JP4392823B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP4392823B2
JP4392823B2 JP2002339694A JP2002339694A JP4392823B2 JP 4392823 B2 JP4392823 B2 JP 4392823B2 JP 2002339694 A JP2002339694 A JP 2002339694A JP 2002339694 A JP2002339694 A JP 2002339694A JP 4392823 B2 JP4392823 B2 JP 4392823B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
fuel cell
oxygen
cathode
decomposition catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002339694A
Other languages
Japanese (ja)
Other versions
JP2004172075A (en
Inventor
守成 松浦
好次 南川
勝茂 林
精二郎 須田
洲鵬 李
邦仁 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002339694A priority Critical patent/JP4392823B2/en
Publication of JP2004172075A publication Critical patent/JP2004172075A/en
Application granted granted Critical
Publication of JP4392823B2 publication Critical patent/JP4392823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸素の供給を改良した固体電解質型燃料電池に関する。
【0002】
【従来の技術】
固体電解質型燃料電池に用いられるイオン交換膜の種類は、陽イオン交換膜、陰イオン交換膜(アニオン交換膜)に分かれ、さらに陽イオン交換膜はプロトン交換膜とカチオン交換膜に分かれる。プロトン交換膜を用いた燃料電池ではアノードからカソードへプロトンが供給移動するため、空気及び酸素を酸化剤としてカソード側に供給により水が生成し、発電が可能となる。
【0003】
しかしながら、カチオン及びアニオン交換膜を用いた燃料電池では、プロトン交換膜を用いる燃料電池と異なり、カソードの反応物質として酸素と水を必要とするため、一般に空気の加湿などによる外部から水分の供給が必要である。従って、アニオン及びカチオン交換膜を用いた燃料電池への水の供給はカソード性能を向上させるのに大きな要因となる。
【0004】
一般的に燃料電池に用いられる酸化剤としては、コストの面から空気が使用される。このような場合、水分のカソードへの供給方法として、空気の水への通気などにより行われている。しかし、この方法には2つの課題がある。一つ目として、燃料電池の発電に利用されない空気中に存在する窒素を外気に戻すときに、加湿分の水分が空気中に放出されてしまうこと、2つ目として、加湿用として必要とされる水分量が窒素を外気に戻すときに放出されるため理論量より多くの水が必要となることである。
【0005】
これらの課題を解決するには、窒素を外気に戻す必要性のある空気を使用せずに純酸素を使用することが好ましい。しかし、純酸素の取り扱うことは、保存容器、体積及びコストの点から実用的ではない。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記したような課題を解決して、効率のよい燃料電池を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、燃料電池の酸素供給源について鋭意研究を重ねた結果、酸素供給源として過酸化水素を分解して発生した酸素を用いることにより、水蒸気の供給も同時に行えることを見出し、本発明に到達した。即ち本発明は、過酸化水素水溶液を過酸化水素分解触媒と接触させ、発生した酸素及び水蒸気をカソードに供給することを特徴とする燃料電池に関するものである。
【0008】
【発明の実施の形態】
本発明が適用される燃料電池は、一般に電解質としてイオン交換膜を使用する固体電解質型燃料電池である。そのようなカソードとアノードを分画しているイオン交換膜は燃料及び酸化剤の両方に対して耐食性を有する材料で構成されていることが必要である。
【0009】
このイオン交換膜はアニオン交換膜、すなわちカソードにおいて酸素が水と反応して生成する水酸化物イオンを透過するものでもよいし、また、プロトン交換膜、すなわちアノードで生じるプロトンを透過するものであっても良い、さらに、カチオン交換膜、すなわちアノードに供給されるカチオンを透過するものであっても良い。このようなイオン透過膜の代表的なものとして、スチレン−ジビニルベンゼン共重合体にスルホン酸基や第四級アンモニウム塩基を導入した膜や、ポリビニルベンジルトリメチルアンモニウムクロリド、ポリスチレンスルホン酸ナトリウムを水−アセトン−臭化ナトリウムに溶解して得た膜、アクリロニトリル−メタクリルスルホン酸ナトリウム共重合体膜、パーフルオロスルホン酸膜などを挙げることができる。これらの透過膜は市販品として容易に入手することができる。特に好ましいのは、プロトン及びカチオンを透過しうる高分子電解膜、例えば、ナフィオン(デュポン社製)である。
【0010】
次に、本発明におけるカソード及びアノードの電極材料としては、例えば炭素、白金を分散した炭素や鉄、ニッケル、クロム、銅、白金、パラジウムのような金属やそれらの合金が用いられる。発電効率や耐久性がよく、低コストという点でニッケル又はニッケル・クロム合金の多孔体、例えば粒状焼結体や発泡体を基材とし、その表面に白金、パラジウムのような貴金属をめっきしたものが好ましい。カソードとしては、その表面で酸素の還元反応が容易に進行する導電性材料が好ましい。また、カソードには、酸素呼吸材料、すなわち酸素ガスと接触して酸素を可逆的に吸収、放出しうる材料も用いることができる。また、アノードとしては、上記の電極材料を用いてもよい。
【0011】
本発明における電極は、一方の側を陽極とし、他方の側を陰極とした両極電極として構成することもできる。電極の形状は任意であり、目的に応じて種々の形状、例えばシート状、管状、円筒状、方体状、球状などにすることができる。また、発泡体状やコロイド状、粉体状に形成することもできる。
【0012】
本発明では、好ましくは10〜65重量%の過酸化水素水溶液を用いることにより、所望の加湿酸素を安定に得ることができる。本発明に用いられる過酸化水素分解触媒としては、過酸化水素分解能を有する貴金属、遷移金属、酸化物などから任意に選ばれる。具体例としては、白金、パラジウム、オスミウム、イリジウム、金、銀、銅、鉄、コバルト、マンガン、クロム、ニッケル、鉛、亜鉛、二酸化マンガンなどが挙げられる。このような過酸化水素の分解触媒は、その分解方法に応じて、粉粒状、棒状、板状、多孔板状、網状あるいは各種の単体に担持した形態で用いられる。
【0013】
本発明における過酸化水素の分解方法としては、過酸化水素を過酸化水素分解触媒に通液することによって少量ずつ接触させる方法や、過酸化水素に過酸化水素分解触媒を浸漬する方法などが用いられる。過酸化水素を過酸化水素分解触媒に通液する方法は、過酸化水素の濃度、触媒との接触速度又は通液速度を変えることにより、加湿酸素の発生量及び発生速度を容易に制御できるため、比較的大量の過酸化水素を一定速度で分解するのに適している。過酸化水素に過酸化水素分解触媒を浸漬する方法は、過酸化水素の濃度、触媒の比表面積又は濃度を変えることにより加湿酸素の発生量及び発生速度を制御できるため、比較的少量の過酸化水素を分解するのに適している。
【0014】
次に添付図面を用いて、過酸化水素分解の一方法として燃料電池の直前に設けた過酸化水素の過酸化水素分解触媒への通液による過酸化水素分解方法を説明する。図1において、ポンプ(3)により過酸化水素を過酸化水素分解触媒(2)と接触させ、そのとき生じた、酸素及び水蒸気は過酸化水素分解触媒の上部から抜け出し、燃料電池(1)のカソードに供給される。分解時に発生した凝縮水は、過酸化水素分解触媒の下方から抜け、水受けに貯まる。
【0015】
【実施例】
次に、実施例および比較例により本発明をさらに具体的に説明する。但し、本発明は以下の実施例により制限されるものではない。
【0016】
実施例1
アノードとして、水素吸蔵合金(LaNi4.7Al0.3)の粉末(平均粒子径75μm)をニッケルメッシュ(200メッシュ)で挟んだ後、ローラプレスによりプレート状(20×30×2mm)に圧縮成形したものを使用した。カソードとして、カーボンシート(東レ社製)に白金粒子を担持して、その20×30mmを切り取り使用した。上記のアノードとカソードの間を、カチオン交換型高分子電解質膜(デュポン社製,商品名「Nafion」N−117)により隔離した。
【0017】
次に、アノード側に20質量%NaOH水溶液にNaBH4を10質量%の濃度で溶解した溶液を通液、またカソード側には、60%過酸化水素水溶液20mlに二酸化マンガン60mgを投入することにより発生した、80℃の酸素と水蒸気を30分供給した。このとき、アノードとカソードの間に負荷をかけ、そのとき発生した発生電圧と発生電流を測定した。結果は電流密度10mA/cm2、電圧1066mV及び電流密度30mA/cm2、電圧650mVであった。
【0018】
比較例1
カソードへ純酸素のボイラー通気により作製した加湿酸素のみを供給した。それ以外は、実施例1と同様の実験を行った。このようにして得た発生電圧と発生電流は、電流密度10mA/cm2、電圧1008mV及び電流密度30mA/cm2、電圧691mVであった。
【0019】
比較例2
カソードへ純酸素のみを供給した。それ以外は、実施例1と同様の実験を行った。このようにして得た発生電圧と発生電流は、電流密度0.33mA/cm2、電圧783mVであった。
【0020】
【発明の効果】
本発明により、純酸素及び加湿用の水を別途に準備する必要なく燃料電池に加湿された酸素を供給することが可能である。また、過酸化水素分解の反応熱を利用することにより、供給酸素の温度を高く維持できるためにカソード性能がさらに向上される。さらに、空気を使用しないため、燃料電池に反応に使用されない窒素を外気に放出する必要性がなく、それと同時に放出される水も押さえることができる。このため、空気を加湿する燃料電池と比較して水の必要量を理論量に近づけることが可能となり、その結果、空気を加湿する燃料電池と比較してセル全体を軽くすることが可能となる。また、純酸素を保存する堅牢で重い容器を使用する必要性がないため、さらにセルを軽くすることが可能である。
【図面の簡単な説明】
【図1】 本発明の燃料電池
【符号の説明】
1 燃料電池
2 過酸化水素分解触媒
3 ポンプ
4 水受け
5 過酸化水素
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid oxide fuel cell with improved oxygen supply.
[0002]
[Prior art]
The types of ion exchange membranes used in solid oxide fuel cells are divided into cation exchange membranes and anion exchange membranes (anion exchange membranes), and the cation exchange membranes are divided into proton exchange membranes and cation exchange membranes. In a fuel cell using a proton exchange membrane, protons are supplied and transferred from the anode to the cathode, so that water is generated by supplying air and oxygen to the cathode side as an oxidizing agent, and power generation is possible.
[0003]
However, a fuel cell using a cation and anion exchange membrane, unlike a fuel cell using a proton exchange membrane, requires oxygen and water as cathode reactants. is necessary. Therefore, the supply of water to the fuel cell using anion and cation exchange membranes is a major factor for improving cathode performance.
[0004]
In general, air is used as an oxidant used in a fuel cell in terms of cost. In such a case, as a method for supplying moisture to the cathode, air is passed through the water. However, this method has two problems. First, when nitrogen existing in air that is not used for power generation of the fuel cell is returned to the outside air, humidified moisture is released into the air. Second, it is required for humidification. The amount of water that is released is released when nitrogen is returned to the outside air, so that more water than the theoretical amount is required.
[0005]
In order to solve these problems, it is preferable to use pure oxygen without using air that needs to return nitrogen to the outside air. However, the handling of pure oxygen is not practical in terms of storage container, volume and cost.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems and provide an efficient fuel cell.
[0007]
[Means for Solving the Problems]
As a result of earnest research on the oxygen supply source of the fuel cell, the present inventors have found that oxygen can be supplied at the same time by using oxygen generated by decomposing hydrogen peroxide as the oxygen supply source. The invention has been reached. That is, the present invention relates to a fuel cell characterized in that an aqueous hydrogen peroxide solution is brought into contact with a hydrogen peroxide decomposition catalyst and the generated oxygen and water vapor are supplied to a cathode.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The fuel cell to which the present invention is applied is a solid oxide fuel cell that generally uses an ion exchange membrane as an electrolyte. Such an ion exchange membrane that separates the cathode and the anode needs to be made of a material having corrosion resistance to both the fuel and the oxidant.
[0009]
This ion exchange membrane may be an anion exchange membrane, that is, a membrane that permeates hydroxide ions produced by the reaction of oxygen with water at the cathode, or a proton exchange membrane, that is, a membrane that permeates protons generated at the anode. Further, it may be a cation exchange membrane, that is, one that permeates the cation supplied to the anode. Typical examples of such an ion permeable membrane include a membrane obtained by introducing a sulfonic acid group or a quaternary ammonium base into a styrene-divinylbenzene copolymer, polyvinylbenzyltrimethylammonium chloride, and sodium polystyrene sulfonate in water-acetone. -A film obtained by dissolving in sodium bromide, an acrylonitrile-sodium methacryl sulfonate copolymer film, a perfluorosulfonic acid film, and the like. These permeable membranes can be easily obtained as commercial products. Particularly preferred is a polymer electrolyte membrane that can permeate protons and cations, such as Nafion (manufactured by DuPont).
[0010]
Next, as the cathode and anode electrode material in the present invention, for example, carbon in which carbon and platinum are dispersed, metal such as iron, nickel, chromium, copper, platinum and palladium, and alloys thereof are used. A nickel or nickel-chromium alloy porous body, such as a granular sintered body or foamed body, which is plated with a noble metal such as platinum or palladium on its surface because of its good power generation efficiency and durability and low cost. Is preferred. As the cathode, a conductive material in which oxygen reduction reaction easily proceeds on the surface thereof is preferable. In addition, an oxygen breathing material, that is, a material capable of reversibly absorbing and releasing oxygen in contact with oxygen gas can be used for the cathode. Moreover, you may use said electrode material as an anode.
[0011]
The electrode in the present invention can also be configured as a bipolar electrode having one side as an anode and the other side as a cathode. The shape of the electrode is arbitrary, and various shapes such as a sheet shape, a tubular shape, a cylindrical shape, a rectangular shape, and a spherical shape can be used according to the purpose. It can also be formed into a foam, colloid, or powder.
[0012]
In the present invention, the desired humidified oxygen can be stably obtained by using a 10 to 65% by weight aqueous hydrogen peroxide solution. The hydrogen peroxide decomposition catalyst used in the present invention is arbitrarily selected from noble metals, transition metals, oxides and the like having hydrogen peroxide resolution. Specific examples include platinum, palladium, osmium, iridium, gold, silver, copper, iron, cobalt, manganese, chromium, nickel, lead, zinc, manganese dioxide, and the like. Such a hydrogen peroxide decomposition catalyst is used in the form of powder, rod, plate, perforated plate, net, or various single substances depending on the decomposition method.
[0013]
As a method for decomposing hydrogen peroxide in the present invention, a method in which hydrogen peroxide is contacted little by little by passing through a hydrogen peroxide decomposing catalyst, a method in which a hydrogen peroxide decomposing catalyst is immersed in hydrogen peroxide, or the like is used. It is done. In the method of passing hydrogen peroxide through the hydrogen peroxide decomposition catalyst, the generation amount and generation rate of humidified oxygen can be easily controlled by changing the concentration of hydrogen peroxide, the contact speed with the catalyst, or the flow rate. Suitable for decomposing a relatively large amount of hydrogen peroxide at a constant rate. In the method of immersing the hydrogen peroxide decomposition catalyst in hydrogen peroxide, the amount and rate of generation of humidified oxygen can be controlled by changing the concentration of hydrogen peroxide, the specific surface area or concentration of the catalyst. Suitable for decomposing hydrogen.
[0014]
Next, a hydrogen peroxide decomposition method by passing hydrogen peroxide through a hydrogen peroxide decomposition catalyst provided immediately before the fuel cell will be described as one method of hydrogen peroxide decomposition with reference to the attached drawings. In FIG. 1, hydrogen peroxide is brought into contact with the hydrogen peroxide decomposition catalyst (2) by the pump (3), and oxygen and water vapor generated at that time escape from the upper part of the hydrogen peroxide decomposition catalyst, and the fuel cell (1) Supplied to the cathode. The condensed water generated at the time of decomposition escapes from below the hydrogen peroxide decomposition catalyst and is stored in the water receiver.
[0015]
【Example】
Next, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited by the following examples.
[0016]
Example 1
As an anode, a powder of hydrogen storage alloy (LaNi 4.7 Al 0.3 ) (average particle diameter 75 μm) sandwiched between nickel meshes (200 mesh) and then compression molded into a plate (20 × 30 × 2 mm) by roller press used. As a cathode, platinum particles were supported on a carbon sheet (manufactured by Toray Industries, Inc.), and 20 × 30 mm was cut and used. The anode and the cathode were separated from each other by a cation exchange polymer electrolyte membrane (manufactured by DuPont, trade name “Nafion” N-117).
[0017]
Next, a solution in which NaBH 4 was dissolved at a concentration of 10% by mass in a 20% by mass NaOH aqueous solution was passed through the anode side. Oxygen and water vapor generated at 80 ° C. were supplied for 30 minutes. At this time, a load was applied between the anode and the cathode, and the generated voltage and generated current were measured. The results were a current density of 10 mA / cm2, a voltage of 1066 mV, a current density of 30 mA / cm2, and a voltage of 650 mV.
[0018]
Comparative Example 1
Only humidified oxygen produced by pure oxygen boiler ventilation was supplied to the cathode. Otherwise, the same experiment as in Example 1 was performed. The generated voltage and generated current thus obtained were a current density of 10 mA / cm2, a voltage of 1008 mV, a current density of 30 mA / cm2, and a voltage of 691 mV.
[0019]
Comparative Example 2
Only pure oxygen was supplied to the cathode. Otherwise, the same experiment as in Example 1 was performed. The generated voltage and generated current thus obtained were a current density of 0.33 mA / cm 2 and a voltage of 783 mV.
[0020]
【The invention's effect】
According to the present invention, it is possible to supply humidified oxygen to the fuel cell without having to separately prepare pure oxygen and water for humidification. In addition, by utilizing the reaction heat of hydrogen peroxide decomposition, the temperature of the supplied oxygen can be kept high, so that the cathode performance is further improved. Furthermore, since air is not used, it is not necessary for the fuel cell to release nitrogen that is not used in the reaction to the outside air, and water released at the same time can be suppressed. For this reason, it becomes possible to bring the required amount of water closer to the theoretical amount compared to a fuel cell that humidifies air, and as a result, the entire cell can be made lighter than a fuel cell that humidifies air. . Further, since there is no need to use a robust and heavy container for storing pure oxygen, the cell can be further lightened.
[Brief description of the drawings]
FIG. 1 Fuel cell of the present invention
1 Fuel cell 2 Hydrogen peroxide decomposition catalyst 3 Pump 4 Water receiver 5 Hydrogen peroxide

Claims (2)

過酸化水素水溶液を過酸化水素分解触媒と接触させ、発生した酸素及び水蒸気をカソードに供給する燃料電池であって、(1)過酸化水素濃度が10〜65重量%である過酸化水素水溶液を用いて、(2)該過酸化水素水溶液を過酸化水素分解触媒に通液して酸素及び水蒸気を発生させ、又は該過酸化水素水溶液に過酸化水素分解触媒を浸漬して酸素及び水蒸気を発生させ、(3)過酸化水素分解の反応熱を利用した加湿酸素をカソードに供給することを特徴とする固体電解質型燃料電池。 A fuel cell in which an aqueous hydrogen peroxide solution is brought into contact with a hydrogen peroxide decomposition catalyst, and the generated oxygen and water vapor are supplied to the cathode . (1) An aqueous hydrogen peroxide solution having a hydrogen peroxide concentration of 10 to 65% by weight (2) The hydrogen peroxide solution is passed through a hydrogen peroxide decomposition catalyst to generate oxygen and water vapor, or the hydrogen peroxide decomposition catalyst is immersed in the hydrogen peroxide solution to generate oxygen and water vapor. (3) A solid oxide fuel cell characterized in that humidified oxygen using reaction heat of hydrogen peroxide decomposition is supplied to the cathode. 過酸化水素分解触媒が二酸化マンガンである請求項1記載の固体電解質型燃料電池。2. The solid oxide fuel cell according to claim 1, wherein the hydrogen peroxide decomposition catalyst is manganese dioxide.
JP2002339694A 2002-11-22 2002-11-22 Solid oxide fuel cell Expired - Fee Related JP4392823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339694A JP4392823B2 (en) 2002-11-22 2002-11-22 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339694A JP4392823B2 (en) 2002-11-22 2002-11-22 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2004172075A JP2004172075A (en) 2004-06-17
JP4392823B2 true JP4392823B2 (en) 2010-01-06

Family

ID=32702592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339694A Expired - Fee Related JP4392823B2 (en) 2002-11-22 2002-11-22 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4392823B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073347A (en) 2005-09-07 2007-03-22 Univ Waseda Fuel cell
JP2011129432A (en) * 2009-12-18 2011-06-30 Fujikura Ltd Oxygen-supplying device of fuel cell

Also Published As

Publication number Publication date
JP2004172075A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
Pushkareva et al. Comparative study of anion exchange membranes for low-cost water electrolysis
JP4083721B2 (en) High concentration carbon supported catalyst, method for producing the same, catalyst electrode using the catalyst, and fuel cell using the same
US20060099482A1 (en) Fuel cell electrode
JPH05258755A (en) Manufacture of solid polyelectrolyte fuel cell
JP2002231265A (en) Fuel cell
JP2006252967A (en) Solid polymer electrolyte membrane for fuel cell, and fuel cell using the same
JP2002100374A (en) Electrode for fuel cell and its manufacturing method
Neto et al. Preparation of PtRu/C electrocatalysts using citric acid as reducing agent and OH-ions as stabilizing agent for direct alcohol fuel cell (DAFC)
JP2007284705A (en) Electrolytic hydrogen-generating device, method for generating hydrogen gas, and fuel cell
JP3576603B2 (en) Electrochemical cell and method of operating the same
JP2002343452A (en) Air battery
US9947935B1 (en) Facile control of pore structure in carbon-supported PGM-based catalysts
JP2007141477A (en) Catalyst material, and electrolyte membrane-electrode junction assembly and fuel cell using same
JP2002343403A (en) Operation method of fuel cell
JP4392823B2 (en) Solid oxide fuel cell
JP4910305B2 (en) A catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell comprising the same.
Ma et al. Direct borohydride fuel cells—current status, issues, and future directions
JP4238364B2 (en) Polymer electrolyte fuel cell
JP6941202B1 (en) Membrane electrode assembly and electrochemical cell
JP2001126738A (en) Method for preparing electrode for fuel cell and direct methanol fuel cell using the same
JP2011198535A (en) Fuel for polymer electrolyte fuel cell
JP2017170404A (en) Method for producing catalyst particle and method for producing electrode catalyst
JP3758615B2 (en) Fuel cell
JP5355178B2 (en) Operation method of low-temperature operating fuel cell
US11715833B2 (en) Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20021225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees