JP4391654B2 - Transformer winding apparatus for welding machine and method of manufacturing transformer - Google Patents

Transformer winding apparatus for welding machine and method of manufacturing transformer Download PDF

Info

Publication number
JP4391654B2
JP4391654B2 JP2000042230A JP2000042230A JP4391654B2 JP 4391654 B2 JP4391654 B2 JP 4391654B2 JP 2000042230 A JP2000042230 A JP 2000042230A JP 2000042230 A JP2000042230 A JP 2000042230A JP 4391654 B2 JP4391654 B2 JP 4391654B2
Authority
JP
Japan
Prior art keywords
winding
wire
primary
electric wire
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000042230A
Other languages
Japanese (ja)
Other versions
JP2001232470A (en
Inventor
稔照 石地
智行 高下
良一 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000042230A priority Critical patent/JP4391654B2/en
Publication of JP2001232470A publication Critical patent/JP2001232470A/en
Application granted granted Critical
Publication of JP4391654B2 publication Critical patent/JP4391654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、汎用溶接機に装備されるトランスを製作する際の生産設備における溶接機用トランス巻線装置およびトランスの製造方法に関するものである。
【0002】
【従来の技術】
近年、溶接分野における溶接機の低価格競争の為、生産部門においては更なる生産性の向上、工数合理化により生産製造した製品の価格競争力を向上する必要性があった。
【0003】
溶接電源を構成するトランスについては図6に示す形状であり、薄板を集積した角型コア11に絶縁材12を取り付け、そこに1次絶縁被覆電線13を整列巻線しトランスの1次側を形成し、その上に絶縁シート14を巻付けそして、2次絶縁被覆電線15を用いて縦型巻線しトランスの2次側を形成する。
【0004】
この際、1次巻線の巻数は平均120ターンに対して、2次巻線の巻数は平均60ターンであり、1次巻線の巻数は2次巻線の巻数の約2倍を必要とする。また、1次巻線の巻線速度については角型コアに巻線を施す為、巻軸が1回転する際に、角型コアの長辺から短辺に必要とする線材の送り量が増減する為、1次線材の巻線速度は図7の様にV1〜V2m/minの間を変動し、結果として図8のアルミニウムを主原料とする線素材31の張力を加減速による応力が発生する為に変動させる。
【0005】
この張力の変動によって、線素材31は過負荷を受ける事によって、線材31の断面積を減少させてしまう事となる。この際、線材外周に絶線の為、接着により施される絶縁材料の被覆材32が線材31の変形に耐え切れず裂傷する。この裂傷の原因は、線材31の張力変動によってもたらされる収縮変形によるものであり、現状200rpmとなる限界巻線回転数は線材31の変形の許容範囲により決められており、巻線の高速化は如何に線材31にかかる張力を均一安定させる事に課題を抱えていた。この巻数の相違と巻線速度の限界により、生産する際の工程としては1次巻線、2次巻線を別工程にて生産する事を余儀なくされていた。その際、現実に必要とする生産時間の比は1次巻線工程:2次巻線工程=3:2となっている。
【0006】
また、2工程に分離を必要とする為に生産物の工程間搬送という作業も発生し、溶接機用トランスは大型の為、生産物重量が約20kgと非常に重く、作業性の向上を弊害する原因となっている。
【0007】
図9は従来の溶接機用トランス製造工程を示す工程図であり、コア生産装置により生産されたコアを1次巻線機41に供給し1次巻線を行い、1次巻線機−2次巻線機間搬送コンベア43によりパレットに積載して搬送し、その1次巻線が施されたコアを次工程の2次巻線機42にて2次巻線を行い、1次、2次巻線が施されたコアを2次巻線機−組立後処理工程間コンベア44によりパレットに積載して、次工程の組立後処理工程に供給する。
【0008】
この際、1次巻線機、2次巻線機へのコア供給、取出しは作業者の作業領域を確保する為、搬送装置の設置が困難であり、現状は人力によるもので、コア生産装置工程−1次巻線機工程−2次巻線機工程−組立後処理工程間の搬送はパレットによるコンベア搬送である。
【0009】
2次巻線工程においての2次線材はコアに対して長方形断面の線材を垂直に立てる縦巻線をしており、その際コアの角部においては、線材を角部にあわせて成形型によって加圧する事により変形させている。
【0010】
その為、2次巻線時には約20kg程度と強い、線材への張力を必要としているが、その張力に耐えうる線材の保持方式として図10に示す様に保持ボルト51により作業者が線材を曲げ保持している。図10において、52は巻枠、53はコアである。
【0011】
この保持方式では、固定する際の作業性が悪く、また自動化を画策した時の大きな障害となっていた。
【0012】
【発明が解決しようとする課題】
上記のように従来の2次巻線の保持方式によると人手作業を自動化する事は困難であり、2次線材の保持、脱着を簡易に行う事の課題を有していた。また、1次巻線と2次巻線の巻数の相違と、1次巻線の張力変動に伴う裂傷を防止するため1次巻線の巻線速度に限界があったので、1次巻線、2次巻線を別工程にて生産することが余儀なくされていた。また、図9に示す現状の生産工程では搬送、工程数、生産面積に無駄が多く非効率的と言わざるを得ない。
【0013】
したがって、この発明の目的は、1次線材を角型コアに巻線する際、線材に無理な張力変動を発生させず、課題となる1次巻線を2次巻線と同等まで高速化し、また、1工程にて1次巻線、2次巻線を同時に行い、生産に有する時間の短縮、搬送経路の短縮、工程数の削減、設置面積の縮小を可能にする、高効率生産型の溶接機用トランス巻線装置およびトランスの製造方法を提供することである。
【0014】
【課題を解決するための手段】
上記目的を達成するために、この発明の請求項1記載の溶接機用トランス巻線装置は、コアにトランスの1次側を形成する1次絶縁被覆電線を巻線し、その上に2次側を形成する2次絶縁被覆電線を巻線可能とした溶接機用トランス巻線装置であって、コアが装着される巻軸を3軸装備したテーブルを備え、テーブルを所定角度毎に回転させることで1次絶縁被覆電線の巻線位置と2次絶縁被覆電線の巻線位置とコア供給取出位置に各巻軸が順次配置される溶接機用トランス巻線装置であって、前記2次絶縁被覆電線をトグル機構により開閉するレバーにより保持、脱着する保持機構を備え、2次絶縁被覆電線は長方形断面の線材であって縦巻きするものであり、保持機構が保持する位置が線材の端部である。
【0015】
このように、コアが装着される巻軸を3軸装備したテーブルを備え、テーブルを所定角度毎に回転させることで1次絶縁被覆電線の巻線位置と2次絶縁被覆電線の巻線位置とコア供給取出位置に各巻軸が順次配置されるので、テーブルの回転により作業内容を1次巻線、2次巻線、コア供給取出しに置換することが可能となり、これまで人手による重労働となっていたコアを工程間移動する作業を削除することができる。また、モータ駆動による割り出し機構を用いてテーブルを所定角度ごとに回転させ1次巻線、2次巻線、コア供給取出しを1工程にて行うことができる。
また、2次絶縁被覆電線をトグル機構により開閉するレバーにより保持、脱着する保持機構を備えたので、2次絶縁被覆電線を自動保持、脱着することができる。また、この保持機構は生産設備に簡易に装備できる構造であり、かつ2次巻線時に約20kg程度の線材への張力を必要としているが、その張力に耐えうる。
【0016】
請求項2記載の溶接機用トランス巻線装置は、請求項1において、1次絶縁被覆電線のコアへの線材送り量の増減を、ガイドローラと最終ローラによって規制された1次絶縁被覆電線に対してガイドローラから最終ローラまでの1次絶縁被覆電線の送給経路の間に設けられた揺動ローラが揺動することにより1次絶縁被覆電線の中間に形成した湾曲部分によって吸収することで1次絶縁被覆電線の張力変動を調整する張力調整機構を備えた。このように、1次絶縁被覆電線のコアへの線材送り量の増減を1次絶縁被覆電線の中間に形成した湾曲部分によって吸収することで1次絶縁被覆電線の張力変動を調整する張力調整機構を備えたので、1次絶縁被覆電線をコアに巻線する際、線材に無理な張力変動を発生させず、均一安定した張力を実現し、課題となる1次巻線を2次巻線と同等まで高速化することができる。
【0018】
請求項3記載のトランスの製造方法は、巻軸を3軸装備したテーブルの回転により各巻軸がコア供給取出位置、1次絶縁被覆電線の巻線位置および2次絶縁被覆電線の巻線位置に順次移動し、コア供給取出位置に位置する巻軸にコアを装着し、このコアを1次絶縁被覆電線の巻線位置で1次巻線を行い、この1次巻線済のコアを2次絶縁被覆電線の巻線位置で2次巻線を行うトランスの製造方法であって、2次絶縁被覆電線をトグル機構により開閉するレバーにより保持、脱着し、2次絶縁被覆電線は長方形断面の線材であって縦巻きするものであり、保持機構が保持する位置が線材の端部である。
【0019】
このように、コア供給取出位置に位置する巻軸にコアを装着し、コア供給取出位置から1次絶縁被覆電線の巻線位置に移動した巻軸において1次巻線を行い、1次絶縁被覆電線の巻線位置から2次絶縁被覆電線の巻線位置へ移動した巻軸において2次巻線を行うので、テーブルの回転により作業内容を1次巻線、2次巻線、コア供給取出しに置換することが可能となり、これまで人手による重労働となっていたコアを工程間移動する作業を削除することができ生産性が向上する。
また、2次絶縁被覆電線をトグル機構により開閉するレバーにより保持、脱着するので、2次絶縁被覆電線を自動保持、脱着することができる。また、レバーにより保持する機構は生産設備に簡易に装備できる構造であり、かつ2次巻線時に約20kg程度の線材への張力を必要としているが、その張力に耐えうる。
請求項4記載のトランスの製造方法は、請求項3において、1次絶縁被覆電線のコアへの線材送り量の増減を、ガイドローラと最終ローラによって規制された1次絶縁被覆電線に対してガイドローラから最終ローラまでの1次絶縁被覆電線の送給経路の間に設けられた揺動ローラが揺動することにより1次絶縁被覆電線の中間に形成した湾曲部分によって吸収することで1次絶縁被覆電線の張力変動を調整する。このように、1次絶縁被覆電線のコアへの線材送り量の増減を1次絶縁被覆電線の中間に形成した湾曲部分によって吸収することで1次絶縁被覆電線の張力変動を調整する張力調整機構を備えたので、1次絶縁被覆電線をコアに巻線する際、線材に無理な張力変動を発生させず、均一安定した張力を実現し、課題となる1次巻線を2次巻線と同等まで高速化することができる。
【0020】
【発明の実施の形態】
この発明の実施の形態を図1〜図5に基づいて説明する。図1はこの発明の実施の形態の溶接機用トランス3軸縦型巻線装置の配置平面図、図2はこの実施の形態の1次巻線テンション構造を示す斜視図、図3はこの実施の形態の揺動ローラの動作説明図、図4はこの実施の形態の2次線材保持機構の斜視図、図5はこの実施の形態の2次線材保持機構の構造図である。
【0021】
図1において、61aは巻軸(1次巻線位置)、61bは巻軸(2次巻線位置)、61cは巻軸(コア供給取出し位置)、62はターンテーブル、63は1次巻線処理装置、64は2次巻線処理装置、65はコア供給取出し装置、66は搬送コンベア、67は材料スプールである。この溶接機用トランス巻線装置は、コアにトランスの1次側を形成する1次絶縁被覆電線を巻線し、その上に2次側を形成する2次絶縁被覆電線を巻線可能としている。また、図1に示すようにコアが装着される巻軸61a,61b,61cを3軸装備したテーブル62を備え、テーブル62を所定角度毎に回転させることで1次絶縁被覆電線の巻線位置と2次絶縁被覆電線の巻線位置とコア供給取出位置に各巻軸が順次配置される。この場合、床面に垂直に巻軸61a〜61cがターンテープル62上に中心角を3等分するように配置されており、テーブル62は、モータ駆動される割り出し装置により反時計周りに割り出し回転を行う。
【0022】
1次巻線処理装置63は、線材に対する張力調整機構とサーボモータ駆動による昇降式のトラバースを有しており、巻軸61aに装着されたコアに対して垂直昇降動作により巻線を実施する。
【0023】
図2において、巻軸61a位置にて行われる1次巻線の線材70の通過経路についての構成を示す。材料スプール71には、線材70をドラム状に巻付けてある材料ドラムを取り付けてあるが、材料(線材70)と外径検出アーム78とを接触させ、外径検出アーム支点部分に連結された電気式角度検出機(図示せず)により材料ドラムの残量を電圧によって出力し、その電圧値の値によって、材料ドラム回転中心部分に連結された電気式ブレーキのブレーキ力を可変する。
【0024】
このブレーキ力は、巻線停止時及び、トラバース端部折り返し時に材料ドラム自身の自重の為に発生する慣性力による材料ドラムの空転を防止するものであり、先に記述した材料ドラム径を測定しブレーキ力を可変するのは、ブレーキ力が、線材に与える張力を、材料ドラムの残量によらず一定とする為である。
【0025】
この材料ドラムより線材はローラ式ストレーナ72によって材料ドラムに巻付けられていた時の、線材70の癖を除去され、低摩擦材料73を空圧シリンダにより加圧する事により巻線に必要な張力を付加する。
【0026】
そしてガイドローラ74と最終ローラ76によって、規制された線材を揺動ローラ75によって中間にて湾曲する。揺動ローラ75の揺動の軸心は最終ローラ76の軸心と同じにし、線材70の湾曲に必要な回転力は、低摩擦材料73により線材70に付加された張力の値より若干大きく設定された、空圧調整機能を装備した揺動用シリンダ77にて加圧されている。
【0027】
即ち、一定回転数の巻線時に線材にかかる張力Tは、揺動ローラ75による張力をTl、低摩擦材料による張力をT2、ローラ式ストレーナ72による張力をT3、材料スプール71による張力をT4とすると、次式にて表される。
【0028】
T=Tl+T2+T3+T4 ただし、Tl≧T2+T3+T4
この線材70の経路を構成する事により、角型コア79に巻線を施す際、図7に示すような1回転あたりの線材送り量の増減を起こすが、図3に示す様に、角型コア79の回転により外周が図3(a)の様に長辺から、図3(b)の様に短辺に移動する際に、送り量が増加するが、揺動ローラ75による線材70の湾曲部分によって、線材送り量の増減を吸収し、線材送り量の増減による巻線速度の変化を抑制し線材断面の変形を防止する事が可能となる。
【0029】
また、湾曲させるのに必要な空気圧力に空圧調整機能を用いて設定されたシリンダを使用する事によって、揺動ローラ75の揺動角による線材70の張力変動は無く、揺動ローラ75が揺動する事により線材送り量の増減に追従する事によって絶縁被覆裂傷による現状限界回転数である200rpmを上回る300rpmでの巻線を可能とした。
【0030】
2次巻線処理装置64は線材に対する張力調整機構、サーボモータ駆動による昇降式のトラバースと空圧シリンダ駆動による成形型により、1次巻線が施されたコアに対して線材を加圧し縦型に成形しながら巻軸61bに装着された1次巻線が施されたコアに対して垂直昇降動作により巻線を実施する。
【0031】
図4においては、巻軸61b位置にて行われる2次巻線の線材保持機構を示すものであり、巻軸61bに固定されるコア79を保持する為の巻枠81に固定される。2次巻線材82が所定の位置まで自動にて供給され、巻軸61bより空圧を供給されるシリンダ83を駆動する事により、リンク84を移動させトグル状態になったところで、2次線材82を固定爪85とシリンダ83により揺動した移動爪86により変形させ強固に固定する。
【0032】
即ち、2次絶縁被覆電線をトグル機構により開閉するレバーにより保持、脱着するもので、リンク84を使用したトグル機構を有する保持機構により強い保持力と幅広い線材保持スペースを確保する事が可能となる。また、図5に示すように、トグル力点91とレバーの支点92を同一直線上に配置する事によって、角部成形作用によって、巻線中発生する強力な内部保有張力についても、レバーは図5の位置にてその端部に設けた移動爪86により線材82を保持している為、発生する応力はレバー支点92に負荷され保持機構を開放する際のトグル機構には影響を与えない。
【0033】
コア供給取出し装置65は空圧駆動の保持チャックが垂直、水平動作する事により、巻軸61cより1次巻線、2次巻線が施されたコアを搬送コンベア66上のパレットに取出し、また同コンベア66上のパレットより搬送されたコアを巻軸61cに供給する為の装置である。材料スプール67は搬送コンベア66を挟んで設置され、1次巻線及び、2次巻線用線材ドラムを装備する。
【0034】
ここで、巻軸を垂直に配置したのは、1次巻線、2次巻線及びコア供給取出しの各作業を行う為の装置設置、巻線作業者の作業スペースを確保する事と、1次巻線、2次巻線に使用される線材の通過経路が直線的となり、十分な作業スペースが確保できる事から交換を簡易に実施できる事を可能にする為である。
【0035】
次に上記トランス巻線装置によるトランスの製造方法について説明する。この構成において、図1中の巻軸61cの位置では、巻線後のコアの取出しを行った後巻線前のコアを搬送コンベア66より巻軸61cの位置に供給され、その間に巻軸61aの位置においては、コアに1次巻線、巻軸61bの位置においては、1次巻線が施されたコアに対して2次巻線を行う。
【0036】
つまり、各巻軸の位置においての作業は、同時進行により動作されている。この際、巻軸61aのコアはモータ駆動による割り出し機構によりテーブル回転する自動搬送であり、1次巻線に必要な図6に示した絶縁材14、絶縁シート15及び1次線材12の巻軸への固定は作業者により1次巻線時にコアヘ装着される。また、図1中の巻軸61bの位置においては、1次巻線が行われたコアに対して図6に示した2次線材13を巻枠に自動装着し巻線を行う。このように、テーブル上の巻軸は、コア供給取出し−1次巻線−2次巻線を繰り返しながら移動して生産作業動作を継続する。
【0037】
以上のようにこの実施の形態によれば、揺動ローラを用いて1次巻線の張力制御機構を構成し、かつ線材をコアに対して垂直に巻線を行う縦巻線である2次巻線の保持機構として、トグル式線材保持機構を装備した溶接機用トランス3軸縦型巻線装置により、従来困難であった1次巻線の巻線時間を2次巻線の巻線時間と同等まで高速にし、2次線材の自動着脱を可能にした事で、従来2工程必要とした作業を1工程にし、また従来の2/3の時間にて1次巻線を巻線する事が出来る為、全体の作業時間が2/3に短縮して溶接機用トランスを製造する事が可能となる。
【0038】
また、同一工程内にて3軸の巻軸をターンテーブル上に配置し、その回転により作業内容を1次巻線、2次巻線、及びコア供給−取出しに置換する構成を用いる事により、これまで人手による重労働となっていた、コアを工程間移動する作業を削除することが可能となる。
【0039】
【発明の効果】
この発明の請求項1記載の溶接機用トランス巻線装置によれば、コアが装着される巻軸を3軸装備したテーブルを備え、テーブルを所定角度毎に回転させることで1次絶縁被覆電線の巻線位置と2次絶縁被覆電線の巻線位置とコア供給取出位置に各巻軸が順次配置されるので、テーブルの回転により作業内容を1次巻線、2次巻線、コア供給取出しに置換することが可能となり、これまで人手による重労働となっていたコアを工程間移動する作業を削除することができる。また、モータ駆動による割り出し機構を用いてテーブルを所定角度ごとに回転させ1次巻線、2次巻線、コア供給取出しを1工程にて行うことができる。
また、2次絶縁被覆電線をトグル機構により開閉するレバーにより保持、脱着する保持機構を備えたので、2次絶縁被覆電線を自動保持、脱着することができる。また、この保持機構は生産設備に簡易に装備できる構造であり、かつ2次巻線時に約20kg程度の線材への張力を必要としているが、その張力に耐えうる。
【0040】
請求項2では、1次絶縁被覆電線のコアへの線材送り量の増減を1次絶縁被覆電線の中間に形成した湾曲部分によって吸収することで1次絶縁被覆電線の張力変動を調整する張力調整機構を備えたので、1次絶縁被覆電線をコアに巻線する際、線材に無理な張力変動を発生させず、均一安定した張力を実現し、課題となる1次巻線を2次巻線と同等まで高速化することができる。
【0042】
この発明の請求項記載のトランスの製造方法によれば、コア供給取出位置に位置する巻軸にコアを装着し、コア供給取出位置から1次絶縁被覆電線の巻線位置に移動した巻軸において1次巻線を行い、1次絶縁被覆電線の巻線位置から2次絶縁被覆電線の巻線位置へ移動した巻軸において2次巻線を行うので、テーブルの回転により作業内容を1次巻線、2次巻線、コア供給取出しに置換することが可能となり、これまで人手による重労働となっていたコアを工程間移動する作業を削除することができ生産性が向上する。
また、2次絶縁被覆電線をトグル機構により開閉するレバーにより保持、脱着するので、2次絶縁被覆電線を自動保持、脱着することができる。また、レバーにより保持する機構は生産設備に簡易に装備できる構造であり、かつ2次巻線時に約20kg程度の線材への張力を必要としているが、その張力に耐えうる。
この発明の請求項4記載のトランスの製造方法によれば、1次絶縁被覆電線のコアへの線材送り量の増減を1次絶縁被覆電線の中間に形成した湾曲部分によって吸収することで1次絶縁被覆電線の張力変動を調整する張力調整機構を備えたので、1次絶縁被覆電線をコアに巻線する際、線材に無理な張力変動を発生させず、均一安定した張力を実現し、課題となる1次巻線を2次巻線と同等まで高速化することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態の溶接機用トランス3軸縦型巻線装置の配置平面図である。
【図2】この実施の形態の1次巻線テンション構造を示す斜視図である。
【図3】この実施の形態の揺動ローラの動作説明図である。
【図4】この実施の形態の2次線材保持機構の斜視図である。
【図5】この実施の形態の2次線材保持機構の構造図である。
【図6】完成品トランスの斜視図である。
【図7】1次線材の巻線速度を示す特性図である。
【図8】巻線線材の斜視図である。
【図9】従来の溶接機用トランス製造工程を示す概念図である。
【図10】従来の2次線材チャック方式を示す斜視図である。
【符号の説明】
61a 巻軸(1次巻線位置)
61b 巻軸(2次巻線位置)
61c 巻軸(供給取出し位置)
62 ターンテーブル
63 1次巻線処理装置
64 2次巻線処理装置
65 コア供給取出し装置
66 搬送コンベア
67 材料スプール
70 1次線材
71 材料スプール
72 ローラ式ストレーナ
73 低摩擦材料
74 ガイドローラ
75 揺動ローラ
76 最終ローラ
81 巻枠
82 2次線材
83 シリンダ
84 リンク
85 固定爪
86 移動爪
91 トグル力点
92 レバー視点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transformer winding device for a welding machine and a method for manufacturing the transformer in a production facility when a transformer to be equipped in a general-purpose welding machine is manufactured.
[0002]
[Prior art]
In recent years, due to the low price competition of welding machines in the welding field, there has been a need in the production department to improve the price competitiveness of products produced and manufactured by further improving productivity and rationalizing man-hours.
[0003]
The transformer constituting the welding power source has the shape shown in FIG. 6, and an insulating material 12 is attached to a rectangular core 11 in which thin plates are integrated, and a primary insulation-coated electric wire 13 is arranged and wound on the primary side of the transformer. Then, the insulating sheet 14 is wound thereon, and the secondary side of the transformer is formed by vertical winding using the secondary insulation coated electric wire 15.
[0004]
At this time, the average number of turns of the primary winding is 120 turns, and the average number of turns of the secondary winding is 60 turns, and the number of turns of the primary winding needs to be about twice the number of turns of the secondary winding. To do. As for the winding speed of the primary winding, since the winding is applied to the rectangular core, when the winding shaft makes one rotation, the feed amount of the wire required from the long side to the short side of the rectangular core increases or decreases. Therefore, the winding speed of the primary wire varies between V1 and V2 m / min as shown in FIG. 7, and as a result, stress is generated due to acceleration / deceleration of the tension of the wire 31 made mainly of aluminum in FIG. Fluctuate to do.
[0005]
As a result of this fluctuation in tension, the wire material 31 is overloaded, thereby reducing the cross-sectional area of the wire material 31. At this time, since the outer periphery of the wire is disconnected, the covering material 32 made of an insulating material applied by bonding cannot withstand the deformation of the wire 31 and is torn. The cause of this laceration is due to shrinkage deformation caused by fluctuations in the tension of the wire 31, and the limit winding speed that is currently 200 rpm is determined by the allowable range of deformation of the wire 31. The problem was how to uniformly stabilize the tension applied to the wire 31. Due to the difference in the number of windings and the limit of the winding speed, it was forced to produce the primary winding and the secondary winding in a separate process as a production process. At that time, the actual production time ratio required is primary winding process: secondary winding process = 3: 2.
[0006]
In addition, since the two processes require separation, the work of transporting the product between processes also occurs, and because the transformer for the welding machine is large, the product weight is very heavy, about 20 kg, and the workability is adversely affected. It is a cause.
[0007]
FIG. 9 is a process diagram showing a conventional welding machine transformer manufacturing process, in which a core produced by a core production apparatus is supplied to a primary winding machine 41 to perform primary winding, and the primary winding machine-2. The secondary winding machine is loaded on the pallet by the inter-winding machine conveyor 43 and transported. The core on which the primary winding is applied is subjected to secondary winding by the secondary winding machine 42 in the next process, and the primary, The core provided with the next winding is loaded on the pallet by the conveyor 44 between the secondary winding machine and the post-assembly processing step, and supplied to the post-assembly processing step of the next step.
[0008]
At this time, core supply to and removal from the primary winding machine and secondary winding machine ensure the operator's work area, so it is difficult to install the transfer device. The transfer between the process—the primary winding machine process—the secondary winding machine process—the post-assembly process is a conveyor transfer using a pallet.
[0009]
The secondary wire in the secondary winding process is a vertical winding in which a wire having a rectangular cross section is set up vertically with respect to the core. At that time, in the corner of the core, the wire is aligned with the corner by a molding die. It is deformed by applying pressure.
[0010]
For this reason, a tension of about 20 kg, which is strong at the time of secondary winding, is required. However, as shown in FIG. 10, an operator bends the wire with a holding bolt 51 as a wire holding system that can withstand the tension. keeping. In FIG. 10, 52 is a reel, and 53 is a core.
[0011]
In this holding method, workability at the time of fixing is poor, and it has become a major obstacle when planning automation.
[0012]
[Problems to be solved by the invention]
As described above, according to the conventional secondary winding holding method, it is difficult to automate the manual work, and there is a problem of easily holding and removing the secondary wire. In addition, since the winding speed of the primary winding is limited in order to prevent the difference in the number of turns between the primary winding and the secondary winding and the laceration caused by the fluctuation in tension of the primary winding, It was forced to produce the secondary winding in a separate process. Further, in the current production process shown in FIG. 9, it is unavoidable that the conveyance, the number of processes, and the production area are wasteful and inefficient.
[0013]
Therefore, when the primary wire is wound around the square core, the object of the present invention is not to cause excessive tension fluctuations in the wire, and the primary winding that is a problem is increased to the same speed as the secondary winding, In addition, the primary winding and the secondary winding are simultaneously performed in one process, and the production time is shortened, the transport route is shortened, the number of processes is reduced, and the installation area is reduced. It is to provide a transformer winding apparatus for a welding machine and a method of manufacturing a transformer.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a transformer winding device for a welding machine according to claim 1 of the present invention is such that a primary insulation coated electric wire that forms a primary side of a transformer is wound around a core, and a secondary insulation is formed thereon. A transformer winding device for a welding machine capable of winding a secondary insulation coated electric wire forming a side, comprising a table equipped with three winding shafts on which a core is mounted, and rotating the table every predetermined angle A transformer winding device for a welding machine in which each winding shaft is sequentially arranged at a winding position of a primary insulation-coated wire, a winding position of a secondary insulation-coated wire, and a core supply / extraction position, wherein the secondary insulation coating It has a holding mechanism that holds and removes the electric wire with a lever that opens and closes by a toggle mechanism , and the secondary insulation covered electric wire is a rectangular cross-section wire that is wound vertically, and the holding mechanism holds the position at the end of the wire is there.
[0015]
Thus, with the table core is equipped triaxial a winding shaft that is mounted, a winding position of the winding position and the second insulated wire of the primary insulated wire by rotating the table at a predetermined angle for each Since each winding axis is sequentially arranged at the core supply / removal position, it is possible to replace the work content with primary winding, secondary winding, and core supply / removal by rotating the table. It is possible to delete the operation of moving the core between processes. In addition, the primary winding, the secondary winding, and the core supply / removal can be performed in one step by rotating the table at a predetermined angle using an indexing mechanism driven by a motor.
In addition, since the holding mechanism for holding and detaching the secondary insulation covered electric wire by the lever that opens and closes by the toggle mechanism is provided, the secondary insulation covered electric wire can be automatically held and detached. Further, this holding mechanism has a structure that can be easily installed in production equipment, and requires a tension of about 20 kg of wire in the secondary winding, but can withstand the tension.
[0016]
The transformer winding device for a welder according to claim 2 is the primary insulation-coated electric wire regulated by the guide roller and the final roller, wherein the increase or decrease of the wire feed amount to the core of the primary insulation-coated electric wire is defined in claim 1. On the other hand, the rocking roller provided between the feeding path of the primary insulation coated electric wire from the guide roller to the final roller is absorbed by the curved portion formed in the middle of the primary insulation coated electric wire by oscillating. A tension adjusting mechanism for adjusting the tension fluctuation of the primary insulation-coated electric wire was provided. In this way, a tension adjustment mechanism that adjusts fluctuations in the tension of the primary insulation-coated electric wire by absorbing the increase or decrease in the wire feed amount to the core of the primary insulation-coated electric wire by the curved portion formed in the middle of the primary insulation-coated electric wire. Therefore, when winding the primary insulation coated wire around the core, it does not cause excessive tension fluctuations in the wire, realizes a uniform and stable tension, and the primary winding that is the subject is the secondary winding. The speed can be increased to the same level.
[0018]
According to a third aspect of the present invention, there is provided a transformer manufacturing method in which each winding shaft is moved to a core supply take-out position, a winding position of a primary insulation-coated wire, and a winding position of a secondary insulation-coated wire by rotating a table equipped with three winding shafts. The core is attached to the winding shaft located at the core supply and take-out position, and the primary winding is performed at the winding position of the primary insulation-coated wire. A method of manufacturing a transformer in which a secondary winding is performed at a winding position of an insulated wire, the secondary insulated wire being held and detached by a lever that is opened and closed by a toggle mechanism, and the secondary insulated wire is a wire having a rectangular cross section And it winds up vertically and the position which a holding mechanism hold | maintains is an edge part of a wire.
[0019]
In this way, the core is mounted on the winding shaft located at the core supply / removal position, and the primary winding is performed on the winding shaft moved from the core supply / removal position to the winding position of the primary insulation-coated wire. Since the secondary winding is performed on the winding shaft moved from the winding position of the electric wire to the winding position of the secondary insulation coated electric wire, the work content is changed to the primary winding, secondary winding, and core supply / extraction by rotating the table. It becomes possible to replace them, and the work of moving the core, which has been hard labor manually until now, can be eliminated, thereby improving productivity.
Further, since the secondary insulation coated electric wire is held and detached by a lever that opens and closes by a toggle mechanism, the secondary insulation coated electric wire can be automatically held and detached. In addition, the mechanism held by the lever has a structure that can be easily installed in the production facility, and requires about 20 kg of tension to the wire during the secondary winding, but can withstand that tension.
According to a fourth aspect of the present invention, there is provided a method for manufacturing a transformer according to the third aspect, in which the increase or decrease of the wire feed amount to the core of the primary insulation coated electric wire is guided relative to the primary insulation coated electric wire regulated by the guide roller and the final roller. The primary insulation is absorbed by the curved portion formed in the middle of the primary insulation-coated electric wire when the oscillating roller provided between the feed path of the primary insulation-coated electric wire from the roller to the final roller oscillates. Adjust the tension fluctuation of the covered wire. In this way, a tension adjustment mechanism that adjusts fluctuations in the tension of the primary insulation-coated electric wire by absorbing the increase or decrease in the wire feed amount to the core of the primary insulation-coated electric wire by the curved portion formed in the middle of the primary insulation-coated electric wire. Therefore, when winding the primary insulation coated wire around the core, it does not cause excessive tension fluctuations in the wire, realizes a uniform and stable tension, and the primary winding that is the subject is the secondary winding. The speed can be increased to the same level.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an arrangement plan view of a transformer 3-axis vertical winding device for a welding machine according to an embodiment of the present invention, FIG. 2 is a perspective view showing a primary winding tension structure of this embodiment, and FIG. FIG. 4 is a perspective view of the secondary wire holding mechanism of this embodiment, and FIG. 5 is a structural diagram of the secondary wire holding mechanism of this embodiment.
[0021]
In FIG. 1, 61a is a winding shaft (primary winding position), 61b is a winding shaft (secondary winding position), 61c is a winding shaft (core supply / extraction position), 62 is a turntable, and 63 is a primary winding. A processing device, 64 is a secondary winding processing device, 65 is a core supply / withdrawal device, 66 is a conveyor, and 67 is a material spool. In this transformer winding device for a welding machine, a primary insulation-coated electric wire that forms a primary side of a transformer is wound around a core, and a secondary insulation-coated electric wire that forms a secondary side can be wound thereon. . Moreover, as shown in FIG. 1, a table 62 equipped with three winding shafts 61a, 61b, 61c on which cores are mounted is provided, and the winding position of the primary insulation- coated electric wire is obtained by rotating the table 62 every predetermined angle. The winding shafts are sequentially arranged at the winding position and the core supply extraction position of the secondary insulation coated electric wire. In this case, the winding shafts 61a to 61c are arranged perpendicularly to the floor surface so as to divide the central angle into three equal parts on the turntable 62, and the table 62 is indexed and rotated counterclockwise by a motor-driven indexing device. I do.
[0022]
The primary winding processing device 63 has a tension adjusting mechanism for the wire rod and a lifting / lowering traverse driven by a servo motor, and winds the core mounted on the winding shaft 61a by a vertical lifting operation.
[0023]
In FIG. 2, the structure about the passage path | route of the wire 70 of the primary winding performed in the winding-axis 61a position is shown. The material spool 71 is provided with a material drum in which the wire 70 is wound in a drum shape. The material (wire 70) and the outer diameter detection arm 78 are brought into contact with each other and connected to the outer diameter detection arm fulcrum portion. An electric angle detector (not shown) outputs the remaining amount of the material drum as a voltage, and the braking force of the electric brake connected to the rotation center portion of the material drum is varied according to the voltage value.
[0024]
This braking force prevents idling of the material drum due to the inertial force generated by the weight of the material drum itself when the winding is stopped and when the traverse end is turned back. The material drum diameter described above is measured. The reason why the braking force is varied is that the tension applied to the wire by the braking force is constant regardless of the remaining amount of the material drum.
[0025]
When the wire rod is wound around the material drum by the roller strainer 72 from this material drum, the wrinkles of the wire rod 70 are removed, and the low-friction material 73 is pressurized by the pneumatic cylinder so that the necessary tension is applied to the winding. Append.
[0026]
The regulated wire is bent in the middle by the swing roller 75 by the guide roller 74 and the final roller 76. The axis of oscillation of the oscillation roller 75 is the same as the axis of the final roller 76, and the rotational force required for the bending of the wire 70 is set slightly larger than the value of the tension applied to the wire 70 by the low friction material 73. The pressure is applied by the swinging cylinder 77 equipped with the air pressure adjusting function.
[0027]
That is, the tension T applied to the wire at the time of winding at a constant rotation number is Tl by the tension by the swing roller 75, T2 by the low friction material, T3 by the roller strainer 72, and T4 by the material spool 71. Then, it is expressed by the following formula.
[0028]
T = Tl + T2 + T3 + T4 where Tl ≧ T2 + T3 + T4
By forming the path of the wire rod 70, when winding the rectangular core 79, the wire feed amount per rotation increases and decreases as shown in FIG. 7, but as shown in FIG. When the outer periphery moves from the long side as shown in FIG. 3A to the short side as shown in FIG. 3B due to the rotation of the core 79, the feed amount increases. The curved portion absorbs the increase / decrease in the wire feed amount, suppresses the change in the winding speed due to the increase / decrease in the wire feed amount, and prevents the deformation of the wire cross section.
[0029]
In addition, by using a cylinder set by using an air pressure adjustment function for the air pressure necessary for bending, there is no fluctuation in the tension of the wire 70 due to the swing angle of the swing roller 75, and the swing roller 75 By swinging and following the increase / decrease of the wire feed amount, winding at 300 rpm, which exceeds the current limit rotational speed of 200 rpm due to the insulation coating laceration, was made possible.
[0030]
The secondary winding processing unit 64 pressurizes the wire against the core on which the primary winding has been applied by means of a tension adjusting mechanism for the wire, a lifting / lowering traverse driven by a servo motor, and a molding die driven by a pneumatic cylinder. Winding is carried out by a vertical raising / lowering operation on the core on which the primary winding mounted on the winding shaft 61b is formed.
[0031]
FIG. 4 shows a wire material holding mechanism for the secondary winding performed at the position of the winding shaft 61b, which is fixed to a winding frame 81 for holding a core 79 fixed to the winding shaft 61b. When the secondary winding material 82 is automatically supplied to a predetermined position and the cylinder 83 to which the air pressure is supplied from the winding shaft 61b is driven to move the link 84 to the toggle state, the secondary wire 82 is moved. Is fixed and firmly fixed by the moving claw 86 that is swung by the fixing claw 85 and the cylinder 83.
[0032]
That is, the secondary insulation coated electric wire is held and detached by a lever that opens and closes by a toggle mechanism, and a holding mechanism having a toggle mechanism using a link 84 can secure a strong holding force and a wide wire holding space. . Further, as shown in FIG. 5, by arranging the toggle force point 91 and the fulcrum 92 of the lever on the same straight line, the lever can also be used for the strong internal holding tension generated in the winding by the corner forming action. Since the wire 82 is held by the moving claw 86 provided at the end thereof at the position, the generated stress is applied to the lever fulcrum 92 and does not affect the toggle mechanism when the holding mechanism is opened.
[0033]
The core supply and take-out device 65 takes out the core on which the primary winding and the secondary winding are applied from the winding shaft 61c to the pallet on the transport conveyor 66 by operating the holding chuck driven by air pressure vertically and horizontally. This is a device for supplying the core conveyed from the pallet on the conveyor 66 to the winding shaft 61c. The material spool 67 is installed with the conveying conveyor 66 in between, and is equipped with a primary winding and a wire drum for secondary winding.
[0034]
Here, the winding axis is vertically arranged because the installation of the device for performing the primary winding, the secondary winding, and the core supply / take-out operation, ensuring the working space for the winding operator, This is because the passage of the wire used for the secondary winding and the secondary winding is linear, and a sufficient work space can be secured, so that replacement can be easily performed.
[0035]
Next, a method for manufacturing a transformer using the transformer winding device will be described. In this configuration, at the position of the winding shaft 61c in FIG. 1, the core before winding after the core after winding is taken out is supplied from the transport conveyor 66 to the position of the winding shaft 61c, and during that time, the winding shaft 61a At the position of, the primary winding is performed on the core, and at the position of the winding shaft 61b, the secondary winding is performed on the core on which the primary winding is applied.
[0036]
That is, the work at the position of each winding shaft is operated by simultaneous progress. At this time, the core of the winding shaft 61a is an automatic conveyance that rotates the table by an indexing mechanism driven by a motor, and the winding shaft of the insulating material 14, the insulating sheet 15, and the primary wire 12 shown in FIG. 6 required for the primary winding. It is fixed to the core at the time of the primary winding by the operator. Further, at the position of the winding shaft 61b in FIG. 1, the secondary wire 13 shown in FIG. 6 is automatically mounted on the winding frame and wound on the core on which the primary winding has been performed. As described above, the winding shaft on the table moves while repeating the core supply take-out, the primary winding, and the secondary winding, and continues the production operation.
[0037]
As described above, according to this embodiment, the primary winding tension control mechanism is configured by using the swing roller, and the secondary winding is a vertical winding that winds the wire perpendicular to the core. As a winding holding mechanism, the transformer winding 3-axis vertical winding device for a welding machine equipped with a toggle-type wire holding mechanism is used. The secondary wire rod can be automatically attached / detached at the same speed as the above, so the work that required two processes in the past is made one process, and the primary winding is wound in 2/3 of the conventional time. Therefore, it is possible to manufacture a transformer for a welding machine by shortening the entire work time to 2/3.
[0038]
In addition, by using a configuration in which three winding shafts are arranged on the turntable in the same process, and the work content is replaced by primary winding, secondary winding, and core supply-extraction by rotation. It becomes possible to delete the work of moving the core between processes, which has been a labor-intensive work up to now.
[0039]
【The invention's effect】
According to the transformer winding device for a welding machine according to claim 1 of the present invention, a primary insulation coated electric wire is provided by providing a table equipped with three winding shafts on which cores are mounted, and rotating the table every predetermined angle. Since each winding shaft is sequentially arranged at the winding position of the secondary insulation coating wire, the winding position of the secondary insulation coated wire, and the core supply / extraction position, the work content is changed to the primary winding, secondary winding, and core supply / extraction by rotating the table. It becomes possible to replace, and the work of moving the core, which has been a laborious manual labor until now, can be deleted. In addition, the primary winding, the secondary winding, and the core supply / removal can be performed in one step by rotating the table at a predetermined angle using an indexing mechanism driven by a motor.
In addition, since the holding mechanism for holding and detaching the secondary insulation covered electric wire by the lever that opens and closes by the toggle mechanism is provided, the secondary insulation covered electric wire can be automatically held and detached. Further, this holding mechanism has a structure that can be easily installed in production equipment, and requires a tension of about 20 kg of wire in the secondary winding, but can withstand the tension.
[0040]
In claim 2, the tension adjustment that adjusts the fluctuation in the tension of the primary insulation-coated electric wire by absorbing the increase and decrease of the wire feed amount to the core of the primary insulation-coated electric wire by the curved portion formed in the middle of the primary insulation-coated electric wire. Because it has a mechanism, when winding the primary insulation coated wire around the core, it does not cause excessive tension fluctuations in the wire, realizes a uniform and stable tension, and the primary winding that is the subject is the secondary winding. Speed up to the same level.
[0042]
According to the transformer manufacturing method of the third aspect of the present invention, the core is mounted on the winding shaft located at the core supply / extraction position, and the winding shaft is moved from the core supply / extraction position to the winding position of the primary insulation coated electric wire. The secondary winding is performed on the winding shaft that has been moved from the winding position of the primary insulation-coated wire to the winding position of the secondary insulation-coated wire. It is possible to replace the winding with the secondary winding and the core supply / removal, and it is possible to eliminate the work of moving the core, which has been a labor-intensive work up to now, between processes, thereby improving productivity.
Further, since the secondary insulation coated electric wire is held and detached by a lever that opens and closes by a toggle mechanism, the secondary insulation coated electric wire can be automatically held and detached. In addition, the mechanism held by the lever has a structure that can be easily installed in the production facility, and requires about 20 kg of tension to the wire during the secondary winding, but can withstand that tension.
According to the transformer manufacturing method of the fourth aspect of the present invention, the increase or decrease in the wire feed amount to the core of the primary insulation-coated electric wire is absorbed by the curved portion formed in the middle of the primary insulation-coated electric wire. A tension adjustment mechanism that adjusts the tension fluctuation of the insulated wire is provided, so that when the primary insulated wire is wound around the core, a uniform and stable tension can be achieved without causing excessive tension fluctuation on the wire. The primary winding can be increased to the same speed as the secondary winding.
[Brief description of the drawings]
FIG. 1 is an arrangement plan view of a transformer 3-axis vertical winding device for a welding machine according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a primary winding tension structure of this embodiment.
FIG. 3 is an explanatory diagram of the operation of the swing roller of this embodiment.
FIG. 4 is a perspective view of a secondary wire holding mechanism according to this embodiment.
FIG. 5 is a structural diagram of a secondary wire holding mechanism according to this embodiment.
FIG. 6 is a perspective view of a finished product transformer.
FIG. 7 is a characteristic diagram showing the winding speed of the primary wire.
FIG. 8 is a perspective view of a winding wire.
FIG. 9 is a conceptual diagram showing a conventional transformer manufacturing process for a welding machine.
FIG. 10 is a perspective view showing a conventional secondary wire chucking system.
[Explanation of symbols]
61a Winding shaft (primary winding position)
61b Winding shaft (secondary winding position)
61c Rewinding shaft (Supply removal position)
62 Turntable 63 Primary winding processing device 64 Secondary winding processing device 65 Core supply / withdrawal device 66 Conveyor 67 Material spool 70 Primary wire 71 Material spool 72 Roller type strainer 73 Low friction material 74 Guide roller 75 Swing roller 76 Final roller 81 Winding frame 82 Secondary wire 83 Cylinder 84 Link 85 Fixed claw 86 Moving claw 91 Toggle force point 92 Lever viewpoint

Claims (4)

コアにトランスの1次側を形成する1次絶縁被覆電線を巻線し、その上に2次側を形成する2次絶縁被覆電線を巻線可能とした溶接機用トランス巻線装置であって、コアが装着される巻軸を3軸装備したテーブルを備え、前記テーブルを所定角度毎に回転させることで前記1次絶縁被覆電線の巻線位置と前記2次絶縁被覆電線の巻線位置とコア供給取出位置に各巻軸が順次配置される溶接機用トランス巻線装置であって、前記2次絶縁被覆電線をトグル機構により開閉するレバーにより保持、脱着する保持機構を備え、前記2次絶縁被覆電線は長方形断面の線材であって縦巻きするものであり、前記保持機構が保持する位置が線材の端部である溶接機用トランス巻線装置。A transformer winding apparatus for a welding machine in which a primary insulation-coated electric wire that forms a primary side of a transformer is wound around a core, and a secondary insulation-coated electric wire that forms a secondary side can be wound thereon. A table equipped with three winding shafts on which the core is mounted, and the winding position of the primary insulation-coated wire and the winding position of the secondary insulation-coated wire by rotating the table every predetermined angle A transformer winding apparatus for a welding machine in which each winding shaft is sequentially arranged at a core supply / extraction position, and includes a holding mechanism that holds and detaches the secondary insulation covered electric wire by a lever that is opened and closed by a toggle mechanism , and the secondary insulation The covered electric wire is a wire having a rectangular cross section and is wound in a vertical direction, and a transformer winding device for a welding machine in which a position held by the holding mechanism is an end of the wire. 1次絶縁被覆電線のコアへの線材送り量の増減を、ガイドローラと最終ローラによって規制された前記1次絶縁被覆電線に対して前記ガイドローラから前記最終ローラまでの前記1次絶縁被覆電線の送給経路の間に設けられた揺動ローラが揺動することにより前記1次絶縁被覆電線の中間に形成した湾曲部分によって吸収することで1次絶縁被覆電線の張力変動を調整する張力調整機構を備えた請求項1記載の溶接機用トランス巻線装置。  Increase / decrease in the amount of wire feed to the core of the primary insulation-coated electric wire is controlled by the primary insulation-coated electric wire from the guide roller to the final roller with respect to the primary insulation-coated electric wire regulated by the guide roller and the final roller. A tension adjusting mechanism that adjusts fluctuations in the tension of the primary insulated wire by absorbing by a curved portion formed in the middle of the primary insulated wire by swinging a rocking roller provided between the feeding paths. The transformer winding device for a welding machine according to claim 1, comprising: 巻軸を3軸装備したテーブルの回転により各巻軸がコア供給取出位置、1次絶縁被覆電線の巻線位置および2次絶縁被覆電線の巻線位置に順次移動し、前記コア供給取出位置にある巻軸にコアを装着し、このコアを前記1次絶縁被覆電線の巻線位置で1次巻線を行い、この1次巻線済のコアを前記2次絶縁被覆電線の巻線位置で2次巻線を行うトランスの製造方法であって、前記2次絶縁被覆電線をトグル機構により開閉するレバーにより保持、脱着し、前記2次絶縁被覆電線は長方形断面の線材であって縦巻きするものであり、前記保持機構が保持する位置が線材の端部であるトランスの製造方法。By rotating the table equipped with three winding shafts, each winding shaft sequentially moves to the core supply / extraction position, the winding position of the primary insulation-coated electric wire, and the winding position of the secondary insulation-coated electric wire, and is at the core supply / extraction position. A core is attached to the winding shaft, the core is subjected to primary winding at the winding position of the primary insulation-coated electric wire, and the core after the primary winding is wound at the winding position of the secondary insulation-coated electric wire. A method of manufacturing a transformer for performing secondary winding, wherein the secondary insulated wire is held and detached by a lever that is opened and closed by a toggle mechanism, and the secondary insulated wire is a wire having a rectangular cross section and is wound vertically. A method of manufacturing a transformer , wherein the holding mechanism holds the end of the wire . 1次絶縁被覆電線のコアへの線材送り量の増減を、ガイドローラと最終ローラによって規制された前記1次絶縁被覆電線に対して前記ガイドローラから前記最終ローラまでの前記1次絶縁被覆電線の送給経路の間に設けられた揺動ローラが揺動することにより前記1次絶縁被覆電線の中間に形成した湾曲部分によって吸収することで1次絶縁被覆電線の張力変動を調整する請求項3記載のトランスの製造方法。  Increase / decrease in the amount of wire feed to the core of the primary insulation-coated electric wire is controlled by the primary insulation-coated electric wire from the guide roller to the final roller with respect to the primary insulation-coated electric wire regulated by the guide roller and the final roller. 4. The tension fluctuation of the primary insulation-coated electric wire is adjusted by absorbing the vibration by a curved portion formed in the middle of the primary insulation-coated electric wire when the oscillating roller provided between the feeding paths is oscillated. The manufacturing method of the trans | transformer of description.
JP2000042230A 2000-02-21 2000-02-21 Transformer winding apparatus for welding machine and method of manufacturing transformer Expired - Fee Related JP4391654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000042230A JP4391654B2 (en) 2000-02-21 2000-02-21 Transformer winding apparatus for welding machine and method of manufacturing transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000042230A JP4391654B2 (en) 2000-02-21 2000-02-21 Transformer winding apparatus for welding machine and method of manufacturing transformer

Publications (2)

Publication Number Publication Date
JP2001232470A JP2001232470A (en) 2001-08-28
JP4391654B2 true JP4391654B2 (en) 2009-12-24

Family

ID=18565329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000042230A Expired - Fee Related JP4391654B2 (en) 2000-02-21 2000-02-21 Transformer winding apparatus for welding machine and method of manufacturing transformer

Country Status (1)

Country Link
JP (1) JP4391654B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110198108A (en) * 2019-07-02 2019-09-03 中达电机股份有限公司 The dedicated Tension Adjustable bobbin winder device of motor stator coil coiling and system

Also Published As

Publication number Publication date
JP2001232470A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
US4541583A (en) Continuous layon roller film winder
JPS61148037A (en) Automatic supply device of constituting material of tire in tire molding machine
JPH0246508B2 (en)
JP4391654B2 (en) Transformer winding apparatus for welding machine and method of manufacturing transformer
JPH06166467A (en) Method and apparatus for winding metal wire around spool
KR102113205B1 (en) A Current Transformer Ring-Shaped Core Winding Wire Automatic Manufacture System And A Operation Method With The Current Transformer Winding Wire Ring-Shaped Core Automatic Manufacture System Thereof
JP4456053B2 (en) Coil winding system and winding method
CN109511076B (en) Automatic change voice coil loudspeaker voice coil production facility
EP0461829B1 (en) Method of making a transformer core
JP7030838B2 (en) A device for removing paper from the parent reel used to make logs of paper material
US5315754A (en) Method of making a transformer core comprising strips of amorphous steel wrapped around the core window
KR100320227B1 (en) Apparatus for Feeding Steel Chafer to Tire Building Drum
US5230139A (en) Method of making a transformer core comprising strips of amorphous steel wrapped around the core window
KR101641592B1 (en) Transporting apparatus and coil manufacturing apparatus including thereof
JP2007252019A (en) Armature winding method and armature winding apparatus
JPH07156913A (en) Row of winding device of packing paper around grip arm for packing metallic coil
JPH0436766B2 (en)
JP4411947B2 (en) Bead transport method and transport device thereof
JP7343469B2 (en) Skive weight adjustment method and skive weight adjustment system
JP2555016B2 (en) Rectangular coil automatic finishing device
JP2757052B2 (en) Coil strip removal method
CN211545556U (en) Can control lap winder of coiled material elasticity
JP4005233B2 (en) Method and apparatus for winding wire around bobbin
JPH09323120A (en) Manufacture of wound body of twisted wire and device therefor
JP2024005963A (en) Automatic attaching/detaching system for print roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4391654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees