JP4390767B2 - Clay ground subsoil material and clay ground construction method - Google Patents
Clay ground subsoil material and clay ground construction method Download PDFInfo
- Publication number
- JP4390767B2 JP4390767B2 JP2005346387A JP2005346387A JP4390767B2 JP 4390767 B2 JP4390767 B2 JP 4390767B2 JP 2005346387 A JP2005346387 A JP 2005346387A JP 2005346387 A JP2005346387 A JP 2005346387A JP 4390767 B2 JP4390767 B2 JP 4390767B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- superabsorbent resin
- biodegradable
- purified
- ground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Road Paving Structures (AREA)
Description
本発明は、クレーグラウンドにおける砂塵の発生を抑制可能なクレーグラウンド用下層土材と、その施工方法に関する。 The present invention relates to a clay ground underlayer material capable of suppressing the generation of dust in the clay ground and a construction method thereof.
従来、クレーグラウンドにおいて砂塵の発生を抑制する手段としては、塩化カルシウム、塩化マグネシウム、あるいは苦汁など、吸湿性や潮解性を有する無機塩類を表土に散布する方法がとられてきた(例えば、特許文献1参照。)。
しかしながら、塩化カルシウム、塩化マグネシウム、あるいは苦汁などの無機塩類は、降雨や散水のたびに流亡するため、繰り返して散布することが必要であり、その維持や管理に多大なコストを要するという問題があった。 However, inorganic salts such as calcium chloride, magnesium chloride, or bitter juice run away every time it rains or sprinkles, so it is necessary to spray them repeatedly, and there is a problem that it is very expensive to maintain and manage. It was.
しかも、水に溶けた上記の塩類は、グラウンドに設置されている鉄製の遊具、ベンチ、ゴール、およびフェンスなどの酸化(さび生成)を促すため、それらの器具や設備の耐用年数を縮めることになり、安全管理上の観点からも問題であった。 In addition, the above-mentioned salts dissolved in water promote oxidation (rust generation) of iron playground equipment, benches, goals, fences, etc. installed on the ground, so that the service life of these equipment and facilities is shortened. It was a problem from the viewpoint of safety management.
また、グラウンドから流出した塩類が河川や地下水に流入すると、環境汚染物質として作用する可能性もあり、将来社会問題化するのではないかとの危惧もあった。
こうした背景の下、本件発明者は、吸湿性や潮解性をもつ無機塩類をグラウンド表土に散布するという従来の表土処理技術にとらわれず、砂塵発生を抑制するための新規な技術について鋭意検討を重ねた。その結果、特定の原料から調製した新規な土材を用いてグラウンドの下層土を改良することにより、下層土からの水分供給によって表土の水分保持を保障し、砂塵発生の抑制を図ることができることを見いだした。
In addition, if salts that flowed out from the ground flow into rivers or groundwater, they may act as environmental pollutants, and there is a concern that they may become a social problem in the future.
Against this backdrop, the present inventor has conducted intensive studies on a new technology for suppressing the generation of dust, not limited to the conventional topsoil treatment technology of spraying hygroscopic and deliquescent inorganic salts onto the ground topsoil. It was. As a result, by improving the ground subsoil using a new soil material prepared from a specific raw material, it is possible to guarantee moisture retention of the topsoil by supplying water from the subsoil and to suppress the generation of sand dust I found.
本発明は、上記知見に基づいて完成されたものであり、その目的は、クレーグラウンドにおける砂塵の発生を抑制可能なクレーグラウンド用下層土材と、その施工方法を提供することにある。 This invention is completed based on the said knowledge, The objective is to provide the lower earth material for clay ground which can suppress generation | occurrence | production of the dust in a clay ground, and its construction method.
以下、本発明において採用した特徴的構成について説明する。
請求項1に記載のクレーグラウンド用下層土材は、「浄水場での水処理過程で発生する沈澱物を加圧・脱水、あるいは天日乾燥してなる浄水ケーキを、粉砕、篩い分けすることにより、粒径3cm以下の粉粒体とされた浄水ケーキ粉粒体」に対して、「活性炭、ゼオライト、ベントナイト、クリンカーアッシュ、パーライト、およびバーミキュライトの中から選ばれるいずれか1種または2種以上の混合物からなり、重力に逆らって保持可能な単位重量当りの水分量が、前記浄水ケーキ粉粒体よりも大となる高保水能資材」を混合してなり、前記浄水ケーキ粉粒体に対する前記高保水能資材の配合量を、CBR値(Carifornia Bearing Ratio;路床土支持力比)が設計CBR値3を上回るように調製してなることを特徴とする。
The characteristic configuration employed in the present invention will be described below.
The subsoil material for clay ground according to
請求項2に記載のクレーグラウンド用下層土材は、「浄水場での水処理過程で発生する沈澱物を加圧・脱水、あるいは天日乾燥してなる浄水ケーキを、粉砕、篩い分けすることにより、粒径3cm以下の粉粒体とされた浄水ケーキ粉粒体」に対して、「デンプン系生分解性高吸水性樹脂、セルロース系生分解性高吸水性樹脂、キチン系生分解性高吸水性樹脂、ポリアミノ酸系生分解性高吸水性樹脂、ポリアクリル酸系非生分解性合成高吸水性樹脂、ポリビニルアルコール系非生分解性合成高吸水性樹脂、ポリアクリルアミド系非生分解性合成高吸水性樹脂、およびポリオキシエチレン系非生分解性合成高吸水性樹脂の中から選ばれるいずれか1種または2種以上の混合物からなり、樹脂の構造内に包含した水を重力では離さない資材であって、その包含可能な単位重量当たりの水分量が、前記浄水ケーキ粉粒体よりも大となる高吸水能資材」を混合してなり、前記浄水ケーキ粉粒体に対する前記高吸水能資材の配合量を、CBR値(Carifornia Bearing Ratio;路床土支持力比)が設計CBR値3を上回るように調製してなることを特徴とする。
The lower earth material for clay ground according to
請求項3に記載のクレーグラウンド用下層土材は、「浄水場での水処理過程で発生する沈澱物を加圧・脱水、あるいは天日乾燥してなる浄水ケーキを、粉砕、篩い分けすることにより、粒径3cm以下の粉粒体とされた浄水ケーキ粉粒体」に対して、「活性炭、ゼオライト、ベントナイト、クリンカーアッシュ、パーライト、およびバーミキュライトの中から選ばれるいずれか1種または2種以上の混合物からなり、重力に逆らって保持可能な単位重量当りの水分量が、前記浄水ケーキ粉粒体よりも大となる高保水能資材」、および「デンプン系生分解性高吸水性樹脂、セルロース系生分解性高吸水性樹脂、キチン系生分解性高吸水性樹脂、ポリアミノ酸系生分解性高吸水性樹脂、ポリアクリル酸系非生分解性合成高吸水性樹脂、ポリビニルアルコール系非生分解性合成高吸水性樹脂、ポリアクリルアミド系非生分解性合成高吸水性樹脂、およびポリオキシエチレン系非生分解性合成高吸水性樹脂の中から選ばれるいずれか1種または2種以上の混合物からなり、樹脂の構造内に包含した水を重力では離さない資材であって、その包含可能な単位重量当たりの水分量が、前記浄水ケーキ粉粒体よりも大となる高吸水能資材」を混合してなり、前記浄水ケーキ粉粒体に対する前記高保水能資材および前記高吸水能資材の配合量を、CBR値(Carifornia Bearing Ratio;路床土支持力比)が設計CBR値3を上回るように調製してなることを特徴とする。
また、請求項4に記載のクレーグラウンド用下層土材は、請求項2または請求項3に記載のクレーグラウンド用下層土材において、前記高吸水能資材が、デンプン系生分解性高吸水性樹脂、セルロース系生分解性高吸水性樹脂、キチン系生分解性高吸水性樹脂、およびポリアミノ酸系生分解性高吸水性樹脂の中から選ばれるいずれか1種または2種以上の混合物からなる資材であることを特徴とする。
The subsoil material for clay ground according to
Moreover, the lower earth material for clay ground according to
さらに、本発明のクレーグラウンドの施工方法は、請求項1〜請求項4のいずれかに記載のクレーグラウンド用下層土材を展張し、その上にグラウンド表土を敷きつめて整地することを特徴とする。
Furthermore, the clay ground construction method of the present invention is characterized in that the clay soil ground clay material according to any one of
以上のように構成される本発明のクレーグラウンド用下層土材は、浄水ケーキ粉粒体に対して、浄水ケーキ粉粒体よりも保水能力が高い高保水能資材および浄水ケーキ粉粒体よりも吸水能力が高い高吸水能資材の内、少なくとも一方を混合することにより、クレーグラウンド用下層土材としての機能を従来品と同等に確保しつつ、下層土が保持する水分を毛管上昇作用によってグラウンド表土に供給できるようにしたことを特徴とするものである。 The lower ground material for clay ground of the present invention configured as described above has a higher water retention capacity than the water purification cake powder, and the water retention capacity of the water purification cake powder and the water purification cake powder. By mixing at least one of the high water-absorbing materials with high water-absorbing capacity, the water as retained by the lower soil is grounded by the action of raising the capillary while ensuring the same function as the lower soil material for the clay ground. It is characterized by being able to supply topsoil.
浄水ケーキ粉粒体の原料となる浄水ケーキは、浄水場での水処理過程で発生する沈澱物を加圧・脱水、あるいは天日乾燥したもので、一般的には、産業廃棄物として処分されている。本発明においては、この浄水ケーキを粉砕、篩い分けして粒径3cm以下の粉粒体にして利用する。 The water purification cake, which is the raw material for the water purification cake powder, is a product of pressure, dewatered or sun-dried precipitates generated during the water treatment process at a water purification plant, and is generally disposed of as industrial waste. ing. In the present invention, the water-purified cake is pulverized and sieved and used as a powder particle having a particle size of 3 cm or less.
下層土材からグラウンド表土への毛管水の上昇は、単にグラウンド表土と下層土材を重層するだけでも行えるが、グラウンド表土と下層土材との間に吸水能を有する不織布などを挟みこんでもよく、これにより、毛管上昇を均質、かつ迅速に行うことができる。 Capillary water can be raised from the lower soil material to the ground surface soil simply by overlaying the ground surface soil and the lower soil material, but a non-woven fabric having water absorption capability may be sandwiched between the ground surface soil and the lower soil material. Thereby, the capillary rise can be performed uniformly and rapidly.
また、本発明において、高保水能資材とは、当該資材が重力に逆らって保持できる水分量(=単位重量当りの水分量)が、浄水ケーキ粉粒体よりも大となる資材のことを意味し、無機物の場合であれば、空隙率とその空隙の大きさが保水能を決める重要な要因となる。一方、本発明において、高吸水能資材とは、高分子樹脂のように水を構造内に包含し、その水を重力では離さない資材であって、その水分量(=単位重量当りの水分量)が、浄水ケーキ粉粒体よりも大となる資材のことを意味する。
In the present invention, the high water retention capacity material means a material in which the amount of water that the material can hold against gravity (the amount of water per unit weight) is larger than that of the purified water cake powder. In the case of an inorganic substance, the porosity and the size of the void are important factors that determine the water retention capacity. On the other hand, in the present invention, the high water-absorbency materials, include water in the structure as the polymer resin, the aqueous a material that never let the force of gravity, the water content (= water content per unit weight ) Means a material that is larger than the purified cake powder.
高保水能資材および高吸水能資材としては、それぞれの機能を有する資材であれば、種々の物質を用いることができる。具体的な例を挙げれば、例えば、高保水能資材としては、微細な空隙を有する各種多孔質材料を利用することができ、より具体的には、活性炭、ゼオライト、ベントナイト、クリンカーアッシュ、パーライト、バーミキュライトなどの無機系多孔質資材を利用する。
The high water retention capability materials and high water-absorbency materials, as long as materials having the respective functions, it is possible to use various substances. If a specific example is given, for example, various highly porous materials having fine voids can be used as the high water retention capacity material. More specifically, activated carbon, zeolite, bentonite, clinker ash, perlite, Use inorganic porous materials such as vermiculite.
また、高吸水能資材としては、デンプン系生分解性高吸水性樹脂、セルロース系生分解性高吸水性樹脂、キチン系生分解性高吸水性樹脂、ポリアミノ酸系生分解性高吸水性樹脂、ポリアクリル酸系非生分解性合成高吸水性樹脂、ポリビニルアルコール系非生分解性合成高吸水性樹脂、ポリアクリルアミド系非生分解性合成高吸水性樹脂、およびポリオキシエチレン系非生分解性合成高吸水性樹脂などを利用する。
As the high water-absorbency materials, starch-based biodegradable superabsorbent polymers, cellulosic biodegradable superabsorbent polymers, chitin-based biodegradable superabsorbent polymers, polyamino acid-based biodegradable superabsorbent polymer, Polyacrylic acid-based non-biodegradable synthetic superabsorbent resin, polyvinyl alcohol-based non-biodegradable synthetic super-absorbent resin, polyacrylamide-based non-biodegradable synthetic super-absorbent resin, and polyoxyethylene-based non-biodegradable synthetic Use highly water-absorbing resin.
これらの高保水能資材および高吸水能資材は、目的により単独もしくは混合して使用することができる。また、本発明において利用可能な高保水能資材としては、例えば、ALC(Autoclaved Lightweight aerated Concrete)粉粒体などの産業廃棄物や産業副産物なども使用可能である。
These high water retention capacity materials and high water-absorbency materials can be used alone or in combination depending on the purpose. In addition, as the high water retention capacity material that can be used in the present invention, for example, industrial waste such as ALC (Autoclaved Lightweight Aerated Concrete) powder and industrial by-products can be used.
本発明のクレーグラウンド用下層土材の施工に際し、上記高保水能資材および高吸水能資材の最大混合・添加量は、上記高保水能資材および高吸水能資材を浄水ケーキ粉粒体に混合あるいは添加したときのグラウンド表土の地耐力を考慮し、CBR値(Carifornia Bearing Ratio;路床土支持力比)が、グラウンドの地耐力の限界値とされる設計CBR値3を上回るように調製される。
Upon application of clay ground subsoil material of the present invention, the maximum mixing and the addition amount of the high water retention capacity materials and high water-absorbency materials are mixed or the high water-holding capacity materials and high water-absorbency material in water purification cake powder or granular material In consideration of the earth bearing capacity of the ground topsoil when added, the CBR value (Carifornia Bearing Ratio) is adjusted to exceed the design CBR value of 3, which is the limit value of the ground bearing capacity. .
さらに、本発明のクレーグラウンド用下層土材は、浄水ケーキ粉粒体に対して、高保水能資材および高吸水能資材の内、いずれか一方だけを混合したものであってもよいが、両方を混合したものであればより好ましい。 Furthermore, the lower earth material for clay ground of the present invention may be a mixture of either one of a highly water-retaining material and a highly water-absorbing material with respect to the water purification cake powder, It is more preferable if these are mixed.
以上説明したような本発明のクレーグラウンド用下層土材を用いてグラウンド施工を行うと、次のような作用、効果を奏する。
まず第1に、本発明のクレーグラウンド用下層土材の水分が毛管現象によって上昇し、長期間グラウンド表土を湿潤状態に保つことが可能となるため、砂塵発生を抑制したり、その発生期間を短縮することが可能となる。
When the ground construction is performed using the lower ground material for clay ground of the present invention as described above, the following actions and effects are exhibited.
First of all, the water content of the lower ground material for clay ground of the present invention rises by capillary action, and it becomes possible to keep the ground surface soil in a wet state for a long period of time. It can be shortened.
また第2に、潮解性塩類をグラウンド表土に散布する従来技術とは異なり、グラウンド設置の鉄製遊具や体育機材を腐食することがないため長期間の使用が可能となり、経済的である。 Second, unlike the conventional technique in which deliquescent salts are sprayed on the ground topsoil, the ground play iron equipment and physical equipment are not corroded, so that it can be used for a long time and is economical.
また第3に、降雨や散水に伴う塩類の流亡や溶脱がないため、グラウンド周辺の植栽植物に対する塩害を防ぐことができ、また、流出塩類による水質環境汚染が防止できる。
また第4に、潮解性塩類を散布する従来技術では塩類の流亡や溶脱が生じやすいので、砂塵発生抑制効果を維持するためには、しばしば散布処理を行う必要がある。しかし、本発明のクレーグラウンド用下層土材を用いる方法では、グラウンド整備時あるいはグラウンド更新時においてのみ施工を行うことになるため、日常的なグラウンドの保守管理には手間がかからなくなり、経済的である。
Thirdly, since salt does not run away or leach due to rainfall or watering, salt damage to planted plants around the ground can be prevented, and water environmental pollution due to outflow salts can be prevented.
Fourthly, in the conventional technique in which deliquescent salts are sprayed, the salt tends to run away or leach out, so that it is often necessary to perform a spraying process in order to maintain the dust generation suppression effect. However, in the method using the lower soil material for clay ground of the present invention, construction is performed only at the time of ground maintenance or ground renewal. It is.
また第5に、グラウンド表面の地温が低く維持されるために、グラウンド利用者にとって快適環境を提供できる。また、グラウンド周辺のヒートアイランド現象の緩和にも役立つ。 Fifth, since the ground temperature of the ground surface is kept low, it is possible to provide a comfortable environment for the ground user. It also helps to mitigate the heat island phenomenon around the ground.
さらに第6に、産業廃棄物である浄水ケーキの再資源化に結びつき、そのことによって二次的に廃棄物量の削減を図ることができ、ひいては廃棄物最終処分地の延命化に寄与する。 Sixth, it leads to the recycling of water purification cake, which is an industrial waste, which can secondarily reduce the amount of waste, thereby contributing to the extension of the life of the final waste disposal site.
次に、本発明の実施形態について一例を挙げて説明する。
なお、以下の説明においては、「浄水ケーキを粉砕、篩い分けして粒径3cm以下の粉粒体にしたもの(=本発明でいう浄水ケーキ粉粒体)」を、「基本下層土材」と称する。また、「基本下層土材に対して高保水能資材または高吸水能資材のいずれか一方を単独で加えたもの」は、基本下層土材に比べて高い保水能を有するので、これを「保水マット」と称する。さらに、基本下層土材に対して高保水能資材および高吸水能資材の双方を加えたものは、上記保水マットに比べてさらに高い保水能を有するので、これを「改良保水マット」と称する。
(1)製造例
[実施例1]
浄水場より排出する浄水ケーキを粉砕して篩い分けすることにより、粒径3cm以下に調粒された基本下層土材を得た。この基本下層土材100重量部に対して、クリンカーアッシュ50〜100重量部を良く混合し、保水マットを得た。
Next, an embodiment of the present invention will be described with an example.
In the following description, “basic soil material” refers to a “pulverized water cake obtained by pulverizing and sieving the water-purified cake into a powder particle having a particle size of 3 cm or less (= water-purified cake particle according to the present invention)”. Called. In addition, “one with either a high water retention capacity material or a high water absorption capacity material added to the basic subsoil material alone” has a higher water retention capacity than the basic subsoil material. This is called “mat”. Furthermore, what added both the high water retention capacity material and the high water absorption capacity material with respect to the basic subsoil material has a higher water retention capacity compared with the said water retention mat | matte, Therefore This is called "improved water retention mat | matte."
(1) Production Example [Example 1]
By crushing and sieving the purified water cake discharged from the water purification plant, a basic lower layer soil material adjusted to a particle size of 3 cm or less was obtained. 50 to 100 parts by weight of clinker ash was mixed well with 100 parts by weight of this basic lower layer soil material to obtain a water retaining mat.
[実施例2(実施例1の変形例)]
上記クリンカーアッシュに代えて、クリンカーアッシュと同様に高い空隙を有する活性炭、活性炭を含有する無機資材、ゼオライト、ベントナイト、パーライト、バーミキュライトを利用しても、実施例1と同等な性能を有する保水マットを得ることができる。
[Example 2 (modified example of Example 1)]
In place of the clinker ash, a water retention mat having the same performance as in Example 1 can be obtained by using activated carbon having high voids as in the clinker ash, inorganic materials containing activated carbon, zeolite, bentonite, perlite, and vermiculite. Obtainable.
[実施例3]
浄水場より排出する浄水ケーキを粉砕して篩い分けすることにより、粒径3cm以下に調粒された基本下層土材を得た。この基本下層土材100重量部に対して、0.1〜2.0重量部のポリアクリル酸系高吸水性樹脂を添加して、保水マットを得た。
[Example 3]
By crushing and sieving the purified water cake discharged from the water purification plant, a basic lower layer soil material adjusted to a particle size of 3 cm or less was obtained. To 100 parts by weight of the basic lower layer soil material, 0.1 to 2.0 parts by weight of a polyacrylic acid superabsorbent resin was added to obtain a water retaining mat.
[実施例4(実施例3の変形例)]
上記ポリアクリル酸系高吸水性樹脂に代えて、ポリビニル系、ポリアクリルアミド系、およびポリオキシエチレン系などの合成高吸水性樹脂や、デンプン系、セルロース系、キチン系、およびポリアミノ酸系などの生分解性の天然高吸水性樹脂を利用しても、実施例3と同等な性能を有する保水マットを得ることができる。
(2)施工例
荒廃により更新する時期となったグラウンドの表土およびその下層土を取り除いた場所に、上記保水マットを4〜10cm深に展張し、整地・転圧したのち、その上にグラウンド表土を5〜10cm敷きつめて整地する。
(3)性能試験
[試験例1]
クリンカーアッシュ混練によって保水マットの保水能がどの程度増強されるかを調べるため、以下の試験を行った。
[Example 4 (Modification of Example 3)]
Instead of the above polyacrylic acid-based superabsorbent resins, synthetic superabsorbent resins such as polyvinyl-based, polyacrylamide-based, and polyoxyethylene-based materials, and starch-based, cellulose-based, chitin-based, and polyamino acid-based raw materials Even when a degradable natural superabsorbent resin is used, a water retention mat having the same performance as in Example 3 can be obtained.
(2) Example of construction In the place where the ground topsoil and its subsoil were removed due to devastation, the above water retention mat was extended to a depth of 4-10 cm, and after leveling and rolling, the ground topsoil was placed on it. Lay down 5-10cm and level the ground.
(3) Performance test [Test Example 1]
In order to examine how much the water retention capacity of the water retention mat is enhanced by clinker ash kneading, the following test was performed.
大粒浄水ケーキ(粒径1.5〜3.0cm)、基本下層土材(粒径3cm以下の浄水ケーキ粉粒体)、保水マット(体積比で等量の基本下層土材とクリンカーアッシュを混ぜたもの)、クリンカーアッシュ、以上4種の資材を用意し、各資材をそれぞれ径8.5cm(内径7.3cm)、高さ4cmのビフネルロートに充填した。 Large grain water purification cake (particle size 1.5-3.0 cm), basic lower layer soil material (water purification cake powder with a particle size of 3 cm or less), water retention mat (equal volume ratio of basic lower layer soil material and clinker ash) 4 kinds of materials were prepared, and each material was filled in a bifunnel funnel having a diameter of 8.5 cm (inner diameter: 7.3 cm) and a height of 4 cm.
ロート底部より十分に吸水させた後、室内に24時間静置することによって重力水を除去した。その段階で充填した各資材の保水量を測定した。ついで、各資材を充填したロートは室内に静置し、経日的に重量を測定した。なお、各資材の保水能は現物100g当りの吸水1日後の重量から充填当初の重量を差し引くことによって算出した。 After sufficiently absorbing water from the bottom of the funnel, the gravity water was removed by leaving it in the room for 24 hours. The water retention amount of each material filled at that stage was measured. Next, the funnel filled with each material was left in the room and the weight was measured over time. The water retention capacity of each material was calculated by subtracting the initial filling weight from the weight one day after water absorption per 100 g of the actual material.
[上記試験の結果と考察]
下記表1は、底面吸水させたのち、24時間静置後の水分保持能を示す。
[Results and discussion of the above test]
Table 1 below shows the water retention capacity after 24 hours of standing after water absorption.
保水能は資材によって顕著に異なり、クリンカーアッシュ>保水マット>基本下層土材>大粒浄水ケーキの順であった。この結果から明らかなように、3cm以下浄水ケーキ粒より構成される基本下層土材にクリンカーアッシュを混合することによって下層土の水分保持能を高めることが可能であった。 The water retention ability was remarkably different depending on the material, and was in the order of clinker ash> water retention mat> basic subsoil material> large grain water purification cake. As is clear from this result, it was possible to increase the water retention capacity of the lower layer soil by mixing clinker ash with a basic lower layer soil material composed of 3 cm or less water purification cake grains.
図1は、各資材の経日的な水分消失状況を示す。処理1日後の水分保持量は、上記表1の水分保持能を示す。基本下層土材(粒径3cm以下浄水ケーキ粉粒体)に比べてクリンカーアッシュの方が、水分含量は顕著に高く、保水マットの水分含量は基本下層土材とクリンカーアッシュの中間に位置した。その原因は、水分保持能の高いクリンカーアッシュの混合によるものと考えられる。 FIG. 1 shows the daily water loss of each material. The water retention after 1 day of treatment indicates the water retention capacity in Table 1 above. The water content of the clinker ash was significantly higher than that of the basic subsoil material (particle size of 3 cm or less water purification cake powder), and the water content of the water retaining mat was located between the basic subsoil material and the clinker ash. The cause is considered to be due to the mixing of clinker ash having a high water retention ability.
また、処理7日後までの水分保持量は基本下層土材に比べて保水マットでは高く維持されていたが、処理前の水分状態にまで低下する期間は両者とも13日後であった。これに対して、クリンカーアッシュを下層土材とした場合には資材充填当初の水分状態になるまで約18日間を要した。このことは、保水マットではクリンカーアッシュの混合によって下層土の水分保持能が改善できることを示唆する。したがって、基本下層土材に対するクリンカーアッシュの混合割合を高めればさらに保水マットの水分保持能が高まることを示唆する。 In addition, although the water retention amount until 7 days after the treatment was maintained higher in the water retention mat than in the basic lower layer soil material, the period during which the moisture content before the treatment was lowered to the moisture state before the treatment was 13 days later. On the other hand, when clinker ash was used as the lower soil material, it took about 18 days to reach the initial moisture state of the material filling. This suggests that the water retention capacity of the subsoil can be improved by mixing clinker ash in the water retention mat. Therefore, it is suggested that if the mixing ratio of clinker ash with respect to the basic subsoil material is increased, the water retention capacity of the water retention mat is further increased.
しかし、クリンカーアッシュの混合量が高すぎると、表土の地耐力が低下し、グラウンドの地耐力の基準とされる設計CBR値3を下回ることとなり、その混合には限界が存在する。したがって、基本下層土材に対するクリンカーアッシュの混合比率は上記の基準値を下回らない等量混合が上限となる。
However, if the mixing amount of the clinker ash is too high, the soil strength of the topsoil is lowered and falls below the
[試験例2]
次に、高吸水性樹脂添加によって基本下層土材の保水能がどの程度改善されるのかを調べるため、以下の試験を行った。
[Test Example 2]
Next, in order to investigate how much the water retention capacity of the basic lower layer soil material is improved by the addition of the superabsorbent resin, the following test was performed.
径5cm、高さ10cmのアクリル製カラムに、基本下層土材(粒径3cm以下の浄水ケーキ粉粒体)を充填し、その底部より毛管上昇させることによって十分に吸水させたものを対照区とした。 An acrylic column having a diameter of 5 cm and a height of 10 cm is filled with a basic lower layer soil material (water-purified cake powder having a particle size of 3 cm or less), and the water is sufficiently absorbed by raising the capillaries from the bottom of the column. did.
また、上記の水の代わりに、高分子保水剤(ポリアクリル酸系、商品名:エスペック(登録商標)L,東洋紡績株式会社製)の250倍および100倍希釈液を、上記と同様に底面吸水させる処理区(250倍区、100倍区)を設けた。 Further, instead of the above water, a 250-fold and 100-fold dilution of a polymer water retention agent (polyacrylic acid, trade name: ESPEC (registered trademark) L, manufactured by Toyobo Co., Ltd.) Treatment zones for absorbing water (250 times and 100 times) were provided.
それぞれ吸水終了後、それらアクリル製カラムは24時間室内で静置して重力水を除き、充填下層土材の水分量を測定した。さらに、2週間にわたり静置を続けて水分の蒸発消失状況を調査した。 After completion of water absorption, these acrylic columns were allowed to stand indoors for 24 hours to remove gravity water, and the moisture content of the lower layer soil material was measured. Furthermore, it was allowed to stand for 2 weeks to investigate the state of moisture evaporation.
[上記試験の結果と考察]
下記表2は、底面吸水させたのち、24時間静置後の水分保持量を示す。なお、図表には、現物100g当りの保持水分量を表示してある。
[Results and discussion of the above test]
Table 2 below shows the water retention after 24 hours of standing after water absorption. In the chart, the amount of water retained per 100 g of the actual product is displayed.
高吸水性樹脂の希釈液を吸水させた処理区では、いずれも対照区(基本下層土材)に比べて高い水分保持量を示した。その効果は、希釈倍数の小さい100倍希釈区の方がやや高かったが、250倍区との差異はごくわずかであった。 In the treatment group in which the diluted liquid of the superabsorbent resin was absorbed, the water retention amount was higher than that in the control group (basic lower layer soil material). The effect was slightly higher in the 100-fold dilution group with a small dilution factor, but the difference from the 250-fold group was negligible.
図2は、処理後の経日的な水分の蒸発消失状況を示す。対照区(基本下層土材)では、処理10日後には資材充填時と同じ水分状態に戻ったが、高吸水性樹脂希釈液を吸水させた処理区では同様の水分状態にもどるまでにさらに3日間要した。このことから、基本下層土材に対して高吸水性樹脂の湿潤処理を施せば、基本下層土材の水分保持量をより長期間にわたり高く維持可能になることが明らかとなった。 FIG. 2 shows the state of evaporative disappearance of moisture over time after treatment. In the control plot (basic subsoil material), after 10 days of treatment, the water content returned to the same level as when the material was filled. However, in the treated plot where the superabsorbent resin diluted solution was absorbed, 3 more before returning to the same moisture status. It took a day. From this, it has been clarified that the moisture retention amount of the basic lower layer soil material can be maintained high for a longer period of time by subjecting the basic lower layer soil material to wet treatment with a superabsorbent resin.
[試験例3]
次に、高吸水性樹脂の添加量によって保水マットの保水能がどの程度増強されるのかを調べるため、以下の試験を行った。
[Test Example 3]
Next, in order to investigate how much the water retention capacity of the water retention mat is enhanced by the addition amount of the superabsorbent resin, the following test was performed.
基本下層土材(粒径3cm以下の浄水ケーキ粉粒体)とクリンカーアッシュを、体積比で等量混和することによって保水マットを得た。また、得られた保水マット100重量部に対して、0.1,0.5,1.0重量部に相当するポリアクリル酸系高吸水性樹脂(商品名:グラスパワー(登録商標)、顆粒状、栗田工業株式会社製)を添加して、3種の改良保水マットを得た。 A water retention mat was obtained by mixing the basic lower layer soil material (water purification cake powder having a particle size of 3 cm or less) and clinker ash in an equal volume ratio. In addition, with respect to 100 parts by weight of the obtained water retention mat, polyacrylic acid-based superabsorbent resin (trade name: Glass Power (registered trademark), granules corresponding to 0.1, 0.5, 1.0 part by weight) And Kurita Industry Co., Ltd.) were added to obtain three types of improved water retention mats.
これら4種の資材をアクリルカラム(径5cm、高さ10cm)に充填して、5cm長の土壌カラムを作成した。その後、底面より十分に吸水させた。24時間静置させることによって重力水を除いたのち、保水した水分量を測定した。
These four kinds of materials were packed in an acrylic column (
さらに、0.1%ポリアクリル酸系樹脂を添加した処理区(改良保水マット)と無処理区(保水マット)は14日間静置し続け、水分消失状況を測定した。
[上記試験の結果と考察]
各処理区の水分保持量を下記表3に示す。図表には現物100g当たりに換算して表示した。
Furthermore, the treated section (improved water retaining mat) and the untreated section (water retaining mat) to which 0.1% polyacrylic acid resin was added were allowed to stand for 14 days, and the water loss state was measured.
[Results and discussion of the above test]
Table 3 below shows the water retention amount of each treatment section. The chart is converted to 100g of actual product.
上記表3から明らかなように、高吸水性樹脂添加量の増加に伴って水分保持能が高まり、保水マットの水分保持能が大きく増強された。しかし、0.1%以上の添加では樹脂の膨水に伴って土壌カラム長が顕著に増加した。このことは、地耐力の減少を誘起し、グラウンド表土の地耐力を低下させる可能性を示唆している。グラウンド表土の地耐力は設計CBR値3以上に維持することが義務づけられている。そのためには、高吸水性樹脂の添加量を0.1%以下に留めておくことが必要であると考えられる。 As is clear from Table 3 above, the water retention capacity increased with the increase in the amount of the superabsorbent resin added, and the water retention capacity of the water retention mat was greatly enhanced. However, the addition of 0.1% or more markedly increased the soil column length with resin swelling. This suggests the possibility of reducing the earth bearing capacity by inducing a decrease in earth bearing capacity. It is obliged to maintain the ground strength of the ground topsoil at a design CBR value of 3 or more. For this purpose, it is considered necessary to keep the amount of the superabsorbent resin added to 0.1% or less.
図3は、ポリアクリル酸系の高吸水性樹脂を0.1%添加した改良保水マット区と無添加の保水マット区の静置後の水分の蒸発消失状況を示す。保水マット区における充填当初の水分保持能は約30g程度であったのに対して、改良保水マット区では約50g程度までに高まり、その後、両区ともほぼ同様の水分消失パターンをとりながら、水分含量が低下した。両区ともほぼ同様の水分消失パターンであったため、保水マット区では静置約10日間後に当初の資材充填時の水分状況となったが、改良保水マット区では充填当初の水分状況に低下するまで約14日間要した。 FIG. 3 shows the state of evaporation and disappearance of water after standing in a modified water retaining mat section to which 0.1% of a polyacrylic acid-based superabsorbent resin is added and an additive-free water retaining mat section. The water retention capacity at the beginning of filling in the water retention mat section was about 30 g, while the improved water retention mat section increased to about 50 g. The content decreased. Since the water loss pattern in both wards was almost the same, the water condition at the time of filling the material was about 10 days after standing in the water retention mat area, but until the water condition at the time of filling was lowered in the improved water retention mat area. It took about 14 days.
[試験例4]
次に、基本下層土材(粒径3cm以下の浄水ケーキ粉粒体)とクリンカーアッシュを、体積比で等量混和することによって保水マットCを得た。また、基本下層土材(粒径3cm以下の浄水ケーキ粉粒体)100重量部に対して、ポリアクリル酸系高吸水性樹脂(商品名:グラスパワー(登録商標)、顆粒状、栗田工業株式会社製)0.1重量部を添加して保水マットDを得た。
[Test Example 4]
Next, a water retention mat C was obtained by mixing an equal volume of a basic lower layer soil material (water purification cake powder having a particle size of 3 cm or less) and clinker ash in a volume ratio. In addition, polyacrylic acid-based superabsorbent resin (trade name: Glass Power (registered trademark), granular, Kurita Kogyo Co., Ltd.) with respect to 100 parts by weight of the basic subsoil material (water purification cake powder having a particle size of 3 cm or less). A water retention mat D was obtained by adding 0.1 part by weight of the product.
基本下層土材、保水マットC、保水マットDを、それぞれ径5cmのアクリルカラムに5cm深に充填し、その上5cm深にグラウンド表土を重層した。底部より十分に吸水させたのち、24時間静置することによって重力水を除去した。その後、静置したアクリルカラムの重量を測定することによって土壌表面からの水分蒸発状況を調査した。なお、本試験では表面蒸発による水分消失量をカラム当りで表示した。 The basic lower layer soil material, the water retention mat C, and the water retention mat D were each packed into an acrylic column having a diameter of 5 cm to a depth of 5 cm, and the ground top soil was overlaid at a depth of 5 cm. After sufficiently absorbing water from the bottom, gravity water was removed by standing for 24 hours. Then, the moisture evaporation state from the soil surface was investigated by measuring the weight of the acrylic column which stood still. In this test, the amount of water lost due to surface evaporation was displayed per column.
[上記試験の結果と考察]
図4は、各処理区における静置後の水分蒸発状況を示す。アクリルカラムからの水分蒸発は、主に表土表面から生じるが、下層土材として基本下層土にクリンカーアッシュを混合した保水マットC区や、高吸水性樹脂を添加した保水マットD区では、基本下層土材区に比べて多かった。このことは、下層の保持水が良好に毛管上昇していること、および保水マット区ではより多くの水分が移行することを示唆する。
[Results and discussion of the above test]
FIG. 4 shows the state of water evaporation after standing in each treatment section. Water evaporation from the acrylic column occurs mainly from the surface of the topsoil, but in the water retention mat C section where the clinker ash is mixed with the basic lower layer soil as the lower soil material and the water retention mat D section where the superabsorbent resin is added, the basic lower layer It was more than the soil material ward. This suggests that the retained water in the lower layer has risen well in the capillaries, and that more water is transferred in the water retaining mat section.
図5は、表土表面の水分含量の推移を示す。水分含量は、大気湿度とシンクロナイズして変動しているが、その含量は基本下層土に比べてクリンカーアッシュや高吸水性樹脂を処理した保水マットC区および保水マットD区において常に高く推移した。したがって、それら資材の下層土材への混合や添加は、表土表面の湿度維持に有効に働くことが明らかとなった。 FIG. 5 shows the transition of the water content on the topsoil surface. The moisture content fluctuated by synchronizing with the atmospheric humidity, but the content was always higher in the water retention mat C and water retention mat D where the clinker ash and the superabsorbent resin were treated than the basic subsoil. Therefore, it became clear that mixing and addition of these materials to the lower soil material work effectively to maintain the humidity of the surface soil surface.
[試験例5]
基本下層土材とクリンカーアッシュを重量比で等量混合してなる保水マット100重量部に対して、さらに0.1重量部のポリアクリル酸系高吸水性樹脂(商品名:グラスパワー(登録商標)、顆粒状、栗田工業株式会社製)を添加し、改良保水マットを得た。
[Test Example 5]
0.1 parts by weight of a polyacrylic acid superabsorbent resin (trade name: Glass Power (registered trademark)) with respect to 100 parts by weight of a water retaining mat formed by mixing an equal amount of a basic subsoil material and clinker ash in a weight ratio. ), Granular, Kurita Kogyo Co., Ltd.) was added to obtain an improved water retention mat.
得られた改良保水マット、基本下層土材、ジャリ、および粘性鉱質土、以上4種の資材を、それぞれ径5cmのアクリルカラムに5cm深に充填し、その上にグラウンド表層土を5cm深に重層した。各アクリルカラムの底部1cmを水に浸漬することによって底面吸水させ、水分の土壌表面到達時間を測定した(1回目調査)。その後、24時間静置させて重力水を取り除いたアクリルカラムは、重量を測定することによって経日的な水分の蒸発消失状況を10日間にわたり調査した。その後、再度、同様に底面吸水させることによって底面吸水状況を調査した(2回目調査)。 The obtained improved water retention mat, basic subsoil material, jari, and clay mineral soil, and the above four materials are each packed in a 5 cm diameter acrylic column to a depth of 5 cm, and the ground surface soil is then deepened to a depth of 5 cm. Layered. The bottom 1 cm of each acrylic column was immersed in water to absorb water from the bottom, and the time for water to reach the soil surface was measured (first survey). Then, the acrylic column which left still for 24 hours and removed the gravity water investigated the evaporative disappearance state of water | moisture content over time by measuring a weight over 10 days. Then, the bottom surface water absorption situation was investigated again by making the bottom surface water-absorbed again (second investigation).
[上記試験の結果と考察]
下記表4は、水分が表土表面に到達するまでに要する時間を示す。
[Results and discussion of the above test]
Table 4 below shows the time required for moisture to reach the topsoil surface.
1回目調査では、改良保水マットを下層土とした場合には、水分が表土表面に到達するまでに30分間を要した。これに対して、基本下層土材を下層土とした場合には、水分が表土表面に到達するまでに3時間30分間要した。その他の処理区では、粘性鉱質土を用いたものが45分間、ジャリを用いたものが1時間20分間を要した。
In the first survey, when the improved water retention mat was used as the lower soil, it took 30 minutes for the moisture to reach the topsoil surface. On the other hand, when the basic lower layer soil was used as the lower layer soil, it took 3 hours and 30 minutes for the moisture to reach the surface soil surface. In the other treatment sections, those using viscous mineral soil took 45 minutes, and those using jari took 1
一度吸水させた後、再度乾燥させたアクリルカラムを供試した2回目調査では、改良保水マットを用いた場合には到達所要時間が20分間に短縮したが、その他の処理区では1回目調査よりも長時間を要した。 In the second survey, which used an acrylic column that had been once water-absorbed and then dried again, the time required to reach was shortened to 20 minutes when the improved water retention mat was used. It took a long time.
両調査の平均所用時間から算出される底面吸水の湿潤速度は改良保水マットでは2分46秒と他処理区に比べて著しく短かった。
図6に示す1日後の水分保持量は各土壌カラムの最大保水能を示す。改良保水マットを用いた場合、最大保水能は46g/カラムと最も高かった。粘性鉱質土を用いた場合も高い値を示したが、最大保水に達するまでに長時間を要した(上記表4参照)。
The wetting rate of bottom surface water absorption calculated from the average time required for both surveys was 2 minutes 46 seconds for the improved water retention mat, which was significantly shorter than the other treatment areas.
The water retention after 1 day shown in FIG. 6 indicates the maximum water retention capacity of each soil column. When the improved water retention mat was used, the maximum water retention capacity was the highest at 46 g / column. Even when viscous mineral soil was used, a high value was shown, but it took a long time to reach the maximum water retention (see Table 4 above).
一方、基本下層土材を用いた場合の保水能は20g/カラムと改良保水マットの半分以下であった。その後の水分消失状況は、各資材とも大きな差異は見られなかったが、基本下層土材では処理後4.5日後にカラム充填時の水分状態に戻った。これに対して、改良保水マット材では、下層土材充填時の水分状態に戻るまでに10日間要した。 On the other hand, when the basic lower layer soil material was used, the water retention capacity was 20 g / column and less than half of the improved water retention mat. Subsequent disappearance of water did not differ greatly between the materials, but the basic subsoil returned to the water state at the time of column filling 4.5 days after the treatment. On the other hand, in the improved water retention mat material, it took 10 days to return to the moisture state at the time of filling the lower layer soil material.
このように、改良保水マットを下層土に充填すれば、グラウンド表土の水分含量を長期間にわたり高く維持できるため、砂塵が発生しがたい良好なクレーグラウンドが造成できるものと判断された。 Thus, it was judged that if the improved water retention mat was filled in the subsoil, the moisture content of the ground topsoil could be maintained high for a long period of time, and therefore a good clay ground that would not easily generate dust could be created.
[試験例6]
上記試験例5で作成した土壌を充填したアクリルカラムの上部に同径のアクリルカラムを接続し、接続部から水漏れしないように隙間をビニルテープによって封じた。アクリルカラム内土壌は前もって湿潤させた後、アクリルカラム上部より100mlの水を静かに注いだ(水深:6.02cmに相当する)。静置後、表面水が土壌に浸透して消失するまでの所要時間を測定した(調査1回目)。さらに、同カラムを風乾させた後、同様の試験を繰り返した(調査2回目)。
[Test Example 6]
An acrylic column with the same diameter was connected to the upper part of the acrylic column filled with soil prepared in Test Example 5 above, and the gap was sealed with vinyl tape so as not to leak water from the connecting portion. After the soil in the acrylic column was wetted in advance, 100 ml of water was gently poured from the top of the acrylic column (corresponding to water depth: 6.02 cm). After standing, the time required for surface water to permeate into the soil and disappear was measured (first survey). Further, after the column was air-dried, the same test was repeated (second investigation).
[上記試験の結果と考察]
下記表5は、各処理区における表土表面から水が浸透消失するまでの時間より算出した透水係数を示す。
[Results and discussion of the above test]
Table 5 below shows the water permeability coefficient calculated from the time until water permeates and disappears from the topsoil surface in each treatment section.
上記表5には湿潤させたカラムを用いて行ったもの(調査1回目)、同カラムを風乾させて充填直後の水分状態に戻した後に行ったもの(調査2回目)、およびその両者の平均値が示してある。 In Table 5 above, the results were obtained using a wetted column (first survey), performed after the column was air-dried and returned to the moisture state immediately after filling (second survey), and the average of both. Values are shown.
各土壌カラムの透水係数はジャリを下層土とした処理区では10-2と最も高く、それ以外の処理区ではいずれも10-3と低かった。平均値を比べてみると、改良保水マット区では粘性鉱質土を下層土とした処理区に次いで低かった。しかし、その値は10-3値を保持しており、グラウンド下層土としての許容値の範囲内にあった。このことからも、改良保水マットは水分保持のみならず、排水性の上からもクレーグラウンドの下層土材として望ましい性質を備えたものといえる。 The permeability coefficient of each soil column was the highest at 10 -2 in the treatment section using jari as the subsoil, and was as low as 10 -3 in the other treatment sections. Comparing the average values, the improved water retention mat section had the lowest value after the treatment section with the clay mineral soil as the subsoil. However, the value maintained a value of 10 −3 , and was within the range of allowable values as a ground subsoil. From this, it can be said that the improved water retention mat has not only water retention but also desirable properties as a subsoil material for clay grounds in terms of drainage.
[試験例7]
老朽化が進んだために砂塵が発生しやすくなったクレーグラウンド表土を風乾し、その200gに対して水を0%、0.5%、1.0%、2.0%となるように添加してよく混合した。その処理土を図7(a)および同図(b)に示す簡易飛砂測定器にかけた。
[Test Example 7]
Air-dry clay ground soil, which has become susceptible to sand dust due to aging, and add water to 0, 0.5, 1.0, and 2.0% of the 200g And mixed well. The treated soil was applied to a simple flying sand measuring device shown in FIG. 7 (a) and FIG. 7 (b).
この簡易飛砂測定器は、一定の風速下で被験土を飛散させ、その飛散分布を比較することによって砂塵発生の難易を判定するものであり、風力源1と、風力源1の風の吹き出し口の上部から被験土を投下するための試料導入部2、および吹き出し口から風によって飛散した被験土を捕捉するための集砂マス部3、以上3つの部分から構成される。
This simple flying sand measuring instrument scatters the test soil under a constant wind speed and compares the scattering distribution to determine the difficulty of dust generation. The
風力源1は、シロッコファン11(最大風量:650リットル/分、吸気口:径4.5cm、MB6ZB2型、オリエンタルモーター株式会社製)の吸気口に、10cm長の塩ビ製円筒管12の一端を接着し、その塩ビ製円筒管12の他端の開口部に、開閉度を調整して風速を制御するための塩ビ製板13を取り付けた構造になっている。
The
試料導入部2は、左右両面の開いたアクリル製キューブ21(4cm立方)の上部に、内径3cmのアクリル製パイプ22(30cm長)の下端を接着し、アクリル製パイプ22の上端にポリスチレン製ロート23を置いたものである。
The
集砂マス部3は、上記試料導入部2の底部にあるアクリル製キューブ21側面の開口部に、フード31で覆った塩ビ製の集砂マス32(6cm立方のマス10個、10個で全長60cm)を連結したものである。
The sand collecting
なお、上記集砂マス部3の先端から飛び出す微細砂塵は、図示しない掃除機の先に集塵フードを取り付けたものを用いて収集するようにした。
以上のように構成された簡易飛砂測定器に、上述の処理土を投入した。投入に際しては、上記各処理土(約200g)をポリスチレン製ロート23から約1分程度かけて少しずつ落下させ、飛散する砂塵を各集砂マス32に集めたのち、各集砂マス32毎に重量を測定した。
In addition, the fine sand dust which jumps out from the front-end | tip of the said sand collection
The above-mentioned treated soil was put into the simple flying sand measuring device configured as described above. At the time of charging, each treated soil (about 200 g) is dropped little by little from the
[上記試験の結果と考察]
図8は、水を添加した被験土の飛散分布を示す。風乾土(コントロール)では、飛砂距離の短い集砂マス32に落下するものは少なく、それに反して、水を添加混合した被験土では水添加量の増加に応じて飛砂距離の短い集砂マス32に落下する砂量が増加した。このことは、少量の水添加によってグラウンドからの砂塵発生が抑制できることを示唆する。
[Results and discussion of the above test]
FIG. 8 shows the scattering distribution of the test soil to which water was added. In air-dried soil (control), there are few things that fall on the
一方、上記試験例4において下層土材として保水マット(クリンカーアッシュ混合あるいは高吸水性樹脂添加基本下層土材)を用いた場合には、表土表面の水分含量が高まることを認めた。 On the other hand, in the case of using the water retaining mat (clinker ash mixing or Ko吸water soluble resin added basic subsoil material) as a sub-soil material in the above test example 4 was observed that the water content of the surface soil surface is increased.
したがって、下層土材として保水マットや、さらにはそれら両者を混合・添加した改良保水マットを用いることによって、砂塵発生が少ないクレーグラウンドが造成できるものと考えられる。 Therefore, it is considered that a clay ground with less dust generation can be created by using a water retention mat as a lower layer soil material or an improved water retention mat in which both are mixed and added.
以上、本発明の実施形態について説明したが、本発明は上記の具体的な一実施形態に限定されず、この他にも種々の形態で実施することができる。
例えば、上記試験例1〜7では、特定の高保水能資材(クリンカーアッシュ)や、特定の高吸水能資材(ポリアクリル酸系高吸水性樹脂)を使って各種検証を行ったが、上記実施例2,4に示した高保水能資材や高吸水能資材を使って上記試験例1〜7と同等な試験を実施した場合でも、同様の結果を得ることができる。したがって、実施例2,4に示した高保水能資材や高吸水能資材も、本発明でいう高保水能資材、高吸水能資材として利用することができる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to said specific one Embodiment, In addition, it can implement with a various form.
For example, in Test Examples 1 to 7, various verifications were performed using a specific high water retention material (clinker ash) and a specific high water absorption material (polyacrylic acid superabsorbent resin). Similar results can be obtained even when tests equivalent to those of Test Examples 1 to 7 are performed using the high water retention materials and high water absorption materials shown in Examples 2 and 4. Therefore, the highly water-retaining material and the highly water-absorbing material shown in Examples 2 and 4 can also be used as the highly water-retaining material and the highly water-absorbing material in the present invention.
1・・・風力源、2・・・試料導入部、3・・・集砂マス部、11・・・シロッコファン、12・・・塩ビ製円筒管、13・・・塩ビ製板、21・・・アクリル製キューブ、22・・・アクリル製パイプ、23・・・ポリスチレン製ロート、31・・・フード、32・・・集砂マス。
DESCRIPTION OF
Claims (5)
「活性炭、ゼオライト、ベントナイト、クリンカーアッシュ、パーライト、バーミキュライト、およびALC(Autoclaved Lightweight aerated Concrete)粉粒体の中から選ばれるいずれか1種または2種以上の混合物からなり、重力に逆らって保持可能な単位重量当りの水分量が、前記浄水ケーキ粉粒体よりも大となる高保水能資材」を混合してなり、
前記浄水ケーキ粉粒体に対する前記高保水能資材の配合量を、CBR値(Carifornia Bearing Ratio;路床土支持力比)が設計CBR値3を上回るように調製してなる
ことを特徴とするクレーグラウンド用下層土材。 "Purified water that has been made into powder particles with a particle size of 3 cm or less by crushing and sieving the water-purified cake obtained by pressurizing, dehydrating, or drying the sun, which is generated during the water treatment process at the water purification plant For `` cake powder granules ''
“Made of activated carbon, zeolite, bentonite, clinker ash, perlite, vermiculite, and ALC (Autoclaved Lightweight aerated Concrete) powders, which can be held against gravity. The water content per unit weight is mixed with the high water retention capacity material that is larger than the purified water cake powder,
Clay, wherein; (subgrade soil bearing capacity ratio Carifornia Bearing Ratio) that is prepared as above design CBR value 3 the amount of the high water retention capacity materials for the water purification cake powder or granular material, CBR value Lower soil material for ground.
「デンプン系生分解性高吸水性樹脂、セルロース系生分解性高吸水性樹脂、キチン系生分解性高吸水性樹脂、ポリアミノ酸系生分解性高吸水性樹脂、ポリアクリル酸系非生分解性合成高吸水性樹脂、ポリビニルアルコール系非生分解性合成高吸水性樹脂、ポリアクリルアミド系非生分解性合成高吸水性樹脂、およびポリオキシエチレン系非生分解性合成高吸水性樹脂の中から選ばれるいずれか1種または2種以上の混合物からなり、樹脂の構造内に包含した水を重力では離さない資材であって、その包含可能な単位重量当たりの水分量が、前記浄水ケーキ粉粒体よりも大となる高吸水能資材」を混合してなり、
前記浄水ケーキ粉粒体に対する前記高吸水能資材の配合量を、CBR値(Carifornia Bearing Ratio;路床土支持力比)が設計CBR値3を上回るように調製してなる
ことを特徴とするクレーグラウンド用下層土材。 "Purified water that has been made into powder particles with a particle size of 3 cm or less by crushing and sieving the water-purified cake obtained by pressurizing, dewatering, or sun-drying the precipitate generated during the water treatment process at the water purification plant For `` cake powder granules ''
`` Starch-based biodegradable superabsorbent resin, cellulose-based biodegradable superabsorbent resin, chitin-based biodegradable superabsorbent resin, polyamino acid-based biodegradable superabsorbent resin, polyacrylic acid-based non-biodegradable Choose from synthetic superabsorbent resin, polyvinyl alcohol non-biodegradable synthetic superabsorbent resin, polyacrylamide non-biodegradable synthetic superabsorbent polymer, and polyoxyethylene non-biodegradable synthetic superabsorbent polymer It is a material that consists of any one kind or a mixture of two or more kinds, and does not separate the water contained in the resin structure by gravity, and the water content per unit weight that can be contained is the water purification cake powder. "High water absorption material that is larger than"
The amount of the high water-absorbing material blended in the water-purified cake powder is adjusted so that the CBR value (Carifornia Bearing Ratio) exceeds the design CBR value of 3. Lower soil material for ground.
「活性炭、ゼオライト、ベントナイト、クリンカーアッシュ、パーライト、バーミキュライト、およびALC(Autoclaved Lightweight aerated Concrete)粉粒体の中から選ばれるいずれか1種または2種以上の混合物からなり、重力に逆らって保持可能な単位重量当りの水分量が、前記浄水ケーキ粉粒体よりも大となる高保水能資材」、および「デンプン系生分解性高吸水性樹脂、セルロース系生分解性高吸水性樹脂、キチン系生分解性高吸水性樹脂、ポリアミノ酸系生分解性高吸水性樹脂、ポリアクリル酸系非生分解性合成高吸水性樹脂、ポリビニルアルコール系非生分解性合成高吸水性樹脂、ポリアクリルアミド系非生分解性合成高吸水性樹脂、およびポリオキシエチレン系非生分解性合成高吸水性樹脂の中から選ばれるいずれか1種または2種以上の混合物からなり、樹脂の構造内に包含した水を重力では離さない資材であって、その包含可能な単位重量当たりの水分量が、前記浄水ケーキ粉粒体よりも大となる高吸水能資材」を混合してなり、
前記浄水ケーキ粉粒体に対する前記高保水能資材および前記高吸水能資材の配合量を、CBR値(Carifornia Bearing Ratio;路床土支持力比)が設計CBR値3を上回るように調製してなる
ことを特徴とするクレーグラウンド用下層土材。 "Purified water that has been made into powder particles with a particle size of 3 cm or less by crushing and sieving the water-purified cake obtained by pressurizing, dehydrating, or drying the sun, which is generated during the water treatment process at the water purification plant For `` cake powder granules ''
“Made of activated carbon, zeolite, bentonite, clinker ash, perlite, vermiculite, and ALC (Autoclaved Lightweight aerated Concrete) powders, which can be held against gravity. High water-retaining capacity material whose water content per unit weight is larger than that of the water-purified cake powder, ”“ starch-based biodegradable superabsorbent resin, cellulose-based biodegradable superabsorbent resin, chitin-based biomaterial ” Degradable superabsorbent resin, polyamino acid-based biodegradable superabsorbent resin, polyacrylic acid-based non-biodegradable synthetic superabsorbent resin, polyvinyl alcohol-based non-biodegradable synthetic super-absorbent resin, polyacrylamide-based non-biodegradable Any one or more selected from degradable synthetic superabsorbent resin and polyoxyethylene non-biodegradable synthetic superabsorbent resin Is a material that does not separate the water contained in the resin structure by gravity, and the water content per unit weight that can be included is larger than that of the water-purified cake granule. ”
The amount of the high water-holding capacity material and the high water-absorbency materials for the water purification cake powder or granular material, CBR value (Carifornia Bearing Ratio; subgrade soil bearing capacity ratio) is prepared as above design CBR value 3 A subsoil material for clay ground characterized by that.
ことを特徴とする請求項2または請求項3に記載のクレーグラウンド用下層土材。 The high water-absorbing material is a starch-based biodegradable superabsorbent resin, a cellulose-based biodegradable superabsorbent resin, a chitin-based biodegradable superabsorbent resin, or a polyamino acid-based biodegradable superabsorbent resin. The lower earth material for clay ground according to claim 2 or 3, wherein the material is made of any one or a mixture of two or more selected from.
ことを特徴とするクレーグラウンドの施工方法。 5. A clay ground construction method, comprising: spreading the lower soil material for clay ground according to any one of claims 1 to 4;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005346387A JP4390767B2 (en) | 2005-11-30 | 2005-11-30 | Clay ground subsoil material and clay ground construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005346387A JP4390767B2 (en) | 2005-11-30 | 2005-11-30 | Clay ground subsoil material and clay ground construction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007154411A JP2007154411A (en) | 2007-06-21 |
JP4390767B2 true JP4390767B2 (en) | 2009-12-24 |
Family
ID=38239131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005346387A Active JP4390767B2 (en) | 2005-11-30 | 2005-11-30 | Clay ground subsoil material and clay ground construction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4390767B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105274921A (en) * | 2014-06-13 | 2016-01-27 | 中交一公局第五工程有限公司 | Automotive proving ground's high speed loop Mcconnell curve roadbed moulding method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102943423A (en) * | 2012-11-20 | 2013-02-27 | 中铁十九局集团第三工程有限公司 | Construction technology for clay roadbed with high liquid limit |
CN104452507A (en) * | 2014-11-28 | 2015-03-25 | 中铁二十三局集团有限公司 | Construction method for filling roadbed by using wind deposited sand |
CN107034755A (en) * | 2016-02-03 | 2017-08-11 | 中国科学院寒区旱区环境与工程研究所 | A kind of frozen earth roadbed structure of drift-sand |
CN110195379B (en) * | 2019-05-17 | 2023-09-22 | 中铁二院工程集团有限责任公司 | Ballastless track coarse-grain salty soil embankment structure considering severe air temperature influence and construction method |
CN114032723B (en) * | 2021-11-26 | 2022-08-19 | 山东大学 | Method for regulating and controlling water content and compact state of roadbed based on weather-resistant hydrogel in operation period |
CN114112718B (en) * | 2021-12-30 | 2024-03-01 | 第一拖拉机股份有限公司 | Method and device for detecting normal-temperature strength of lost foam coating |
-
2005
- 2005-11-30 JP JP2005346387A patent/JP4390767B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105274921A (en) * | 2014-06-13 | 2016-01-27 | 中交一公局第五工程有限公司 | Automotive proving ground's high speed loop Mcconnell curve roadbed moulding method |
Also Published As
Publication number | Publication date |
---|---|
JP2007154411A (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4390767B2 (en) | Clay ground subsoil material and clay ground construction method | |
Ben‐Hur et al. | Effect of polysaccharides, clay dispersion, and impact energy on water infiltration | |
WO2010041441A1 (en) | Formed object adsorbing hazardous substance | |
US6810831B1 (en) | Animal arena surface amendment | |
US20030177799A1 (en) | Method of applying waste rubber materials for construction of golf courses and athletic fields | |
Oades | Prevention of crust formation in soils by poly (vinyl alcohol) | |
KR100980041B1 (en) | Salt-blocker using Bottom Ash and its manufacturing method | |
JPH02293079A (en) | Method for preventing clogging of geotextile or geonet | |
CN108203152B (en) | A pack that is used for high-efficient biological system of being detained of preventing blockking up | |
WO2006067861A1 (en) | Soil conditioner for lawn earth and method of managing lawngrass growth using the soil conditioner | |
KR101652970B1 (en) | Salt immersion composition for salt ingress prevention and salt-land planting method using the same | |
JPH11209760A (en) | Soil conditioner | |
JP2024108972A (en) | Ceramic Composition | |
JP2024108974A (en) | Greening materials | |
JP7549561B2 (en) | Mulching material | |
JP3652115B2 (en) | Clay ground mud and dust prevention and drainage improving material and its construction method | |
JP2024108971A (en) | Microparticle-containing composition and processing method | |
JP2004067909A (en) | Soil-improving material and mulching industrial method using the same | |
RU2751850C1 (en) | Method for surface runoff retention | |
JP2733889B2 (en) | Method for producing porous ceramic-based remover for pesticides and phosphate ions | |
JP2007070818A (en) | Soil-based water-retentive pavement material, and paving method of soil-based water-retentive pavement surface | |
JP3707051B2 (en) | Flooded slope greening spray material, its spraying method, flooded slope created by the method, and water supply network used in the method | |
JP2024108973A (en) | Water-retentive materials and evaporative coolers | |
JP7550524B2 (en) | Soil improvement materials and soil containing them | |
JP2024108975A (en) | Adsorbent and treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070402 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090728 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090915 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091006 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20251016 Year of fee payment: 16 |