送信コイルを冷却してその温度を制御する必要がある。
【0003】
RF送信コイルを冷却する方法として、冷媒を用いて強制的に冷却することが提案されている。例えば、[公知文献1]には、冷媒としてプロトンを含まない液体(例えばフロンFC-40など)を用いてRF送信コイルを冷却している。これにより、冷媒と高周波磁場との干渉の抑制、つまり、冷媒による高周波磁場の吸収と、冷媒からの核磁気共鳴信号の発生を抑制している。
【0004】
【特許文献1】
特開2002−224084号公報
【0005】
【発明が解決しようとする課題】
一般的に、水を冷媒として利用した方が取り扱いが簡便で冷却効率も高い。しかし、冷媒として水を用いると水がプロトンを含むために、上述した様に冷媒が高周波磁場を吸収したり、冷媒から不要な核磁気共鳴信号が発生してしまい、画像に予期せぬアーチファクトを発生させる等の悪影響をもたらす。しかし、[特許文献1]には、水の様なプロトンを含む冷媒を用いてRF送信コイルを冷却する場合に発生する上記の様な高周波磁場との干渉を抑制する冷却手段は提案されていない。
そこで本発明は、水の様なプロトンを含む冷媒であってもその様な冷媒と高周波磁場との干渉を抑制しながらRF送信コイルを冷却することを目的とする。
【0006】
【課題を解決するための手段】
前記目的を達成するために、本発明は以下の様に構成される。
被検体が置かれる空間に静磁場及び傾斜磁場をそれぞれ発生する磁場発生手段と、前記被検体の撮影部位に高周波磁場を照射するRF送信コイルを備えた高周波磁場送信手段と、前記被検体からの核磁気共鳴信号を受信する受信手段と、前記傾斜磁場の印加と前記高周波磁場の印加と前記核磁気共鳴信号の受信を制御するパルスシーケンス制御手段と、前記RF送信コイルを冷却する冷却手段と、前記冷却手段に供給する冷媒を制御する冷媒制御手段とを備える磁気共鳴イメージング装置において、前記冷媒制御手段は、前記パルスシーケンスに対応して前記冷却手段への冷媒の供給を制御する。
【0007】
これにより、水の様なプロトンを含む冷媒を用いる際に、任意のパルスシーケンスに対応して、高周波磁場との干渉を抑制しながらRF送信コイルを冷却することができる。
好ましい一実施態様によれば、前記冷媒制御手段は、前記被検体に前記高周波磁場が印加されてないときに、前記冷却手段に前記冷媒が供給されるように冷媒の供給を制御する。
これにより、冷媒と高周波磁場との干渉を抑制しながら、リアルタイムでRF送信コイルを冷却できる。
【0008】
また、好ましい一実施態様によれば、前記冷媒制御手段は、前記任意のパルスシーケンスの終了後から次のパルスシーケンスが始まるまでの間に、前記冷却手段に前記冷媒が供給されるように冷媒の供給を制御する。
これにより、冷媒と高周波磁場との干渉を抑制しながら、前記RF送信コイルを集中して冷却でき、温度を大きく低下させることができる。
【0009】
また、好ましい一実施態様によれば、前記冷媒が液体である第1の冷媒と気体である第2の冷媒からなり、前記冷媒制御手段は、前記高周波磁場の印加中には、前記冷却手段内が第2の冷媒のみによって充填されるように、第1の冷媒と第2の冷媒の供給を制御する。
これにより、高周波磁場の印加中には前記冷却手段から第1の冷媒を完全に排除することができるので、冷媒と高周波磁場との干渉をさらに抑制することができる。
【0010】
また、好ましい一実施態様によれば、前記冷却手段は、気液分離手段を備えて該冷却手段を通過した前記第1の冷媒と前記第2の冷媒を分離した後、それぞれの冷媒を再循環させる。
これにより、冷媒の再循環に際して、それぞれの冷媒を独立して制御しやすくなるとともに、冷媒を有効利用することができる。
【0011】
また、好ましい一実施態様によれば、前記冷却手段は、前記冷媒を流すための管を組み合わせて構成され、それぞれの管が前記RF送信コイルを構成する各コイルエレメントに近接又は接触して配置される。
これにより、前記RF送信コイルを効率的に冷却することが可能になる。
【0012】
また、好ましい一実施態様によれば、前記冷却手段は、前記RF送信コイルの略中央に管を備えて、前記RF送信コイルの周囲から供給して該RF送信コイルを冷却した冷媒をその略中央の管に収束させて排出すること、又は、冷媒の流れを逆にして、その略中央の管から冷媒を供給し、前記RF送信コイルを冷却した冷媒を該RF送信コイルの周囲から排出する。
【0013】
これにより、特に超電導磁石による静磁場発生を行う垂直磁場方式の磁気共鳴イメージング装置においては、磁石中央に容易に穴をあける空間を確保できるため、空間的に効率良く管を配置することができる。
【0014】
また、好ましい一実施態様によれば、被検体が置かれる計測空間に静磁場および傾斜磁場をそれぞれ発生する磁場発生手段と、前記被検体の撮影部位に高周波磁場を照射するR F送信コイルを備えた高周波磁場送信手段と、前記被検体からの核磁気共鳴信号を受信する受信手段と、前記RF送信コイルの前記磁場発生手段側に配置されて高周波磁場を遮蔽する高周波磁場シールド手段と、前記傾斜磁場の印加と前記高周波磁場の印加と前記核磁気共鳴信号の受信を制御するパルスシーケンス制御手段と、前記RF送信コイルを冷却する冷却手段と、を備える磁気共鳴イメージング装置において、前記冷却手段は、前記高周波磁場シールド手段の磁場発生手段側に配置され、熱伝導性部材を介して前記RF送信コイルと接続されている
【0015】
これにより、冷媒と高周波磁場との干渉がなくなるので、被検体の撮影中に常時冷媒をながすことができるようになる。
また、好ましい一実施態様によれば、前記冷媒又は前記第1の冷媒を水を含む
これにより、冷媒の取り扱いが簡便になり、冷却効率も高くすることができる。
【0016】
【発明の実施の形態】
以下、本発明の実施例を添付図面に基づいて説明する。なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
【0017】
図4は本発明に係る磁気共鳴イメージング(以下、「MRI」という)装置の構成を示すブロック図である。
【0018】
このMRI装置は、被検体116に静磁場を与える静磁場発生手段1と、XYZ直交座標系において、X方向に傾斜磁場を発生するX方向傾斜磁場発生手段2と、Y方向に傾斜磁場を発生するY方向傾斜磁場発生手段3と、Z方向に傾斜磁場を発生するZ方向傾斜磁場発生手段4と、上記傾斜磁場発生手段に電力を供給する傾斜磁場電源5と、上記被検体の撮影部位に高周波磁場を照射するRF送信コイル6と、上記被検体の生体組織から核磁気共鳴(以下、「NMR」という)により放出される高周波磁場を受信するRF受信コイル7と、上記RF送信コイル6を冷却する冷却管8と、上記高周波磁場を発生させるための電力を供給する高周波磁場電源9と、上記高周波磁場の照射および受信を行う高周波送受信部110と、冷媒を搬送するポンプ111と、冷媒の熱を除去する熱交換器112と、傾斜磁場印加及び高周波送受信部のタイミングを制御してパルスシーケンスの実行制御を行うと共に、上記受信信号を用いて画像再構成演算を行う計算機113と、上記計算機で生成された画像信号を入力して断層像として表示する表示器114により構成されている。
【0019】
傾斜磁場発生手段2,3,4は、それぞれX,Y,Zの直交する3方向に傾斜磁場を発生する一組のコイルで構成され、傾斜磁場電源5からの電流供給を受けてそれぞれの傾斜磁場コイルが傾斜磁場を発生する。傾斜磁場の印加の仕方により被検体116の任意の断面を選択することができ、またNMR信号に位置情報を与えることができる。NMR信号に位置情報を与える傾斜磁場は、位相エンコード傾斜磁場、周波数エンコード傾斜磁場と呼ばれ、これによって計測データが配置される計測空間(k空間)が規定される。
【0020】
送信用のRF送信コイル6は高周波磁場電源9からの電力供給を受けて高周波磁場を発生する。この高周波磁場の周波数は撮影対象である原子核スピンの共鳴周波数に同調されている。通常、MRI装置の撮影対象は、被検体の主たる構成物質である水素原子核のプロトンである。
【0021】
RF受信コイル7からの信号は、高周波送受信部110で検出され、計算機113で信号処理され、また計算により画像に変換される。画像は表示部114で表示される。傾斜磁場電源5、高周波送受信部110は、パルスシーケンスに従って計算機113で制御される。
【0022】
図1に本発明の第1の実施例における冷却手段である冷却管の構成と配置を示す。また図2に第1の実施例におけるRF送信コイルの構成を示す。図2はXY平面上に配置されたRF送信コイルの全体をZ軸の正方向から見た場合の模式図である。このRF送信コイルは、基板21上に導体22,23とコンデンサ24、ダイオード25によって構成されている。第1の実施例におけるRF送信コイルは8角形であり、それぞれの辺が導体22、その対角線が導体23で構成される同型の8つのエレメントからなる。さらに、辺を構成する導体にはコンデンサ24が、対角線を構成する導体にはダイオード25がそれぞれ配置されている。
【0023】
図1(a)にXY平面上に配置された冷却管の全体をZ軸の正方向から見た場合の模式図を示す。冷却管の全体は図2に示す様にRF送信コイルと同様の8角形であって、同型の8つのエレメントからなる。そして、冷却管の各エレメントは、RF送信コイルの最寄りのコイルエレメントに近接又は接触して(つまり、熱交換が十分可能な様に熱的に接触して)配置される。図1(b)は冷却管の任意の1エレメントに関する構成を示す。また、図1(c)にはこの8エレメント冷却管の図1(a)の管11と管15を結ぶ線を通るXZ断面での管の配置を示す。尚、管11,15の位置は図1(a)の位置に限定されず管13の周囲のいずれの位置で良い。
【0024】
最初に1個のコイルエレメントに着目した冷媒の流れを説明する。冷媒は管11より流入し、さらに導体22の外周に配置した管13に流入する。管11と管13は弁12によって隔てられており、管11にある冷媒は弁12が開の場合に管13に流入する。管14は導体23及び素子25の上面に沿って配置され、コイル中心部で管18に接続される。さらに管14より分岐した管16は、導体22および素子24の上面に沿って配置され、帰路である管17を経て管18に合流される。管18はRF送信コイル中心部においてコイル基板21を貫通している。管18は管15とつながり、冷媒は管15より流出する。他のコイルエレメント上の管の配置も同様である。管11と管15はそれぞれ図示してないポンプの出口側及び図示してない熱交換器の入り口側に接続されている。
【0025】
以上の構造をもつ冷却管において、冷媒として水を用いてRF送信コイルの温度を制御する方法を説明する。高周波磁場パルス(以下、「RFパルス」という)の照射による冷媒の励起と冷媒からの不要なNMR信号の発生を回避するために、任意のパルスシーケンスに同期させて、RFパルスの照射タイミングと冷却管への冷媒の流入のタイミングを異ならせ、RFパルスの照射時には冷却管内に冷媒が除去されて存在しないように冷媒の供給を制御する。
【0026】
図3に示すパルスシーケンス(スピンエコー法)の開始時刻t0において、図1(b)のポンプより供給される冷媒が管11を通過し、導体22の外周に配置された管13に充填されているとする。開始時刻t0では、弁12は全て閉じており、管13より先に冷媒は自由に流れて行くことができない。図3のスピンエコー法では、時刻t1において90°RFパルスが照射され、そのTE/2時間後に180°RFパルスが照射され、1回の繰り返し時間TRの間に合計2回のRFパルスが照射される。図5(a)に示す様に90°のRFパルスの照射時刻t1から遅延時間でτ1後に弁12を開くと、冷媒は管14および管16を通過し、管18を経て管15で合流し、図示せぬ熱交換器に入る。ここでτ1>TE/2である。一定時間後に弁12を閉じると、冷媒は管13を通過できない。このように図5(a)では繰り返し時間TRごとに上記弁の開閉を行う場合を示している。尚、図5(a)では180°RFパルスを省略してある。
【0027】
また、図5(b)では1被検体について少なくとも複数回の撮影を行うプロトコル(一連のパルスシーケンスを組み合わせて複数の目的を持つ画像を撮影する、その組み合わせ)において、任意の撮影(パルスシーケンス)の終了から次の撮影(パルスシーケンス)の開始の合間に弁の開閉を行う場合を示している。ここで位相エンコード回数をnとして、τ1>n ×TRとする。このようにRFパルスの照射のタイミングと管14及び16への冷媒の流入のタイミングを異ならせることにより、RFパルスが冷媒を励起し、必要のない信号が発生すること抑制することができる。なお弁12の開閉制御は、撮影条件又は撮影プロトコルによって計算機13を介して行われる。
【0028】
次に、撮影条件からRF送信コイルの温度上昇勾配を推定する方法を説明する。ここでは基準となるパルスシーケンスとして図3に示すスピンエコー法を適用する。図3に示すとおりエコー時間TEの1/2の時間にフリップアングル90°と180°のRFパルスをそれぞれ印加する。ここでTEは90°RFパルスの照射時刻からエコー信号のピーク位置までの時間である。またGs,Gp,Gfはそれぞれスライス傾斜磁場、位相エンコード傾斜磁場、周波数エンコード傾斜磁場を表しており、Gsは断面の切り出し、Gp,GfはNMR信号に位置情報を付与するために印加される。以上を繰り返し時間TRの間隔で位相エンコード回数繰り返す。
【0029】
ここでフリップアングル90°のRFパルスのエネルギー強度を1とすると、フリップアングル180°のRFパルスのエネルギー強度は2となる。また、撮影条件によってTR,TE、位相エンコード回数が変化した時、これらのパラメータの定義から、RF送信コイルの大凡の温度上昇を推定することが可能である。例えばTRが1/2となった時、撮影時間も1/2となるので温度上昇勾配は2倍になる。ある1つの条件のパルスシーケンスを実施して素子(コンデンサ24とダイオード25)部、導体部それぞれの温度上昇を事前に一度測定しておけば、同じRF送信コイルについては、他の撮影条件における温度上昇勾配も推定可能となる。
【0030】
この温度上昇勾配を利用して、以下で述べる冷媒の循環において、冷媒の流量の最適化が可能となる。すなわち、温度上昇の大きくなるパルスシーケンスを実施する場合には、冷媒の流量を増大させる。例えば、本シーケンスの実施により予想される導体部22,23の温度上昇をΔTb、コンデンサ24の温度上昇を△Tc、ダイオード25の温度上昇を△Tdとし、管14の長さをL14、管16の長さをL16、管14の断面積をS14、管16の断面積をS16とすると、
S16/S14=L14(ΔTb+△Td)/L16(△Tb+ΔTc) (1)
とした管の設計により、管の断面積の違いで冷媒の流量を制御し、RF送信コイルの特定部位の過熱を防ぐ。つまり、温度上昇の大きい部位には大量の冷媒を流し、小さい部位には少量の冷媒を流すことで、どの部位も同等に冷却する。
【0031】
次に、上記冷媒が液体である場合に、上記RFパルス照射中に上記管14及び管16にこの液体冷媒が残留する可能性があるので、この様な液体冷媒を積極的に除去する第2の実施例を説明する。この第2の実施例では、冷媒として、液体である第1の冷媒と気体である第2の冷媒の供給を制御して使用し、第1の冷媒が主としてRF送信コイルの冷却を担い、第2の冷媒が主として第1の冷媒の除去を担う。
【0032】
図6に第2の実施例を示す。空気等の気体冷媒(第2の冷媒)を管内に噴射して、管内に残留する液体冷媒(第1の冷媒)を積極的に押し出して除去し、上記RFパルス照射時には、管内は気体冷媒で充填され液体冷媒が皆無となるように液体冷媒と気体冷媒の供給を制御する。つまり、管14及び管16を含む冷却部66において、図1(a)に示すように弁12の後に設置したノズル62より空気を噴射する。RF送信コイルを通過した冷媒は気液分離器63で水と空気に分離され、空気はポンプ60に送られ、圧縮機61を経て再度ノズル62から噴射される。また水は熱交換器64に送られ再度ポンプ65で循環される。
【0033】
さらに、第3の実施例として、被検体の検査中に冷媒を常時循環させる例を説明する。この場合、冷媒は図1(c)に示す様に、RF送信コイルの上面(つまり計測空間側の面)に配置した管14,16を循環すると、RFパルスの照射によって冷媒から不要なNMR信号を発生してしまう。そこで冷媒がRFパルスの影響を受けないようにするために、図7に示す様に管を基板21及び高周波磁場シールド26の外側(つまり、静磁場発生手段側であり、被検体が配置される計測空間の反対側)に配置する。しかしながら、図1(c)の場合と比較して、管とRF送信コイルの構成要素(素子、導体)の距離は拡大し、管の冷却効果が及ばなくなってしまうため、図7に示す様に熱伝達性部材41を基板21に通し、管とRF送信コイルの構成要素とを熱伝達性部材41を介して熱的に接触させる。これにより、RF送信コイルの構成要素より発せられる熱エネルギーを熱伝達性部材41を介して冷媒に移動させることができる。
【0034】
以上、RF送信コイルを冷却する冷却管を用いたMRI装置の構成と動作の実施形態を説明したが、本発明のMRI装置は上記実施形態に限定されず、種々の変更が可能である。例えば、RF送信コイルと冷却管の構成は8角形以外の多角形や円形でも可能である。また、RF送信コイルと冷却管は同型のエレメントから構成される例を説明したが、同型である必要はなく、互いに異なる形状のエレメントから構成しても良い。また、(第1の)冷媒として水の例を説明したが、特に水である必要はなく、他の冷却効率の高い液体(例:代替フロン物質)又は気体の冷媒(例:窒素ガス)でもよい。また、冷媒の流す方向をRF送信コイルの周囲から中央の場合を説明したが、その逆でも良い。また、以上の実施例の説明では垂直磁場方式のMRI装置を例にしたが、水平磁場方式のMRI装置でも同様に本発明を適用することができる。
【0035】
【発明の効果】
以上、本発明によれば、水の様なプロトンを含む冷媒を用いて、冷媒の高周波磁場との干渉を抑制しながらRF送信コイルを冷却することが可能になるため、取り扱いが簡単で冷却効率の高い冷媒、例えば水を使用することができるようになる。
【図面の簡単な説明】
【図1】本発明の第1の実施例における冷却管の構成と配置を示す図。
(a)XY平面上に配置された冷却管の全体をZ軸の正方向から見た場合の図。
(b)冷却管の任意の1エレメントに関する冷却管の構成を示す図。
(c)冷却管のXZ断面での管の配置を示す図。
【図2】本発明の第1の実施例におけるRF送信コイルの構成を示す図。
【図3】典型的なパルスシーケンス(スピンエコー法)の図。
【図4】本発明に係るMRI装置の構成を示すブロック図。
【図5】パルスシーケンスに同期した冷媒制御を示す図。
(a)RFパルスが印加されてないタイミングで冷媒を流す場合の図。
(b)連続するパルスシーケンスの合間で冷媒を流す場合の図。
【図6】第2の実施例を示す図。
【図7】第3の実施例を示す図。
【符号の説明】
1…静磁場発生手段
2…X方向傾斜磁場発生手段
3…Y方向傾斜磁場発生手段
4…Z方向傾斜磁場発生手段
5…傾斜磁場電源
6…RF送信コイル
7…RF受信コイル
8…冷却管
9…高周波磁場電源
60…第2の冷媒用ポンプ
61…第2の冷媒用圧縮機
62…第2の冷媒用ノズル
63…気液分離器
64…熱交換機
65…第1の冷媒用ポンプ
66…冷却部
110…高周波磁場送受信機
111…ポンプ
112…熱交換器
113…計算機
114…表示器
115…ベッド
116…被検体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic resonance imaging apparatus that takes a tomographic image of a desired portion of a subject using a nuclear magnetic resonance phenomenon, and more particularly to cooling of an RF transmission coil.
[0002]
[Prior art]
When power is supplied to the RF transmission coil of the magnetic resonance imaging apparatus to generate a high-frequency magnetic field, the temperature of the RF transmission coil rises due to heat generated by passive elements such as diodes and capacitors that are constituent elements of the coil. In particular, the higher the magnetic field, the higher the frequency of the high-frequency magnetic field, so that the temperature rise of the RF transmitter coil becomes significant. If such an increase in the temperature of the RF transmitter coil is left unattended, the performance of the RF transmitter coil is reduced, and there is a possibility of causing a thermal hazard such as a burn to the subject approaching the irradiation coil. Therefore, in order to maintain the performance of the RF transmission coil and protect the safety of the subject, it is necessary to cool the RF transmission coil and control its temperature.
[0003]
As a method of cooling the RF transmission coil, it has been proposed to forcibly cool it using a refrigerant. For example, in [Publication 1], the RF transmission coil is cooled by using a liquid that does not contain protons as a refrigerant (for example, Freon FC-40). This suppresses the interference between the refrigerant and the high-frequency magnetic field, that is, the absorption of the high-frequency magnetic field by the refrigerant and the generation of a nuclear magnetic resonance signal from the refrigerant.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-224084
[Problems to be solved by the invention]
Generally, using water as a refrigerant is easier to handle and has higher cooling efficiency. However, when water is used as the refrigerant, the water contains protons, and as described above, the refrigerant absorbs a high-frequency magnetic field or an unnecessary nuclear magnetic resonance signal is generated from the refrigerant, causing unexpected artifacts in the image. It causes adverse effects such as generation. However, [Patent Document 1] does not propose a cooling means for suppressing interference with the above-described high-frequency magnetic field that occurs when the RF transmission coil is cooled using a refrigerant containing protons such as water. .
Accordingly, an object of the present invention is to cool an RF transmission coil while suppressing interference between such a refrigerant and a high-frequency magnetic field even if the refrigerant contains a proton such as water.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
A magnetic field generating means for generating a static magnetic field and a gradient magnetic field in a space where the subject is placed, a high-frequency magnetic field transmitting means having an RF transmission coil for irradiating a high-frequency magnetic field to the imaging region of the subject, Receiving means for receiving a nuclear magnetic resonance signal; pulse sequence control means for controlling application of the gradient magnetic field, application of the high-frequency magnetic field and reception of the nuclear magnetic resonance signal; cooling means for cooling the RF transmission coil; In the magnetic resonance imaging apparatus including a refrigerant control unit that controls a refrigerant to be supplied to the cooling unit, the refrigerant control unit controls supply of the refrigerant to the cooling unit in response to the pulse sequence.
[0007]
As a result, when a refrigerant containing protons such as water is used, the RF transmission coil can be cooled while suppressing interference with a high-frequency magnetic field corresponding to an arbitrary pulse sequence.
According to a preferred embodiment, the refrigerant control means controls supply of the refrigerant so that the refrigerant is supplied to the cooling means when the high-frequency magnetic field is not applied to the subject.
Thereby, RF transmission coil can be cooled in real time, suppressing interference with a refrigerant and a high frequency magnetic field.
[0008]
Further, according to a preferred embodiment, the refrigerant control means controls the refrigerant so that the refrigerant is supplied to the cooling means between the end of the arbitrary pulse sequence and the start of the next pulse sequence. Control the supply.
Thereby, the RF transmission coil can be concentrated and cooled while suppressing interference between the refrigerant and the high-frequency magnetic field, and the temperature can be greatly reduced.
[0009]
According to a preferred embodiment, the refrigerant comprises a first refrigerant that is a liquid and a second refrigerant that is a gas, and the refrigerant control means is arranged in the cooling means during application of the high-frequency magnetic field. The supply of the first refrigerant and the second refrigerant is controlled so that is filled only with the second refrigerant.
As a result, the first refrigerant can be completely removed from the cooling means during application of the high-frequency magnetic field, so that interference between the refrigerant and the high-frequency magnetic field can be further suppressed.
[0010]
According to a preferred embodiment, the cooling means includes a gas-liquid separation means, and separates the first refrigerant and the second refrigerant that have passed through the cooling means, and then recirculates each refrigerant. Let
Accordingly, when the refrigerant is recirculated, each refrigerant can be easily controlled independently, and the refrigerant can be effectively used.
[0011]
According to a preferred embodiment, the cooling means is configured by combining tubes for flowing the refrigerant, and each tube is disposed in proximity to or in contact with each coil element constituting the RF transmission coil. The
As a result, the RF transmission coil can be efficiently cooled.
[0012]
Further, according to a preferred embodiment, the cooling means includes a tube substantially at the center of the RF transmission coil, and supplies the refrigerant that has been supplied from the periphery of the RF transmission coil to cool the RF transmission coil. The refrigerant is converged and discharged, or the refrigerant flow is reversed, the refrigerant is supplied from the substantially central pipe, and the refrigerant that has cooled the RF transmission coil is discharged from the periphery of the RF transmission coil.
[0013]
Thereby, in a vertical magnetic field type magnetic resonance imaging apparatus that generates a static magnetic field by a superconducting magnet in particular, it is possible to secure a space for easily making a hole in the center of the magnet, so that the tubes can be arranged spatially efficiently.
[0014]
According to a preferred embodiment, the magnetic field generating means for generating a static magnetic field and a gradient magnetic field in a measurement space where the subject is placed, and an RF transmitter coil for irradiating a radio frequency magnetic field to the imaging region of the subject are provided. A high-frequency magnetic field transmitting means; a receiving means for receiving a nuclear magnetic resonance signal from the subject; a high-frequency magnetic field shielding means arranged on the magnetic field generating means side of the RF transmission coil to shield the high-frequency magnetic field; a pulse sequence control means for controlling the reception of the the application of a magnetic field application of the high frequency magnetic field and the nuclear magnetic resonance signals, a cooling means for cooling the RF transmission coil, the magnetic resonance imaging apparatus comprising a city, the cooling means The high-frequency magnetic field shield means is disposed on the magnetic field generation means side and connected to the RF transmission coil via a heat conductive member.
[0015]
This eliminates interference between the refrigerant and the high-frequency magnetic field, so that the refrigerant can be constantly flowed during imaging of the subject.
According to a preferred embodiment, the refrigerant or the first refrigerant contains water.
Thereby, handling of a refrigerant becomes simple and cooling efficiency can also be made high.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment of the invention, and the repetitive description thereof is omitted.
[0017]
FIG. 4 is a block diagram showing a configuration of a magnetic resonance imaging (hereinafter referred to as “MRI”) apparatus according to the present invention.
[0018]
This MRI apparatus generates a static magnetic field generating means 1 for applying a static magnetic field to the subject 116, an X-direction gradient magnetic field generating means 2 for generating a gradient magnetic field in the X direction, and a gradient magnetic field in the Y direction in an XYZ orthogonal coordinate system. Y direction gradient magnetic field generating means 3, Z direction gradient magnetic field generating means 4 for generating a gradient magnetic field in the Z direction, a gradient magnetic field power source 5 for supplying power to the gradient magnetic field generating means, and an imaging region of the subject An RF transmission coil 6 that irradiates a high-frequency magnetic field, an RF reception coil 7 that receives a high-frequency magnetic field emitted from the living tissue of the subject by nuclear magnetic resonance (hereinafter referred to as “NMR”), and the RF transmission coil 6 A cooling pipe 8 for cooling, a high-frequency magnetic field power supply 9 for supplying electric power for generating the high-frequency magnetic field, a high-frequency transmitting / receiving unit 110 for irradiating and receiving the high-frequency magnetic field, a pump 111 for conveying the refrigerant, Heat exchanger 112 to remove heat and tilt Control the execution of the pulse sequence by controlling the timing of the magnetic field application and the high-frequency transmission / reception unit, and the computer 113 that performs the image reconstruction calculation using the received signal, and the image signal generated by the computer is input to the tomogram The display 114 is displayed as an image.
[0019]
The gradient magnetic field generating means 2, 3, and 4 are each composed of a set of coils that generate gradient magnetic fields in three orthogonal directions of X, Y, and Z. A magnetic field coil generates a gradient magnetic field. An arbitrary cross section of the subject 116 can be selected depending on the application method of the gradient magnetic field, and position information can be given to the NMR signal. A gradient magnetic field that gives position information to an NMR signal is called a phase encode gradient magnetic field or a frequency encode gradient magnetic field, and thereby a measurement space (k space) in which measurement data is arranged is defined.
[0020]
The RF transmission coil 6 for transmission receives a power supply from the high frequency magnetic field power source 9 and generates a high frequency magnetic field. The frequency of the high-frequency magnetic field is tuned to the resonance frequency of the nuclear spin to be imaged. Usually, the imaging object of the MRI apparatus is a proton of a hydrogen nucleus that is a main constituent material of the subject.
[0021]
A signal from the RF receiving coil 7 is detected by the high frequency transmitter / receiver 110, processed by the computer 113, and converted into an image by calculation. The image is displayed on the display unit 114. The gradient magnetic field power supply 5 and the high frequency transmission / reception unit 110 are controlled by the computer 113 according to a pulse sequence.
[0022]
FIG. 1 shows the configuration and arrangement of a cooling pipe which is a cooling means in the first embodiment of the present invention. FIG. 2 shows the configuration of the RF transmission coil in the first embodiment. FIG. 2 is a schematic diagram when the entire RF transmission coil arranged on the XY plane is viewed from the positive direction of the Z axis. This RF transmission coil is composed of conductors 22 and 23, a capacitor 24, and a diode 25 on a substrate 21. The RF transmission coil in the first embodiment has an octagonal shape, and is composed of eight elements of the same type, each of which has a conductor 22 and a diagonal line of a conductor 23. Further, a capacitor 24 is disposed on the conductor constituting the side, and a diode 25 is disposed on the conductor constituting the diagonal line.
[0023]
FIG. 1 (a) shows a schematic diagram when the entire cooling pipe arranged on the XY plane is viewed from the positive direction of the Z axis. As shown in FIG. 2, the entire cooling pipe has an octagonal shape similar to that of the RF transmission coil, and is composed of eight elements of the same type. Then, each element of the cooling pipe is disposed in proximity to or in contact with the nearest coil element of the RF transmission coil (that is, in thermal contact so that heat exchange is sufficiently possible). FIG. 1 (b) shows a configuration relating to an arbitrary element of the cooling pipe. FIG. 1 (c) shows the arrangement of the tubes in the XZ section passing through the line connecting the tubes 11 and 15 of FIG. 1 (a) of the 8-element cooling tube. The positions of the pipes 11 and 15 are not limited to the positions shown in FIG. 1 (a), and may be any positions around the pipe 13.
[0024]
First, the refrigerant flow focusing on one coil element will be described. The refrigerant flows in from the pipe 11 and further flows into the pipe 13 disposed on the outer periphery of the conductor 22. The pipe 11 and the pipe 13 are separated by the valve 12, and the refrigerant in the pipe 11 flows into the pipe 13 when the valve 12 is open. The tube 14 is disposed along the top surfaces of the conductor 23 and the element 25 and is connected to the tube 18 at the center of the coil. Further, the pipe 16 branched from the pipe 14 is disposed along the upper surfaces of the conductor 22 and the element 24, and is joined to the pipe 18 via the pipe 17 which is a return path. The tube 18 penetrates the coil substrate 21 at the center of the RF transmission coil. The pipe 18 is connected to the pipe 15, and the refrigerant flows out of the pipe 15. The arrangement of the tubes on the other coil elements is the same. The pipe 11 and the pipe 15 are respectively connected to an outlet side of a pump not shown and an inlet side of a heat exchanger not shown.
[0025]
A method for controlling the temperature of the RF transmission coil using water as a refrigerant in the cooling pipe having the above structure will be described. RF pulse irradiation timing and cooling in synchronization with an arbitrary pulse sequence in order to avoid refrigerant excitation and generation of unnecessary NMR signals from the refrigerant by irradiation with a high-frequency magnetic field pulse (hereinafter referred to as “RF pulse”) The supply timing of the refrigerant is controlled so that the refrigerant flows into the pipe at different timings so that the refrigerant is removed and does not exist in the cooling pipe when the RF pulse is applied.
[0026]
At the start time t0 of the pulse sequence (spin echo method) shown in FIG. 3, the refrigerant supplied from the pump of FIG. 1 (b) passes through the tube 11 and is filled in the tube 13 arranged on the outer periphery of the conductor 22. Suppose that At the start time t0, the valves 12 are all closed, and the refrigerant cannot flow freely before the pipe 13. In the spin echo method of FIG. 3, a 90 ° RF pulse is irradiated at time t1, a 180 ° RF pulse is irradiated after the TE / 2 hours, and a total of two RF pulses are irradiated during one repetition time TR. Is done. As shown in FIG. 5 (a), when the valve 12 is opened after the delay time τ1 from the irradiation time t1 of the 90 ° RF pulse, the refrigerant passes through the pipe 14 and the pipe 16 and merges in the pipe 15 via the pipe 18. Then, it enters a heat exchanger (not shown). Here, τ1> TE / 2. If the valve 12 is closed after a certain time, the refrigerant cannot pass through the pipe 13. As described above, FIG. 5 (a) shows a case where the valve is opened and closed at each repetition time TR. In FIG. 5 (a), the 180 ° RF pulse is omitted.
[0027]
In Fig. 5 (b), any protocol (pulse sequence) is used in a protocol for imaging at least multiple times for a subject (a combination of a series of pulse sequences to capture images with multiple purposes). It shows the case where the valve is opened and closed between the end of the first imaging and the start of the next imaging (pulse sequence). Here, the number of phase encoding is n, and τ1> n × TR. Thus, by making the timing of irradiation of the RF pulse different from the timing of inflow of the refrigerant into the tubes 14 and 16, it is possible to suppress the RF pulse from exciting the refrigerant and generating unnecessary signals. The opening / closing control of the valve 12 is performed via the computer 13 according to the photographing conditions or the photographing protocol.
[0028]
Next, a method for estimating the temperature rise gradient of the RF transmission coil from the imaging conditions will be described. Here, the spin echo method shown in FIG. 3 is applied as a reference pulse sequence. As shown in FIG. 3, RF pulses with flip angles of 90 ° and 180 ° are applied at half the echo time TE, respectively. Here, TE is the time from the irradiation time of the 90 ° RF pulse to the peak position of the echo signal. Gs, Gp, and Gf represent a slice gradient magnetic field, a phase encode gradient magnetic field, and a frequency encode gradient magnetic field, respectively, Gs is cut out of a cross section, and Gp and Gf are applied to give position information to the NMR signal. The above is repeated for the number of phase encodings at intervals of the repetition time TR.
[0029]
Here, if the energy intensity of an RF pulse with a flip angle of 90 ° is 1, the energy intensity of an RF pulse with a flip angle of 180 ° is 2. Also, when TR, TE, and the number of phase encodings change depending on the imaging conditions, it is possible to estimate the approximate temperature rise of the RF transmitter coil from the definitions of these parameters. For example, when TR is 1/2, the shooting time is also 1/2, so the temperature rise gradient is doubled. If the temperature rise of each element (capacitor 24 and diode 25) part and conductor part is measured once in advance by executing a pulse sequence under a certain condition, the temperature under the other imaging conditions for the same RF transmitter coil The ascending slope can also be estimated.
[0030]
Using this temperature rise gradient, the refrigerant flow rate can be optimized in the refrigerant circulation described below. That is, when a pulse sequence that increases the temperature rise is performed, the flow rate of the refrigerant is increased. For example, assuming that the temperature rise of the conductors 22 and 23 expected by the execution of this sequence is ΔTb, the temperature rise of the capacitor 24 is ΔTc, the temperature rise of the diode 25 is ΔTd, the length of the tube 14 is L14, and the tube 16 The length of L16, the cross-sectional area of the tube 14 is S14, the cross-sectional area of the tube 16 is S16,
S16 / S14 = L14 (ΔTb + ΔTd) / L16 (ΔTb + ΔTc) (1)
With the tube design, the flow rate of the refrigerant is controlled by the difference in the cross-sectional area of the tube, preventing overheating of specific parts of the RF transmitter coil. That is, by flowing a large amount of refrigerant through a portion where the temperature rise is large and flowing a small amount of refrigerant through a small portion, all the portions are cooled equally.
[0031]
Next, when the refrigerant is a liquid, the liquid refrigerant may remain in the tube 14 and the tube 16 during the RF pulse irradiation. Therefore, the liquid refrigerant is positively removed. Examples will be described. In the second embodiment, the refrigerant is used by controlling the supply of the first refrigerant that is liquid and the second refrigerant that is gas, and the first refrigerant is mainly responsible for cooling the RF transmission coil. The second refrigerant is mainly responsible for removing the first refrigerant.
[0032]
FIG. 6 shows a second embodiment. Gaseous refrigerant (second refrigerant) such as air is injected into the pipe, and the liquid refrigerant (first refrigerant) remaining in the pipe is positively pushed out to remove it. The supply of liquid refrigerant and gaseous refrigerant is controlled so that no liquid refrigerant is filled. That is, in the cooling section 66 including the pipe 14 and the pipe 16, air is injected from the nozzle 62 installed after the valve 12, as shown in FIG. 1 (a). The refrigerant that has passed through the RF transmission coil is separated into water and air by the gas-liquid separator 63, and the air is sent to the pump 60 and injected from the nozzle 62 again through the compressor 61. The water is sent to the heat exchanger 64 and circulated again by the pump 65.
[0033]
Further, as a third embodiment, an example in which the refrigerant is circulated constantly during the examination of the subject will be described. In this case, as shown in FIG. 1 (c), when the refrigerant circulates through the tubes 14 and 16 arranged on the upper surface of the RF transmission coil (that is, the surface on the measurement space side), unnecessary NMR signals are generated from the refrigerant by irradiation with RF pulses. Will occur. Therefore, in order to prevent the refrigerant from being affected by the RF pulse, as shown in FIG. 7, the tube is outside the substrate 21 and the high-frequency magnetic field shield 26 (that is, the static magnetic field generating means side, and the subject is arranged). Place it on the opposite side of the measurement space. However, compared to the case of FIG. 1 (c), the distance between the components (elements, conductors) of the tube and the RF transmission coil is increased, and the cooling effect of the tube is lost. As shown in FIG. The heat transfer member 41 is passed through the substrate 21, and the tube and the components of the RF transmission coil are brought into thermal contact with each other through the heat transfer member 41. Thereby, the heat energy emitted from the components of the RF transmission coil can be transferred to the refrigerant via the heat transfer member 41.
[0034]
As described above, the configuration and operation of the MRI apparatus using the cooling pipe for cooling the RF transmission coil have been described. However, the MRI apparatus of the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the configuration of the RF transmission coil and the cooling pipe can be a polygon other than an octagon or a circle. In addition, although the example in which the RF transmission coil and the cooling pipe are configured from the same type of element has been described, the RF transmission coil and the cooling pipe need not be the same type, and may be configured from elements having different shapes. In addition, although the example of water has been described as the (first) refrigerant, it is not particularly required to be water, and other liquids with high cooling efficiency (eg, alternative chlorofluorocarbon materials) or gaseous refrigerants (eg, nitrogen gas) Good. Moreover, although the case where the flow direction of the refrigerant is from the periphery to the center of the RF transmission coil has been described, the reverse may be possible. In the above description of the embodiment, the vertical magnetic field type MRI apparatus is taken as an example. However, the present invention can be similarly applied to a horizontal magnetic field type MRI apparatus.
[0035]
【The invention's effect】
As described above, according to the present invention, it is possible to cool the RF transmission coil using a refrigerant containing protons such as water while suppressing interference with the high-frequency magnetic field of the refrigerant. It is possible to use a high refrigerant such as water.
[Brief description of the drawings]
FIG. 1 is a diagram showing the configuration and arrangement of cooling pipes in a first embodiment of the present invention.
(a) The figure at the time of seeing the whole cooling pipe arrange | positioned on XY plane from the positive direction of a Z-axis.
(b) The figure which shows the structure of the cooling pipe regarding arbitrary 1 element of a cooling pipe.
(c) The figure which shows arrangement | positioning of the pipe | tube in the XZ cross section of a cooling pipe.
FIG. 2 is a diagram showing a configuration of an RF transmission coil in the first embodiment of the present invention.
FIG. 3 is a diagram of a typical pulse sequence (spin echo method).
FIG. 4 is a block diagram showing a configuration of an MRI apparatus according to the present invention.
FIG. 5 is a diagram showing refrigerant control synchronized with a pulse sequence.
(a) The figure in the case of flowing a refrigerant | coolant at the timing when RF pulse is not applied.
(b) The figure in the case of flowing a refrigerant | coolant between continuous pulse sequences.
FIG. 6 is a diagram showing a second embodiment.
FIG. 7 is a diagram showing a third embodiment.
[Explanation of symbols]
1 ... Static magnetic field generation means
2… X-direction gradient magnetic field generation means
3… Y direction gradient magnetic field generation means
4… Z-direction gradient magnetic field generation means
5 ... Gradient magnetic field power supply
6… RF transmitter coil
7… RF receiver coil
8 ... Cooling pipe
9… High frequency magnetic field power supply
60 ... Second refrigerant pump
61 ... Second compressor for refrigerant
62 ... Nozzle for second refrigerant
63… Gas-liquid separator
64 ... heat exchanger
65… First refrigerant pump
66 ... Cooling section
110 ... High-frequency magnetic field transceiver
111 ... Pump
112 ... Heat exchanger
113 ... Calculator
114 ... Display
115 ... Bed
116 ... Subject

Claims (5)

被検体が置かれる計測空間に静磁場および傾斜磁場をそれぞれ発生する磁場発生手段と、前記被検体の撮影部位に高周波磁場を照射するRF送信コイルを備えた高周波磁場送信手段と、前記被検体からの核磁気共鳴信号を受信する受信手段と、前記傾斜磁場の印加と前記高周波磁場の印加と前記核磁気共鳴信号の受信を制御するパルスシーケンス制御手段と、前記RF送信コイルを冷却する冷却手段と、前記冷却手段に流す冷媒を制御する冷媒制御手段とを備える磁気共鳴イメージング装置において、
前記冷媒制御手段は、前記高周波磁場が印加されているときに、前記冷却手段に前記冷媒が供給されないように、前記冷媒の供給を制御することを特徴とする磁気共鳴イメージング装置。
From the subject, magnetic field generating means for generating a static magnetic field and a gradient magnetic field in a measurement space where the subject is placed, a high-frequency magnetic field transmitting means having an RF transmission coil for irradiating a radiofrequency magnetic field to the imaging region of the subject, Receiving means for receiving the nuclear magnetic resonance signal, pulse sequence control means for controlling application of the gradient magnetic field, application of the high frequency magnetic field and reception of the nuclear magnetic resonance signal, cooling means for cooling the RF transmission coil, In a magnetic resonance imaging apparatus comprising: a refrigerant control means for controlling a refrigerant flowing through the cooling means,
The magnetic resonance imaging apparatus , wherein the refrigerant control unit controls supply of the refrigerant so that the refrigerant is not supplied to the cooling unit when the high-frequency magnetic field is applied .
前記冷媒制御手段は、前記被検体に前記高周波磁場が印加されてないときに、前記冷却手段に前記冷媒が供給されるように、前記冷媒の供給を制御することを特徴とする請求項1に記載の磁気共鳴イメージング装置。The refrigerant control means controls the supply of the refrigerant so that the refrigerant is supplied to the cooling means when the high-frequency magnetic field is not applied to the subject. The magnetic resonance imaging apparatus described. 前記冷媒制御手段は、前記任意のパルスシーケンスの終了後から次のパルスシーケンスが始まるまでの間に、前記冷却手段に前記冷媒が供給されるように、前記冷媒の供給を制御することを特徴とする請求項1に記載の磁気共鳴イメージング装置。The refrigerant control means controls the supply of the refrigerant so that the refrigerant is supplied to the cooling means between the end of the arbitrary pulse sequence and the start of the next pulse sequence. The magnetic resonance imaging apparatus according to claim 1. 前記冷媒制御手段は、前記被検体に前記高周波磁場が印加されているときに、前記冷却手段から前記冷媒が除去されるように制御することを特徴とする請求項1に記載の磁気共鳴イメージング装置。The magnetic resonance imaging apparatus according to claim 1, wherein the refrigerant control unit controls the refrigerant to be removed from the cooling unit when the high-frequency magnetic field is applied to the subject. . 前記冷媒が液体である第1の冷媒と気体である第2の冷媒からなり、
前記冷媒制御手段は、前記被検体に前記高周波磁場が印加されているときに、前記冷却手段内が第2の冷媒のみによって充填されるように、第1の冷媒と第2の冷媒の供給を制御することを特徴とする請求項1に記載の磁気共鳴イメージング装置。
The refrigerant comprises a first refrigerant that is a liquid and a second refrigerant that is a gas,
The refrigerant control means supplies the first refrigerant and the second refrigerant so that the cooling means is filled only with the second refrigerant when the high-frequency magnetic field is applied to the subject. The magnetic resonance imaging apparatus according to claim 1, wherein the magnetic resonance imaging apparatus is controlled.
JP2003164580A 2003-06-10 2003-06-10 Magnetic resonance imaging system Expired - Fee Related JP4393116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164580A JP4393116B2 (en) 2003-06-10 2003-06-10 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164580A JP4393116B2 (en) 2003-06-10 2003-06-10 Magnetic resonance imaging system

Publications (3)

Publication Number Publication Date
JP2005000269A JP2005000269A (en) 2005-01-06
JP2005000269A5 JP2005000269A5 (en) 2006-07-13
JP4393116B2 true JP4393116B2 (en) 2010-01-06

Family

ID=34091310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164580A Expired - Fee Related JP4393116B2 (en) 2003-06-10 2003-06-10 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4393116B2 (en)

Also Published As

Publication number Publication date
JP2005000269A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
US7135863B2 (en) Thermal management system and method for MRI gradient coil
JP6181127B2 (en) Tubular thermal switch for refrigerant-free magnets
US8676282B2 (en) Superconducting magnet coil support with cooling and method for coil-cooling
JP5209277B2 (en) Gradient magnetic field coil unit, gantry for MRI apparatus, and MRI apparatus
JP5570910B2 (en) Magnetic resonance imaging system
US20050035764A1 (en) Method and apparatus for directly cooling hollow conductor wound transverse gradient coil boards
US7489132B2 (en) Enhanced heat transfer in MRI gradient coils with phase-change materials
US8973378B2 (en) System and method for removing heat generated by a heat sink of magnetic resonance imaging system
JP2007021008A (en) Magnetic resonance imaging device equipped with dnp hyperpolarization means
JP7250095B2 (en) Magnetic resonance examination system with fluid cooling device
CN112840415A (en) Integrated single source cooling of superconducting magnet and RF coil in nuclear magnetic resonance apparatus
CN104969086A (en) Device for sequential examination of a measurement object by means of MPI and MRI methods
CN105830181A (en) Method to enable standard alternating current (AC)/direct current (DC) power adapters to operate in high magnetic fields
JP2008012118A (en) Magnetic resonance imaging system
JP2008096097A (en) Thermal switch for superconductive magnet cooling system
JP2007143865A (en) Cooling system, magnetic resonance diagnostic equipment, and cooling method
JP4393116B2 (en) Magnetic resonance imaging system
JP5597351B2 (en) Magnetic field generating coil device
JP5345325B2 (en) Magnetic resonance imaging apparatus and RF power amplification apparatus
Webber et al. First high gradient test results of a dressed 325 MHz Superconducting Single Spoke Resonator at Fermilab
JP2006043077A (en) Magnetic resonance imaging system
JP2005288044A (en) Magnetic resonance imaging device
US11774529B2 (en) Gradient cooling manifold assembly having additively manufactured manifolds
JP4503405B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
JP2003033330A (en) Rf-signal receiving device and magnetic resonance imaging device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees