JP4392496B2 - Liquid-liquid multistage extraction apparatus and liquid-liquid multistage extraction method - Google Patents

Liquid-liquid multistage extraction apparatus and liquid-liquid multistage extraction method Download PDF

Info

Publication number
JP4392496B2
JP4392496B2 JP2004106639A JP2004106639A JP4392496B2 JP 4392496 B2 JP4392496 B2 JP 4392496B2 JP 2004106639 A JP2004106639 A JP 2004106639A JP 2004106639 A JP2004106639 A JP 2004106639A JP 4392496 B2 JP4392496 B2 JP 4392496B2
Authority
JP
Japan
Prior art keywords
liquid
mobile phase
phase
stationary phase
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004106639A
Other languages
Japanese (ja)
Other versions
JP2005288306A (en
Inventor
順一 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004106639A priority Critical patent/JP4392496B2/en
Publication of JP2005288306A publication Critical patent/JP2005288306A/en
Application granted granted Critical
Publication of JP4392496B2 publication Critical patent/JP4392496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Description

本発明は、核燃料処理工程、その他種々の廃液処理工程などに適用することができる液液多段抽出装置及び液液多段抽出法に関する。   The present invention relates to a liquid-liquid multistage extraction apparatus and a liquid-liquid multistage extraction method that can be applied to a nuclear fuel treatment process and other various waste liquid treatment processes.

液液多段抽出と関連性の深い向流クロマトグラフィー分野の世界的権威である米国・国立衛生研究所のIto博士他に確認した結果、関連分野を含め、本発明のような装置はこれまで存在しなかったことが判っている。   As a result of confirmation with Dr. Ito et al. Of the National Institutes of Health, a world authority in the countercurrent chromatography field that is closely related to liquid-liquid multistage extraction, there is a device such as the present invention including related fields so far. I know I didn't.

向流クロマトグラフィーは、互いに混ざらない2種の溶媒(固定相、移動相)に対する分配係数の差を利用して物質を分離しようとするものである。この場合、原試料中の各成分は分離管の同一端から移動相に溶解した形で溶出するものであって、原試料をパルス状に装置に注入し、溶出のタイミングが異なることを利用する。原試料中の分離したい成分の間で、固定相と移動相の間の分配係数の差があまり得られない場合でも、システムとして大きな分離段数を構築することにより無理矢理それらの成分を分離しようとするものである。分配係数の差が小さくても分離は可能であるが、装置サイズや処理時間に比べて試料処理容量が大きくなく、多量の溶離液が必要である。また通常各成分は、希釈されて回収される。 Countercurrent chromatography, two solvents (stationary phase, mobile phase) immiscible with each other even for a is Attempting to separate the object substance by utilizing a difference in distribution coefficient against. In this case, each component of the original sample has been made to elute in dissolved form in the mobile phase from the same end of the separation pipe, and injected into the device the raw sample in a pulsed manner, utilizing the fact that the timing of the elution differ To do. Even if the difference in partition coefficient between the stationary phase and the mobile phase is not very large among the components to be separated in the original sample, the system tries to separate these components by constructing a large number of separation stages. Is. Separation is possible even if the difference in distribution coefficient is small, but the sample processing capacity is not large compared to the apparatus size and processing time, and a large amount of eluent is required. And usually each component is recovered is diluted.

それに対し、液液分配に基づく多段抽出装置では、抽出対象物は濃縮された形で回収され、また、原試料を連続的に装置に注入できるため、試料処理量が極めて大きいという利点を有している。
例えば使用済み核燃料の処理工程では、ウランの硝酸水溶液からのウランの回収除去が重要なテーマである。その際、樹脂をパックしたカラムを用いる方法は有力ではあるが、その後の処理過程(焼却)等を考えると、焼却残滓の少ない液液分配を用いる方法が有利であることが見込まれる。
In contrast, in the multi-stage extraction apparatus based on liquid-liquid distribution, extract the object is collected by the enrichment form, or, for the original sample can be injected into the continuous apparatus, advantage sample processing amount is extremely large have.
For example, in the process of processing spent nuclear fuel, recovery and removal of uranium from uranium nitric acid aqueous solution is an important theme. At that time, a method using a column packed with a resin is effective, but considering a subsequent process (incineration) and the like, a method using liquid-liquid distribution with little incineration residue is expected to be advantageous.

しかし、前記従来の液液多段抽出装置は、複雑な構造や動力を用いている割に抽出段数が少ないという欠点を有していた。その結果、前述の利点を考慮して例えば核燃料処理工程や一般の廃棄処理における適用が見込まれていたが、これまでの液液多段抽出装置はシステムとしての分離段数が不十分であり、適用が見送られることが多かった。   However, the conventional liquid-liquid multi-stage extraction apparatus has a drawback that the number of extraction stages is small even though a complicated structure and power are used. As a result, in consideration of the above-mentioned advantages, for example, it was expected to be applied to nuclear fuel processing processes and general waste disposal. However, conventional liquid-liquid multistage extraction devices have insufficient number of separation stages as a system and are not applicable. I was often missed.

本発明は上記実状に鑑み提案されたもので、請求項1に記載の発明は、液液多段抽出装置において、1以上の孔を有する隔壁を複数設けてその内部を仕切ることにより複数のセルが直列連結された分離管を用い、少なくとも各セルの移動相導出端側に多数の非孔性小球体を充填して定常状態の移動相体積より大きな充填容積となるようにし、分離管の一方端に移動相の導入路、固定相の導出路を設け、他方端に移動相の導出路、固定相の導入路を設け、さらに各相の送液を可能とする送液機構をそれぞれ設けたことを特徴とする液液多段抽出装置、請求項2に記載の発明はその装置を用いて液液多段抽出を行う方法であって、一定量の移動相を順方向に流した後、移動相の送液を停止し、セル1個の中の固定相体積だけ、分離管内で擾乱が起きないようゆっくりと逆方向に固定相を送液し、そこで固定相の送液を停止するという操作を繰り返し、結果として、移動相導出端の反対側から、抽出対象物が固定相中に濃縮されて回収されるようにしたことを特徴とする液液多段抽出法を提案するものである。 The present invention has been proposed in view of the above circumstances, and the invention according to claim 1 is a liquid-liquid multi-stage extraction apparatus in which a plurality of cells are formed by providing a plurality of partition walls having one or more holes and partitioning the inside thereof. Using separation tubes connected in series, at least one cell is filled with a large number of nonporous small spheres on the mobile phase outlet end side so that the filling volume is larger than the mobile phase volume in a steady state. The mobile phase lead-in path and stationary phase lead-out path are provided at the other end, the mobile phase lead-out path and the stationary phase lead-in path are provided at the other end, and a liquid feed mechanism that enables liquid feeding of each phase is provided. A liquid-liquid multistage extraction apparatus characterized in that the invention according to claim 2 is a method for performing liquid-liquid multistage extraction using the apparatus, and after flowing a certain amount of mobile phase in the forward direction, Discontinuation of liquid supply and disturbance in the separation tube by the stationary phase volume in one cell So that the stationary phase is slowly fed in the opposite direction and the stationary phase is stopped, and the extraction target is concentrated in the stationary phase from the opposite side of the mobile phase outlet. The present invention proposes a liquid-liquid multi-stage extraction method characterized by being recovered in this manner.

本発明の液液多段抽出装置及び液液多段抽出法によれば、簡単な装置と簡単な運転方式により、高い抽出段数と大きな試料処理量を達成できるものである。
そして、例えば使用済み核燃料処理のように危険性の高い例においては、本発明のように簡単で摩耗も少ない構造の装置を適用すると、実際の使用に伴って大きなトラブルが起こる可能性が低いため望ましい。
According to the liquid-liquid multistage extraction apparatus and liquid-liquid multistage extraction method of the present invention, a high number of extraction stages and a large sample throughput can be achieved with a simple apparatus and a simple operation method.
For example, in the case of high-risk examples such as spent nuclear fuel processing, applying a device with a structure that is simple and has little wear like the present invention is unlikely to cause major troubles in actual use. desirable.

まず、本発明の液液多段抽出装置の構成について説明する。
本発明の液液多段抽出装置においては、直立分離管を管壁に垂直な複数の隔壁により仕切ることにより、複数(通常の長さの直立管であれば数個から10個程度)のセルが直列連結されるようにする。各隔壁には、直立分離管の上端・下端と同様に孔を開けておく。この孔は1個に限定するものではなく複数形成してもよい。即ち本発明においては、従来における1本の直立分離管に代えて、長さが短いセルを垂直方向に数個から10個程度直列連結した形態の分離管を用いる。
また、分離管の一方端に移動相の導入路、固定相の導出路を設け、他方端には移動相の導出路、固定相の導入路を設け、さらに各相の送液を可能とする送液機構をそれぞれ設ける。これらの導入路、導出路、及び送出機構としては、公知のどのような機構を採用してもよい。例えば、後述する図示実施例のように、分離管の一方の端部に移動相の導入路と固定相の導出路を別々に設け、他方に移動相の導出路及び固定相の導入路を別々に設け、図示しないポンプ等の送液機構によって送液状態と停止状態を切り替えることが望ましいが、両端部にそれぞれ移動相及び固定相の流路を兼ねる一本の管を設けて3方バルブを取り付けて適宜に切り替える構成を採用してもよい。送液機構としては、ポンプ等の公知のどのような機構を採用してよいが、各相の送液速度に応じた送出機構をそれぞれ用いる。これらの送出機構は、後述する特定の運転モード上、重要な構成である。
さらに、分離管の少なくとも各セルの移動相導出端側には、管内径の数分の一或いはそれ以下の径を有する非孔性小球体を充填し、その充填容積が定常状態の移動相体積より大きくなるようにする。このような非孔性小球体の充填は後述する特定の運転モードにおいて、逆方向に固定相を送液する際に望ましくない擾乱が起きることを抑制するものである。尚、非孔性小球体は、分離管内の各セルの移動相導出端側のみに充填するばかりでなく、セル全体に充填するようにしてもよい。
First, the structure of the liquid-liquid multistage extraction apparatus of this invention is demonstrated.
In the liquid-liquid multi-stage extraction apparatus of the present invention, a plurality of cells (about several to about 10 for a normal length upright pipe) can be obtained by partitioning an upright separation pipe by a plurality of partition walls perpendicular to the pipe wall. Be connected in series. Each partition is perforated in the same manner as the upper and lower ends of the upright separation tube. The number of holes is not limited to one, and a plurality of holes may be formed. That is, in the present invention, instead of the conventional single upright separation tube, a separation tube having a form in which several to ten cells having a short length are connected in series in the vertical direction is used.
In addition, a mobile phase lead-in path and a stationary phase lead-out path are provided at one end of the separation tube, and a mobile phase lead-out path and a stationary phase lead-in path are provided at the other end to enable liquid feeding of each phase. A liquid feeding mechanism is provided for each. Any known mechanism may be employed as the introduction path, the lead-out path, and the delivery mechanism. For example, as shown in the illustrated embodiment described later, a mobile phase introduction path and a stationary phase lead-out path are separately provided at one end of the separation tube, and a mobile phase lead-out path and a stationary phase introduction path are separately provided on the other end. It is desirable to switch between the liquid-feeding state and the stopped state by a liquid-feeding mechanism such as a pump (not shown). However, a three-way valve is provided by providing a single pipe serving as a mobile phase and a stationary phase channel at both ends. You may employ | adopt the structure which attaches and switches suitably. As the liquid feeding mechanism, any known mechanism such as a pump may be adopted, but a feeding mechanism corresponding to the liquid feeding speed of each phase is used. These delivery mechanisms are important components in a specific operation mode to be described later.
Furthermore, at least the mobile phase outlet end side of each cell of the separation tube is filled with non-porous small spheres having a diameter that is a fraction of or less than the inner diameter of the tube, and the filling volume is a steady-state mobile phase volume. Try to be bigger. Such filling of non-porous globules suppresses undesirable disturbances when the stationary phase is fed in the opposite direction in a specific operation mode to be described later. The nonporous small spheres may be filled not only in the mobile phase leading end side of each cell in the separation tube but also in the whole cell.

次に、前記構成の液液多段抽出装置を特定の運転モードで運転する本発明の液液多段抽出法について説明する。
(a)一定量の移動相を順方向に流す。順方向とは、上流の分離管などから、分離管、そして下流の分離管などへと続く流路を指す。
(b)その後、移動相の送液を停止する。送液状態と停止状態との切り替えは、設置した送出機構の稼働・停止や切替バルブの切り替えなどによって行えばよい。
(c)そして、セル1個の中の固定相体積だけ、分離管内で擾乱が起きないようゆっくりと逆方向に固定相を送液する。セル1個の中の固定相体積はセル1個の中の移動相体積よりかなり多い。逆方向とは、分離管内において前記順方向の正反対の方向を指す。
(d)その後、固定相の送液を停止する。そして、初めの状態(a)に戻す。
上記(a)〜(d)という操作を繰り返すようにする。
その結果として、移動相導出端の反対側から、抽出対象物が固定相中に濃縮された形で回収される。
また、試料処理容量を増やすことを目的として、太い分離管を用いてもよいが、この場合にはセル内全体に非孔性小球体を充填すると共に隔壁に設ける孔も多数とすることが望ましい。また、この場合、分離管の径が太いので、充填する非孔性小球体の径の選択の幅も広いが、界面張力や粘度などに合わせて最適な径のものを選択すればよい。また、太い分離管を用いる場合、断面形状は必ずしも正円形でなくてよく、楕円形など滑らかな曲線を外輪郭とするようにすればよい。
Next, the liquid-liquid multistage extraction method of the present invention in which the liquid-liquid multistage extraction apparatus having the above-described configuration is operated in a specific operation mode will be described.
(a) Flow a certain amount of mobile phase in the forward direction . The forward direction refers to a flow path that extends from an upstream separation tube or the like to a separation tube and a downstream separation tube or the like.
(b) Thereafter, the liquid feeding of the mobile phase is stopped. Switching between the liquid feeding state and the stopped state may be performed by operating / stopping the installed delivery mechanism or switching the switching valve.
(c) Then, the stationary phase is slowly fed in the reverse direction by the stationary phase volume in one cell so that no disturbance occurs in the separation tube. The stationary phase volume in one cell is much larger than the mobile phase volume in one cell. The reverse direction refers to the direction opposite to the forward direction in the separation tube.
(d) Thereafter, the stationary phase liquid feeding is stopped. Then, the initial state (a) is restored.
The above operations (a) to (d) are repeated.
As a result, from the opposite side of the mobile phase out end, it extracts the object is collected by the enrichment has been shaped in the stationary phase.
For the purpose of increasing the sample processing capacity, a thick separation tube may be used. In this case, it is desirable to fill the entire cell with nonporous small spheres and to provide a large number of holes in the partition wall. . In this case, since the diameter of the separation tube is large, the range of selection of the diameter of the non-porous small spheres to be filled is wide, but an optimum diameter may be selected in accordance with the interfacial tension, viscosity, and the like. When a thick separation tube is used, the cross-sectional shape does not necessarily have to be a perfect circle, and a smooth curve such as an ellipse may be used as the outer contour.

図1は、本発明の液液多段抽出装置の一実施例を示すものであり、また2液相のうち軽い方を移動相とする液液多段抽出法の一実施例をも示している。
直立分離管は、管壁に垂直な複数の隔壁により仕切られ、各隔壁には孔が形成され、複数のセルが直列連結されるように形成されている。また、分離管の下端に移動相の導入路、固定相の導出路を設け、上端に移動相の導出路、固定相の導入路を設け、さらに図示しないが各相の送液を可能とする送液機構をそれぞれ設けている。さらに、分離管の各セルの移動相導出端側には、非孔性小球体を充填し、その充填容積は定常状態の移動相体積より僅かに大きいものである。尚、この例におけるセルの移動相導出端側とは、移動相が安定に存在するセルの上端側を指し、この部分に多数の非孔性小球体を充填した。
FIG. 1 shows one embodiment of the liquid-liquid multistage extraction apparatus of the present invention, and also shows one embodiment of a liquid-liquid multistage extraction method using the lighter of the two liquid phases as the mobile phase.
The upright separation tube is partitioned by a plurality of partition walls perpendicular to the tube wall, and holes are formed in each partition wall so that a plurality of cells are connected in series. In addition, a mobile phase introduction path and a stationary phase lead-out path are provided at the lower end of the separation tube, a mobile phase lead-out path and a stationary phase introduction path are provided at the upper end, and liquid feeding of each phase is possible although not shown. A liquid feeding mechanism is provided for each. Further, the mobile phase outlet end side of each cell of the separation tube is filled with nonporous small spheres, and the filling volume is slightly larger than the mobile phase volume in the steady state. In addition, the mobile phase lead-out side of the cell in this example refers to the upper end side of the cell in which the mobile phase is stably present, and this portion was filled with a large number of nonporous small spheres.

前述のように順方向の送液は、上流側の分離管などから、分離管、そして下流側の分離管などへ続く流路を指すが、この実施例では、2液相のうち軽い方(軽液)を移動相、重い方(重液)を固定相としており、上流側が分離管の下端側となり、下流側が分離管の上端側となっている。したがって、この例では、移動相(軽液)の導入路は下端に、導出路は上端に設けられる。これに対し、固定相(重液)の導入路は上端に、導出路は下端に設けられる。要するに分離管の下端には、移動相(軽液)導入路及び固定相(重液)導出路が設けられ、分離管の上端には、移動相(軽液)導出路及び固定相(重液)導入路が設けられる。   As described above, the forward liquid feeding refers to a flow path that extends from the upstream separation pipe to the separation pipe and the downstream separation pipe. In this embodiment, the lighter one of the two liquid phases ( The light liquid is the mobile phase and the heavier (heavy liquid) is the stationary phase, with the upstream side being the lower end side of the separation tube and the downstream side being the upper end side of the separation tube. Therefore, in this example, the introduction path for the mobile phase (light liquid) is provided at the lower end and the outlet path is provided at the upper end. On the other hand, the stationary phase (heavy liquid) introduction path is provided at the upper end and the outlet path is provided at the lower end. In short, a mobile phase (light liquid) introduction path and a stationary phase (heavy liquid) outlet path are provided at the lower end of the separation pipe, and a mobile phase (light liquid) outlet path and a stationary phase (heavy liquid) are provided at the upper end of the separation pipe. ) An introduction path is provided.

そのため、この実施例における液液多段抽出法は、以下の(a')〜(d')の操作を繰り返す。
(a')一定量の移動相(軽液)を順方向に流す。この場合、移動相(軽液)は、図示しない移動相用ポンプ(送液機構)の稼働により、上流側の分離管(図示しない下段側の分離管)などから、分離管、そして下流側の分離管(図示しない上段側の分離管)などへ送液される。図示した分離管では、下端の移動相(軽液)導入路から分離管内に導かれ、上端の移動相(軽液)導出路へ送られている。
(b')その後、移動相(軽液)の送液を停止する。この場合、移動相用ポンプ(送液機構)を停止することにより、送液が停止する。
(c')そして、セル1個の中の固定相体積だけ、分離管内で擾乱が起きないようゆっくりと逆方向に固定相(重液)を送液する。この場合、固定相(重液)は、図示しない固定相用ポンプ(送液機構)の稼働により、分離管の上端の固定相(重液)導入路から分離管内に導かれ、下端の固定相(重液)導出路から排出される。
(d')そこで固定相(重液)の送液を停止する。そして、初めの状態(a')に戻す。
原試料は、この場合は直立分離管の下端から連続的に注入される。抽出対象物は、排出された固定相(重液)から回収処理して濃縮されて得られる。
Therefore, the liquid-liquid multistage extraction method in this embodiment repeats the following operations (a ′) to (d ′).
(a ′) A constant amount of mobile phase (light liquid) is allowed to flow in the forward direction. In this case, the mobile phase (light liquid) is separated from the upstream separation pipe (lower separation pipe (not shown)) by the operation of a mobile phase pump (liquid feeding mechanism) (not shown), and the downstream pipe. The solution is fed to a separation tube (an upper separation tube not shown) or the like. In the illustrated separation pipe, the mobile phase (light liquid) introduction path at the lower end is led into the separation pipe and sent to the mobile phase (light liquid) lead-out path at the upper end.
(b ′) Thereafter, the mobile phase (light liquid) feeding is stopped. In this case, the liquid feeding is stopped by stopping the mobile phase pump (liquid feeding mechanism).
(c ′) Then, the stationary phase (heavy liquid) is slowly fed in the opposite direction by the stationary phase volume in one cell so that no disturbance occurs in the separation tube. In this case, the stationary phase (heavy liquid) is guided into the separation pipe from the stationary phase (heavy liquid) introduction path at the upper end of the separation pipe by the operation of a stationary phase pump (liquid feeding mechanism) (not shown), and the stationary phase at the lower end. (Heavy liquid) discharged from the outlet.
(d ′) Then, the liquid feeding of the stationary phase (heavy liquid) is stopped. Then, the initial state (a ′) is restored.
In this case, the original sample is continuously injected from the lower end of the upright separation tube. Extract the object is obtained is enrichment by collecting process from the discharged stationary phase (heavy liquid).

図2は、本発明の液液多段抽出装置の他の一実施例を示すものであり、また2液相のうち重い方を移動相とする液液多段抽出法の一実施例をも示している。
直立分離管は、前記図1の実施例と同様に管壁に垂直な複数の隔壁により仕切られ、各隔壁には孔が形成され、複数のセルが直列連結されるように形成されている。また、分離管の上端に移動相の導入路、固定相の導出路を設け、下端に移動相の導出路、固定相の導入路を設け、さらに図示しないが各相の送液を可能とする送液機構をそれぞれ設けた。さらに、分離管の各セルの移動相導出端側には、非孔性小球体を充填し、その充填容積は定常状態の移動相体積より僅かに大きいものである。尚、この例におけるセルの移動相導出端側とは、移動相(重液)が安定に存在するセルの下端側を指し、この部分に多数の非孔性小球体を充填した。
FIG. 2 shows another embodiment of the liquid-liquid multistage extraction apparatus of the present invention, and also shows an embodiment of a liquid-liquid multistage extraction method in which the heavier of the two liquid phases is used as the mobile phase. Yes.
The upright separation tube is partitioned by a plurality of partition walls perpendicular to the tube wall, as in the embodiment of FIG. 1, and each partition wall is formed with a hole, and a plurality of cells are connected in series. In addition, a mobile phase lead-in path and a stationary phase lead-out path are provided at the upper end of the separation tube, a mobile phase lead-out path and a stationary phase lead-in path are provided at the lower end, and liquid feeding of each phase is possible although not shown. A liquid feeding mechanism was provided. Further, the mobile phase outlet end side of each cell of the separation tube is filled with nonporous small spheres, and the filling volume is slightly larger than the mobile phase volume in the steady state. In this example, the mobile phase outlet end side of the cell refers to the lower end side of the cell in which the mobile phase (heavy liquid) is stably present, and this portion was filled with a large number of nonporous small spheres.

前述のように順方向の送液は、上流側の分離管などから、分離管、そして下流側の分離管などへ続く流路を指すが、この実施例では、2液相のうち重い方(重液)を移動相、軽い方(軽液)を固定相としており、上流側が分離管の上端側となり、下流側が分離管の下端側となっている。したがって、この例では、移動相(重液)の導入路は上端に、導出路は下端に設けられる。これに対し、固定相(軽液)の導入路は下端に、導出路は上端に設けられる。要するに分離管の上端には、移動相(重液)導入路及び固定相(軽液)導出路が設けられ、分離管の下端には、移動相(重液)導出路及び固定相(軽液)導入路が設けられる。   As described above, the forward liquid feeding refers to a flow path that extends from the upstream separation pipe to the separation pipe and the downstream separation pipe. In this embodiment, the heavier of the two liquid phases ( Heavy liquid) is the mobile phase, and the lighter one (light liquid) is the stationary phase. The upstream side is the upper end side of the separation tube, and the downstream side is the lower end side of the separation tube. Therefore, in this example, the introduction path of the mobile phase (heavy liquid) is provided at the upper end and the outlet path is provided at the lower end. In contrast, the stationary phase (light liquid) introduction path is provided at the lower end and the outlet path is provided at the upper end. In short, a mobile phase (heavy liquid) introduction path and a stationary phase (light liquid) outlet path are provided at the upper end of the separation pipe, and a mobile phase (heavy liquid) outlet path and a stationary phase (light liquid) are provided at the lower end of the separation pipe. ) An introduction path is provided.

そのため、この実施例における液液多段抽出法は、以下の(a'')〜(d'')の操作を繰り返す。
(a'')一定量の移動相(重液)を順方向に流す。この場合、移動相(重液)は、図示しない移動相用ポンプ(送液機構)の稼働により、上流側の分離管(図示しない上段側の分離管)などから、分離管、そして下流側の分離管(図示しない下段側の分離管)などへ送液される。図示した分離管では、上端の移動相(重液)導入路から分離管内に導かれ、下端の移動相(重液)導出路へ送られている。
(b'')その後、移動相(軽液)の送液を停止する。この場合、移動相用ポンプ(送液機構)を停止することにより、送液が停止する。
(c'')そして、セル1個の中の固定相体積だけ、分離管内で擾乱が起きないようゆっくりと逆方向に固定相(軽液)を送液する。この場合、固定相(軽液)は、図示しない固定相用ポンプ(送液機構)の稼働により、分離管の下端の固定相(軽液)導入路から分離管内に導かれ、上端の固定相(軽液)導出路から排出される。
(d'')そこで固定相(軽液)の送液を停止する。そして、初めの状態(a'')に戻す。
原試料は、この場合は直立分離管の上端から連続的に注入される。抽出対象物は、排出された固定相(軽液)から回収処理して濃縮されて得られる。
Therefore, the liquid-liquid multistage extraction method in this embodiment repeats the following operations (a ″) to (d ″).
(a ″) A constant amount of mobile phase (heavy liquid) is allowed to flow in the forward direction. In this case, the mobile phase (heavy liquid) is separated from the upstream separation pipe (not shown) by the operation of a mobile phase pump (liquid feeding mechanism) (not shown), the separation pipe, and the downstream side. The solution is fed to a separation tube (lower separation tube not shown) or the like. In the separation pipe shown in the figure, the mobile phase (heavy liquid) introduction path at the upper end is led into the separation pipe and sent to the mobile phase (heavy liquid) lead-out path at the lower end.
(b ″) Thereafter, the mobile phase (light liquid) is stopped. In this case, the liquid feeding is stopped by stopping the mobile phase pump (liquid feeding mechanism).
(c ″) Then, the stationary phase (light liquid) is slowly fed in the opposite direction by the stationary phase volume in one cell so that no disturbance occurs in the separation tube. In this case, the stationary phase (light liquid) is guided into the separation pipe from the stationary phase (light liquid) introduction path at the lower end of the separation pipe by the operation of a stationary phase pump (liquid feeding mechanism) (not shown), and the stationary phase at the upper end. (Light liquid) discharged from the outlet.
(d ″) Accordingly, the liquid feeding of the stationary phase (light liquid) is stopped. Then, the initial state (a ″) is restored.
The original sample is continuously injected from the upper end of the upright separation tube in this case. Extract the object is obtained is enrichment by collecting process from the discharged stationary phase (light liquid).

核燃料処理におけるウランの回収除去工程、その他種々の廃液処理における特定成分の回収除去工程において、中核技術の一つとしての利用が見込まれる。   It is expected to be used as one of the core technologies in the recovery and removal process of uranium in nuclear fuel processing and the recovery and removal process of specific components in various other waste liquid processes.

本発明の液液多段抽出装置の一実施例を示すものであり、また2液相のうち軽い方を移動相とする液液多段抽出法の一実施例をも示す断面図である。1 is a cross-sectional view showing an embodiment of the liquid-liquid multistage extraction apparatus of the present invention and also showing an embodiment of a liquid-liquid multistage extraction method in which the lighter of the two liquid phases is a mobile phase. 本発明の液液多段抽出装置の他の一実施例を示すものであり、また2液相のうち重い方を移動相とする液液多段抽出法の一実施例をも示す断面図である。It is sectional drawing which shows other one Example of the liquid-liquid multistage extraction apparatus of this invention, and also shows one Example of the liquid-liquid multistage extraction method which uses a heavier one of two liquid phases as a mobile phase.

Claims (2)

液液多段抽出装置において、1以上の孔を有する隔壁を複数設けてその内部を仕切ることにより複数のセルが直列連結された分離管を用い、少なくとも各セルの移動相導出端側に多数の非孔性小球体を充填して定常状態の移動相体積より大きな充填容積となるようにし、分離管の一方端に移動相の導入路、固定相の導出路を設け、他方端に移動相の導出路、固定相の導入路を設け、さらに各相の送液を可能とする送液機構をそれぞれ設けたことを特徴とする液液多段抽出装置。 In a liquid-liquid multistage extraction apparatus, a plurality of partition walls having one or more holes are provided, and a plurality of cells are connected in series by partitioning the inside thereof. Filled with porous globules so that the volume of the mobile phase is larger than that of the mobile phase in the steady state, the separation pipe is provided with a mobile phase introduction path and a stationary phase lead-out path, and the other end with a mobile phase lead-out. A liquid-liquid multistage extraction apparatus, characterized in that a path and a stationary-phase introduction path are provided, and a liquid-feeding mechanism capable of feeding each phase is further provided. 請求項1の装置を用いて液液多段抽出を行う方法であって、一定量の移動相を順方向に流した後、移動相の送液を停止し、セル1個の中の固定相体積だけ、分離管内で擾乱が起きないようゆっくりと逆方向に固定相を送液し、そこで固定相の送液を停止するという操作を繰り返し、結果として、移動相導出端の反対側から、抽出対象物が固定相中に濃縮されて回収されるようにしたことを特徴とする液液多段抽出法。 A method for performing liquid-liquid multistage extraction using the apparatus of claim 1, wherein after flowing a certain amount of mobile phase in the forward direction, liquid feeding of the mobile phase is stopped, and the stationary phase volume in one cell only, then feeding a stationary phase slowly backward to disturbances in the separation tube does not occur, where repeated operation of stopping the liquid feed of the stationary phase, as a result, from the opposite side of the mobile phase out end, extraction target liquid-liquid multi-stage extraction method characterized by objects has to be collected is enrichment during the stationary phase.
JP2004106639A 2004-03-31 2004-03-31 Liquid-liquid multistage extraction apparatus and liquid-liquid multistage extraction method Expired - Lifetime JP4392496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106639A JP4392496B2 (en) 2004-03-31 2004-03-31 Liquid-liquid multistage extraction apparatus and liquid-liquid multistage extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106639A JP4392496B2 (en) 2004-03-31 2004-03-31 Liquid-liquid multistage extraction apparatus and liquid-liquid multistage extraction method

Publications (2)

Publication Number Publication Date
JP2005288306A JP2005288306A (en) 2005-10-20
JP4392496B2 true JP4392496B2 (en) 2010-01-06

Family

ID=35321862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106639A Expired - Lifetime JP4392496B2 (en) 2004-03-31 2004-03-31 Liquid-liquid multistage extraction apparatus and liquid-liquid multistage extraction method

Country Status (1)

Country Link
JP (1) JP4392496B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145103B (en) * 2013-03-21 2015-01-14 天津大学 Novel circulation flow extraction section device for preparing oxydol through anthraquinone method
WO2014168213A1 (en) * 2013-04-11 2014-10-16 国立大学法人愛媛大学 Liquid-liquid extracting device and liquid-liquid extracting method

Also Published As

Publication number Publication date
JP2005288306A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
US8607620B2 (en) Preparative separation/purification system
US5868935A (en) Method and apparatus for extraction and recovery of ions from solutions
US9205351B2 (en) Collection system for purification flowstreams
US20210246529A1 (en) Integrated lithium extraction
US4324661A (en) Apparatus and method for continuous countercurrent extraction and particle separation
US6446815B2 (en) Multiple phase extractor
JPWO2018008114A1 (en) Preparative liquid chromatograph
JP5305382B2 (en) Counterflow emulsion flow continuous liquid-liquid extraction device
US4151089A (en) Device for high efficiency continuous countercurrent extraction using a rotating helical tube
JP4392496B2 (en) Liquid-liquid multistage extraction apparatus and liquid-liquid multistage extraction method
JP7297294B2 (en) Method for producing specific substances by extraction and separation in a liquid-liquid system
JP5806988B2 (en) Separation method
US20160046545A1 (en) Simulated moving bed separators and methods for isolating a desired component
CN108619909A (en) A kind of method of Multistage Membranes chromatography concatenation technology separation lithium isotope
US10675558B2 (en) Dispersed mobile-phase countercurrent chromatography
CN104023805B (en) Moving-bed adsorption method is used to reclaim the system and method for product
Kostanyan Analysis of the three-step cyclic process of countercurrent extraction
JP2012098052A (en) Method and apparatus for chromatographic separation
US20150376093A1 (en) Simulated moving bed separators and methods for isolating a desired component
JP3337259B2 (en) Liquid-liquid contact separator and method of using the same
JP2010249588A (en) Centrifugal liquid-liquid distribution chromatograph apparatus and recycling method
Rodríguez-Llorente et al. Flow-based recovery of acetic acid from aqueous solutions using bio-derived terpenes as extracting solvents
US20220016546A1 (en) Method and device for continuous countercurrent transfer of material between two fluid phases
KR19990076611A (en) Extraction Method and Apparatus
CN104540566A (en) Inline gas liquid separation system with a shared reject vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350