JP4392305B2 - Part fastening driver unit - Google Patents

Part fastening driver unit Download PDF

Info

Publication number
JP4392305B2
JP4392305B2 JP2004241504A JP2004241504A JP4392305B2 JP 4392305 B2 JP4392305 B2 JP 4392305B2 JP 2004241504 A JP2004241504 A JP 2004241504A JP 2004241504 A JP2004241504 A JP 2004241504A JP 4392305 B2 JP4392305 B2 JP 4392305B2
Authority
JP
Japan
Prior art keywords
rotation angle
drive
rotation
tool
driver unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004241504A
Other languages
Japanese (ja)
Other versions
JP2006055955A (en
Inventor
雅彦 足立
正幸 斎藤
幸浩 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Seiko Co Ltd
Original Assignee
Nitto Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Seiko Co Ltd filed Critical Nitto Seiko Co Ltd
Priority to JP2004241504A priority Critical patent/JP4392305B2/en
Publication of JP2006055955A publication Critical patent/JP2006055955A/en
Application granted granted Critical
Publication of JP4392305B2 publication Critical patent/JP4392305B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Description

本発明は、ワークにねじ等の部品を締結する部品締結ドライバユニットに関する。   The present invention relates to a component fastening driver unit that fastens a component such as a screw to a workpiece.

従来、ワークにねじを締結するため、特許文献1に開示されたねじ締め装置が使用されている。このねじ締め装置は、モータの駆動軸と、この駆動軸の同軸線上に回転自在に設けられた出力軸とをコイルばねで連結し、駆動軸と出力軸との双方の回転を検出するためのエンコーダをそれぞれ設け、さらに出力軸には一体に回転するドライバビットを連結して成るものである。このねじ締め装置を用いてワークにねじを締め付ける場合には、ドライバビットをねじ頭部に係合させ、これをモータの駆動により回転させてねじに回転を付与する。この時、ねじの締め込みに伴ってドライバビットには相応の締付トルクが作用するため、これがドライバビットの回転負荷となってコイルばねがねじれる。結果、2つのエンコーダによって検出されるドライバビットの回転角度とモータ駆動軸の回転角度とに差が生じることとなるため、この回転角度差から締付トルクを割り出すことができる。   Conventionally, in order to fasten a screw to a work, the screw fastening device indicated by patent documents 1 is used. This screw tightening device connects a motor drive shaft and an output shaft rotatably provided on a coaxial line of the drive shaft with a coil spring, and detects rotation of both the drive shaft and the output shaft. Each encoder is provided, and a driver bit that rotates integrally with the output shaft is connected. When a screw is tightened on a workpiece using this screw tightening device, a screwdriver bit is engaged with a screw head, and this is rotated by driving a motor to impart rotation to the screw. At this time, as the screw is tightened, a corresponding tightening torque acts on the driver bit, and this becomes a rotational load of the driver bit, and the coil spring is twisted. As a result, there is a difference between the rotation angle of the driver bit detected by the two encoders and the rotation angle of the motor drive shaft, so that the tightening torque can be determined from this rotation angle difference.

特開平2003−166887号公報Japanese Patent Laid-Open No. 2003-166887

上記従来のねじ締め装置において、締付トルク精度は、コイルばねの特性や出力軸等の回転部品と周囲との摩擦に大きく左右される。例えば、コイルばねが経年変化(ヘタリ)を生じると、トルク伝達性能等が変化し、これによって両エンコーダの回転角度差から割り出される締付トルクと、実際にねじに伝えられているトルクとの間に誤差が生じる恐れがある。軸受の劣化による焼き付きにより、出力軸の回転負荷が大きくなる場合も同様である。また、コイルばねについては、経年変化によるねじり方向の歪みが限界を超えると、破断することすらある。こういったことから、コイルばねの歪みや回転部品の摩擦状態を把握し、それに基づいて適切な部品交換時期を見極めることがねじ締め装置の効率的な運用には必要不可欠であるが、従来のねじ締め装置においては、コイルばね等の状態を知ることができず、これにより締付トルク精度が不安定になる等の問題が発生していた。特に、最近では極小精密ねじ等の小さなねじに対応して低い領域の締付トルク管理が望まれているが、こうした低い領域の締付トルク管理においては前述の問題が顕著になる。   In the above conventional screw tightening device, the tightening torque accuracy greatly depends on the characteristics of the coil spring and the friction between the rotating parts such as the output shaft and the surroundings. For example, when the coil spring undergoes aging (sagging), the torque transmission performance and the like change, whereby the tightening torque determined from the rotation angle difference between both encoders and the torque actually transmitted to the screw There is a risk of errors in between. The same applies when the rotational load on the output shaft increases due to seizure due to deterioration of the bearing. In addition, the coil spring may even break when the distortion in the torsional direction due to aging exceeds a limit. For these reasons, it is indispensable for the efficient operation of the screw tightening device to grasp the distortion of the coil spring and the frictional state of the rotating parts, and to determine the appropriate part replacement time based on that. In the screw tightening device, the state of the coil spring or the like cannot be known, which causes problems such as unstable tightening torque accuracy. Particularly, recently, tightening torque management in a low region corresponding to a small screw such as a very small precision screw has been desired. However, the above-described problem becomes remarkable in such low region tightening torque management.

本発明は、上記課題に鑑みて創成されたものであり、回転角度差によるトルク検出を安定して行うことができる部品締結ドライバユニットの提供を目的とする。この目的を達成するために本発明は、回転駆動手段と、この回転駆動手段の駆動軸と弾性部材を介して連結された駆動工具とを有する部品締結ドライバユニットであって、前記回転駆動手段の駆動軸の絶対回転角度を示す信号を出力可能な第一回転角検出手段と、前記駆動工具の絶対回転角度を示す信号を出力可能な第二回転角検出手段と、これら第一回転角検出手段と第二回転角検出手段とから回転駆動手段が駆動していない状態で出力される各信号から駆動軸と駆動工具との固有回転角度差を割り出し、この固有回転角度差が前記回転駆動手段の駆動により駆動工具が回転する時に第一回転角検出手段および第二回転角検出手段からそれぞれ発せられる信号から得られる回転角度差の使用領域よりも低い領域にあるか否かを確認する制御ユニットとを備えていることを特徴とする。なお、前記第一、第二回転角検出手段は共にレゾルバであり、前記弾性部材はねじりコイルばねであることが望ましい。また、前記制御ユニットは、固有回転角度差の確認を部品の締結作業毎に行うものであることが望ましい。   The present invention has been created in view of the above problems, and an object of the present invention is to provide a component fastening driver unit that can stably detect torque based on a difference in rotation angle. In order to achieve this object, the present invention provides a component fastening driver unit having a rotation drive means and a drive tool connected to the drive shaft of the rotation drive means via an elastic member, First rotation angle detection means capable of outputting a signal indicating the absolute rotation angle of the drive shaft, second rotation angle detection means capable of outputting a signal indicating the absolute rotation angle of the drive tool, and these first rotation angle detection means And the second rotation angle detection means determine the specific rotation angle difference between the drive shaft and the drive tool from each signal output when the rotation drive means is not driven. Control for confirming whether or not the rotation angle difference obtained from the signals respectively output from the first rotation angle detection means and the second rotation angle detection means is lower than the use area when the driving tool is rotated by driving. Characterized in that it comprises a knit. Preferably, the first and second rotation angle detecting means are both resolvers, and the elastic member is a torsion coil spring. Moreover, it is preferable that the said control unit is a thing which confirms a natural rotation angle difference for every fastening operation of components.

本発明の部品締結ドライバユニットは、回転駆動手段の駆動軸と駆動工具との固有回転角度差が締付トルク検出に実際に利用する回転角度差の領域よりも低い領域にあるか否かを確認するものである。よって、回転駆動手段の駆動軸と駆動工具との間にある弾性部材の経年変化による歪み、回転部品の摩擦状態等を把握することができ、その結果により適切に部品の点検修理・交換を行うことができる。このため、回転角度差によるトルク検出を常に正確かつ安定して行うことができる等の利点がある。こういった効果を背景に本部品締結ドライバユニットでは、第一、第二回転角検出手段として分解能の高いレゾルバを採用し、また弾性部材として低いトルク領域でねじれる特性のねじりコイルばねを選定することにより、低い領域の締付トルク検出を常に正確かつ安定して行うことが可能になる。この結果、従来極めて困難であったM2以下の極小ねじのトルク管理締結も容易になる等の利点がある。   The component fastening driver unit of the present invention confirms whether or not the inherent rotational angle difference between the drive shaft of the rotational drive means and the drive tool is in a region lower than the region of the rotational angle actually used for detecting the tightening torque. To do. Therefore, it is possible to grasp the distortion due to aging of the elastic member between the drive shaft of the rotary drive means and the drive tool, the frictional state of the rotating parts, etc., and appropriately inspect and repair / replace the parts based on the results. be able to. Therefore, there is an advantage that torque detection based on the rotation angle difference can always be performed accurately and stably. Against the backdrop of these effects, this component fastening driver unit adopts a resolver with high resolution as the first and second rotation angle detection means, and selects a torsion coil spring having a characteristic of being twisted in a low torque region as an elastic member. This makes it possible to always detect the tightening torque in the low region accurately and stably. As a result, there are advantages such as facilitating torque management fastening of a micro screw of M2 or less, which has been extremely difficult in the past.

以下、図面に基づいて本発明を実施するための最良の形態を説明する。
図1において、1は部品締結ドライバユニットであり、ツールユニット2と、このツールユニット2を制御する制御ユニット3とを有する。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a component fastening driver unit, which includes a tool unit 2 and a control unit 3 that controls the tool unit 2.

前記ツールユニット2は、回転駆動手段の一例としてACサーボモータ20(以下、単にモータ20という)を有する。このモータ20には、第一回転角検出手段の一例であるレゾルバ21が組み付けられている。また、モータ20の駆動軸20aには、弾性部材の一例であるねじりコイルばね22(以下、コイルばね22という)の一端が連結してあり、このコイルばね22の他端は伝達軸23に連結されている。この伝達軸23は軸受により回転自在に支持されており、この伝達軸23は、第二回転角検出手段の一例であるレゾルバ24に連結されている。また、このレゾルバ24には、ねじの十字状駆動穴に係合可能な先端形状を成す駆動工具25が伝達軸23と一体に回転するよう連結されている。このようにモータ20の駆動軸20aないし駆動工具25は、一体に回転するようになっており、駆動工具25に回転負荷トルクが作用すると、これに伴ってコイルばね22がねじれ、駆動軸20aと駆動工具25との回転角度差が生じるようになっている。なお、コイルばね22は駆動軸20aと伝達軸23とに対して軸方向に移動可能に支持されており、これにより、コイルばね22のねじれに伴う伸縮を許容するようになっている。   The tool unit 2 includes an AC servomotor 20 (hereinafter simply referred to as a motor 20) as an example of a rotation driving unit. The motor 20 is assembled with a resolver 21 which is an example of first rotation angle detection means. One end of a torsion coil spring 22 (hereinafter referred to as a coil spring 22), which is an example of an elastic member, is connected to the drive shaft 20a of the motor 20, and the other end of the coil spring 22 is connected to the transmission shaft 23. Has been. The transmission shaft 23 is rotatably supported by a bearing, and the transmission shaft 23 is connected to a resolver 24 which is an example of a second rotation angle detection unit. Further, a drive tool 25 having a tip shape that can be engaged with the cross-shaped drive hole of the screw is connected to the resolver 24 so as to rotate integrally with the transmission shaft 23. As described above, the drive shaft 20a or the drive tool 25 of the motor 20 rotates integrally. When a rotational load torque acts on the drive tool 25, the coil spring 22 is twisted accordingly, and the drive shaft 20a A rotational angle difference from the drive tool 25 is generated. The coil spring 22 is supported so as to be movable in the axial direction with respect to the drive shaft 20 a and the transmission shaft 23, thereby allowing expansion and contraction accompanying torsion of the coil spring 22.

前記レゾルバ21,24は同様の構造であり、公知の構造のものである。図面で断面を示しているレゾルバ24を例に説明すると、このレゾルバ24は、励磁コイルと位置検出コイルとを備えるステータ24a内に、回転トランス部を有するロータ24bを回転自在に配置して成るものであり、励磁コイルから回転トランス部に励磁電圧を与えると、位置検出コイルには、この励磁電圧波形に対してロータ24bの回転位相に対応する位相の電圧波形の出力電圧が出力される。この励磁電圧と出力電圧との位相差から、固定配置されたステータ24aに対して回転するロータ24bの絶対回転角度を知ることができる。レゾルバ21のロータ(図示せず)には駆動軸20aが、またレゾルバ24のロータ24bには伝達軸23および駆動工具25がそれぞれ一体に連結してある。よって、レゾルバ21は駆動軸20aの絶対回転角度を示す出力電圧を、またレゾルバ24では駆動工具25の絶対回転角度を示す出力電圧をそれぞれ出力する。   The resolvers 21 and 24 have the same structure and have a known structure. The resolver 24 having a cross section shown in the drawing will be described as an example. The resolver 24 is configured by a rotor 24b having a rotary transformer portion rotatably disposed in a stator 24a having an excitation coil and a position detection coil. When an excitation voltage is applied from the excitation coil to the rotary transformer, an output voltage having a voltage waveform having a phase corresponding to the rotation phase of the rotor 24b is output to the position detection coil. From the phase difference between the excitation voltage and the output voltage, the absolute rotation angle of the rotor 24b rotating with respect to the fixedly arranged stator 24a can be known. A drive shaft 20a is integrally connected to the rotor (not shown) of the resolver 21, and a transmission shaft 23 and a drive tool 25 are integrally connected to the rotor 24b of the resolver 24, respectively. Therefore, the resolver 21 outputs an output voltage indicating the absolute rotation angle of the drive shaft 20a, and the resolver 24 outputs an output voltage indicating the absolute rotation angle of the drive tool 25.

前記制御ユニット3は、制御部30と、この制御部30からの指令を受けて前記モータ20を駆動制御するモータ駆動部31と、レゾルバ21,24にそれぞれ励磁電圧を印加するとともに、それぞれの出力電圧から回転角度を割り出すレゾルバ駆動部32,33と、レゾルバ駆動部32,33によって割り出された回転角度の差に応じた締付トルク、目標締付トルクなどの各種データおよびツールユニット2の駆動制御に必要な各種プログラム・パラメータ等を記憶した記憶部34と、各種情報・信号入力を行う操作部35と、各種情報を表示する表示部36と、本ドライバユニット1が搭載されるロボット等(図示せず)との信号送受信を制御する入出力部37とを備えて成る。   The control unit 3 applies excitation voltages to the control unit 30, a motor drive unit 31 that drives and controls the motor 20 in response to a command from the control unit 30, and resolvers 21 and 24, and outputs the respective outputs. Various data such as a tightening torque and a target tightening torque according to the difference in the rotation angle determined by the resolver driving units 32 and 33 that calculate the rotation angle from the voltage, and the resolver driving units 32 and 33, and driving of the tool unit 2 A storage unit 34 that stores various programs and parameters necessary for control, an operation unit 35 that inputs various types of information and signals, a display unit 36 that displays various types of information, a robot in which the driver unit 1 is mounted ( And an input / output unit 37 for controlling signal transmission / reception to / from (not shown).

前記制御部30は、電源が投入されると図2に示すように、
S01:レゾルバ駆動部32,33に励磁指令信号を付与。
S02:レゾルバ駆動部32,33から回転角度を読み込む。
S03:回転角度の差(以下、これを固有回転角度差という)を算出。
S04:固有回転角度差が閾値を超えていないか確認する。閾値を超えていない場合は、S06にジャンプ。
S05:表示部36に部品交換表示指令信号を付与。
S06:レゾルバ駆動部32,33に励磁停止指令信号を付与。
S07:エンド。
となる起動チェック処理を行う。
When the power is turned on, the control unit 30 is as shown in FIG.
S01: An excitation command signal is given to the resolver drive units 32 and 33.
S02: The rotation angle is read from the resolver drive units 32 and 33.
S03: A rotation angle difference (hereinafter referred to as a specific rotation angle difference) is calculated.
S04: Check whether the inherent rotation angle difference exceeds the threshold value. If the threshold is not exceeded, jump to S06.
S05: A component replacement display command signal is given to the display unit 36.
S06: An excitation stop command signal is given to the resolver drive units 32 and 33.
S07: End.
Perform the startup check process.

また、制御部30は、図3に示すように、
S11:スタート指令信号の入力待ち。
S12:モータ駆動部31に駆動指令信号を付与。
S13:レゾルバ駆動部32,33に励磁指令信号を付与。
S14:レゾルバ駆動部32,33から回転角度を読み込む。
S15:回転角度差を算出。
S16:回転角度差に対応する締付トルクを記憶部34から読み込む。
S17:締付トルクを目標締付トルクと比較し、目標締付トルクに達していない場合は、S14にジャンプ。
S18:モータ駆動部31に停止指令信号を付与。
S19:表示部36に完了表示指令信号を付与。
S20:ロボットの待機位置復帰信号を待つ。
S21:レゾルバ駆動部32,33から回転角度を読み込む。
S22:固有回転角度差を算出。
S23:固有回転角度差が閾値を超えていないか確認。閾値を超えていない場合は、S25にジャンプ。
S24:表示部36に部品交換表示指令信号を付与。
S25:レゾルバ駆動部32,33に励磁停止指令信号を送信。
S26:エンド
となるねじ締め処理を実行する。
In addition, as shown in FIG.
S11: Waiting for input of a start command signal.
S12: A drive command signal is given to the motor drive unit 31.
S13: An excitation command signal is given to the resolver drive units 32 and 33.
S14: The rotation angle is read from the resolver drive units 32 and 33.
S15: The rotation angle difference is calculated.
S16: The tightening torque corresponding to the rotation angle difference is read from the storage unit 34.
S17: The tightening torque is compared with the target tightening torque. If the target tightening torque is not reached, the process jumps to S14.
S18: A stop command signal is given to the motor drive unit 31.
S19: A completion display command signal is given to the display unit 36.
S20: Wait for the robot standby position return signal.
S21: The rotation angle is read from the resolver drive units 32 and 33.
S22: The intrinsic rotation angle difference is calculated.
S23: Check whether the inherent rotation angle difference exceeds the threshold value. If the threshold is not exceeded, jump to S25.
S24: A component replacement display command signal is given to the display unit 36.
S25: An excitation stop command signal is transmitted to the resolver drive units 32 and 33.
S26: An end screw tightening process is executed.

次に本発明に係る部品締結ドライバユニット1の作用を述べる。なお、ここでは本ドライバユニット1がロボット(図示せず)に搭載されている状態にあり、駆動工具25の移動路前方には、ねじを保持するチャックユニット(図示せず)が設けられる構造での作用を述べる。   Next, the operation of the component fastening driver unit 1 according to the present invention will be described. Here, the driver unit 1 is mounted on a robot (not shown), and a chuck unit (not shown) for holding a screw is provided in front of the moving path of the driving tool 25. The operation of is described.

まず、電源が投入された時、本ドライバユニット1においては、上記起動チェック処理が行われる。この処理では、レゾルバ21,24に励磁電圧を印加し、それぞれの出力電圧から回転角度が求められ、その回転角度差(固有回転角度差)が求められる。ドライバユニット1製造過程では、レゾルバ21,24は双方の絶対原点が一致するように調整してツールユニット2に組み付けられる。しかし、コイルばねの経年変化(ヘタリ)や軸受の消耗等が生じると、この絶対原点にずれが生じる。例えば、コイルばね22であれば経年変化により原形復帰できなくなる幅が徐々に大きくなるし、軸受が消耗すると伝達軸や出力軸の摩擦抵抗が増し、これらが本来原位置となる位置まで回転復帰することができなくなる。このようにして、駆動軸20aと駆動工具25との間に固有回転角度差が生じるのであるが、その大きさを電源投入時の起動チェック処理により把握する。   First, when the power is turned on, the activation check process is performed in the driver unit 1. In this process, an excitation voltage is applied to the resolvers 21 and 24, a rotation angle is obtained from each output voltage, and a rotation angle difference (specific rotation angle difference) is obtained. In the manufacturing process of the driver unit 1, the resolvers 21 and 24 are adjusted and assembled to the tool unit 2 so that their absolute origins coincide. However, when the secular change (sagging) of the coil spring, the wear of the bearing, or the like occurs, the absolute origin shifts. For example, in the case of the coil spring 22, the width at which the original shape cannot be restored due to secular change gradually increases, and when the bearing is consumed, the frictional resistance of the transmission shaft and the output shaft increases, and the rotation returns to the original position. I can't do that. In this way, an inherent rotation angle difference is generated between the drive shaft 20a and the drive tool 25, and the magnitude thereof is grasped by the start check process when the power is turned on.

通常、コイルばね22をねじった後、これが完全に原形復帰することは考えられない。また、出力軸等の回転部品には軸受が消耗していなくても、何らかの摩擦抵抗が作用している。よって、固有回転角度差はツールユニット2の各部品が正常な状態の時でも生じてしまう。こういった正常状態での固有回転角度差が現れる領域は、図4に示すように、不感領域といって締付トルクと回転角度差との関係が都度一定にならない領域であり、実際の締付トルク制御には利用することがない。よって、正常状態での固有回転角度差が生じていても問題はない。通常は、回転角度差と締付トルクとの関係が安定する使用領域(図4参照)での利用が想定されているため、その下限値よりも低い領域内の回転角度差を固有回転角度差の閾値として設定して起動チェック処理が行われる。これにより、検出された固有回転角度差が閾値を超えている場合には、表示部36に部品交換を報知するLED点灯や、ディジタル表示器による表示を行う。   Normally, after the coil spring 22 is twisted, it cannot be considered that it completely returns to its original shape. Further, some frictional resistance acts on the rotating parts such as the output shaft even if the bearing is not consumed. Therefore, the natural rotation angle difference occurs even when each component of the tool unit 2 is in a normal state. As shown in FIG. 4, the region where the normal rotation angle difference in the normal state appears is an insensitive region where the relationship between the tightening torque and the rotation angle difference is not constant every time. It is not used for attached torque control. Therefore, there is no problem even if a natural rotation angle difference occurs in a normal state. Normally, it is assumed that the relationship between the rotation angle difference and the tightening torque is stable in the use region (see FIG. 4). Therefore, the rotation angle difference in the region lower than the lower limit value is determined as the intrinsic rotation angle difference. The activation check process is performed with the threshold value set as the threshold. Thereby, when the detected natural rotation angle difference exceeds the threshold value, LED lighting for notifying parts replacement on the display unit 36 or display by a digital display is performed.

起動チェック処理が終わり、次に操作部35のスタートスイッチ(図示せず)が押されると、チャックユニットにはねじが供給され、またロボットの動作によりドライバユニット1がワークのめねじ直上に移動する。同時に、制御ユニット3によりドライバユニット1のモータ20が駆動し、駆動工具25が回転を始める。また、レゾルバ21,24に励磁電圧が印加され、それぞれの出力電圧から回転角度の検出が開始される。続いてロボットの動作により、ツールユニット2がワーク側へ移動すると、駆動工具25はチャックユニットに保持されたねじの駆動穴に係合し、かつ、このねじをチャックユニットから押し出してワークのめねじに締め込む。この時、駆動工具25にはねじを締め付ける時の締付トルク(回転負荷トルク)が作用するため、これに応じてコイルばね23が巻込み方向にねじれ、レゾルバ21,24の各出力電圧から得られる回転角度に差が生じる。制御ユニット3では、この回転角度差に応じた締付トルクが割り出されるとともに、この締付トルクが目標締付トルクに達したか否かが判定される。達していない場合は、新たな回転角度差に対応する締付トルクと目標締付トルクとの比較が繰り返される。また、締付トルクが目標締付トルクに達した場合には、モータ20の駆動が停止し、その後にドライバユニット1はロボットの作動により所定の待機位置に戻される。また、この時、起動チェック処理と同様にレゾルバ21,24の出力電圧から固有回転角度差が求められ、これが閾値を超えていないか確認される。閾値を超えている場合は、表示部に部品交換を報知するLED点灯や、ディジタル表示器による表示がなされる。この固有回転角度差の確認処理が完了した後、レゾルバ21,24への励磁電圧印加が停止されてねじ締め処理が完了する。なお、前述のねじ締め作業完了後に固有回転角度差を求めるタイミングであるが、これはロボットの作動により駆動工具25がねじから離れ、かつコイルばね23の原形復帰に伴う反動が収まった後、つまりは駆動工具25の軸心回りの負荷が解除されて後とするのが効果的である。   When the start check process is completed and then a start switch (not shown) of the operation unit 35 is pressed, a screw is supplied to the chuck unit, and the driver unit 1 is moved immediately above the female screw of the workpiece by the operation of the robot. . At the same time, the motor 20 of the driver unit 1 is driven by the control unit 3, and the driving tool 25 starts to rotate. Further, excitation voltages are applied to the resolvers 21 and 24, and detection of the rotation angle is started from the respective output voltages. Subsequently, when the tool unit 2 moves to the workpiece side by the operation of the robot, the driving tool 25 engages with a screw driving hole held by the chuck unit, and this screw is pushed out of the chuck unit to be a female screw of the workpiece. Tighten to. At this time, since the tightening torque (rotational load torque) when the screw is tightened acts on the drive tool 25, the coil spring 23 is twisted in the winding direction accordingly, and is obtained from the output voltages of the resolvers 21 and 24. A difference occurs in the rotation angle. In the control unit 3, a tightening torque corresponding to the rotation angle difference is determined, and it is determined whether or not the tightening torque has reached the target tightening torque. If not, the comparison between the tightening torque corresponding to the new rotation angle difference and the target tightening torque is repeated. When the tightening torque reaches the target tightening torque, the driving of the motor 20 is stopped, and then the driver unit 1 is returned to a predetermined standby position by the operation of the robot. At this time, the natural rotation angle difference is obtained from the output voltages of the resolvers 21 and 24 in the same manner as the start check process, and it is confirmed whether or not this exceeds the threshold value. When the threshold value is exceeded, LED lighting for notifying parts replacement on the display unit or display by a digital display is performed. After the confirmation process of the natural rotation angle difference is completed, the application of the excitation voltage to the resolvers 21 and 24 is stopped, and the screw tightening process is completed. In addition, although it is a timing which calculates | requires a natural rotation angle difference after completion | finish of the above-mentioned screw fastening operation | work, this is after the drive tool 25 leaves | separates from a screw by the action | operation of a robot, and the reaction accompanying the original shape return of the coil spring 23 is settled, ie Is effective after the load around the axis of the drive tool 25 is released.

以上のように、電源投入時と作業完了毎とに固有回転角度差を求めて確認することで、常にコイルばねや回転部品の状態を把握し、これらに異常が生じた時にはすぐに修理・交換することができる。従って、例えばコイルばねの経年変化による回転伝達性能の変化、軸受の劣化・消耗による焼き付き等の不具合に起因する誤った締付トルクの検出を防止し、常に正確な締付トルク検出が可能になり、ねじの締付け精度を高精度に保つことが可能になる。   As described above, by obtaining and checking the specific rotation angle difference at power-on and every time work is completed, the state of the coil spring and rotating parts is always grasped, and when an abnormality occurs in these, repair and replacement are performed immediately. can do. Therefore, for example, it is possible to prevent erroneous tightening torque detection due to problems such as changes in rotation transmission performance due to aging of coil springs, seizure due to bearing deterioration and wear, etc., and accurate tightening torque detection is always possible. It becomes possible to maintain the screw tightening accuracy with high accuracy.

なお、以上の説明では真の回転角度差から締付トルクを割り出し、これを目標締付トルクと比較する制御例を紹介したが、回転角度差を直接比較するようにしてもよい。また、ねじ締め作業完了毎に固有回転角度差を求めて確認するようにしたが、ねじ締め作業開始に当たってロボットが動作する前に固有回転角度差を求めて確認するようにしてもよい。   In the above description, the control example in which the tightening torque is determined from the true rotation angle difference and compared with the target tightening torque has been introduced. However, the rotation angle difference may be directly compared. Further, although the specific rotation angle difference is obtained and confirmed every time the screw tightening operation is completed, the natural rotation angle difference may be obtained and confirmed before the robot operates before starting the screw tightening operation.

本発明に係る部品締結ドライバユニットのブロック説明図。Block explanatory drawing of the component fastening driver unit which concerns on this invention. 本発明に係る部品締結ドライバユニットの起動チェック処理のフローチャート。The flowchart of the starting check process of the component fastening driver unit which concerns on this invention. 本発明に係る部品締結ドライバユニットのねじ締め処理のフローチャート。The flowchart of the screw fastening process of the component fastening driver unit which concerns on this invention. 本発明に係るレゾルバの特性を示すグラフ。The graph which shows the characteristic of the resolver which concerns on this invention.

符号の説明Explanation of symbols

1 部品締結ドライバユニット
2 ツールユニット
3 制御ユニット
20 ACサーボモータ
20a 駆動軸
21 レゾルバ
22 ねじりコイルばね
24 レゾルバ
25 駆動工具
DESCRIPTION OF SYMBOLS 1 Component fastening driver unit 2 Tool unit 3 Control unit 20 AC servomotor 20a Drive shaft 21 Resolver 22 Torsion coil spring 24 Resolver 25 Drive tool

Claims (3)

回転駆動手段と、この回転駆動手段の駆動軸と弾性部材を介して連結された駆動工具とを有する部品締結ドライバユニットであって、
前記回転駆動手段の駆動軸の絶対回転角度を示す信号を出力可能な第一回転角検出手段と、前記駆動工具の絶対回転角度を示す信号を出力可能な第二回転角検出手段と、これら第一回転角検出手段と第二回転角検出手段とから回転駆動手段が駆動していない状態で出力される各信号から駆動軸と駆動工具との固有回転角度差を割り出し、この固有回転角度差が前記回転駆動手段の駆動により駆動工具が回転する時に第一回転角検出手段および第二回転角検出手段からそれぞれ発せられる信号から得られる回転角度差の使用領域よりも低い領域にあるか否かを確認する制御ユニットとを備えていることを特徴とする部品締結ドライバユニット。
A component fastening driver unit having a rotation drive means, and a drive tool connected to the drive shaft of the rotation drive means via an elastic member,
First rotation angle detection means capable of outputting a signal indicating the absolute rotation angle of the drive shaft of the rotation drive means, second rotation angle detection means capable of outputting a signal indicating the absolute rotation angle of the drive tool, and The natural rotation angle difference between the drive shaft and the drive tool is calculated from each signal output when the rotation drive means is not driven from the one rotation angle detection means and the second rotation angle detection means. It is determined whether or not the rotation tool is in a lower area than the use area of the rotation angle difference obtained from the signals respectively generated from the first rotation angle detection means and the second rotation angle detection means when the driving tool is rotated by the rotation drive means. A component fastening driver unit comprising a control unit for checking.
第一、第二回転角検出手段は共にレゾルバであり、弾性部材はねじりコイルばねであることを特徴とする請求項1に記載の部品締結ドライバユニット。   2. The component fastening driver unit according to claim 1, wherein the first and second rotation angle detecting means are both resolvers, and the elastic member is a torsion coil spring. 制御ユニットは、固有回転角度差の確認を部品の締結作業毎に行うものであることを特徴とする請求項1または請求項2に記載の部品締結ドライバユニット。   The component fastening driver unit according to claim 1, wherein the control unit is configured to confirm a difference in natural rotation angle for each fastening operation of the component.
JP2004241504A 2004-08-20 2004-08-20 Part fastening driver unit Expired - Fee Related JP4392305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241504A JP4392305B2 (en) 2004-08-20 2004-08-20 Part fastening driver unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241504A JP4392305B2 (en) 2004-08-20 2004-08-20 Part fastening driver unit

Publications (2)

Publication Number Publication Date
JP2006055955A JP2006055955A (en) 2006-03-02
JP4392305B2 true JP4392305B2 (en) 2009-12-24

Family

ID=36103856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241504A Expired - Fee Related JP4392305B2 (en) 2004-08-20 2004-08-20 Part fastening driver unit

Country Status (1)

Country Link
JP (1) JP4392305B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111037269A (en) * 2019-11-30 2020-04-21 富泰华工业(深圳)有限公司 Machine vision-based lock screw control method, lock attachment device and control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4808741B2 (en) * 2008-03-03 2011-11-02 日産自動車株式会社 Screw tightening detection device
CN107932394B (en) * 2017-12-27 2024-01-30 广州亨龙智能装备股份有限公司 Screw tightening assembly and tightening device
CN110936766B (en) * 2019-12-17 2020-12-08 郑州电力高等专科学校 Mechanical arm for replacing tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111037269A (en) * 2019-11-30 2020-04-21 富泰华工业(深圳)有限公司 Machine vision-based lock screw control method, lock attachment device and control device
CN111037269B (en) * 2019-11-30 2021-07-13 富泰华工业(深圳)有限公司 Locking device and control device based on machine vision

Also Published As

Publication number Publication date
JP2006055955A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4684330B2 (en) Screw tightening device
US8482242B2 (en) Rotary drive device
JP4962488B2 (en) Torque measuring device
US7458282B1 (en) Screwdriver comprising a slider having an attached screw bit and a position detector for position feedback
JP4693898B2 (en) Screw tightening control system and screw tightening control method
KR100968559B1 (en) Screw tightening device
JPWO2007099629A1 (en) Motor control device and motor control method
US8556023B2 (en) Electric power steering apparatus
US9473056B2 (en) Motor control device and control method of stepping motor
JPWO2007105257A1 (en) Synchronous control system
JP4392305B2 (en) Part fastening driver unit
WO2015045871A1 (en) Method and system for controlling and managing automatic screw-tightening
KR20210035266A (en) Screw device, drive torque generating means, screw system and torque control method
WO2017203596A1 (en) Electronic control device and operation control method therefor
JP2012096296A (en) Thread fastening apparatus and method for controlling thread fastening apparatus
JP2006181660A (en) Part fastening driver unit
JP2007229853A (en) Screw fastening driver unit
JP4404356B2 (en) Part fastening driver unit
JP2010214564A (en) Screw fastening device
JP4669273B2 (en) Part fastening driver unit
CN113649797A (en) Tightening device and method for automatically executing tightening process
JP3010107B2 (en) Encoder system
JP2014117778A (en) Nut runner
KR101009428B1 (en) Actuator Origin Correction Method for Electronic Control Limit Slip Differential
JP4748781B2 (en) Fast-forward control mechanism for workpieces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees