JP4392721B2 - Organic electroluminescence device using phosphorescence - Google Patents

Organic electroluminescence device using phosphorescence Download PDF

Info

Publication number
JP4392721B2
JP4392721B2 JP2004292697A JP2004292697A JP4392721B2 JP 4392721 B2 JP4392721 B2 JP 4392721B2 JP 2004292697 A JP2004292697 A JP 2004292697A JP 2004292697 A JP2004292697 A JP 2004292697A JP 4392721 B2 JP4392721 B2 JP 4392721B2
Authority
JP
Japan
Prior art keywords
triphenylene
general formula
light emitting
phosphorescence
hexakis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004292697A
Other languages
Japanese (ja)
Other versions
JP2006108369A (en
Inventor
英之 松本
荘一郎 久新
敬介 根岸
洋平 小野
内田  学
英史 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Gunma University NUC
Original Assignee
Gunma University NUC
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Chisso Corp filed Critical Gunma University NUC
Priority to JP2004292697A priority Critical patent/JP4392721B2/en
Priority to PCT/JP2005/018727 priority patent/WO2006038709A1/en
Priority to US11/576,593 priority patent/US8026663B2/en
Publication of JP2006108369A publication Critical patent/JP2006108369A/en
Application granted granted Critical
Publication of JP4392721B2 publication Critical patent/JP4392721B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、新規な励起三重項エネルギーの大きい化合物を用いた、燐光を利用した有機電界発光素子(以下、燐光を利用した有機電界発光素子を燐光発光素子と略記する)に関する。   The present invention relates to an organic electroluminescent device using phosphorescence using a novel compound having a large excited triplet energy (hereinafter, an organic electroluminescent device using phosphorescence is abbreviated as a phosphorescent device).

多層積層構造からなる燐光発光素子は既に知られている(特許文献1参照)。蛍光のみを利用して発光させる場合、励起一重項状態を利用するため、内部量子効率の理論上の限界値は25%であるが、燐光発光素子は三重項状態の励起エネルギーが発光に寄与するため、内部量子効率の理論的限界値は100%と考えられている。従って、燐光発光素子は発光効率、即ち、駆動電流密度に対する発光輝度の比率を向上させることができるため、蛍光発光素子に比べて優れている。   A phosphorescent light emitting device having a multilayer structure is already known (see Patent Document 1). In the case of emitting light using only fluorescence, since the excited singlet state is used, the theoretical limit value of the internal quantum efficiency is 25%, but in the phosphorescent light emitting element, the excitation energy of the triplet state contributes to light emission. Therefore, the theoretical limit value of internal quantum efficiency is considered to be 100%. Therefore, the phosphorescent light emitting element is superior to the fluorescent light emitting element because it can improve the light emission efficiency, that is, the ratio of the light emission luminance to the driving current density.

燐光発光素子は発光層のホスト化合物に燐光発光性の燐光ドーパントを少量ドーピングすることで得られる。ホスト化合物は燐光ドーパントの励起三重項エネルギーより大きい励起三重項エネルギーを有する必要があり、利用可能な化合物が限られている。例えば非特許文献1に開示されているカルバゾール誘導体や特許文献2、非特許文献2に開示されている化合物が燐光ホスト化合物に用いられている。しかしながら、既存の燐光ホスト化合物を用いた燐光発光素子は駆動時の電圧が高い等の問題を有するため、新規なホスト化合物の開発が必要とされている。   The phosphorescent light-emitting device can be obtained by doping a small amount of a phosphorescent phosphorescent dopant into the host compound of the light-emitting layer. The host compound must have an excited triplet energy greater than that of the phosphorescent dopant, and the available compounds are limited. For example, carbazole derivatives disclosed in Non-Patent Document 1 and compounds disclosed in Patent Document 2 and Non-Patent Document 2 are used as phosphorescent host compounds. However, since a phosphorescent light emitting device using an existing phosphorescent host compound has problems such as a high voltage during driving, development of a new host compound is required.

ケイ素を含む置換基を有するトリフェニレン化合物としていくつかの化合物が知られている(特許文献3〜5参照)。特許文献3および4では、ケイ素を含む側鎖が酸素原子を介してトリフェニレン骨格に結合した化合物が開示されている。また、特許文献5ではケイ素を含む側鎖が直接ケイ素を介してトリフェニレン骨格に結合した化合物が開示されている。しかしながら、シリルエチニル基を有するトリフェニレン化合物については知られていなかった。
米国特許第6097147号明細書 特開2004−103463号公報 特開2003−252818号公報 特開平11−255781号公報 特開2003−252880号公報 Appl.Phys.Lett.,75,4(1999) Appl.Phys.Lett.,83,3818(2003)
Several compounds are known as triphenylene compounds having a substituent containing silicon (see Patent Documents 3 to 5). Patent Documents 3 and 4 disclose compounds in which a side chain containing silicon is bonded to a triphenylene skeleton via an oxygen atom. Patent Document 5 discloses a compound in which a side chain containing silicon is directly bonded to a triphenylene skeleton via silicon. However, a triphenylene compound having a silylethynyl group has not been known.
US Pat. No. 6,097,147 JP 2004-103463 A JP 2003-252818 A Japanese Patent Laid-Open No. 11-255781 JP 2003-252880 A Appl. Phys. Lett. , 75, 4 (1999) Appl. Phys. Lett. , 83, 3818 (2003)

本発明は、特定の化合物を、燐光発光素子における発光層に用いることで、低電圧駆動が可能な新規燐光発光素子を提供することを目的とする。   An object of the present invention is to provide a novel phosphorescent light emitting device capable of being driven at a low voltage by using a specific compound in a light emitting layer of the phosphorescent light emitting device.

本発明者らは鋭意検討した結果、新規に合成した下記一般式(I)で表される化合物を燐光発光素子における発光層にホスト化合物として用い、これに燐光ドーパントをドーピングすることで、発光素子から低電圧で燐光を取り出し得ることを見出し、この知見に基づいて本発明を完成した。すなわち、本発明は以下のとおりである。   As a result of intensive studies, the present inventors used a newly synthesized compound represented by the following general formula (I) as a host compound in a light emitting layer of a phosphorescent light emitting device and doped a phosphorescent dopant to the light emitting device. The present inventors have found that phosphorescence can be extracted at a low voltage from the above, and the present invention has been completed based on this finding. That is, the present invention is as follows.

(1)少なくとも一対の電極および該電極間に配置された発光層を有する燐光を利用した有機電界発光素子であって、該発光層が一般式(I)で表される化合物の少なくとも1種、および燐光ドーパントを含有する、燐光を利用した有機電界発光素子。
(2)前記一般式(I)において、R〜Rの全てが一般式(II)で表される置換基であり、かつ、前記一般式(II)において、R、R、Rはそれぞれ独立に炭素数1〜10の脂肪族炭化水素基である、(1)の燐光を利用した有機電界発光素子。
(3)前記一般式(II)において、置換基R、R、Rの全てがアルキル基である、(1)または(2)の燐光を利用した有機電界発光素子。
(4)前記アルキル基がイソプロピル基またはメチル基である、(3)の燐光を利用した有機電界発光素子。
(5)前記一般式(I)において、R〜Rのうちの任意の1または2個が一般式(II)で表される置換基であり、かつ、前記一般式(II)において、R、R、Rがフェニル基である、(1)の燐光を利用した有機電界発光素子。
(6)前記燐光ドーパントがイリジウム錯体、白金錯体、オスミウム錯体及び金錯体から選ばれる少なくとも1種であることを特徴とする(1)〜(5)のいずれかの燐光を利用した有機電界発光素子。
(7)少なくとも一対の電極間に、さらに、電子輸送層、正孔阻止層、正孔輸送層及び正孔注入層を有する(1)〜(6)のいずれかの燐光を利用した有機電界発光素子。
(1) An organic electroluminescence device using phosphorescence having at least a pair of electrodes and a light emitting layer disposed between the electrodes, wherein the light emitting layer is at least one compound represented by the general formula (I), And an organic electroluminescence device using phosphorescence, containing a phosphorescent dopant.
(2) In the general formula (I), all of R 1 to R 6 are substituents represented by the general formula (II), and in the general formula (II), R a , R b , R The organic electroluminescent element using phosphorescence of (1), wherein each c is independently an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
(3) An organic electroluminescence device using phosphorescence of (1) or (2), wherein in the general formula (II), all of the substituents R a , R b and R c are alkyl groups.
(4) The organic electroluminescence device utilizing phosphorescence of (3), wherein the alkyl group is an isopropyl group or a methyl group.
(5) In the general formula (I), any one or two of R 1 to R 6 are substituents represented by the general formula (II), and in the general formula (II), The organic electroluminescent element using phosphorescence of (1), wherein R a , R b and R c are phenyl groups.
(6) The organic electroluminescent device using phosphorescence according to any one of (1) to (5), wherein the phosphorescent dopant is at least one selected from an iridium complex, a platinum complex, an osmium complex, and a gold complex. .
(7) Organic electroluminescence using phosphorescence according to any one of (1) to (6), further comprising an electron transport layer, a hole blocking layer, a hole transport layer and a hole injection layer between at least a pair of electrodes element.

本発明において使用する化合物は、励起三重項のエネルギーが大きく、燐光発光素子における発光層のホスト化合物として適しており、新規な燐光発光素子を提供することが可能となる。 The compound used in the present invention has a large excitation triplet energy and is suitable as a host compound of a light emitting layer in a phosphorescent light emitting device, and can provide a novel phosphorescent light emitting device.

まず、本発明の燐光発光素子の発光層に含まれる一般式(I)で表される化合物について説明する。
〜Rはそれぞれ独立にHまたは下記一般式(II)の置換基であって、R〜Rのうちの少なくとも1個は一般式(II)の置換基である。好ましくはR〜Rのうちの3〜6個が一般式(II)で表される置換基であり,より好ましくはR〜Rの6個全てが一般式(II)で表される置換基である。
一般式(II)で表される置換基は、R〜Rにおいて互いに異なるものであってもよいが、同じものであることが好ましい。
First, the compound represented by the general formula (I) contained in the light emitting layer of the phosphorescent device of the present invention will be described.
R 1 to R 6 are each independently H or a substituent of the following general formula (II), and at least one of R 1 to R 6 is a substituent of the general formula (II). Preferably, 3 to 6 of R 1 to R 6 are substituents represented by the general formula (II), more preferably all 6 of R 1 to R 6 are represented by the general formula (II). It is a substituent.
The substituents represented by the general formula (II) may be different from each other in R 1 to R 6 , but are preferably the same.

一般式(II)において、R、R、Rはそれぞれ独立に炭素数1〜10の脂肪族炭化水素基、またはフェニル基であり、より好ましくは、それぞれ独立に炭素数1〜10の脂肪族炭化水素基であり、さらに好ましくは、それぞれ独立に炭素数1〜8の脂肪族炭化水素基である。脂肪族炭化水素基は飽和でも不飽和でもよく、枝分かれしていてもよい。また、不飽和脂肪族炭化水素基の場合、2重結合は複数あってもよい。脂肪族炭化水素基の種類は炭素数1〜10である限り特に制限されず、メチル基、エチル基など下記に示すような置換基が挙げられるが、イソプロピル基またはメチル基が特に好ましい。なお、R、R、Rは互いに同じ置換基であってもよいし、異なるものであってもよい。R、R、Rが全てフェニル基の場合、一般式(I)で表される化合物における、一般式(II)で表される置換基の数は1又は2個であることが好ましい。
一般式(I)の化合物として、特に好ましくは、2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレン、2,3,6,7,10,11−ヘキサキス(トリイソプロピルシリルエチニル)トリフェニレンなどが挙げられる。
In the general formula (II), R a , R b and R c are each independently an aliphatic hydrocarbon group having 1 to 10 carbon atoms or a phenyl group, and more preferably each independently having 1 to 10 carbon atoms. It is an aliphatic hydrocarbon group, More preferably, it is a C1-C8 aliphatic hydrocarbon group each independently. The aliphatic hydrocarbon group may be saturated or unsaturated, and may be branched. In the case of an unsaturated aliphatic hydrocarbon group, there may be a plurality of double bonds. The type of the aliphatic hydrocarbon group is not particularly limited as long as it has 1 to 10 carbon atoms, and examples thereof include the following substituents such as a methyl group and an ethyl group, and an isopropyl group or a methyl group is particularly preferable. Note that R a , R b , and R c may be the same substituent as each other or different from each other. When all of R a , R b and R c are phenyl groups, the number of substituents represented by the general formula (II) in the compound represented by the general formula (I) is preferably 1 or 2. .
As the compound of the general formula (I), 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene, 2,3,6,7,10,11-hexakis (triisopropylsilylethynyl) is particularly preferable. ) Triphenylene and the like.

以下に、R、R、Rの例を挙げるが、R、R、Rはこれらに限定されない。 Hereinafter, R a, R b, examples of R c is, R a, R b, R c is not limited thereto.

(アルキル基の例)
−CH
−CHCH
−CHCHCH
−CHCHCHCH
−CHCHCHCHCH
−CHCHCHCHCHCH
−CHCHCHCHCHCHCH
−CHCHCHCHCHCHCHCH
−CHCHCHCHCHCHCHCHCH
−CHCHCHCHCHCHCHCHCHCH
(上記アルキル基は下記の例のように枝分かれしていてもよい。)
(Example of alkyl group)
-CH 3
-CH 2 CH 3
-CH 2 CH 2 CH 3
-CH 2 CH 2 CH 2 CH 3
-CH 2 CH 2 CH 2 CH 2 CH 3
-CH 2 CH 2 CH 2 CH 2 CH 2 CH 3
-CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 3
-CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 3
-CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 3
-CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 3
(The alkyl group may be branched as in the following example.)

(不飽和炭化水素基の例)
−C≡C−R(RはH、炭素数1〜8の直鎖状もしくは分岐鎖状のアルキル基が好ましい。)
−CH=CR(RはH、炭素数1〜8の直鎖状もしくは分岐鎖状のアルキル基が好ましい。Rの種類が異なる場合、シス、トランスは問わない。)
−CH−CH=CR(RはH、炭素数1〜7の直鎖状もしくは分岐鎖状のアルキル基が好ましい。Rの種類が異なる場合、シス、トランスは問わない。)
(Example of unsaturated hydrocarbon group)
-C≡C-R (R is H, preferably a linear or branched alkyl group having 1 to 8 carbon atoms)
—CH═CR 2 (R is preferably H, a linear or branched alkyl group having 1 to 8 carbon atoms. When the types of R are different, cis and trans do not matter.)
—CH 2 —CH═CR 2 (R is preferably H, a linear or branched alkyl group having 1 to 7 carbon atoms. When the types of R are different, cis and trans do not matter.)

(フェニル基)
(Phenyl group)

一般式(I)の化合物の製造方法は、該化合物が得られる限り特に制限されないが、例えば、一般式(III)の化合物と一般式(IV)の化合物を反応させることにより製造することができる。
The method for producing the compound of general formula (I) is not particularly limited as long as the compound is obtained. For example, it can be produced by reacting the compound of general formula (III) with the compound of general formula (IV). .

一般式(III)において、X〜Xはそれぞれ独立に水素原子、臭素原子またはヨウ素原子であって、X〜Xのうち少なくとも1個が臭素原子かヨウ素原子のいずれかである。X〜Xの全てが臭素原子であることが特に好ましい。なお、(III)の化合物は、例えば、実施例に示すようにトリフェニレンを臭素化またはヨウ素化することによって得ることができる。
一般式(IV)において、R、R、Rはそれぞれ独立に炭素数1〜10の脂肪族炭化水素基、またはフェニル基である。脂肪族炭化水素基は飽和でも不飽和でもよく、枝分かれしていてもよい。また、不飽和脂肪族炭化水素基の場合、2重結合は複数あってもよい。脂肪族炭化水素基としては炭素数1〜10である限り特に制限されず、エチル基、イソプロピル基またはメチル基などの上述したような置換基が挙げられるが、イソプロピル基またはメチル基が特に好ましい。なお、R、R、Rは互いに同じ置換基であってもよいし、異なるものであってもよい。IVの化合物は、例えば、実施例に示すようなGrignard反応によって得ることができる。
In the general formula (III), X 1 to X 6 are each independently a hydrogen atom, bromine atom or iodine atom, and at least one of X 1 to X 6 is either a bromine atom or an iodine atom. It is particularly preferable that all of X 1 to X 6 are bromine atoms. The compound (III) can be obtained, for example, by bromination or iodination of triphenylene as shown in the Examples.
In general formula (IV), R <a> , R <b> , R <c> is respectively independently a C1-C10 aliphatic hydrocarbon group or a phenyl group. The aliphatic hydrocarbon group may be saturated or unsaturated, and may be branched. In the case of an unsaturated aliphatic hydrocarbon group, there may be a plurality of double bonds. The aliphatic hydrocarbon group is not particularly limited as long as it has 1 to 10 carbon atoms, and examples thereof include the above-described substituents such as an ethyl group, an isopropyl group, and a methyl group, and an isopropyl group or a methyl group is particularly preferable. Note that R a , R b , and R c may be the same substituent as each other or different from each other. The compound of IV can be obtained, for example, by the Grignard reaction as shown in the Examples.

IIIとIVの反応は通常のハロゲン置換反応にしたがって行うことができる。該反応は触媒を用いて行うことが好ましい。触媒の種類は該反応を促進できるものであれば特に制限されないが、(PPh3)2PdCl2/CuI、(PPh3)4Pd/CuI、(PPh3)2PdCl2/CuAc2、などが挙げられる。反応に用いる溶媒は、IIIとIVがそれぞれ溶解して反応できるものであれば特に制限されないが、例えば、ジイソプロピルアミン、トリエチルアミン、ジエチルアミン、ピリジンなどを挙げることができる。
上記反応によって得られた化合物は、カラムクロマトグラフィーなどの通常の単離操作によって回収することができる。化合物の構造はX線結晶構造解析やNMRなどによって確認することができる。
Reaction of III and IV can be performed according to a normal halogen substitution reaction. The reaction is preferably performed using a catalyst. The type of catalyst is not particularly limited as long as it can promote the reaction, but (PPh 3 ) 2 PdCl 2 / CuI, (PPh 3 ) 4 Pd / CuI, (PPh 3 ) 2 PdCl 2 / CuAc 2 , etc. Can be mentioned. The solvent used in the reaction is not particularly limited as long as III and IV can be dissolved and reacted, and examples thereof include diisopropylamine, triethylamine, diethylamine, and pyridine.
The compound obtained by the above reaction can be recovered by a normal isolation operation such as column chromatography. The structure of the compound can be confirmed by X-ray crystal structure analysis or NMR.

以下、本発明の燐光発光素子について説明する。
本発明の燐光発光素子は、少なくとも一対の電極および該電極間に配置された発光層を有する燐光発光素子であって、該発光層が一般式(I)で表される化合物の少なくとも1種、および燐光ドーパントを含有する、燐光発光素子である。
陽極としては、4eVより大きな仕事関数を有する金属、合金、電気伝導性化合物およびこれらの混合物を用いることができる。その具体例は、Au等の金属、CuI、インジウム−スズ酸化物(以下、ITOと略記する)、SnO、ZnO等である。
Hereinafter, the phosphorescent device of the present invention will be described.
The phosphorescent light emitting device of the present invention is a phosphorescent light emitting device having at least a pair of electrodes and a light emitting layer disposed between the electrodes, wherein the light emitting layer is at least one compound represented by the general formula (I), And a phosphorescent light emitting device containing a phosphorescent dopant.
As the anode, metals, alloys, electrically conductive compounds, and mixtures thereof having a work function larger than 4 eV can be used. Specific examples thereof include metals such as Au, CuI, indium-tin oxide (hereinafter abbreviated as ITO), SnO 2 , ZnO, and the like.

陰極物質としては、4eVより小さな仕事関数の金属、合金、電気伝導性化合物、およびこれらの混合物を使用できる。その具体例は、アルミニウム、カルシウム、マグネシウム、リチウム、マグネシウム合金、アルミニウム合金等である。合金の具体例は、アルミニウム/弗化リチウム、アルミニウム/リチウム、マグネシウム/銀、マグネシウム/インジウム等である。燐光発光素子の発光を効率よく取り出すために、電極の少なくとも一方は光透過率を10%以上にすることが望ましい。電極としてのシート抵抗は数百Ω/□以下にすることが好ましい。なお、膜厚は電極材料の性質にもよるが、通常10nm〜1μm、好ましくは10〜400nmの範囲に設定される。このような電極は、上述の電極物質を使用して、蒸着やスパッタリング等の方法で薄膜を形成させることにより作製することができる。   As the cathode material, metals, alloys, electrically conductive compounds, and mixtures thereof having a work function smaller than 4 eV can be used. Specific examples thereof are aluminum, calcium, magnesium, lithium, magnesium alloy, aluminum alloy and the like. Specific examples of the alloy include aluminum / lithium fluoride, aluminum / lithium, magnesium / silver, and magnesium / indium. In order to efficiently extract light emitted from the phosphorescent light emitting element, it is desirable that at least one of the electrodes has a light transmittance of 10% or more. The sheet resistance as the electrode is preferably several hundred Ω / □ or less. Although the film thickness depends on the properties of the electrode material, it is usually set in the range of 10 nm to 1 μm, preferably 10 to 400 nm. Such an electrode can be produced by forming a thin film by a method such as vapor deposition or sputtering using the electrode material described above.

本発明の燐光発光素子の発光層は一般式(I)の化合物をホスト化合物として含み、さらに燐光を放射する燐光ドーパントを含む。発光層に含まれる一般式(I)の化合物は、1種類であってもよいし、2種類以上であってもよい。燐光ドーパントとして好ましい化合物としては、イリジウム錯体、白金錯体、オスミウム錯体及び金錯体が挙げられるが、これらに限定されるものではない。それらの具体例として、トリス[2−(2−ピリジニル)フェニル−C,N]−イリジウム(以下記号Ir(ppy)3で表記する)、ビス[(4,6−ジフルオロフェニル)―ピリジネート-N,C2’]ピナコレートイリジウム、ビス(4’,6’−ジフルオロフェニルピリジネート)テトラキス(1−ピラゾリル)ボレート、ビス(2−フェニルベンゾチアゾール)イリジウムアセチルアセトナート及び2,3,7,8,12,13,17,18−オクタエチニル−21H,23H−ポルフィリン白金(II)等、化学工業2004年6月号13ページおよび、それにあげられた参考文献などに記載された化合物などが挙げられる。なお、発光層に含まれる燐光ドーパントは、2種類以上の化合物であってもよい。 The light emitting layer of the phosphorescent light emitting device of the present invention contains the compound of general formula (I) as a host compound and further contains a phosphorescent dopant that emits phosphorescence. The compound of general formula (I) contained in a light emitting layer may be one type, and may be two or more types. Preferred compounds as phosphorescent dopants include, but are not limited to, iridium complexes, platinum complexes, osmium complexes, and gold complexes. Specific examples thereof include tris [2- (2-pyridinyl) phenyl-C, N] -iridium (hereinafter referred to as Ir (ppy) 3), bis [(4,6-difluorophenyl) -pyridinate-N. , C 2 ′ ] pinacolate iridium, bis (4 ′, 6′-difluorophenylpyridinate) tetrakis (1-pyrazolyl) borate, bis (2-phenylbenzothiazole) iridium acetylacetonate and 2,3,7, 8,12,13,17,18-octaethynyl-21H, 23H-porphyrin platinum (II) and the like, compounds listed in page 13 of the Chemical Industry June 2004 issue and references cited therein, etc. It is done. The phosphorescent dopant contained in the light emitting layer may be two or more kinds of compounds.

ドーパントの使用量はドーパントによって異なり、そのドーパントの特性に合わせて決めれば良い。ドーパントの使用量の目安は発光材料全体の0.001〜50重量%であり、好ましくは0.1〜10重量%である。
本発明の燐光発光素子は、電極間に、さらに電子輸送層、正孔阻止層、正孔輸送層、正孔注入層を含むものであることが好ましい。
本発明の燐光発光素子の各層の積層順は特に制限されないが、陰極、電子輸送層、正孔阻止層、正孔輸送層、正孔注入層及び陽極の順に積層されることがより好ましい。
The amount of dopant used varies depending on the dopant and may be determined according to the characteristics of the dopant. The standard of the amount of the dopant used is 0.001 to 50% by weight, preferably 0.1 to 10% by weight, based on the entire light emitting material.
The phosphorescent device of the present invention preferably includes an electron transport layer, a hole blocking layer, a hole transport layer, and a hole injection layer between the electrodes.
The order of lamination of the layers of the phosphorescent light emitting device of the present invention is not particularly limited, but it is more preferred that the layers are laminated in the order of cathode, electron transport layer, hole blocking layer, hole transport layer, hole injection layer and anode.

本発明の燐光発光素子の電子輸送層に用いる材料の具体例として、キノリノール系金属錯体、フェナントロリン誘導体、ピリジン誘導体、オキサジアゾール誘導体、トリアゾール誘導体、キノキサリン誘導体、トリアジン誘導体、ボラン誘導体が挙げられるが、これらに限定されるものではない。キノリノール系金属錯体の具体例は、トリス(8−ヒドロキシキノリン)アルミニウム(以下Alq3と略記する)、ビス(2−メチル−8−ヒドロキシキノリン)−(4−フェニルフェノール)アルミニウム(以下BAlqと略記する)等である。フェナントロリン誘導体の具体例は、4,7−ジフェニル−1,10−フェナントロリン、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(以下、BCPと略記する)等である。ピリジン誘導体の具体例は、2,5−ビス(6’−(2’,2”−ビピリジル)−1,1−ジメチル−3,4−ジフェニルシロール、9,10−ジ(2’,2”−ビピリジル)アントラセン、2,5−ジ(2’,2”−ビピリジル)チオフェン等である。   Specific examples of materials used for the electron transport layer of the phosphorescent light emitting device of the present invention include quinolinol-based metal complexes, phenanthroline derivatives, pyridine derivatives, oxadiazole derivatives, triazole derivatives, quinoxaline derivatives, triazine derivatives, and borane derivatives. It is not limited to these. Specific examples of the quinolinol-based metal complex include tris (8-hydroxyquinoline) aluminum (hereinafter abbreviated as Alq3), bis (2-methyl-8-hydroxyquinoline)-(4-phenylphenol) aluminum (hereinafter abbreviated as BAlq). ) Etc. Specific examples of the phenanthroline derivative include 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (hereinafter abbreviated as BCP) and the like. Specific examples of the pyridine derivative are 2,5-bis (6 ′-(2 ′, 2 ″ -bipyridyl) -1,1-dimethyl-3,4-diphenylsilole, 9,10-di (2 ′, 2 ″). -Bipyridyl) anthracene, 2,5-di (2 ', 2 "-bipyridyl) thiophene and the like.

本発明の燐光発光素子の正孔阻止層に用いる材料の具体例として、キノリノール系金属錯体、フェナントロリン誘導体、オキサジアゾール誘導体、トリアゾール誘導体、ボラン誘導体、アントラセン誘導体が挙げられるが、これらに限定されるものではない。キノリノール系金属錯体及びフェナントロリン誘導体の具体例は先述BAlq及びBCP等である。オキサジアゾール誘導体の具体例は2−(4’−tert−ブチルフェニル)−5−(4’’−ビフェニル−1,3,4−オキサジアゾール等である。トリアゾール誘導体の具体例は1−フェニル−2−ビフェニル−5−パラ−tert−ブチルフェニル−1,3,4−トリアゾール等である。アントラセン誘導体の具体例は9,10−ビスナフチルアントラセン等である。   Specific examples of materials used for the hole blocking layer of the phosphorescent light emitting device of the present invention include, but are not limited to, quinolinol-based metal complexes, phenanthroline derivatives, oxadiazole derivatives, triazole derivatives, borane derivatives, and anthracene derivatives. It is not a thing. Specific examples of the quinolinol-based metal complex and the phenanthroline derivative are the aforementioned BAlq and BCP. Specific examples of oxadiazole derivatives include 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl-1,3,4-oxadiazole), etc. Specific examples of triazole derivatives include 1- Phenyl-2-biphenyl-5-para-tert-butylphenyl-1,3,4-triazole, etc. Specific examples of anthracene derivatives are 9,10-bisnaphthylanthracene and the like.

本発明の燐光発光素子の正孔注入層に用いる材料および正孔輸送層に用いる材料の具体例として、カルバゾール誘導体、トリアリールアミン誘導体、フタロシアニン誘導体が挙げられるが、これらに限定されるものではない。カルバゾール誘導体の具体例は、4,4’−ビス(カルバゾール−9−イル)−ビフェニル(以下記号CBPで表記する)、ポリビニルカルバゾール等である。トリアリールアミン誘導体の具体例は、芳香族第3級アミンを主鎖あるいは側鎖に持つポリマー、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4'−ジアミノビフェニル、N,N’−ジフェニル−N,N’−ジナフチル−4,4'−ジアミノビフェニル(以下、NPDと略記する。)、4,4’,4”−トリス{N−(3−メチルフェニル)−N−フェニルアミノ}トリフェニルアミン、スターバーストアミン誘導体等である。フタロシアニン誘導体の具体例は、無金属フタロシアニン、銅フタロシアニン等である。   Specific examples of the material used for the hole injection layer and the material used for the hole transport layer of the phosphorescent light emitting device of the present invention include, but are not limited to, a carbazole derivative, a triarylamine derivative, and a phthalocyanine derivative. . Specific examples of the carbazole derivative include 4,4'-bis (carbazol-9-yl) -biphenyl (hereinafter referred to as CBP), polyvinyl carbazole, and the like. Specific examples of the triarylamine derivatives include polymers having an aromatic tertiary amine in the main chain or side chain, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N′-diphenyl- N, N′-di (3-methylphenyl) -4,4′-diaminobiphenyl, N, N′-diphenyl-N, N′-dinaphthyl-4,4′-diaminobiphenyl (hereinafter abbreviated as NPD). ), 4,4 ′, 4 ″ -tris {N- (3-methylphenyl) -N-phenylamino} triphenylamine, starburst amine derivatives, etc. Specific examples of phthalocyanine derivatives include metal-free phthalocyanine, copper Such as phthalocyanine.

本発明の燐光発光素子を構成する各層は、各層を構成すべき材料を蒸着法、スピンコート法またはキャスト法等の方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm〜5000nmの範囲である。なお、発光材料を薄膜化する方法は、均質な膜が得やすく、かつピンホールが生成しにくい等の点から蒸着法を採用するのが好ましい。蒸着法を用いて薄膜化する場合、その蒸着条件は、本発明の発光材料の種類、分子累積膜の目的とする結晶構造および会合構造等により異なる。蒸着条件は一般的に、ボート加熱温度50〜400℃、真空度10−6〜10−3Pa、蒸着速度0.01〜50nm/秒、基板温度−150〜+300℃、膜厚5nm〜5μmの範囲で適宜設定することが好ましい。 Each layer constituting the phosphorescent light emitting device of the present invention can be formed by forming a material to constitute each layer into a thin film by a method such as vapor deposition, spin coating, or casting. The thickness of each layer formed in this way is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. Note that it is preferable to employ a vapor deposition method as a method of thinning the light emitting material from the standpoint that a homogeneous film can be easily obtained and pinholes are hardly generated. When a thin film is formed by using a vapor deposition method, the vapor deposition conditions vary depending on the type of the light emitting material of the present invention, the target crystal structure and associated structure of the molecular accumulation film, and the like. Deposition conditions generally include a boat heating temperature of 50 to 400 ° C., a degree of vacuum of 10 −6 to 10 −3 Pa, a deposition rate of 0.01 to 50 nm / second, a substrate temperature of −150 to + 300 ° C., and a film thickness of 5 nm to 5 μm. It is preferable to set appropriately within the range.

本発明の燐光発光素子は、前記のいずれの構造であっても、基板に支持されていることが好ましい。基板は機械的強度、熱安定性および透明性を有するものであればよく、ガラス、透明プラスチックフィルム等を用いることができる。   The phosphorescent light emitting device of the present invention is preferably supported by a substrate regardless of the structure described above. The substrate only needs to have mechanical strength, thermal stability, and transparency, and glass, a transparent plastic film, and the like can be used.

次に、一般式(I)の化合物(ホスト化合物)を用いて燐光発光素子を作成する方法の一例として、前述の陽極/正孔注入層/正孔輸送層/一般式(I)のホスト化合物+ドーパント(発光層)/正孔阻止層/電子輸送層/陰極からなる燐光発光素子の作製法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法により形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上に一般式(I)のホスト化合物とドーパントを共蒸着し薄膜を形成させて発光層とし、この発光層の上に正孔阻止層及び電子輸送層を形成させ、さらに陰極用物質からなる薄膜を蒸着法により形成させて陰極とすることにより、目的の燐光発光素子が得られる。なお、上述の燐光発光素子の作製においては、作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。   Next, as an example of a method for producing a phosphorescent light emitting device using the compound of general formula (I) (host compound), the above-mentioned anode / hole injection layer / hole transport layer / host compound of general formula (I) A method for manufacturing a phosphorescent light emitting device composed of + dopant (light emitting layer) / hole blocking layer / electron transport layer / cathode will be described. A thin film of an anode material is formed on a suitable substrate by vapor deposition to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode. A host compound of general formula (I) and a dopant are co-deposited thereon to form a thin film to form a light emitting layer. A hole blocking layer and an electron transport layer are formed on the light emitting layer, and further comprises a cathode material. By forming a thin film by a vapor deposition method as a cathode, a target phosphorescent light emitting device can be obtained. In the above phosphorescent light emitting device, the fabrication order is reversed, and the cathode, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode may be fabricated in this order. Is possible.

このようにして得られた燐光発光素子に直流電圧を印加する場合には、陽極を+、陰極を−の極性として印加すればよく、電圧2〜40V程度を印加すると、透明又は半透明の電極側(陽極又は陰極、および両方)より発光が観測できる。また、この燐光発光素子は、交流電圧を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。
以下、本発明を実施例に基づいて更に詳しく説明する。
When a DC voltage is applied to the phosphorescent device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Luminescence can be observed from the side (anode or cathode and both). The phosphorescent light emitting element also emits light when an alternating voltage is applied. The alternating current waveform to be applied may be arbitrary.
Hereinafter, the present invention will be described in more detail based on examples.

1. 2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレン(2,3,6,7,10,11-Hexakis(trimethylsilyletynyl)triphenylene;一般式(V))の合成
下記に示すような手順で、2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンを合成した。
1. Synthesis of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene (2,3,6,7,10,11-Hexakis (trimethylsilyletynyl) triphenylene; general formula (V)) as shown below By the procedure, 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene was synthesized.

1.1. トリフェニレン(Triphenylene)の合成
以下の反応式にしたがって、トリフェニレンを合成した。
(仕込量)
2-Bromofluorobenzene(東京化成、99%) 10.12 g / 5.73 x 10-2 mol
Mg(和光、削り状、99.5%) 1.54 g / 6.30 x 10-2 mol
THF(ベンゾフェノンケチル処理) 85+15 mL
(操作および結果)
滴下ロートおよびジムロート、スピナーを備えた 200 mL 三口フラスコをフレームアウト、アルゴン置換した。フラスコに Mg を収め、180 °Cにて 2 時間活性化した。フラスコに THF 85 mL、滴下ロートに 2-Bromofluorobenzene および THF 15 mL を収め、20 分かけて滴下した(滴下直後から発熱)。滴下終了後、THF 還流温度にて 6 時間還流した。飽和 NH4Cl 水溶液(100 mL x 3)にて洗浄後、Benzene(50 mL x 2)で水相を抽出、有機相をあわせて無水 MgSO4 にて乾燥させた。溶媒除去後、昇華、再結晶にて精製し、目的物を無色透明針状結晶として、収量 789 mg、収率 18% で得た。
1.1. Synthesis of triphenylene Triphenylene was synthesized according to the following reaction formula.
(Charge amount)
2-Bromofluorobenzene (Tokyo Kasei, 99%) 10.12 g / 5.73 x 10 -2 mol
Mg (Wako, sharpened, 99.5%) 1.54 g / 6.30 x 10 -2 mol
THF (benzophenone ketyl treatment) 85 + 15 mL
(Operation and result)
A 200 mL three-necked flask equipped with a dropping funnel, a Dimroth, and a spinner was flamed out and purged with argon. Mg was placed in the flask and activated at 180 ° C for 2 hours. 85 mL of THF was placed in a flask, and 2-Bromofluorobenzene and 15 mL of THF were placed in a dropping funnel, and dropped over 20 minutes (exotherm immediately after dropping). After completion of the dropwise addition, the mixture was refluxed at a THF reflux temperature for 6 hours. After washing with saturated NH 4 Cl aqueous solution (100 mL × 3), the aqueous phase was extracted with Benzene (50 mL × 2), and the organic phases were combined and dried over anhydrous MgSO 4 . After removing the solvent, the product was purified by sublimation and recrystallization, and the target product was obtained as colorless transparent needle crystals in a yield of 789 mg and a yield of 18%.

1.2. 2,3,6,7,10,11-ヘキサブロモトリフェニレン(2,3,6,7,10,11-Hexabromotriphenylene)の合成
以下の反応式にしたがって、2,3,6,7,10,11-ヘキサブロモトリフェニレンを合成した。
(仕込量)
Triphenylene(合成品) 2.00 g / 8.51 x 10-3 mol
Br2(和光) 4.0 mL
Fe(粉末状) 0.484 g / 3.29 x 10-3mol
PhNO2(関東、単蒸留) 80 mL
(操作および結果)
滴下ロートおよびジムロート、スピナーを備えた 200 mL 三口フラスコをフレームアウト、Ar 置換した。フラスコに Triphenylene および Fe 粉、PhNO2を収めた。滴下ロートに Br2 を収め 15 分かけて滴下した。滴下終了後、室温にて 10 時間撹拌した後、200 °C にて 2 時間撹拌した。冷却後、反応混合物中に Et2O を入れ、不溶分をろ別し、o-Dichlorobenzene 800 mL にて再結晶を行い、目的物を白色粉末として、収量 5.18 g、収率 87% で得た。
1.2. Synthesis of 2,3,6,7,10,11-hexabromotriphenylene (2,3,6,7,10,11-Hexabromotriphenylene) 2,3,6,7,10,11 -Hexabromotriphenylene was synthesized.
(Charge amount)
Triphenylene (synthetic product) 2.00 g / 8.51 x 10 -3 mol
Br 2 (Wako) 4.0 mL
Fe (powder) 0.484 g / 3.29 x 10 -3 mol
PhNO 2 (Kanto, simple distillation) 80 mL
(Operation and result)
A 200 mL three-necked flask equipped with a dropping funnel, Dimroth, and spinner was flamed out and replaced with Ar. Triphenylene, Fe powder, and PhNO 2 were placed in a flask. Br 2 was placed in the dropping funnel and dropped over 15 minutes. After completion of dropping, the mixture was stirred at room temperature for 10 hours and then stirred at 200 ° C for 2 hours. After cooling, Et 2 O was added to the reaction mixture, insolubles were filtered off, and recrystallized with 800 mL of o-Dichlorobenzene to obtain the target product as a white powder, yield 5.18 g, yield 87%. .

1.3. トリメチルシリルアセチレン(Trimethylsilylacetylene)の合成
以下の反応式にしたがってトリメチルシリルアセチレンを合成した。
(仕込量)
アセチレン(ボンベ、カンサン)
EtMgBr(調整品、1.5 M in THF) 400 mL / 600 mmol
Me3SiBr(チッソ、99%) 85.54 g / 553 mmol
THF(ベンゾフェノンケチル処理) 200 mL
(操作および結果)
滴下ロートおよびジムロート、スピナーを備えた 2000 mL 四口フラスコをフレームアウト、Ar 置換した。フラスコに THF 200 mL 収めた。氷浴にてアセチレンガスを 1.5 時間バブリングした後、滴下ロートからあらかじめ別途調製しておいた EtMgBr を 1 時間 50 分かけて滴下した。滴下終了後、バブリングをしたまま 30 分撹拌し、バブリングをやめて 40 分撹拌した。バスをドライアイス−メタノール浴に換え、滴下ロートから Me3SiBr を 40 分かけて滴下した。ドライアイス−メタノール浴のまま 30 分撹拌後、室温に戻し一晩撹拌した。再び氷浴にし、飽和塩化アンモニウム水溶液 200 mL を入れ、反応を終了させた。分液操作にて有機相を集め、無水 MgSO4 で乾燥させた。常圧蒸留、次いで精流塔を用いて分取をし、目的化合物を無色透明液体として、トリメチルシリルアセチレンを得た。
1.3. Synthesis of Trimethylsilylacetylene Trimethylsilylacetylene was synthesized according to the following reaction formula.
(Charge amount)
Acetylene (bomb, kansan)
EtMgBr (prepared product, 1.5 M in THF) 400 mL / 600 mmol
Me 3 SiBr (Nisso, 99%) 85.54 g / 553 mmol
THF (benzophenone ketyl treatment) 200 mL
(Operation and result)
A 2000 mL four-necked flask equipped with a dropping funnel, a Dimroth, and a spinner was flamed out and replaced with Ar. The flask was charged with 200 mL of THF. After bubbling acetylene gas in an ice bath for 1.5 hours, EtMgBr prepared separately from a dropping funnel was added dropwise over 1 hour and 50 minutes. After completion of the dropwise addition, the mixture was stirred for 30 minutes with bubbling, stopped and stopped for 40 minutes. The bath was changed to a dry ice-methanol bath, and Me 3 SiBr was dropped from the dropping funnel over 40 minutes. The mixture was stirred for 30 minutes in a dry ice-methanol bath, then returned to room temperature and stirred overnight. The reaction was completed again by putting into an ice bath and adding 200 mL of saturated aqueous ammonium chloride solution. The organic phase was collected by liquid separation and dried over anhydrous MgSO 4 . Atomic pressure distillation, followed by fractionation using a convection tower, gave the target compound as a colorless transparent liquid to obtain trimethylsilylacetylene.

1.4. ジクロロビス(トリフェニルホスフィン)パラジウム(II)(Dichlorobis(triphenylphosphine)palladium(II))の調製
以下の反応式に従って、ジクロロビス(トリフェニルホスフィン)パラジウム(II)を合成した。
(仕込量)
PdCl2(和光、98%) 1.00 g / 5.54 x 10-3 mol
PPh3(関東、99%) 3.00 g / 1.14 x 10-2 mol
conc. HCl aq.(関東、35-37%) 0.17 mL
EtOH(単蒸留) 50 mL
H2O(イオン交換水) 100 mL
(操作および結果)
200 mL の三口フラスコにイオン交換水および濃塩酸、PdCl2 を収め、撹拌しつつ、キャヌラーを用いて PPh3の EtOH 溶液にゆっくりと滴下した(その間オイルバスで 60 °C に加温しながら)。滴下終了後 60 °C のまま 3 時間撹拌した。不溶物(目的物)を濾別し、沸騰水 100 mL、熱 EtOH 100 mL、熱 Et2O 100 mL の順で洗浄した(粗収量 2.09 g、粗収率 53%)。そのうち 1 g をとり熱 CHCl3 50 mL に溶かし、そこに hexane 150 mL を入れ (PPh3)2PdCl2を析出させた。得られた (PPh3)2PdCl2 は五塩化リンを用いて 100 °C で加熱乾燥した(黄色微粉末結晶、回収 0.83 g、回収率 83%)。
1.4. Preparation of dichlorobis (triphenylphosphine) palladium (II) (Dichlorobis (triphenylphosphine) palladium (II)) Dichlorobis (triphenylphosphine) palladium (II) was synthesized according to the following reaction formula.
(Charge amount)
PdCl 2 (Wako, 98%) 1.00 g / 5.54 x 10 -3 mol
PPh 3 (Kanto, 99%) 3.00 g / 1.14 x 10 -2 mol
conc. HCl aq. (Kanto, 35-37%) 0.17 mL
EtOH (simple distillation) 50 mL
H 2 O (ion exchange water) 100 mL
(Operation and result)
Ion-exchanged water, concentrated hydrochloric acid, and PdCl 2 were placed in a 200 mL three-necked flask and slowly dropped into the EtOH solution of PPh 3 using a cannula while stirring (while heating to 60 ° C in an oil bath) . After completion of dropping, the mixture was stirred at 60 ° C for 3 hours. Insoluble matter (target product) was filtered off and washed with 100 mL of boiling water, 100 mL of hot EtOH, and 100 mL of hot Et 2 O in this order (crude yield 2.09 g, crude yield 53%). 1 g of this was taken and dissolved in 50 mL of hot CHCl 3 , and 150 mL of hexane was added thereto to precipitate (PPh 3 ) 2 PdCl 2 . The obtained (PPh 3 ) 2 PdCl 2 was heated and dried at 100 ° C. using phosphorus pentachloride (yellow fine powder crystals, recovered 0.83 g, recovery rate 83%).

1.5. 2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンの合成
以下の反応式にしたがって2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンを合成した。
(仕込量)
2,3,6,7,10,11-hexabromotriphenylene 205 mg / 2.92 x 10-4mol
trimethylsilylacetylene 1.68 g / 1.71 x 10-2 mol
(PPh3)2PdCl2 245 mg / 3.49 x 10-4 mol
CuI(和光) 66 mg / 3.47 x 10-4 mol
i-Pr2NH(東京化成、CaH2より蒸留) 200 mL
(操作および結果)
滴下ロートおよびジムロート、スピナーを備えた 300 mL 三口フラスコをフレームアウト、N2 置換した。フラスコに2,3,6,7,10,11-ヘキサブロモトリフェニレンおよび(PPh3)2PdCl2、CuI、i-Pr2NH を収めた。滴下ロートから 30 分かけて Me3SiC≡CH を滴下した(溶液はすぐに黄色→褐色)。その後、還流下で 3 時間撹拌した。ロータリーエバポレーターにて溶媒を除去後、フラッシュカラム(ワコーゲル C-60, benzene)で不溶分を除去し、ウエットカラム(一回目;ワコーゲル C-60, hexane / Et2O = 9 / 1、二回目;ワコーゲル C-60, hexane / CH2Cl2= 8 / 2)にて分取を行い、黄色結晶として2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンを収量 210 mg、収率 90% で得た。
1.5. Synthesis of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene was synthesized according to the following reaction formula.
(Charge amount)
2,3,6,7,10,11-hexabromotriphenylene 205 mg / 2.92 x 10 -4 mol
trimethylsilylacetylene 1.68 g / 1.71 x 10 -2 mol
(PPh 3 ) 2 PdCl 2 245 mg / 3.49 x 10 -4 mol
CuI (Wako) 66 mg / 3.47 x 10 -4 mol
i-Pr 2 NH (Tokyo Kasei, distilled from CaH 2 ) 200 mL
(Operation and result)
A 300 mL three-necked flask equipped with a dropping funnel, a Dimroth, and a spinner was flamed out and replaced with N 2 . The flask was charged with 2,3,6,7,10,11-hexabromotriphenylene and (PPh 3 ) 2 PdCl 2 , CuI, i-Pr 2 NH. Me 3 SiC≡CH was dropped from the dropping funnel over 30 minutes (the solution was immediately yellow → brown). Thereafter, the mixture was stirred for 3 hours under reflux. After removing the solvent with a rotary evaporator, the insoluble matter is removed with a flash column (Wakogel C-60, benzene), and the wet column (first time; Wakogel C-60, hexane / Et 2 O = 9/1, second time; Wakogel C-60, hexane / CH 2 Cl 2 = 8/2), and collected 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene as a yellow crystal in a yield of 210 mg. Obtained at a rate of 90%.

2. 2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンの解析
2.1. X 線結晶構造解析
同定は各種スペクトルにて行い、最終的に X 線結晶構造解析にて構造を決定した。
2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンのスペクトルデータは以下のとおりであった。
MS(質量分析) (EI, 70 eV) m/z (%) 804 (M+, 83), 789 (3), 731 (3), 716(7), 701 (8), 73 (100)
IR(赤外吸収スペクトル) (KBr) cm-1 2959, 2899, 2162, 1483, 1404, 1248, 1190, 1146, 997, 864, 845, 760, 650
1H NMR (核磁気共鳴スペクトル)(500 MHz, CDCl3) δ 0.34 (s, 54H), 8.63 (s, 6H) ppm
13C NMR (126 MHz, CDCl3) δ 0.06, 99.88, 103.03, 124.91, 127.91, 128.51 ppm
29Si NMR (99 MHz, CDCl3) δ -17.2 ppm
融点 300 °C (decomposition and polymerization)
2. Analysis of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene 2.1. X-ray crystal structure analysis Identification was performed using various spectra, and the structure was finally determined by X-ray crystal structure analysis.
The spectral data of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene were as follows.
MS (mass spectrometry) (EI, 70 eV) m / z (%) 804 (M + , 83), 789 (3), 731 (3), 716 (7), 701 (8), 73 (100)
IR (infrared absorption spectrum) (KBr) cm -1 2959, 2899, 2162, 1483, 1404, 1248, 1190, 1146, 997, 864, 845, 760, 650
1 H NMR (nuclear magnetic resonance spectrum) (500 MHz, CDCl 3 ) δ 0.34 (s, 54H), 8.63 (s, 6H) ppm
13 C NMR (126 MHz, CDCl 3 ) δ 0.06, 99.88, 103.03, 124.91, 127.91, 128.51 ppm
29 Si NMR (99 MHz, CDCl 3 ) δ -17.2 ppm
Melting point 300 ° C (decomposition and polymerization)

ジクロロメタン、ヘキサン、エタノール混合溶媒から再結晶し、2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンの黄色透明結晶を得た。図1〜4に X 線結晶構造解析の結果を示す。トリフェニレン環はほぼ平面構造を有していたが、トリメチルシリルエチニル基は、若干、環平面からずれていた。結合距離、結合角のまとめを図5,6に示す。芳香環は置換基が結合している間の結合距離が、他より長くなっていた。炭素-炭素三重結合は通常値(1.2 Å)よりわずかに短い(av. 1.181 Å)。また、一ヶ所のトリメチルシリル基の炭素にディスオーダーが見られた。パッキングをみると、それぞれの分子は矢筈型に積層していた。平行に位置する分子の層間の最近接距離は sp 炭素間の 4.5 Å である。対角に位置するケイ素原子間距離は約16Åである。   Recrystallization from a mixed solvent of dichloromethane, hexane, and ethanol gave 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene yellow transparent crystals. Figures 1 to 4 show the results of X-ray crystal structure analysis. The triphenylene ring had a substantially planar structure, but the trimethylsilylethynyl group was slightly off the ring plane. A summary of the bond distance and bond angle is shown in FIGS. The aromatic ring had a longer bond distance than the other while the substituents were bonded. The carbon-carbon triple bond is slightly shorter than the normal value (1.2 Å) (av. 1.181 Å). Disorders were found in the carbon of one trimethylsilyl group. Looking at the packing, each molecule was stacked in an arrowhead shape. The closest distance between parallel layers is 4.5 sp between sp carbons. The distance between silicon atoms located diagonally is about 16 mm.

2.2. 2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンの性質など
2.2.1. 物理的性質
2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンは明確な融点を示さず、約 300 °C まで加熱したところで、結晶がオレンジ色に変化し、なお加熱し続けると約 400 °C で褐色に変化する(融点測定器にて観測)。このことから結晶内で重合が起こっていることが考えられ、後の熱重量分析により、確かに重合が起こっていることがわかった。
溶解性に関しては、母体のトリフェニレンと比較すると向上していると考えられる。一般的な有機溶媒(hexane、benzene、toluene、acetone、Et2O、THF、CH2Cl2、CHCl3)に可溶、EtOH、MeOHに難溶である。
結晶状態において空気中に放置しても、透明度等に変化はない。
2.2. Properties of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene, etc. 2.2.1. Physical properties
2,3,6,7,10,11-Hexakis (trimethylsilylethynyl) triphenylene does not show a clear melting point, and when heated to about 300 ° C., the crystal turns orange, It turns brown at ° C (observed with a melting point instrument). From this, it was considered that polymerization occurred in the crystal, and later thermogravimetric analysis revealed that polymerization had occurred.
The solubility is considered to be improved compared to the parent triphenylene. It is soluble in common organic solvents (hexane, benzene, toluene, acetone, Et 2 O, THF, CH 2 Cl 2 , CHCl 3 ) and hardly soluble in EtOH and MeOH.
Even if it is left in the air in the crystalline state, the transparency and the like do not change.

2.2.2. 紫外-可視吸収スペクトル
2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンおよびトリフェニレンの紫外−可視吸収スペクトルを hexane 中、室温で測定した結果を図7に示す。それぞれの吸収帯の吸収極大とモル吸光係数(ε)の値をまとめたものを表1に示す。いずれのピークに関しても、2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンの方が約 40〜50 nm 長波長シフトしていることがわかる。また、モル吸光係数の値も増大している。
2.2.2. UV-visible absorption spectrum
FIG. 7 shows the results of measuring UV-visible absorption spectra of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene and triphenylene in hexane at room temperature. Table 1 summarizes the values of the absorption maximum and molar extinction coefficient (ε) of each absorption band. As for any peak, it can be seen that 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene is shifted by about 40 to 50 nm longer wavelength. The value of the molar extinction coefficient is also increasing.

2.2.3. 発光(蛍光、リン光)スペクトル
2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンおよびトリフェニレンの蛍光スペクトルを 3-methylpentane(3-MP)中、脱気封管、室温、励起波長 296 nm で測定した結果を図8 に示す。蛍光極大は 415、428、439 nm であり、トリフェニレンの対応する蛍光極大よりも約 60 nm 長波長シフトし、強度も強くなっている。トリフェニレン(Φf= 0.09)を元にして算出した蛍光の量子収率はΦf = 0.16 である。
2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンおよびトリフェニレンの 3-MP 中、脱気封管、励起波長 296 nm、77K における発光スペクトル測定の結果を図9に示す。発光極大はそれぞれ約 60 nm の長波長シフトを観測した。これにより、2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンが燐光発光素子の発光層に使用できることがわかった。
2.2.3. Luminescence (fluorescence, phosphorescence) spectrum
The fluorescence spectra of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene and triphenylene were measured in 3-methylpentane (3-MP) at a degassed tube, at room temperature, and at an excitation wavelength of 296 nm. It is shown in FIG. The fluorescence maxima are 415, 428, and 439 nm, which is shifted about 60 nm longer than the corresponding fluorescence maxima of triphenylene, and the intensity is also strong. The quantum yield of fluorescence calculated based on triphenylene (Φ f = 0.09) is Φ f = 0.16.
Figure 9 shows the results of emission spectrum measurement of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene and triphenylene in 3-MP, degassed sealed tube, excitation wavelength 296 nm, 77K. Each emission maximum observed a long wavelength shift of about 60 nm. Thus, it was found that 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene can be used for the light emitting layer of the phosphorescent device.

2,3,6,7,10,11−ヘキサキス(トリイソプロピルシリルエチニル)トリフェニレンの合成とスペクトル解析
まず、以下の反応によってトリイソプロピルシリルアセチレンを合成した。
Synthesis and spectral analysis of 2,3,6,7,10,11-hexakis (triisopropylsilylethynyl) triphenylene First, triisopropylsilylacetylene was synthesized by the following reaction.

これを2,3,6,7,-10,11-ヘキサブロモトリフェニレンと反応させることによって、2,3,6,7,10,11−ヘキサキス(トリイソプロピルシリルエチニル)トリフェニレン(一般式(VI))を合成した。反応は2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンと同様にして行った。収率は55%であった。
By reacting this with 2,3,6,7, -10,11-hexabromotriphenylene, 2,3,6,7,10,11-hexakis (triisopropylsilylethynyl) triphenylene (general formula (VI)) ) Was synthesized. The reaction was carried out in the same manner as 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene. The yield was 55%.

2,3,6,7,10,11−ヘキサキス(トリイソプロピルシリルエチニル)トリフェニレンの紫外−可視吸収スペクトルをhexane 中、室温で測定した。結果を、トリフェニレン及び2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンのデータとともに図10に示す。
2,3,6,7,10,11−ヘキサキス(トリイソプロピルシリルエチニル)トリフェニレンについても、トリフェニレンと比較して長波長シフトが見られた。
The ultraviolet-visible absorption spectrum of 2,3,6,7,10,11-hexakis (triisopropylsilylethynyl) triphenylene was measured in hexane at room temperature. The results are shown in FIG. 10 together with data on triphenylene and 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene.
2,3,6,7,10,11-Hexakis (triisopropylsilylethynyl) triphenylene also showed a long wavelength shift compared to triphenylene.

2,3,6,7,10,11−ヘキサキス(トリイソプロピルシリルエチニル)トリフェニレンの蛍光スペクトルを 3-methylpentane(3-MP)中、脱気封管、室温、励起波長 296 nm で測定した。結果を、トリフェニレン及び2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンのデータとともに図11に示す。
2,3,6,7,10,11−ヘキサキス(トリイソプロピルシリルエチニル)トリフェニレンについても、トリフェニレンの対応する蛍光極大よりも約 60 nm 長波長シフトし、強度も強くなっていることがわかった。
The fluorescence spectrum of 2,3,6,7,10,11-hexakis (triisopropylsilylethynyl) triphenylene was measured in 3-methylpentane (3-MP) at a degassed sealed tube at room temperature and an excitation wavelength of 296 nm. The results are shown in FIG. 11 together with data on triphenylene and 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene.
It was found that 2,3,6,7,10,11-hexakis (triisopropylsilylethynyl) triphenylene was also shifted by about 60 nm longer than the corresponding fluorescence maximum of triphenylene and increased in intensity.

2,3,6,7,10,11−ヘキサキス(トリイソプロピルシリルエチニル)トリフェニレンの発光(蛍光・リン光)スペクトルを 3-MP 中、脱気封管、励起波長 296 nm、77K で測定した。結果を、トリフェニレン及び2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンのデータとともに図12に示す。
2,3,6,7,10,11−ヘキサキス(トリイソプロピルシリルエチニル)トリフェニレンについても、長波長シフトが見られた。これにより、2,3,6,7,10,11−ヘキサキス(トリイソプロピルシリルエチニル)トリフェニレンが燐光発光素子の発光層に使用できることがわかった。
The emission (fluorescence / phosphorescence) spectrum of 2,3,6,7,10,11-hexakis (triisopropylsilylethynyl) triphenylene was measured in 3-MP in a degassed sealed tube with an excitation wavelength of 296 nm and 77K. The results are shown in FIG. 12 together with data on triphenylene and 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene.
A long wavelength shift was also observed for 2,3,6,7,10,11-hexakis (triisopropylsilylethynyl) triphenylene. Thus, it was found that 2,3,6,7,10,11-hexakis (triisopropylsilylethynyl) triphenylene can be used for the light emitting layer of the phosphorescent light emitting device.

2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレン(化合物1)をホスト化合物に用いた燐光発光素子の製造と発光の確認
ガラス基板上にITOを150nmの厚さに蒸着したものを透明支持基板とした。この透明支持基板を蒸着装置の基板ホルダーに固定し、銅フタロシアニン(以下記号CuPcで表記する)を入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、Ir(ppy)3を入れたモリブデン製蒸着用ボート、化合物1を入れたモリブデン製蒸着用ボート、BCPを入れたモリブデン製蒸着用ボート、Alq3を入れたモリブデン製蒸着用ボート、弗化リチウムを入れたモリブデン製蒸着用ボート、およびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
Production of phosphorescent light emitting device using 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene (compound 1) as a host compound and confirmation of light emission ITO was deposited on a glass substrate to a thickness of 150 nm. This was a transparent support substrate. This transparent support substrate is fixed to the substrate holder of the vapor deposition apparatus, and a molybdenum vapor deposition boat containing copper phthalocyanine (hereinafter referred to as CuPc), a molybdenum vapor deposition boat containing NPD, and Ir (ppy) 3 Molybdenum vapor deposition boat, molybdenum vapor deposition boat containing compound 1, molybdenum vapor deposition boat containing BCP, molybdenum vapor deposition boat containing Alq3, molybdenum vapor deposition boat containing lithium fluoride, And a tungsten evaporation boat containing aluminum.

真空槽を1×10−3Paまで減圧し、CuPcが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して正孔注入層を形成し、ついで、NPDが入った蒸着用ボートを加熱して膜厚35nmになるように蒸着して正孔輸送層を形成した。次に、Ir(ppy)3が入ったボートと化合物1の入ったボートを同時に加熱して膜厚35nmになるように蒸着して発光層を形成した。次に、BCPの入ったボートを加熱して膜厚10nmになるように蒸着して正孔阻止層を得た。Ir(ppy)3と化合物1の重量比がおよそ5対95になるように蒸着速度を調節した。その後、Alq3を入れた蒸着用ボートを加熱して膜厚40nmになるように加熱して電子輸送層を形成した。 Depressurize the vacuum chamber to 1 × 10 −3 Pa, heat the vapor deposition boat containing CuPc and deposit it to a film thickness of 25 nm to form a hole injection layer, and then vapor deposition for NPD The boat was heated and evaporated to a film thickness of 35 nm to form a hole transport layer. Next, the boat containing Ir (ppy) 3 and the boat containing Compound 1 were heated at the same time and evaporated to a film thickness of 35 nm to form a light emitting layer. Next, the boat containing BCP was heated and evaporated to a thickness of 10 nm to obtain a hole blocking layer. The deposition rate was adjusted so that the weight ratio of Ir (ppy) 3 to Compound 1 was approximately 5 to 95. Thereafter, the evaporation boat containing Alq3 was heated to a thickness of 40 nm to form an electron transport layer.

各層の蒸着速度は0.001〜3.0nm/秒であった。その後、弗化リチウム入りの蒸着用ボートを加熱して膜厚0.5nmになるように0.003〜0.01nm/秒の蒸着速度で蒸着し、次いで、アルミニウム入りの蒸着用ボートを加熱して膜厚100nmになるように0.1〜1nm/秒の蒸着速度で蒸着することにより、燐光発光素子を得た。
ITO電極を陽極、弗化リチウム/アルミニウム電極を陰極として、7Vの直流電圧を印加すると約3.0mA/cmの電流が流れ、波長510nmをピークとするIr(ppy)3由来のスペクトルを有する緑色発光を得ることが出来た。
The deposition rate of each layer was 0.001 to 3.0 nm / sec. Thereafter, the evaporation boat containing lithium fluoride is heated to deposit at a deposition rate of 0.003 to 0.01 nm / second so that the film thickness becomes 0.5 nm, and then the evaporation boat containing aluminum is heated. The phosphorescent light-emitting device was obtained by vapor deposition at a vapor deposition rate of 0.1 to 1 nm / second so that the film thickness was 100 nm.
When a 7V DC voltage is applied using an ITO electrode as an anode and a lithium fluoride / aluminum electrode as a cathode, a current of about 3.0 mA / cm 2 flows and has a spectrum derived from Ir (ppy) 3 having a peak at a wavelength of 510 nm. A green light emission was obtained.

[比較例1]
実施例1において、発光層に用いた化合物1の代わりに、CBPを用いた以外は、全く同様にして燐光発光素子を得た。
ITO電極を陽極、弗化リチウム/アルミニウム電極を陰極として、7Vの直流電圧を印加すると約1.5mA/cmの電流が流れ、波長510nmをピークとするIr(ppy)3由来のスペクトルを有する緑色発光を得ることが出来た。
[Comparative Example 1]
In Example 1, a phosphorescent light emitting device was obtained in exactly the same manner except that CBP was used instead of the compound 1 used in the light emitting layer.
When a 7V DC voltage is applied using an ITO electrode as an anode and a lithium fluoride / aluminum electrode as a cathode, a current of about 1.5 mA / cm 2 flows and has a spectrum derived from Ir (ppy) 3 having a peak at a wavelength of 510 nm. A green light emission was obtained.

2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンの X 線結晶構造解析の結果を示すORTEP図(上から見た図)。ORTEP diagram (viewed from above) showing the results of X-ray crystal structure analysis of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene. 2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンの X 線結晶構造解析の結果を示すORTEP図(横から見た図)。ORTEP diagram (side view) showing the results of X-ray crystal structure analysis of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene. 2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンの X 線結晶構造解析の結果を示すORTEP図(a軸方向から見た図)。ORTEP diagram showing the results of X-ray crystal structure analysis of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene (viewed from the a-axis direction). 2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンの X 線結晶構造解析の結果を示すORTEP図(b軸方向から見た図)。ORTEP diagram showing the results of X-ray crystal structure analysis of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene (viewed from the b-axis direction). 2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンの結合距離を示す図。The figure which shows the bond distance of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene. 2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンの結合角を示す図。The figure which shows the bond angle of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene. 2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンのおよびトリフェニレンの紫外−可視吸収スペクトルを示す図。The figure which shows the ultraviolet-visible absorption spectrum of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene and triphenylene. 2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンおよびトリフェニレンの蛍光スペクトルを示す図。The figure which shows the fluorescence spectrum of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene and triphenylene. 2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレンおよびトリフェニレンの 3-MP 中、脱気封管、励起波長 296 nm、77K における発光スペクトルを示す図。Diagram showing emission spectrum of 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene and triphenylene in 3-MP, degassed sealed tube, excitation wavelength 296 nm, 77K. 各トリフェニレン化合物の紫外−可視吸収スペクトルを示す図。1は2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレン、2は2,3,6,7,10,11−ヘキサキス(トリイソプロピルシリルエチニル)トリフェニレンを示す。The figure which shows the ultraviolet-visible absorption spectrum of each triphenylene compound. 1 represents 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene, and 2 represents 2,3,6,7,10,11-hexakis (triisopropylsilylethynyl) triphenylene. 各トリフェニレン化合物の蛍光スペクトルを示す図。1は2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレン、2は2,3,6,7,10,11−ヘキサキス(トリイソプロピルシリルエチニル)トリフェニレンを示す。The figure which shows the fluorescence spectrum of each triphenylene compound. 1 represents 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene, and 2 represents 2,3,6,7,10,11-hexakis (triisopropylsilylethynyl) triphenylene. 各トリフェニレン化合物の 3-MP 中、脱気封管、励起波長 296 nm、77K における発光スペクトルを示す図。1は2,3,6,7,10,11−ヘキサキス(トリメチルシリルエチニル)トリフェニレン、2は2,3,6,7,10,11−ヘキサキス(トリイソプロピルシリルエチニル)トリフェニレンを示す。The figure which shows the emission spectrum in 3-MP, a deaeration sealed tube, excitation wavelength 296nm, 77K of each triphenylene compound. 1 represents 2,3,6,7,10,11-hexakis (trimethylsilylethynyl) triphenylene, and 2 represents 2,3,6,7,10,11-hexakis (triisopropylsilylethynyl) triphenylene.

Claims (7)

少なくとも一対の電極および該電極間に配置された発光層を有する燐光を利用した有機電界発光素子であって、該発光層が一般式(I)で表される化合物の少なくとも1種、および燐光ドーパントを含有する、燐光を利用した有機電界発光素子。
An organic electroluminescence device using phosphorescence having at least a pair of electrodes and a light emitting layer disposed between the electrodes, wherein the light emitting layer is at least one compound represented by the general formula (I), and a phosphorescent dopant An organic electroluminescent device using phosphorescence, comprising:
前記一般式(I)において、R〜Rの全てが一般式(II)で表される置換基であり、かつ、前記一般式(II)において、R、R、Rはそれぞれ独立に炭素数1〜10の脂肪族炭化水素基である、請求項1に記載の燐光を利用した有機電界発光素子。 In the general formula (I), all of R 1 to R 6 are substituents represented by the general formula (II), and in the general formula (II), R a , R b and R c are respectively The organic electroluminescent element using phosphorescence according to claim 1, which is independently an aliphatic hydrocarbon group having 1 to 10 carbon atoms. 前記一般式(II)において、置換基R、R、Rの全てがアルキル基である、請求項1または2に記載の燐光を利用した有機電界発光素子。 The organic electroluminescent element using phosphorescence according to claim 1 or 2, wherein in the general formula (II), all of the substituents R a , R b , and R c are alkyl groups. 前記アルキル基がイソプロピル基またはメチル基である、請求項3に記載の燐光を利用した有機電界発光素子。   The organic electroluminescence device using phosphorescence according to claim 3, wherein the alkyl group is an isopropyl group or a methyl group. 前記一般式(I)において、R〜Rのうちの任意の1または2個が一般式(II)で表される置換基であり、かつ、前記一般式(II)において、R、R、Rがフェニル基である、請求項1に記載の燐光を利用した有機電界発光素子。 In the general formula (I), any one or two of R 1 to R 6 are substituents represented by the general formula (II), and in the general formula (II), R a , The organic electroluminescent element using phosphorescence according to claim 1, wherein R b and R c are phenyl groups. 前記燐光ドーパントがイリジウム錯体、白金錯体、オスミウム錯体及び金錯体から選ばれる少なくとも1種であることを特徴とする請求項1〜5のいずれか一項に記載の燐光を利用した有機電界発光素子。   6. The organic electroluminescence device using phosphorescence according to claim 1, wherein the phosphorescent dopant is at least one selected from an iridium complex, a platinum complex, an osmium complex, and a gold complex. 前記電極間に、さらに、電子輸送層、正孔阻止層、正孔輸送層及び正孔注入層を有する請求項1〜6のいずれか一項に記載の燐光を利用した有機電界発光素子。   The organic electroluminescent element using phosphorescence according to any one of claims 1 to 6, further comprising an electron transport layer, a hole blocking layer, a hole transport layer, and a hole injection layer between the electrodes.
JP2004292697A 2004-10-05 2004-10-05 Organic electroluminescence device using phosphorescence Expired - Fee Related JP4392721B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004292697A JP4392721B2 (en) 2004-10-05 2004-10-05 Organic electroluminescence device using phosphorescence
PCT/JP2005/018727 WO2006038709A1 (en) 2004-10-05 2005-10-05 Triphenylene compounds, process for production thereof, and organic electroluminescent devices made by using the same
US11/576,593 US8026663B2 (en) 2004-10-05 2005-10-05 Triphenylene compounds, method of manufacturing the same and organic electroluminescent devices employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292697A JP4392721B2 (en) 2004-10-05 2004-10-05 Organic electroluminescence device using phosphorescence

Publications (2)

Publication Number Publication Date
JP2006108369A JP2006108369A (en) 2006-04-20
JP4392721B2 true JP4392721B2 (en) 2010-01-06

Family

ID=36377736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292697A Expired - Fee Related JP4392721B2 (en) 2004-10-05 2004-10-05 Organic electroluminescence device using phosphorescence

Country Status (1)

Country Link
JP (1) JP4392721B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147324A (en) * 2007-11-22 2009-07-02 Idemitsu Kosan Co Ltd Organic el element and solution containing organic el material
JP6612236B2 (en) * 2014-09-04 2019-11-27 株式会社Joled Display device and electronic device

Also Published As

Publication number Publication date
JP2006108369A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP6356183B2 (en) Novel organic electroluminescent compound and organic electroluminescent device using the same
JP5027947B2 (en) Phosphorescent light emitting device material and organic electroluminescent device using the same
JP4870245B2 (en) Phosphorescent light emitting device material and organic electroluminescent device using the same
JP6140146B2 (en) Organic electroluminescence device
JP5596706B2 (en) Organic electroluminescence device
TWI429650B (en) Organic electroluminescent elements
JP5076901B2 (en) Electron transport material and organic electroluminescent device using the same
US8247086B2 (en) Organometallic complex and light-emitting element, light-emitting device and electronic device using the same
KR101005160B1 (en) Compound for organic electroluminescent device and organic electroluminescent device
JP5723764B2 (en) Organic electroluminescence device
JP5009922B2 (en) Organic electroluminescent element material and organic electroluminescent element
CN113227066B (en) Compound for organic light-emitting element and long-life organic light-emitting element comprising same
JP5098177B2 (en) Organic compounds, charge transport materials, and organic electroluminescent devices
JP2005533342A (en) Electronic device manufactured using electron transport layer and / or antiquenching layer
KR102051910B1 (en) Deuteriated organometallic complex and organic light-emitting diode including the same
JP7193649B2 (en) Compounds for organic light-emitting devices and long-lived organic light-emitting devices containing the same
US8026663B2 (en) Triphenylene compounds, method of manufacturing the same and organic electroluminescent devices employing the same
WO2018230860A1 (en) Novel compound and organic light emitting device comprising same
JP6618979B2 (en) Compound and organic electronic device using the same
JP4392721B2 (en) Organic electroluminescence device using phosphorescence
JP4576141B2 (en) Carbazole derivatives containing fluorene groups
JP4708732B2 (en) Metal coordination compound for light emitting device and light emitting device using the same
WO2016051977A1 (en) Material for organic electroluminescent device and organic electroluminescent device using same
CN117645607A (en) Electroluminescent material and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091006

R150 Certificate of patent or registration of utility model

Ref document number: 4392721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees