JP4391391B2 - Manufacturing method of radiation detector - Google Patents

Manufacturing method of radiation detector Download PDF

Info

Publication number
JP4391391B2
JP4391391B2 JP2004329642A JP2004329642A JP4391391B2 JP 4391391 B2 JP4391391 B2 JP 4391391B2 JP 2004329642 A JP2004329642 A JP 2004329642A JP 2004329642 A JP2004329642 A JP 2004329642A JP 4391391 B2 JP4391391 B2 JP 4391391B2
Authority
JP
Japan
Prior art keywords
hole
conductor layer
layer
forming
anode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004329642A
Other languages
Japanese (ja)
Other versions
JP2006138772A (en
Inventor
知久 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004329642A priority Critical patent/JP4391391B2/en
Publication of JP2006138772A publication Critical patent/JP2006138772A/en
Application granted granted Critical
Publication of JP4391391B2 publication Critical patent/JP4391391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

本発明は、例えば、X線やγ線等の放射線の入射位置の検出に用いられる放射線検出器の製造方法に関する。   The present invention relates to a method of manufacturing a radiation detector used for detecting an incident position of radiation such as X-rays and γ-rays.

従来から放射線の入射位置を検出するための放射線検出器として、放射線透過窓を設けた気密ケース内に、銅箔からなるカソード電極(陰極)に複数の透孔を穿設し、各透孔の中心に絶縁間隙を挟んでアノード電極(陽極)を配設した構造のピクセルを設けた基板を配設して、内部に希ガスなどを封入した構造のものが知られている。   Conventionally, as a radiation detector for detecting a radiation incident position, a plurality of through holes are formed in a cathode electrode (cathode) made of copper foil in an airtight case provided with a radiation transmission window. A substrate having a structure in which a pixel having a structure in which an anode electrode (anode) is disposed in the center with an insulating gap interposed therebetween is disposed and a rare gas or the like is enclosed therein is known.

この放射線検出器は、放射線の入射予定位置に設置されて用いられ、放射線の入射によってその通過経路にある希ガスが電離して近傍のピクセルの電極間に電流が流れたことを検知して、放射線の入射とその入射方向が検出される。   This radiation detector is installed and used at a position where radiation is expected to be incident, and detects that a rare gas in the passage path is ionized by the incidence of radiation and a current flows between electrodes of neighboring pixels, The incident radiation and the incident direction are detected.

従来、このような放射線検出器の基板は、以下に示す方法で製造されていた(特許文献1参照)。
まず、図6(a)に示すように、合成樹脂シート1を貫通して銀ペーストバンプによる層間接続部2が形成された両面銅張り板3の内層となる側の銅箔4aに、公知のフォトリソグラフィー技術により、所定の配線パターン5を形成し、これにプリプレグ6を介してポリイミドからなる支持体基板7を積層一体化させた基板8を製造する。
Conventionally, the substrate of such a radiation detector was manufactured by the method shown below (refer patent document 1).
First, as shown in FIG. 6 (a), the copper foil 4a on the side that becomes the inner layer of the double-sided copper-clad plate 3 in which the interlayer connection part 2 by the silver paste bumps is formed through the synthetic resin sheet 1 A predetermined wiring pattern 5 is formed by a photolithography technique, and a substrate 8 in which a support substrate 7 made of polyimide is laminated and integrated thereon via a prepreg 6 is manufactured.

次に、図6(b)に示すように、両面銅張り板3の他方の側の銅箔4bのアノード電極形成位置にフォトリソグラフィー技術により、穴9を形成して合成樹脂シート1を露出させる。
アノード電極形成位置に穴9が形成された銅箔4bの上方から、図6(c)に示すように、炭酸ガスレーザ10を照射して合成樹脂シート1に配線パターン5に達する貫通孔11を形成する。
Next, as shown in FIG. 6 (b), a hole 9 is formed in the anode electrode formation position of the copper foil 4b on the other side of the double-sided copper-clad plate 3 by a photolithography technique to expose the synthetic resin sheet 1. .
As shown in FIG. 6 (c), a carbon dioxide laser 10 is irradiated from above the copper foil 4b in which the hole 9 is formed at the anode electrode formation position to form a through hole 11 reaching the wiring pattern 5 in the synthetic resin sheet 1. To do.

続いて、銅箔4bをパターン形成して、図6(d)に示すようなカソード電極12とリード配線13を形成する。なお、ここでいうリード配線13は、アノード電極15を配線パターン5と層間接続部2を介して、放射線検出器外部へ接続する接続端子である。   Subsequently, the copper foil 4b is patterned to form the cathode electrode 12 and the lead wiring 13 as shown in FIG. Here, the lead wiring 13 is a connection terminal for connecting the anode electrode 15 to the outside of the radiation detector via the wiring pattern 5 and the interlayer connection portion 2.

次に、図6(e)に示すように、カソード電極12上にめっきレジスト14を形成し図6(f)に示すように、電気めっきにより貫通孔11内に銅を充填してアノード電極15を形成する。   Next, as shown in FIG. 6 (e), a plating resist 14 is formed on the cathode electrode 12, and as shown in FIG. 6 (f), the through-hole 11 is filled with copper by electroplating to form the anode electrode 15 Form.

この後、めっきレジスト14を除去すると、図6(g)に示すように、アノード電極15の周りをカソード電極12が取り囲んだ放射線検出器用の基板が得られる。なお、カソード電極12も図示を省略した他のリード配線に接続される。   Thereafter, when the plating resist 14 is removed, as shown in FIG. 6G, a substrate for a radiation detector in which the cathode electrode 12 surrounds the anode electrode 15 is obtained. The cathode electrode 12 is also connected to another lead wiring not shown.

特開2002−90465号公報JP 2002-90465 A

しかしながら、このような従来の製造方法には、次のような問題があった。
すなわち、アノード電極15を形成する工程で貫通孔11に充填した銅が基板表面まで達したときにめっき速度が急激に速くなるため、アノード電極15の先端部分に突起15aが形成されて、この突起15aとカソード電極12間に放電が発生するようになる(図7(a))。このような放電が発生すると電極間に大電流が流れ、発生した熱で電極が切断されたり、その放電の際に飛散した破片などが基板表面に露出した絶縁層表面に付着するという問題が生じる。
However, such a conventional manufacturing method has the following problems.
That is, when the copper filled in the through-hole 11 in the step of forming the anode electrode 15 reaches the substrate surface, the plating rate is rapidly increased. Therefore, a protrusion 15a is formed at the tip of the anode electrode 15, and this protrusion Discharge occurs between 15a and the cathode electrode 12 (FIG. 7A). When such a discharge occurs, a large current flows between the electrodes, causing the problem that the electrode is cut by the generated heat, or fragments scattered during the discharge adhere to the surface of the insulating layer exposed on the substrate surface. .

さらに、めっきレジストを形成してから貫通孔11を銅で充填するため、めっきレジストの厚みの分だけ貫通孔11の底が深くなり、部分的に銅が貫通孔11の底まで達し難くなって、アノード電極15の高さにばらつきが生じる(図7(b))。   Further, since the through-hole 11 is filled with copper after the plating resist is formed, the bottom of the through-hole 11 becomes deeper by the thickness of the plating resist, and it becomes difficult for copper to reach the bottom of the through-hole 11 partially. The height of the anode electrode 15 varies (FIG. 7B).

このような問題に対して、めっきレジストを形成せずに、直接、電気めっきにより貫通孔11を銅で充填したが、この方法だと、基板表面まで銅を充填させるため、アノード電極15とカソード電極12との間でのショートを引き起こす原因となる(図7(c))。   To solve such a problem, the through hole 11 is directly filled with copper by electroplating without forming a plating resist. However, with this method, the anode 15 and the cathode are filled with copper to fill the substrate surface. This causes a short circuit with the electrode 12 (FIG. 7C).

また、電気めっきによる銅の充填を基板表面までせずに、貫通孔11の途中までにすることも考えられるが、この方法では、アノード電極15の先端が基板表面まで達していないため、カソード電極12に電場がかからないデッドスペースが生じて、放射線入射位置を検出できない(図7(d))。   In addition, it is conceivable that the filling of copper by electroplating does not reach the substrate surface but halfway through the through-hole 11, but in this method, the tip of the anode electrode 15 does not reach the substrate surface, so the cathode electrode A dead space where no electric field is applied to 12 is generated, and the radiation incident position cannot be detected (FIG. 7 (d)).

本発明は、このような課題を解決するためになされたものであり、形成されるアノード電極の高さがそれぞれ基板表面まで均一に達していて、しかも電極先端に突起の形成のない放射線検出器の製造方法を提供することを目的とする。   The present invention has been made to solve such a problem, and the radiation detector in which the height of the formed anode electrode reaches the surface of the substrate uniformly and no protrusion is formed at the tip of the electrode. It aims at providing the manufacturing method of.

本発明の放射線検出器の製造方法は、第1の導体層と第2の導体層を有する2層基板の前記第1の導体層に所定の配線パターンを形成する工程と、前記2層基板の第2の導体層にアノード電極に対応する開口を形成する工程と、前記2層基板の第2の導体層に高エネルギービームを照射して前記開口の位置に、前記第1の導体層の配線パターンに達する貫通孔を形成する工程と、前記貫通孔を金属めっきにより金属で充填し、充填された前記貫通孔及び第2の導体層上に前記金属めっきによりさらに金属めっき層を形成する工程と、前記形成された金属めっき層及び第2の導体層を所定の厚さまで除去する工程と、前記所定の厚さまで除去された前記第2の導体層をパターン形成して前記貫通孔から突出するアノード電極と前記アノード電極を囲むカソード電極を形成する工程とを有することを特徴とする。   The manufacturing method of the radiation detector of this invention WHEREIN: The process of forming a predetermined wiring pattern in the said 1st conductor layer of the 2 layer board | substrate which has a 1st conductor layer and a 2nd conductor layer, A step of forming an opening corresponding to the anode electrode in the second conductor layer, and irradiating the second conductor layer of the two-layer substrate with a high energy beam, and wiring of the first conductor layer at the position of the opening Forming a through-hole reaching a pattern, filling the through-hole with metal by metal plating, and further forming a metal plating layer on the filled through-hole and the second conductor layer by the metal plating; A step of removing the formed metal plating layer and the second conductor layer to a predetermined thickness, and an anode protruding from the through hole by patterning the second conductor layer removed to the predetermined thickness Electrode and anode electrode Characterized by a step of forming a cathode electrode surrounding.

前記開口を形成する工程において、アノード電極に対応する開口とともに層間接続部に対応する開口を形成し、前記貫通孔を形成する工程において、これらの開口位置に第1の導体層の配線パターンに達する貫通孔を形成するようにしてもよい。   In the step of forming the opening, an opening corresponding to the interlayer connection portion is formed together with the opening corresponding to the anode electrode, and in the step of forming the through hole, the wiring pattern of the first conductor layer is reached at these opening positions. A through hole may be formed.

また、本発明においては、2層基板の前記第1の導体層に所定の配線パターンを形成した後で、この2層基板を、配線パターンを内側にして支持体基板に貼着して以後の工程を行うようにしてもよい。   In the present invention, after a predetermined wiring pattern is formed on the first conductor layer of the two-layer board, the two-layer board is bonded to the support substrate with the wiring pattern inside, and thereafter You may make it perform a process.

第2の導体層に用いる銅箔の粗化面の表面粗さは、Rz=2.0μm以下であることが望ましい。このような表面粗さの銅箔を使用することにより、アノード電極とカソード電極間の露出した絶縁材表面の凹凸を抑制するため放電が発生し難くなり、電極間により高い電圧を印加することが可能になる。   The surface roughness of the roughened surface of the copper foil used for the second conductor layer is preferably Rz = 2.0 μm or less. By using a copper foil having such a surface roughness, it becomes difficult to generate discharge because the unevenness of the exposed insulating material surface between the anode electrode and the cathode electrode is suppressed, and a high voltage can be applied between the electrodes. It becomes possible.

本発明によれば、形成されるアノード電極の高さがそれぞれ基板表面からほぼ等しくなり、かつ電極先端に突起が形成されないので、高電圧を電極間に印加することが可能となり、電極部の信頼性が向上する。   According to the present invention, the heights of the formed anode electrodes are almost equal from the surface of the substrate, respectively, and no protrusion is formed at the tip of the electrode, so that a high voltage can be applied between the electrodes, and the reliability of the electrode portion can be improved. Improves.

また、第2の導体層に表面粗さRzが2.0μm以下の銅箔を使用することにより、さらに絶縁特性を高めることが可能となる。   Further, by using a copper foil having a surface roughness Rz of 2.0 μm or less for the second conductor layer, it is possible to further improve the insulation characteristics.

以下、図面を参照して本発明の好ましい実施の形態を詳細に説明する。図1は本発明にかかる実施の形態を適用して製造された放射線検出器の基板の構成を示す平面図、図2は図1のA−A´断面図である。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view showing a configuration of a substrate of a radiation detector manufactured by applying the embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA ′ of FIG.

図1に示すように、カソード電極21は、アノード電極22を中心とした円形の開口部を有するように形成されている。   As shown in FIG. 1, the cathode electrode 21 is formed to have a circular opening centered on the anode electrode 22.

一方、アノード電極22は、図2に示すように、ポリイミドからなる支持体基板23上にポリイミドプリプレグ24を介して幅300μm、400μmのピッチで配置された配線パターン25と接続し、ポリイミドフィルム26を貫通するように形成されている。   On the other hand, as shown in FIG. 2, the anode electrode 22 is connected to a wiring pattern 25 arranged at a pitch of 300 μm and 400 μm via a polyimide prepreg 24 on a support substrate 23 made of polyimide, and a polyimide film 26 is connected. It is formed to penetrate.

なお、基板表面にはリード配線27が設けられており、アノード電極22は配線パターン25と層間接続部28を介して、このリード配線27に接続される。   A lead wiring 27 is provided on the substrate surface, and the anode electrode 22 is connected to the lead wiring 27 via the wiring pattern 25 and the interlayer connection portion 28.

放射線検出器には10cm×10cmの検出面積があり、このような放射線検出器の基板におけるカソード電極及びアノード電極の幅、ピッチ等は、次の通りである。
カソード電極の幅:350μm
カソード電極のピッチ:400μm
アノード電極のピッチ:縦方向及び横方向に400μm
アノード電極の個数:およそ60000個
カソード電極とアノード電極との間隔:70〜150μm
The radiation detector has a detection area of 10 cm × 10 cm. The width and pitch of the cathode and anode electrodes on the substrate of such a radiation detector are as follows.
Width of cathode electrode: 350 μm
Cathode electrode pitch: 400 μm
Anode electrode pitch: 400 μm in the vertical and horizontal directions
Number of anode electrodes: about 60,000 Spacing between cathode electrode and anode electrode: 70 to 150 μm

次に、本発明の放射線検出器の動作原理を説明する。
このような基板を希ガス等で封入されたケース内に配置して、アノード電極とカソード電極間に高電圧を印加しておき、放射線が入射した時に、いずれかのアノード電極とカソード電極に電流が流れ、その時に生じる信号を取り込むことで放射線入射位置を検出する。
Next, the operation principle of the radiation detector of the present invention will be described.
Such a substrate is placed in a case sealed with a rare gas or the like, and a high voltage is applied between the anode electrode and the cathode electrode. When radiation is incident, a current is applied to any anode electrode and cathode electrode. The radiation incident position is detected by capturing the signal generated at that time.

次に、図1及び図2に示す放射線検出器を製造する工程について、図3を用いて説明する。   Next, the process of manufacturing the radiation detector shown in FIGS. 1 and 2 will be described with reference to FIG.

[第1の実施形態]
図3は、本発明の第1の実施形態にかかる製造方法を説明するための図である。
まず、厚さ100μmのポリイミドフィルム31に、厚さ18μmの電解銅箔32aと、厚さ18μmで粗化面の表面粗さRz=1.9μmの電解銅箔32bを積層し、銀ペーストバンプによる層間接続部33を有する積層板34を用意する。
[First Embodiment]
FIG. 3 is a diagram for explaining the manufacturing method according to the first embodiment of the present invention.
First, an electrolytic copper foil 32a having a thickness of 18 μm and an electrolytic copper foil 32b having a surface roughness Rz = 1.9 μm and a thickness of 18 μm are laminated on a polyimide film 31 having a thickness of 100 μm, and silver paste bumps are used. A laminated board 34 having an interlayer connection 33 is prepared.

この積層板の第1の導体層である銅箔32aに公知のフォトリソグラフィー技術により所定の配線パターン(32p)を形成する。配線パターン32pを内側にして、この積層板34をプリプレグ35を介してポリイミドからなる支持体基板36に貼着させて基板37とする(図3(a))。   A predetermined wiring pattern (32p) is formed on the copper foil 32a, which is the first conductor layer of the laminate, by a known photolithography technique. With the wiring pattern 32p on the inside, this laminate 34 is adhered to a support substrate 36 made of polyimide via a prepreg 35 to form a substrate 37 (FIG. 3A).

基板37が形成されたら、第2の導体層である銅箔32bのアノード電極形成位置に公知のフォトリソグラフィー技術により、直径65μmの穴38を形成し(図3(b))、この銅箔32bをマスクにして炭酸ガスレーザ39を照射して、配線パターン32pに達する貫通孔40を形成する(図3(c))。   When the substrate 37 is formed, a hole 38 having a diameter of 65 μm is formed by a known photolithography technique at the anode electrode formation position of the copper foil 32b as the second conductor layer (FIG. 3B), and this copper foil 32b. Is used as a mask to irradiate the carbon dioxide laser 39 to form a through hole 40 reaching the wiring pattern 32p (FIG. 3C).

次に、無電解銅めっきにより、貫通孔40内部と銅箔32b上に厚さ0.4〜1μmの銅からなる金属層41を析出させて(図3(d))、この金属層41上に電気めっきにより貫通孔40内部を銅で充填し、銅で充填された貫通孔40上に15〜40μmの銅からなる導電金属層42を積層させる(図3(e))。なお、めっき液は、硫酸銅を主成分とするが、銅を析出し易くするために表面活性剤を添加してもよい。   Next, a metal layer 41 made of copper having a thickness of 0.4 to 1 μm is deposited on the inside of the through hole 40 and on the copper foil 32b by electroless copper plating (FIG. 3D). Then, the inside of the through hole 40 is filled with copper by electroplating, and a conductive metal layer 42 made of copper of 15 to 40 μm is laminated on the through hole 40 filled with copper (FIG. 3E). In addition, although a plating solution has copper sulfate as a main component, in order to make copper precipitate easily, you may add a surface active agent.

続いて、過酸化水素水と硫酸を主成分とする溶剤で金属層41と導電金属層42をエッチングにより除去し、さらに、銅箔32bの厚さが10〜25μmになるまでエッチングを行う(図3(f))。   Subsequently, the metal layer 41 and the conductive metal layer 42 are removed by etching with a solvent mainly composed of hydrogen peroxide and sulfuric acid, and etching is further performed until the thickness of the copper foil 32b becomes 10 to 25 μm (FIG. 3 (f)).

次に、レジスト43を図3(g)に示すようなリード配線形成位置、カソード電極形成位置に塗布した後、エッチングによってカソード電極44、リード配線45及びアノード電極46を形成し、図3(h)に示す構成を得る。   Next, after a resist 43 is applied to the lead wiring formation position and the cathode electrode formation position as shown in FIG. 3G, the cathode electrode 44, the lead wiring 45 and the anode electrode 46 are formed by etching, and FIG. ) Is obtained.

第1の実施形態によれば、第2の導体層に粗化面の表面粗さRzが2.0μm以下の銅箔32bを利用することにより、従来の製造方法では、突起部分で放電が生じるため不可能であった750〜1500Vの高電圧を印加することが可能である。   According to the first embodiment, by using the copper foil 32b whose surface roughness Rz of the roughened surface is 2.0 μm or less for the second conductor layer, in the conventional manufacturing method, discharge occurs at the protruding portion. Therefore, it is possible to apply a high voltage of 750 to 1500 V, which was impossible.

図4(a)は、図3(h)のポリイミドフィルム31の表面Sを拡大して示した図である。
図4(a)に示すように、銅箔32bをエッチングにより除去した後のポリイミドフィルム31の表面Sは、銅箔32bの粗化面の凹凸が転写されている。第2の導体層に粗化面の表面粗さRzが7.0μmの銅箔を利用した場合(図4(b))と比較すると、銅箔の表面粗さが小さいため、ポリイミドフィルム31の表面Sに転写される凹凸も小さくなる。
Fig.4 (a) is the figure which expanded and showed the surface S of the polyimide film 31 of FIG.3 (h).
As shown to Fig.4 (a), the unevenness | corrugation of the roughening surface of the copper foil 32b is transcribe | transferred on the surface S of the polyimide film 31 after removing the copper foil 32b by an etching. Compared with the case where a copper foil having a roughened surface roughness Rz of 7.0 μm is used for the second conductor layer (FIG. 4B), the surface roughness of the copper foil is small. The unevenness transferred to the surface S is also reduced.

すなわち、第2の導体層に粗化面の表面粗さRzが2.0μm以下の銅箔を用いることにより、ポリイミドフィルム31表面の凹凸を抑えた状態にすることで、電荷がたい積し難くなり、その結果、絶縁性が良好になり、高電圧を印加することが可能になる。   That is, by using a copper foil having a roughened surface with a surface roughness Rz of 2.0 μm or less for the second conductor layer, it becomes difficult to accumulate charges by reducing the unevenness of the surface of the polyimide film 31. As a result, the insulation is improved and a high voltage can be applied.

さらには、第1の実施形態によれば、アノード電極の高さにばらつきがなく、電極に突起が発生するのを抑制することができる。   Furthermore, according to the first embodiment, there is no variation in the height of the anode electrode, and the occurrence of protrusions on the electrode can be suppressed.

すなわち、粗化面の表面粗さRzが2.0μm以下の銅箔32bをエッチングにより除去後、凹凸が転写されたポリイミドフィルム31と近接する電極端部を滑らかな形状に形成することができるため、その結果、高電圧を印加しても放電が発生することを防ぐことができる。   That is, since the copper foil 32b having a surface roughness Rz of 2.0 μm or less on the roughened surface is removed by etching, the electrode end adjacent to the polyimide film 31 to which the irregularities are transferred can be formed in a smooth shape. As a result, it is possible to prevent discharge from occurring even when a high voltage is applied.

[第2の実施形態]
図5は、本発明の第2の実施形態にかかる製造方法を説明するための図である。
まず、ポリイミドフィルム51の両面に厚さ18μmの銅箔52a、52bを積層した厚さ0.8mmの両面銅張板を用意する。
[Second Embodiment]
FIG. 5 is a diagram for explaining the manufacturing method according to the second embodiment of the present invention.
First, a 0.8 mm thick double-sided copper-clad plate in which 18 μm thick copper foils 52 a and 52 b are laminated on both sides of the polyimide film 51 is prepared.

第1の導体層である両面銅張板の銅箔52bに公知のフォトリソグラフィー技術により所定の配線パターン52p形成し、他方の銅箔52aをエッチングにより除去する。   A predetermined wiring pattern 52p is formed on the copper foil 52b of the double-sided copper-clad plate as the first conductor layer by a known photolithography technique, and the other copper foil 52a is removed by etching.

次に、両面銅張板の上下に厚さ100μmのポリイミドプリプレグ53a、53bと厚さ18μm、粗化面の表面粗さRzが1.9μmの銅箔54a、54bを積み重ねて配置し、加熱・加圧による積層プレスを行い、基板55とする(図5(a))。   Next, 100 μm thick polyimide prepregs 53a and 53b and 18 μm thick copper foils 54a and 54b having a surface roughness Rz of 1.9 μm are stacked on top and bottom of the double-sided copper-clad plates, A lamination press by pressurization is performed to form a substrate 55 (FIG. 5A).

この基板55の銅箔54aをエッチングにより除去し、第2の導体層である銅箔54bのアノード電極形成位置と層間接続部形成位置に、公知のフォトリソグラフィー技術により直径65μmの穴38を形成した後(図5(b))、穴38が形成された銅箔54bをマスクにして炭酸ガスレーザ39を照射し、配線パターン52pに達する貫通孔40を形成する(図5(c))。   The copper foil 54a of the substrate 55 was removed by etching, and a hole 38 having a diameter of 65 μm was formed by a known photolithography technique at the anode electrode forming position and the interlayer connection forming position of the copper foil 54b as the second conductor layer. Thereafter (FIG. 5B), carbon dioxide laser 39 is irradiated using the copper foil 54b in which the hole 38 is formed as a mask to form a through hole 40 reaching the wiring pattern 52p (FIG. 5C).

以後の工程は、図5(d)〜図5(g)に示すような第1の実施形態と同様の工程を行い、図5(h)に示す構成を得る。   Subsequent steps are the same as those in the first embodiment as shown in FIGS. 5D to 5G, and the configuration shown in FIG. 5H is obtained.

第2の実施形態によれば、金属めっきによりアノード電極とともに層間接続部を形成するため、低コストで作業効率を高めることが可能である。   According to the second embodiment, since the interlayer connection portion is formed together with the anode electrode by metal plating, the work efficiency can be increased at low cost.

上述したような本発明の放射線検出器の製造方法によれば、従来の製造方法では放電が生じるため不可能であった高電圧を印加することが可能である。つまり、形成されるアノード電極の高さがそれぞれ基板表面まで均一に達していて、しかも電極先端に突起形状がないため、アノード電極とカソード電極とに高電圧を印加して電気力線をアノード電極に集中させても放電が発生しない。   According to the method for manufacturing a radiation detector of the present invention as described above, it is possible to apply a high voltage, which is impossible because a discharge occurs in the conventional manufacturing method. In other words, the height of the formed anode electrode reaches the substrate surface uniformly, and there is no protrusion at the tip of the electrode, so a high voltage is applied to the anode electrode and the cathode electrode, and the lines of electric force are applied to the anode electrode. Discharge does not occur even if it is concentrated.

また、高電圧を印加できるため、10000を超える高いガス増幅率を得ることができ、X線だけでなく、γ線の入射位置も検出することが可能である。   In addition, since a high voltage can be applied, a high gas amplification factor exceeding 10,000 can be obtained, and not only X-rays but also γ-ray incident positions can be detected.

本発明の放射線検出器は、医療診断画像、核廃棄物の監視、産業工程の監視、宇宙天文学を含む幅広い範囲で好適に使用することができる。   The radiation detector of the present invention can be suitably used in a wide range including medical diagnostic images, nuclear waste monitoring, industrial process monitoring, and space astronomy.

本発明により製造された放射線検出器の平面図である。It is a top view of the radiation detector manufactured by this invention. 本発明により製造された放射線検出器の断面図である。It is sectional drawing of the radiation detector manufactured by this invention. 本発明の第1の実施形態を説明する図である。It is a figure explaining the 1st Embodiment of this invention. ポリイミドフィルムの表面を拡大して示した図である。It is the figure which expanded and showed the surface of the polyimide film. 本発明の第2の実施形態を説明する図である。It is a figure explaining the 2nd Embodiment of this invention. 従来の放射線検出器の製造方法を説明する図である。It is a figure explaining the manufacturing method of the conventional radiation detector. 従来の放射線検出器を説明する図である。It is a figure explaining the conventional radiation detector.

符号の説明Explanation of symbols

1…合成樹脂シート、2…層間接続部、3…両面銅張板、4a,4b…銅箔、5…配線パターン、6…プリプレグ、7…支持体基板、8…基板、9…穴、10…炭酸ガスレーザ、11…貫通孔、12…カソード電極、13…リード配線、14…めっきレジスト、15…アノード電極、15a…突起、21…カソード電極、22…アノード電極、23…支持体基板、24…ポリイミドプリプレグ、25…配線パターン、26…ポリイミドフィルム、27…リード配線、28…層間接続部、31…ポリイミドフィルム、32a,32b…銅箔、32p…配線パターン、33…層間接続部、34…2層基板、35…プリプレグ、36…支持体基板、37…基板、38…穴、39…炭酸ガスレーザ、40…貫通孔、41…金属層、42…導電金属層、43…レジスト、44…カソード電極、45…リード配線、46…アノード電極、51…ポリイミドフィルム、52a,52b…銅箔、53a,53b…ポリイミドプリプレグ、54a,54b…銅箔、55…基板   DESCRIPTION OF SYMBOLS 1 ... Synthetic resin sheet, 2 ... Interlayer connection part, 3 ... Double-sided copper clad board, 4a, 4b ... Copper foil, 5 ... Wiring pattern, 6 ... Pre-preg, 7 ... Support substrate, 8 ... Substrate, 9 ... Hole, 10 DESCRIPTION OF SYMBOLS ... Carbon dioxide laser, 11 ... Through-hole, 12 ... Cathode electrode, 13 ... Lead wiring, 14 ... Plating resist, 15 ... Anode electrode, 15a ... Projection, 21 ... Cathode electrode, 22 ... Anode electrode, 23 ... Support substrate, 24 ... polyimide prepreg, 25 ... wiring pattern, 26 ... polyimide film, 27 ... lead wiring, 28 ... interlayer connection, 31 ... polyimide film, 32a, 32b ... copper foil, 32p ... wiring pattern, 33 ... interlayer connection, 34 ... Two-layer substrate, 35 ... prepreg, 36 ... support substrate, 37 ... substrate, 38 ... hole, 39 ... carbon dioxide laser, 40 ... through-hole, 41 ... metal layer, 42 ... conductive metal layer, 4 DESCRIPTION OF SYMBOLS 3 ... Resist, 44 ... Cathode electrode, 45 ... Lead wiring, 46 ... Anode electrode, 51 ... Polyimide film, 52a, 52b ... Copper foil, 53a, 53b ... Polyimide prepreg, 54a, 54b ... Copper foil, 55 ... Substrate

Claims (4)

第1の導体層と第2の導体層を有する2層基板の前記第1の導体層に所定の配線パターンを形成する工程と、
前記2層基板の第2の導体層にアノード電極に対応する開口を形成する工程と、
前記2層基板の第2の導体層に高エネルギービームを照射して前記開口の位置に、前記第1の導体層の配線パターンに達する貫通孔を形成する工程と、
前記貫通孔を金属めっきにより金属で充填し、充填された前記貫通孔及び第2の導体層上に前記金属めっきによりさらに金属めっき層を形成する工程と、
前記形成された金属めっき層及び第2の導体層を所定の厚さまで除去する工程と、
前記所定の厚さまで除去された前記第2の導体層をパターン形成して前記貫通孔から突出するアノード電極と前記アノード電極を囲むカソード電極を形成する工程と
を有することを特徴とする放射線検出器の製造方法。
Forming a predetermined wiring pattern on the first conductor layer of the two-layer substrate having the first conductor layer and the second conductor layer;
Forming an opening corresponding to the anode electrode in the second conductor layer of the two-layer substrate;
Irradiating the second conductor layer of the two-layer substrate with a high energy beam to form a through hole reaching the wiring pattern of the first conductor layer at the position of the opening;
Filling the through hole with metal by metal plating, and further forming a metal plating layer on the filled through hole and the second conductor layer by the metal plating; and
Removing the formed metal plating layer and the second conductor layer to a predetermined thickness;
And a step of patterning the second conductor layer removed to the predetermined thickness to form an anode electrode protruding from the through hole and a cathode electrode surrounding the anode electrode. Manufacturing method.
前記金属めっき層を形成する工程は、前記2層基板の貫通孔及び第2の導体層上に無電解めっきにより金属層を形成する工程と、前記貫通孔を電気めっきにより導電金属で充填し、充填された前記貫通孔及び第2の導体層上に前記電気めっきによりさらに導電金属層を形成する工程を有することを特徴とする請求項1に記載の放射線検出器の製造方法。   The step of forming the metal plating layer includes a step of forming a metal layer by electroless plating on the through hole and the second conductor layer of the two-layer substrate, and filling the through hole with a conductive metal by electroplating. The method of manufacturing a radiation detector according to claim 1, further comprising a step of forming a conductive metal layer on the filled through hole and the second conductor layer by the electroplating. 前記開口を形成する工程はアノード電極に対応する開口とともに層間接続部に対応する開口を形成する工程であり、前記貫通孔を形成する工程は前記アノード電極に対応する開口及び前記層間接続部に対応する開口の位置に貫通孔を形成する工程であることを特徴とする請求項1又は2に記載の放射線検出器の製造方法。   The step of forming the opening is a step of forming an opening corresponding to the interlayer connection portion together with the opening corresponding to the anode electrode, and the step of forming the through hole corresponds to the opening corresponding to the anode electrode and the interlayer connection portion. The method of manufacturing a radiation detector according to claim 1, wherein the through hole is formed at a position of the opening to be formed. 前記第2の導体層は、表面粗さRzが2.0μm以下の銅箔からなることを特徴とする請求項1乃至3のいずれか1項に記載の放射線検出器の製造方法。   4. The method of manufacturing a radiation detector according to claim 1, wherein the second conductor layer is made of a copper foil having a surface roughness Rz of 2.0 μm or less. 5.
JP2004329642A 2004-11-12 2004-11-12 Manufacturing method of radiation detector Active JP4391391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329642A JP4391391B2 (en) 2004-11-12 2004-11-12 Manufacturing method of radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004329642A JP4391391B2 (en) 2004-11-12 2004-11-12 Manufacturing method of radiation detector

Publications (2)

Publication Number Publication Date
JP2006138772A JP2006138772A (en) 2006-06-01
JP4391391B2 true JP4391391B2 (en) 2009-12-24

Family

ID=36619692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329642A Active JP4391391B2 (en) 2004-11-12 2004-11-12 Manufacturing method of radiation detector

Country Status (1)

Country Link
JP (1) JP4391391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10712453B2 (en) 2015-10-08 2020-07-14 Dai Nippon Printing Co., Ltd. Detection element

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5540471B2 (en) * 2008-04-28 2014-07-02 大日本印刷株式会社 Radiation detector using gas amplification
JP5471051B2 (en) * 2008-06-23 2014-04-16 大日本印刷株式会社 Radiation detector using gas amplification and method for manufacturing radiation detector
JP2011017695A (en) * 2009-06-09 2011-01-27 Dainippon Printing Co Ltd Radiation detector and radiation detection method
JP5515881B2 (en) * 2010-03-11 2014-06-11 大日本印刷株式会社 Radiation detection sensor and method of manufacturing radiation detection sensor
DE112011103995T5 (en) * 2010-12-01 2013-08-22 Hoya Corp. A manufacturing method of an electron multiplier substrate, an electron multiplier manufacturing method, and a radiation detector manufacturing method
WO2012073759A1 (en) * 2010-12-01 2012-06-07 Hoya株式会社 Manufacturing method for electron multiplier substrate, manufacturing method for electron multiplier, and manufacturing method for radiation detector
JP5360281B2 (en) * 2012-09-28 2013-12-04 大日本印刷株式会社 Manufacturing method of radiation detector using gas amplification
JP5790750B2 (en) * 2013-12-13 2015-10-07 大日本印刷株式会社 Radiation detection sensor
JP2017191108A (en) * 2017-06-08 2017-10-19 大日本印刷株式会社 Radiation detector using gas amplification and method for manufacturing the radiation detector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145680A (en) * 1997-07-29 1999-02-16 Toshiba Corp Gas electron amplifying element and gas electron amplification detector
JP3479231B2 (en) * 1999-01-22 2003-12-15 科学技術振興事業団 Discharge-resistant microstrip gas chamber using auxiliary anode wiring
JP3849381B2 (en) * 1999-12-20 2006-11-22 株式会社日立製作所 Insulated circuit board manufacturing method
JP3354551B2 (en) * 2000-06-27 2002-12-09 科学技術振興事業団 Particle beam image detector using gas amplification with pixel electrodes
JP2002090465A (en) * 2000-09-12 2002-03-27 Toshiba Corp Production method for radiation detector
JP2002372586A (en) * 2001-06-13 2002-12-26 Canon Inc Radiation image pickup unit, device and system
JP3785501B2 (en) * 2001-11-15 2006-06-14 財団法人新産業創造研究機構 Gas amplification type X-ray imaging detector and gas amplification type X-ray imaging detection method
JP2004087886A (en) * 2002-08-28 2004-03-18 Sony Corp Method for manufacturing multilayer wiring board, and multilayer wiring board
JP2004238647A (en) * 2003-02-04 2004-08-26 Furukawa Techno Research Kk Smoothened copper foil, and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10712453B2 (en) 2015-10-08 2020-07-14 Dai Nippon Printing Co., Ltd. Detection element

Also Published As

Publication number Publication date
JP2006138772A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US9711440B2 (en) Wiring board and method for manufacturing the same
JP4391391B2 (en) Manufacturing method of radiation detector
US7457103B2 (en) Solid electrolytic capacitor which can easily be lowered in ESL
JP4757698B2 (en) Solid electrolytic capacitor
JP4765506B2 (en) Radiation detection panel manufacturing method, radiation detection panel
JP5100989B2 (en) Component built-in wiring board
JP2018032657A (en) Printed wiring board and method for manufacturing printed wiring board
JPS60138992A (en) Method of forming conductive through hole
JP6600503B2 (en) Flexible printed circuit board and method for manufacturing flexible printed circuit board
JP4460013B2 (en) Wiring board manufacturing method
KR100651474B1 (en) Manufacturing method of pcb for embedded chip
JP2002090465A (en) Production method for radiation detector
JP6821935B2 (en) Detection element and radiation detection device
JP4609042B2 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
JP2012044093A (en) Printed wiring board manufacturing method
JP2006093343A (en) Solid electrolyte capacitor
JP5248418B2 (en) Manufacturing method of multilayer wiring board
JP6637608B2 (en) Component-embedded substrate and manufacturing method thereof
JP4974516B2 (en) Multilayer substrate manufacturing method
JP4227967B2 (en) Substrate and electronic component manufacturing method
JP4089520B2 (en) Printed wiring board, multilayer wiring board, and semiconductor device
TWI836628B (en) Circuit board and method for manufacturing the same
JP2006165152A (en) Solid electrolytic capacitor and substrate with built-in solid electrolytic capacitor, and those manufacturing methods
JP2002084064A (en) Manufacturing method of printed board
JP2012109509A (en) Printed wiring board manufacturing method, the printed wiring board, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4391391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4