JP4389890B2 - Silica gel and its production method, synthetic quartz glass powder and its production method, and synthetic quartz glass molded body and its production method - Google Patents

Silica gel and its production method, synthetic quartz glass powder and its production method, and synthetic quartz glass molded body and its production method Download PDF

Info

Publication number
JP4389890B2
JP4389890B2 JP2006067480A JP2006067480A JP4389890B2 JP 4389890 B2 JP4389890 B2 JP 4389890B2 JP 2006067480 A JP2006067480 A JP 2006067480A JP 2006067480 A JP2006067480 A JP 2006067480A JP 4389890 B2 JP4389890 B2 JP 4389890B2
Authority
JP
Japan
Prior art keywords
quartz glass
gel
synthetic quartz
production method
silica gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006067480A
Other languages
Japanese (ja)
Other versions
JP2006193423A (en
Inventor
穂積 遠藤
芳雄 勝呂
明 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2006067480A priority Critical patent/JP4389890B2/en
Publication of JP2006193423A publication Critical patent/JP2006193423A/en
Application granted granted Critical
Publication of JP4389890B2 publication Critical patent/JP4389890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、高純度且つ高品質の合成石英の原料として有用なシリカゲル及びその製造法、合成石英ガラス粉及びその製造法、並びに合成石英ガラス成形体及びその製造法に関する。   The present invention relates to a silica gel useful as a raw material for high-purity and high-quality synthetic quartz and a production method thereof, a synthetic quartz glass powder and a production method thereof, and a synthetic quartz glass molded body and a production method thereof.

近年、光通信分野、半導体産業等に使用される石英ガラス製品についてはその純度に関し非常に厳しい管理が行われている。このような高純度の石英ガラスは主に、(i)天然石英を粉砕して得た砂状の天然石英粉(いわゆるsandと称される)を原料とする方法、(ii)また更に高純度とする場合は四塩化ケイ素の酸水素炎中での分解で発生したヒュームを基体に付着・成長させて得られたヒュームの固まりを用いる酸水素炎法、(iii)ケイ素アルコキシド等の有機ケイ素化合物を原料として得られたゲルを用いる、いわゆるゾルゲル法等によって製造される。   In recent years, quartz glass products used in the optical communication field, the semiconductor industry, and the like have been subjected to very strict management regarding purity. Such high-purity quartz glass mainly consists of (i) a method using raw natural sand powder (so-called sand) obtained by pulverizing natural quartz as a raw material, and (ii) higher purity. In the oxyhydrogen flame method using a mass of fumes obtained by adhering and growing fumes generated by decomposition of silicon tetrachloride in an oxyhydrogen flame, and (iii) organosilicon compounds such as silicon alkoxide Is produced by a so-called sol-gel method or the like using a gel obtained as a raw material.

しかしながら、これら何れの製造法もそれぞれ一長一短がある。(i)天然石英を原料とする場合は本質的にはアルミ、鉄等の金属元素は石英粒子内部に含有されており、酸洗浄等精製を繰り返してもこれらを10ppb以下に高純度化することは困難である。又、(ii)四塩化ケイ素の酸水素炎法では高純度化は計れるものの、工業的に見合うコストに難があり、量産化に至っていない。一方(iii)ゾルゲル法は量産化が計れるものの、原料、中間体、製品は製造装置に接触するという宿命があり、装置接触による不純物が混入しやすい。また、ゾルゲル法により得られた石英ガラスは、一般にシラノール基由来とされる細かな気泡を含有しており、フォトマスク、単結晶引上げ用るつぼ等の半導体産業においては特に問題となる他、光ファイバー等光通信分野においてもファイバー延伸時や使用に際して問題を生じる場合がある。   However, each of these manufacturing methods has advantages and disadvantages. (I) When natural quartz is used as a raw material, metal elements such as aluminum and iron are essentially contained in the quartz particles, and even if purification such as acid washing is repeated, these should be purified to 10 ppb or less. It is difficult. In addition, although (ii) silicon tetrachloride oxyhydrogen flame method can achieve high purity, there is a difficulty in cost commensurate with industry, and mass production has not been achieved. On the other hand, although (iii) the sol-gel method can be mass-produced, the raw materials, intermediates and products are destined to come into contact with the production equipment, and impurities due to equipment contact are likely to be mixed. In addition, quartz glass obtained by the sol-gel method contains fine bubbles that are generally derived from silanol groups, which is particularly problematic in the semiconductor industry such as photomasks and single crystal pulling crucibles, optical fibers, etc. Even in the optical communication field, there may be a problem during fiber drawing or use.

本発明者等は、ゾルゲル法における上記課題を解決すべく鋭意検討した所、意外にも得られる石英ガラス体の気泡はゲルでのシラノール基に由来するものの他に、ゲルに混入した異常粒子に由来するものが存在することを見出した。すなわち本発明者等の研究によれば、ゾルゲル法で用いられる反応槽、乾燥器、配管等の装置内壁面には硬い、緻密なシリカ前駆体から成るスケールが生成、付着しており、かかるスケールが、ゾルゲル反応により得られたシリカゲルに混入する。かかるスケールから成る粒子は見掛け上はその他のシリカゲルとは判別できないが、正常なシリカゲルと異なり、硬く緻密であるため、その後の乾燥、焼成によっても、容易に有機基由来のカーボンが脱却せず、ゲルを焼成して得られる合成石英ガラス粉中に残る。これらのカーボン成分は、合成石英ガラス粉を溶融加工して石英ガラス体とする際、燃焼しガスを発生させる為、得られる石英ガラス体は泡を含有することになる。   The inventors of the present invention have intensively studied to solve the above-mentioned problems in the sol-gel method, and surprisingly, the bubbles in the quartz glass body obtained are derived from silanol groups in the gel, and abnormal particles mixed in the gel. We found that there was something to come from. That is, according to the study by the present inventors, a scale composed of a hard and dense silica precursor is generated and adhered to the inner wall surface of a device such as a reaction vessel, a dryer or a pipe used in the sol-gel method. Is mixed into the silica gel obtained by the sol-gel reaction. Particles composed of such scales are apparently indistinguishable from other silica gels, but unlike normal silica gels, they are hard and dense, so that even after subsequent drying and firing, carbon derived from organic groups does not easily escape, It remains in the synthetic quartz glass powder obtained by baking the gel. Since these carbon components are combusted to generate gas when the synthetic quartz glass powder is melt processed to form a quartz glass body, the resulting quartz glass body contains bubbles.

本発明者等は、上記の知見に基き更に鋭意検討を重ねた結果、装置内壁面に付着するスケールから成る異常粒子の製品への混入量を管理、低減することにより、目的とする高品質の合成石英粉が得られることを見いだし本発明に到達した。すなわち本発明の目的は、ゾルゲル法により得られる合成石英ガラス粉の純度及び品質を極めて高く維持し、更には発泡のない石英ガラス体を得ること、及びこれら目的に適したシリカゲルを得ることである。   As a result of further earnest studies based on the above findings, the present inventors have managed and reduced the amount of abnormal particles composed of scales adhering to the inner wall surface of the device, thereby reducing the target high quality. The inventors have found that synthetic quartz powder can be obtained and have reached the present invention. That is, the object of the present invention is to maintain the purity and quality of the synthetic quartz glass powder obtained by the sol-gel method extremely high, to obtain a quartz glass body without foaming, and to obtain a silica gel suitable for these purposes. .

本発明の要旨は、少なくとも反応容器を備えた反応装置を用い、該反応容器中でアルコキシシランを加水分解するゾルゲル反応を行なうことにより、シリカゲルを製造する方法であって、該反応容器の液又はシリカゲルが接する内壁部分を予め50℃以上で30分以上アルカリ洗浄することにより、該内壁部分に付着するスケール層を2mm以下にした後、上記ゾルゲル反応を行なうことを特徴とする、シリカゲルの製造法に存する。 The gist of the present invention is a method for producing silica gel by performing a sol-gel reaction that hydrolyzes alkoxysilane in a reaction vessel using at least a reaction vessel equipped with the reaction vessel, A method for producing silica gel, wherein the inner wall portion in contact with the silica gel is previously alkali washed at 50 ° C. or higher for 30 minutes or longer to reduce the scale layer attached to the inner wall portion to 2 mm or less, and then the sol-gel reaction is performed. Exist.

本発明により、不純物が少なく、かつ溶融時、泡が発生しない高品質な合成石英粉を得ることが出来る。   According to the present invention, it is possible to obtain a high-quality synthetic quartz powder that has few impurities and does not generate bubbles when melted.

以下、本発明を詳細に説明する。まず、本発明のシリカゲルは、ゾルゲル法で得られるものである。ここで、ゾルゲル法には一般に、(1)ヒュームドリシカ等を水に分散してなるシリカゾルを、ゲル化するコロイド分散法と、(2)アルコキシシラン等のケイ素化合物を、加水分解してシリカゲルとする加水分解法とがあるが、これらのうち加水分解法が、得られるゲルの物性、歩止まり、操作の簡便性等の点から好ましい。また、原料ケイ素化合物としては、ケイ素の塩、酸化物、アルコキシド等が挙げられるが、これらのうちアルコキシドすなわちアルコキシシランを用いれば不純物防止他得られるゲルの物性の点でも好ましい。   Hereinafter, the present invention will be described in detail. First, the silica gel of the present invention is obtained by a sol-gel method. Here, the sol-gel method generally includes (1) a colloidal dispersion method in which a silica sol formed by dispersing fumed deer in water is gelled, and (2) a silica compound obtained by hydrolyzing a silicon compound such as alkoxysilane. Among them, the hydrolysis method is preferable from the viewpoints of physical properties, yield, ease of operation, and the like of the gel obtained. Examples of the raw silicon compound include silicon salts, oxides, and alkoxides. Among these, the use of alkoxides, that is, alkoxysilanes, is preferable in terms of physical properties of the gel obtained in addition to preventing impurities.

加水分解法を具体的に説明すると、例えば、反応機にアルコキシシランと高純水を当量から10倍当量仕込み、静置もしくは撹拌下、加水分解縮合反応を進行させ、シリカゲルを得る。その後、これを粉砕及び/又は乾燥してドライゲル粉末とすることも出来る。用いられるアルコキシシランは、加水分解反応が生じるアルコキシシランであればいずれでもよいが、テトラメトキシシランやテトラエトキシシラン等、ケイ素原子に直接結合したアルキル基を有さないものが、ゲルの物性の点から好ましい。反応を促進する方法としては、酸やアルカリ触媒を用いても良い。この場合、金属を含まない触媒が好ましく、一般には有機酸やアンモニア水等がよい。こうして得られるシリカゲルは通常水分を数十%含んだウェットゲルであり、充分精製した原料を用いればNa,K等のアルカリ金属をはじめ金属不純物含有量を極めて低く抑えることができるため半導体製造用途、光ファイバー等光通信用途に適した高純度合成石英ガラスの前駆体となるものである。このウェットゲルを予め乾燥するか、或いはそのまま粉砕することにより、任意の粒度に調整する。ゲルでの粒度分布がこれを焼成して得られる合成石英ガラス粉の粒度分布を支配するため、目的とする合成石英ガラス粉の粒度分布を見込み、乾燥、焼成による粒子の収縮分を考慮して、シリカゲルの最適粒度を決めれば良い。   The hydrolysis method will be specifically described. For example, an alkoxysilane and high-pure water are charged in an equivalent amount to 10 times the equivalent amount, and the hydrolysis and condensation reaction is allowed to proceed with standing or stirring to obtain silica gel. Thereafter, this can be pulverized and / or dried to obtain a dry gel powder. The alkoxysilane used may be any alkoxysilane that undergoes a hydrolysis reaction, but tetramethoxysilane, tetraethoxysilane, or the like that does not have an alkyl group directly bonded to a silicon atom is the property of the gel. To preferred. As a method for promoting the reaction, an acid or an alkali catalyst may be used. In this case, a catalyst containing no metal is preferable, and generally an organic acid, aqueous ammonia, or the like is good. The silica gel thus obtained is usually a wet gel containing several tens of percent of water, and if a sufficiently refined raw material is used, the content of metal impurities including alkali metals such as Na and K can be suppressed to a very low level. It becomes a precursor of high-purity synthetic quartz glass suitable for optical communication applications such as optical fibers. The wet gel is dried in advance or pulverized as it is to adjust to an arbitrary particle size. Since the particle size distribution in the gel dominates the particle size distribution of the synthetic quartz glass powder obtained by firing the gel, the particle size distribution of the target synthetic quartz glass powder is expected, and the shrinkage of the particles due to drying and firing is taken into account. What is necessary is just to determine the optimal particle size of silica gel.

通常は、1000ミクロン以下、好ましくは900ミクロン以下のウェットゲルとし、これを100℃以上で加熱し水分及び加水分解反応で生成したアルコール等の有機成分等を除去して水分含有量30重量%以下、好ましくは20重量%以下、更に好ましくは1〜10重量%程度のドライゲルとすることができる。この加熱にさきがけるか或は加熱後に、分級することによりドライゲルの粒度分布を100〜500ミクロン程度としておけば、これを焼成して得られる合成石英ガラス粉の粒度分布を容易に望ましい範囲に制御することができる。   Usually, a wet gel of 1000 microns or less, preferably 900 microns or less, is heated at 100 ° C or more to remove moisture and organic components such as alcohol produced by hydrolysis reaction, and the moisture content is 30% by weight or less. The dry gel may preferably be 20% by weight or less, more preferably about 1 to 10% by weight. If the particle size distribution of the dry gel is set to about 100 to 500 microns by pre-heating or classification after heating, the particle size distribution of the synthetic quartz glass powder obtained by firing this is easily controlled within the desired range. can do.

ここで、本発明のシリカゲルは上述したようにゾルゲル法で得られるものであって、しかも以下に説明する異常粒子の個数が200個/10g以下、好ましくは100個/10g以下であることを特徴とする。ここで異常粒子とは、見掛上は通常のゾルゲル反応により得られたシリカゲル粒子と見分けがつかないが、ゾルゲル反応に用いられる反応装置内壁に付着し、硬く、緻密に固化したスケールが、正常なゾルゲル反応の生成物との接触により剥離し、混入したものである。このスケールが剥離して混入してなる異常粒子は、主成分は、正常なゾルゲル反応の生成物であるシリカゲルと類似しシロキサン結合(Si−O−Si)を主体とするものであるが、アルキル基、アルコキシ基等原料ケイ素化合物由来の有機基が多く残存し、焼成によっても多量のカーボン成分として残留する上これを除去するのが困難な程に固化している。また、この異常粒子は、装置内壁を構成する金属成分をもまき込んでいることが多く、得られる合成石英ガラス粉、ひいてはこれを溶融してなる石英ガラス体への金属不純物の混入を引起すおそれのあるものである。かかる異常粒子はカーボンを異常に多く含有し、容易に除去できない為、窒素ガス流通下、800℃で15分間加熱することにより、黒点として肉眼でも容易に検出、計測できるものである。このような異常粒子の個数を制御するには、ゲルに混入したこれらの異常粒子を除去してもよいが、望ましくは予め、ゲルの調製過程における混入を防止するのが望ましい。そのためにはゾルゲル反応の反応装置、すなわち反応容器、配管、粉砕機、乾燥器等、液又はゲルと接触する内壁部分を有する装置において、かかる内壁部分のスケール層を剥離限界厚み以下とした反応装置を用いるのが簡便である。スケール層を剥離限界厚み以下におさえるとは、スケールの剥離・脱落が実質的に無視できる範囲内の厚みとすることであり、通常は2mm以下である。よって2mm以上の厚みになったら、内壁部分を洗浄する。この洗浄方法は、スケール層を剥離限界厚み内に保つことができるものであれば特に限定されず、例えば、アルカリ洗浄等で行なわれる。効率良く洗浄するためには、アルカリ水(一般にカセイソーダが用いられる)を50℃以上好ましくは70℃以上に加温すると良い。洗浄時間は30分〜10時間、好ましくは、1〜4時間であり、アルカリ洗浄後は、純水にて数回〜数十回洗浄する。アルカリ洗浄の他、シリカゲルスラリーでの友洗いも有効である。尚、スケール層は、剥離限界厚み内であれば、内壁母材の保護層として有用であるため、10μm程度以上はスケール層を保持しているのが望ましい。   Here, the silica gel of the present invention is obtained by the sol-gel method as described above, and the number of abnormal particles described below is 200/10 g or less, preferably 100/10 g or less. And Here, abnormal particles are apparently indistinguishable from silica gel particles obtained by a normal sol-gel reaction, but the scale adhered to the inner wall of the reactor used for the sol-gel reaction and hard and densely solidified is normal. It is peeled and mixed by contact with a product of a sol-gel reaction. The abnormal particles formed by the separation of the scales are mainly composed of siloxane bonds (Si-O-Si) similar to silica gel, which is a product of normal sol-gel reaction. Many organic groups derived from the raw material silicon compound, such as groups and alkoxy groups, remain as a large amount of carbon components even after firing, and are solidified to such an extent that it is difficult to remove them. In addition, the abnormal particles often contain metal components constituting the inner wall of the apparatus, and cause the incorporation of metal impurities into the resulting synthetic quartz glass powder and, consequently, the quartz glass body obtained by melting it. There is a fear. Since such abnormal particles contain an abnormally large amount of carbon and cannot be easily removed, they can be easily detected and measured as black spots with the naked eye by heating at 800 ° C. for 15 minutes under a nitrogen gas flow. In order to control the number of such abnormal particles, these abnormal particles mixed in the gel may be removed, but it is desirable to prevent the contamination in the gel preparation process in advance. To that end, a reactor for a sol-gel reaction, that is, a reactor having an inner wall portion in contact with a liquid or gel, such as a reaction vessel, piping, pulverizer, dryer, etc. Is easy to use. Keeping the scale layer below the peeling limit thickness means that the thickness is within a range where the peeling and dropping of the scale can be substantially ignored, and is usually 2 mm or less. Therefore, when the thickness becomes 2 mm or more, the inner wall portion is cleaned. This cleaning method is not particularly limited as long as the scale layer can be kept within the peeling limit thickness, and is performed by, for example, alkali cleaning. In order to wash efficiently, alkaline water (caustic soda is generally used) is heated to 50 ° C. or higher, preferably 70 ° C. or higher. The washing time is 30 minutes to 10 hours, preferably 1 to 4 hours. After alkali washing, washing is performed several times to several tens of times with pure water. In addition to alkali cleaning, friend washing with silica gel slurry is also effective. In addition, since the scale layer is useful as a protective layer for the inner wall base material if the thickness is within the separation limit thickness, it is desirable to hold the scale layer for about 10 μm or more.

このようにして得られた本発明のシリカゲルを、更に焼成し残基のカーボン及びシラノールを除去し、閉孔させ合成石英ガラス粉とする。望ましい合成石英ガラス粉は、通常、75〜700ミクロン、好ましくは75〜400ミクロンの粒度分布(少なくとも90wt%以上が前記粒度分布内に含まれる)を示し、カーボン5ppm未満、シラノール50ppm以下である。本発明の、異常粒子の個数が制御されたシリカゲルを焼成することにより、かかる望ましい範囲物性を有し、溶融時、発泡のない高品質な合成石英ガラス粉を得ることができる。更に、本発明により得られる合成石英ガラス粉は、他元素の不純物含有量も極めて少ない、例えばFe,Crは1ppm以下、Na,Kは100ppb以下、のものとなる。これはスケールの混入、脱落等による壁面素材からの不純物混入が防止できるためと考えられる。   The silica gel of the present invention thus obtained is further baked to remove residual carbon and silanol, and closed to obtain a synthetic quartz glass powder. Desirable synthetic quartz glass powder usually exhibits a particle size distribution of 75 to 700 microns, preferably 75 to 400 microns (at least 90 wt% or more is included in the particle size distribution), and has less than 5 ppm carbon and 50 ppm silanol or less. By firing the silica gel of the present invention in which the number of abnormal particles is controlled, a high-quality synthetic quartz glass powder having such desirable range of physical properties and no foaming when melted can be obtained. Further, the synthetic quartz glass powder obtained by the present invention has a very small impurity content of other elements, for example, Fe and Cr are 1 ppm or less, and Na and K are 100 ppb or less. This is thought to be due to the prevention of contamination from the wall surface material due to scale contamination and dropout.

次に、本発明を実施例により更に詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
[実施例1]
ジャケット加熱型SUS304製反応機にテトラメトキシシランと、これに対して5倍当量の水を仕込み、65℃で30分間反応させ、ウエットゲルを得た。次いでSUS304製コーンミル型粉砕機でウエットゲルを粉砕し、SUS304製コニカルドライヤーに得られた粉砕ウエットゲルを仕込み、転動させながら、140℃で3時間乾燥した後、本コニカルドライヤー内でこのゲルを4時間水洗・乾燥し、水分含有量約10重量%のドライゲルを得た。
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.
[Example 1]
A jacket heating type SUS304 reactor was charged with tetramethoxysilane and 5 equivalents of water, and reacted at 65 ° C. for 30 minutes to obtain a wet gel. Next, the wet gel was pulverized with a SUS304 corn mill type pulverizer, charged with the pulverized wet gel obtained from a SUS304 conical dryer, dried at 140 ° C. for 3 hours while rolling, and then the gel was dried in the conical dryer. It was washed with water for 4 hours and dried to obtain a dry gel having a water content of about 10% by weight.

こうして得られたドライゲルを分級し100〜500ミクロンの粒度分布(分級前の95重量%以上)を得た。分級後のドライゲルのうち10gを精秤し、電気炉中、窒素ガス流通下、800℃で15分間加熱した後、電気炉から取りだし、目視により黒点粒子の数を計測することによりドライゲル中の異常粒子の数を調べた所、10個であった。また、分級後のドライゲルを回転炉中、空気流通下、室温から1200℃まで4時間かけて昇温して焼成し、合成石英ガラス粉を得た。得られた合成石英ガラス粉50gを目視観察した所、黒点粒子の個数は1個であった。この合成石英ガラス粉を公知であるベルヌーイ溶融装置を用い、1700℃で溶融し10gの石英ガラスインゴットを得た。目視観察した所、このインゴットに泡は見出されず、良質のものであった。   The dry gel thus obtained was classified to obtain a particle size distribution of 100 to 500 microns (95% by weight or more before classification). 10g of the dry gel after classification is accurately weighed, heated in an electric furnace under nitrogen gas flow at 800 ° C for 15 minutes, taken out from the electric furnace, and visually measured for the number of sunspot particles. When the number of particles was examined, it was 10. Moreover, the dry gel after the classification was baked by raising the temperature from room temperature to 1200 ° C. over 4 hours in a rotary furnace under air circulation to obtain synthetic quartz glass powder. When 50 g of the obtained synthetic quartz glass powder was visually observed, the number of black spot particles was one. This synthetic quartz glass powder was melted at 1700 ° C. using a known Bernoulli melting apparatus to obtain 10 g of a quartz glass ingot. As a result of visual observation, no bubbles were found in the ingot, and the product was of good quality.

[実施例2]
実施例1と同様な方法で、反応・粉砕・乾燥・分級の操作を2〜50回繰り返した。分級後のドライゲル10g中、実施例1同様の800℃加熱により黒点として検出した異常粒子の数はそれぞれ、10回目は50個、20回目は45個、30回目は55個、40回目は60個、50回目は70個であった。10回目の操作により得られた分級後のドライゲル中の金属不純物量を測定したところ、Na,Kは原子吸光法により各々10ppb以下であり、Cr,FeはICP(高周波誘導プラズマ法)により各々10ppb以下、0.03ppmであった。また、50回目の操作後、コニカルドライヤー内壁のスケール層の厚みを測ったところ、1mmであった。
[Example 2]
In the same manner as in Example 1, the operations of reaction, pulverization, drying and classification were repeated 2 to 50 times. In 10 g of the dry gel after classification, the number of abnormal particles detected as black spots by heating at 800 ° C. as in Example 1 was 50 for the 10th, 45 for the 20th, 55 for the 30th, and 60 for the 40th. The 50th time was 70 pieces. When the amount of metal impurities in the dry gel after classification obtained by the tenth operation was measured, Na and K were each 10 ppb or less by atomic absorption method, and Cr and Fe were 10 ppb each by ICP (high frequency induction plasma method). Hereinafter, it was 0.03 ppm. Further, after the 50th operation, the thickness of the scale layer on the inner wall of the conical dryer was measured and found to be 1 mm.

実施例1同様の方法でこれらのゲルの焼成を行ったところ、得られた合成石英ガラス粉中の黒点粒子の数は、各々50g中1〜3個の範囲内であった。更にこれらの合成石英ガラス粉を、実施例1同様の方法で溶融し10gのインゴットとしたところ、いずれも泡の見出されない、良質のものが得られた。更に、実施例1同様の操作により反応・粉砕・乾燥・分級を通算100回まで繰り返した後、全装置をカ性ソーダ(0.1%液)80℃で3時間、真空引きしながら洗浄し、装置内壁のスケールを除去した。アルカリ洗浄後の1回目、すなわち通算101回目の反応・粉砕・乾燥・分級を行ったところ、実施例1同様の800℃加熱により黒点として検出した異常粒子の数はゲル10g中、2個であった。この分級後のドライゲルについても実施例1同様の方法により焼成を行ったところ、得られた合成石英ガラス粉は、50g中黒点粒子は0個であった。また、この合成石英ガラス粉を実施例1同様の方法で溶融し10gのインゴットとしたところ、泡のない、良質なものであった。   When these gels were baked in the same manner as in Example 1, the number of black spot particles in the obtained synthetic quartz glass powder was in the range of 1 to 3 in 50 g. Furthermore, when these synthetic quartz glass powders were melted in the same manner as in Example 1 to obtain 10 g of ingots, none of the bubbles were found and good quality products were obtained. Further, the reaction, pulverization, drying and classification were repeated up to 100 times in the same manner as in Example 1, and then the entire apparatus was washed with caustic soda (0.1% solution) at 80 ° C. for 3 hours while evacuating. The scale of the inner wall of the apparatus was removed. When the reaction, pulverization, drying, and classification were performed for the first time after alkali washing, that is, 101 times in total, the number of abnormal particles detected as black spots by heating at 800 ° C. as in Example 1 was 2 in 10 g of the gel. It was. The dry gel after classification was also fired in the same manner as in Example 1. As a result, the obtained synthetic quartz glass powder had no black spot particles in 50 g. Further, when this synthetic quartz glass powder was melted in the same manner as in Example 1 to obtain a 10 g ingot, it was of a high quality without bubbles.

[比較例1]
実施例1と同様な方法により反応・粉砕・乾燥・分級の操作を100回繰り返した。100回目に得られた分級後のドライゲル10g中、実施例1同様の800℃加熱により黒点として検出した異常粒子の数は255個であった。このドライゲルを実施例1同様の方法で焼成したところ、得られた合成石英ガラス粉50g中の黒点粒子は20個であった。更にこの合成石英ガラス粉を実施例1同様の方法で溶融したところ、得られた10gのインゴットは目視により20個の泡が見出されるもので、石英ガラス成形体としての使用に耐えるものではなかった。尚、99回目の操作後、コニカルドライヤー内壁のスケール層の厚みは、2mmを超えていた。
[Comparative Example 1]
The reaction, pulverization, drying and classification operations were repeated 100 times in the same manner as in Example 1. In 10 g of the dry gel after classification obtained at the 100th time, the number of abnormal particles detected as black spots by heating at 800 ° C. as in Example 1 was 255. When this dry gel was baked in the same manner as in Example 1, there were 20 black spot particles in 50 g of the obtained synthetic quartz glass powder. Furthermore, when this synthetic quartz glass powder was melted in the same manner as in Example 1, the obtained 10 g of ingot was found to have 20 bubbles by visual observation and was not resistant to use as a quartz glass molded body. . After the 99th operation, the thickness of the scale layer on the inner wall of the conical dryer exceeded 2 mm.

Claims (3)

少なくとも反応容器を備えた反応装置を用い、該反応容器中でアルコキシシランを加水分解するゾルゲル反応を行なうことにより、シリカゲルを製造する方法であって、
該反応容器の液又はシリカゲルが接する内壁部分を予め50℃以上で30分以上アルカリ洗浄することにより、該内壁部分に付着するスケール層を2mm以下にした後、上記ゾルゲル反応を行なう
ことを特徴とする、シリカゲルの製造法。
A method for producing silica gel by performing a sol-gel reaction in which at least a reaction vessel equipped with a reaction vessel is used to hydrolyze alkoxysilane in the reaction vessel,
The inner wall portion in contact with the liquid in the reaction vessel or the silica gel is previously washed with alkali at 50 ° C. or higher for 30 minutes or longer to reduce the scale layer adhering to the inner wall portion to 2 mm or less, and then the sol-gel reaction is performed. A method for producing silica gel.
該反応容器として、ジャケット加熱型反応機を使用する
ことを特徴とする、請求項1記載のシリカゲルの製造法。
The method for producing silica gel according to claim 1, wherein a jacket heating type reactor is used as the reaction vessel.
該反応容器の内壁が金属成分からなる
ことを特徴とする、請求項1又は請求項2に記載のシリカゲルの製造法
The method for producing silica gel according to claim 1 or 2, wherein the inner wall of the reaction vessel comprises a metal component .
JP2006067480A 2006-03-13 2006-03-13 Silica gel and its production method, synthetic quartz glass powder and its production method, and synthetic quartz glass molded body and its production method Expired - Fee Related JP4389890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006067480A JP4389890B2 (en) 2006-03-13 2006-03-13 Silica gel and its production method, synthetic quartz glass powder and its production method, and synthetic quartz glass molded body and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006067480A JP4389890B2 (en) 2006-03-13 2006-03-13 Silica gel and its production method, synthetic quartz glass powder and its production method, and synthetic quartz glass molded body and its production method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1706495A Division JPH08208214A (en) 1995-01-12 1995-02-03 Silica gel and its production, and production of synthetic silica glass powder

Publications (2)

Publication Number Publication Date
JP2006193423A JP2006193423A (en) 2006-07-27
JP4389890B2 true JP4389890B2 (en) 2009-12-24

Family

ID=36799779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006067480A Expired - Fee Related JP4389890B2 (en) 2006-03-13 2006-03-13 Silica gel and its production method, synthetic quartz glass powder and its production method, and synthetic quartz glass molded body and its production method

Country Status (1)

Country Link
JP (1) JP4389890B2 (en)

Also Published As

Publication number Publication date
JP2006193423A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP5637149B2 (en) Synthetic amorphous silica powder and method for producing the same
JP5648640B2 (en) Synthetic amorphous silica powder
US20110262336A1 (en) Production of solar-grade silicon from silicon dioxide
US20110262339A1 (en) Production of solar-grade silicon from silicon dioxide
US6071838A (en) Silica gel, synthetic quartz glass powder, quartz glass shaped product molding, and processes for producing these
JP5724881B2 (en) Synthetic amorphous silica powder and method for producing the same
JP2011207719A (en) Synthetic amorphous silica powder and method for producing the same
JP2012211070A (en) Synthetic amorphous silica powder and method for producing the same
JPH072513A (en) Production of synthetic quartz glass powder
JP5686099B2 (en) Synthetic amorphous silica powder and method for producing the same
JP4389890B2 (en) Silica gel and its production method, synthetic quartz glass powder and its production method, and synthetic quartz glass molded body and its production method
JP4068225B2 (en) Silica glass powder and method for producing the same
JP3970372B2 (en) Metal oxide powder and method for producing the same
JPH08208214A (en) Silica gel and its production, and production of synthetic silica glass powder
JP2000169163A (en) Synthetic quartz glass powder containing aluminum, synthetic quartz glass formed body containing aluminum, and production of the same
JP3689926B2 (en) High-purity synthetic quartz glass powder, method for producing the same, and high-purity synthetic quartz glass molded body using the same
JP3859303B2 (en) Method for producing synthetic quartz glass powder and quartz glass molded body
JPH10226513A (en) Metal multiple oxide powder and its production
JP2014015380A (en) Synthetic silica glass powder and method for producing the same and quartz crucible for pulling silicon single crystal
KR102622058B1 (en) Manufacturing method of high purity quartz powder
JPH11349340A (en) Production of synthetic silica glass powder and production of silica glass molded form
JP3661026B2 (en) Method for producing cristobalite particles
JPH08208217A (en) Production of synthetic quartz glass powder and molded material of quartz glass
JPH11349337A (en) Production of synthetic silica glass powder and production of silica glass molded form
JP2002020127A (en) Synthetic quartz glass powder and synthetic quartz glass formed body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees