JP4389833B2 - Cooling water treatment method and treatment equipment - Google Patents

Cooling water treatment method and treatment equipment Download PDF

Info

Publication number
JP4389833B2
JP4389833B2 JP2005115954A JP2005115954A JP4389833B2 JP 4389833 B2 JP4389833 B2 JP 4389833B2 JP 2005115954 A JP2005115954 A JP 2005115954A JP 2005115954 A JP2005115954 A JP 2005115954A JP 4389833 B2 JP4389833 B2 JP 4389833B2
Authority
JP
Japan
Prior art keywords
cooling water
water
cooling
vacuum evaporation
circulation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005115954A
Other languages
Japanese (ja)
Other versions
JP2006289303A (en
Inventor
裕美 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005115954A priority Critical patent/JP4389833B2/en
Publication of JP2006289303A publication Critical patent/JP2006289303A/en
Application granted granted Critical
Publication of JP4389833B2 publication Critical patent/JP4389833B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Water Treatments (AREA)
  • Blast Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)

Description

本発明は、金属製錬や製鉄、発電設備等の冷却系において、循環使用される冷却水の処理方法と処理設備に関する。より詳しくは、本発明は、冷却水を循環使用する冷却系において、冷却水の一部を抜き出して新たな冷却水を補給する際に、この抜き出した冷却水を循環系の冷却水が保有する熱量を利用して蒸発減量することによって、廃液処理の負担を軽減すると共に冷却水の有効利用を図る冷却水の処理方法と処理設備に関する。 The present invention relates to a treatment method and treatment equipment for cooling water that is circulated in a cooling system such as metal smelting, iron making, and power generation equipment. More specifically, in the cooling system in which the cooling water is circulated and used, when the cooling water is extracted and replenished with new cooling water, the cooling water in the circulation system holds the extracted cooling water. The present invention relates to a cooling water treatment method and treatment equipment that reduces the burden of waste liquid treatment by reducing evaporation by using heat, and at the same time effectively uses cooling water.

金属製錬や製鉄、発電設備等の冷却系においては多量の冷却水が使用されている。例えば金属製錬では溶融炉等から排出された高温の溶融スラグを水砕して再資源化している(特許文献1)。この水砕処理の際に多量の水を使用するため、水資源の有効利用や処理コストの低減等のために冷却水を冷却工程に循環して再使用している。このような冷却水が循環使用される冷却系では、通常、循環する冷却水の汚染や劣化を抑制するため、冷却水の一部を抜き出して新たな冷却水を補給している。 A large amount of cooling water is used in cooling systems such as metal smelting, iron making, and power generation facilities. For example, in metal smelting, high-temperature molten slag discharged from a melting furnace or the like is granulated and recycled (Patent Document 1). Since a large amount of water is used in the water granulation treatment, the cooling water is circulated and reused in the cooling process in order to effectively use water resources and reduce processing costs. In such a cooling system in which cooling water is circulated, in order to suppress contamination and deterioration of the circulating cooling water, a part of the cooling water is extracted and replenished with new cooling water.

例えば、溶融スラグの水砕工程では、冷却水が溶融スラグに接触したときに汚染物が溶け込み、冷却水の循環使用を繰り返すごとに汚染物が次第に蓄積するので、冷却水の一部を定期的に抜き出して系外に排出し、新しい水を補給している。具体的には、図2に示すように、例えば、1500t/Hrの冷却水を水砕工程に循環して、溶融スラグ約59t/Hrを連続して水砕する場合、1時間当たりの循環使用ごとに約3t/Hrの水量が水砕スラグに付着して系外に搬出され、さらに約10t/Hrの水量を系外に抜き出し、約13t/Hrの水を補給しており、補給に必要な水量が多い。 For example, in the process of granulating molten slag, contaminants dissolve when the cooling water comes into contact with the molten slag, and the contaminants gradually accumulate every time the cooling water is circulated. The water is extracted out of the system and replenished with new water. Specifically, as shown in FIG. 2, for example, when circulating cooling water of 1500 t / Hr to the water granulation step and continuously granulating about 59 t / Hr of molten slag, circulation use per hour About 3t / Hr of water adheres to the granulated slag every time and is carried out of the system. Further, about 10t / Hr of water is taken out of the system and about 13t / Hr of water is replenished. There is a lot of water.

また、従来の水砕工程では、溶融スラグの熱量をそのまま系外に放出しており、エネルギーが無駄に失われている。具体的には、例えば、溶融スラグと接触した冷却水は水温が上昇しているので、この水を冷却水として循環使用するには水温を下げる必要があり、水温の上昇した冷却水を海水によって冷却している。この冷却に使用した海水は熱交換によって水温が上昇しているが、従来はそのまま海に排出しており、熱エネルギーが無駄に失われている。 Moreover, in the conventional water granulation process, the calorie | heat amount of molten slag is discharged | emitted out of the system as it is, and energy is lost wastefully. Specifically, for example, the cooling water that has come into contact with the molten slag has an increased water temperature. Therefore, in order to circulate and use this water as cooling water, it is necessary to lower the water temperature. It is cooling. Although the seawater used for this cooling has risen in water temperature due to heat exchange, it has been discharged into the sea as it is and heat energy has been lost wastefully.

金属製錬や製鉄、発電設備などにおいても同様であり、冷却水を循環使用する際に、従来は多量の冷却水が系外に放出されており、水資源および熱エネルギーが無駄に失われている。
特開2000−34528号公報
The same is true for metal smelting, iron making, power generation facilities, etc., and when cooling water is circulated, a large amount of cooling water is conventionally discharged outside the system, and water resources and heat energy are lost wastefully. Yes.
JP 2000-34528 A

本発明は、冷却水を循環使用する従来の冷却系における上記問題を解決したものであり、冷却水が有する熱量を有効に利用して蒸発処理を行うことによって廃液量を減少し、廃液処理の負担を軽減すると共に蒸発水を循環系に戻して補給水量を低減した冷却水の処理方法と処理設備を提供する。 The present invention solves the above-mentioned problem in the conventional cooling system that circulates and uses cooling water, and reduces the amount of waste liquid by performing the evaporation process by effectively using the amount of heat that the cooling water has. Provided is a cooling water treatment method and treatment equipment that reduces the burden and reduces the amount of makeup water by returning evaporated water to the circulation system.

本発明によれば、以下の構成を有する冷却水の処理方法と、その処理設備が提供される。
〔1〕水温が上昇した冷却水を冷却して循環使用する冷却系において、水温上昇した冷却水の一部を循環系から抜き出して真空蒸発部に導き、一方、循環系から抜き出さない水温上昇した冷却水を上記真空蒸発部の熱交換部に導き、この熱交換器に導入した冷却水の熱を利用して真空蒸発部の冷却水を真空蒸発させ、蒸発残を系外に排出し、蒸気を冷却凝縮して循環系に戻して再使用することを特徴とする冷却水の処理方法。
〔2〕冷却水が、溶融スラグの水砕用冷却水、炉の水冷ジャケットの冷却水、製鉄の圧延工程における冷却水、または発電設備の冷却系を循環する冷却水である上記[1]に記載する冷却水の処理方法。
〔3〕溶融スラグを水砕処理する際に、溶融スラグに接触して水温が上昇した冷却水を冷却して再び水砕用の冷却水として循環使用する方法において、水温上昇した冷却水の一部を循環系から抜き出して真空蒸発部に導き、一方、循環系から抜き出さない水温上昇した冷却水を上記真空蒸発部の熱交換部に導き、この冷却水の熱を利用して真空蒸発部の冷却水を真空蒸発させ、蒸発残を系外に排出する一方、蒸気を海水等の自然水によって冷却凝縮して循環系に戻し、また真空蒸発部の熱交換を経た循環系の冷却水を海水等の自然水によって冷却して再使用する上記[1]に記載する冷却水の処理方法。
〔4〕循環系から抜き出した冷却水に窒素ガスを導入して溶存ガスを冷却水から追い出した後に該冷却水を真空蒸発させる上記[1]〜上記[3]の何れかに記載する冷却水の処理方法。
〔5〕真空蒸発部で熱交換を行った循環系の冷却水が保有する熱をさらに別系統の廃液の加熱源として利用する上記[1]〜上記[4]の何れかに記載する冷却水の処理方法。
〔6〕スラグ水砕水の処理設備であって、冷却水を循環使用するための循環系、溶融スラグに冷却水を接触させて砕く水砕部、溶融スラグに接触して水温上昇した冷却水の一部を循環系から抜き出して蒸発させる真空蒸発部、循環系から抜き出さない水温上昇した冷却水を導入して真空蒸着部の加熱源とする熱交換部、真空蒸発した蒸気を海水等の自然水によって冷却する凝縮部、この凝縮水を循環系に戻す管路、蒸発残を系外に排出する管路、循環系の冷却水を海水等の自然水によって冷却する冷却部を有することを特徴とするスラグ水砕水の処理設備。
〔7〕冷却水に窒素ガスを導入して溶存ガスを追い出すガス導入部が真空蒸発部の冷却水導入部分に設けられている上記[6]に記載するスラグ水砕水の処理設備。
According to this invention, the processing method of the cooling water which has the following structures, and its processing equipment are provided.
[1] In the cooling system where the water temperature is used circulated to cool the cooling water rises, leading to a vacuum evaporation unit by extracting part of the water temperature up cooling water from the circulation, whereas, water temperature rise is not withdrawn from circulation Led to the heat exchange part of the vacuum evaporation part, utilizing the heat of the cooling water introduced into this heat exchanger, the cooling water of the vacuum evaporation part is vacuum evaporated, the evaporation residue is discharged out of the system, A method for treating cooling water, wherein the steam is cooled and condensed, returned to the circulation system, and reused.
[2] In the above [1], the cooling water is a cooling water for granulating molten slag, a cooling water for a furnace water cooling jacket, a cooling water in a steelmaking rolling process, or a cooling water circulating in a cooling system of a power generation facility A cooling water treatment method to be described.
[3] The molten slag during the granulated processing, a method of recycling a contact with the molten slag cooling water temperature rises as cooling water again to cool water砕用, the water temperature up cooling water one The cooling water whose temperature has risen not to be extracted from the circulation system is led to the heat exchange section of the vacuum evaporation section, and the heat of the cooling water is used to extract the vacuum evaporation section from the circulation system. The cooling water is evaporated in a vacuum and the evaporation residue is discharged out of the system, while the steam is cooled and condensed with natural water such as seawater and returned to the circulation system. The cooling water treatment method according to the above [1], wherein the cooling water is cooled and reused by natural water such as seawater.
[4] The cooling water according to any one of [1] to [3] above, wherein nitrogen gas is introduced into the cooling water extracted from the circulation system and the dissolved gas is driven out of the cooling water, and then the cooling water is vacuum evaporated. Processing method.
[5] The cooling water according to any one of [1] to [4] above, wherein the heat retained in the cooling water in the circulation system that has exchanged heat in the vacuum evaporator is used as a heating source for the waste liquid in another system. Processing method.
[6] Treatment equipment for slag water crushed water, a circulation system for circulating cooling water, a pulverized part for bringing cooling water into contact with molten slag and crushing it, and a cooling water having an increased water temperature in contact with molten slag A vacuum evaporation part that extracts a part of the water from the circulation system and evaporates, a heat exchange part that introduces cooling water whose water temperature has not been extracted from the circulation system and uses it as a heating source for the vacuum evaporation part , It has a condensing part that cools with natural water, a pipe that returns the condensed water to the circulation system, a pipe that discharges evaporation residue outside the system, and a cooling part that cools the cooling water in the circulation system with natural water such as seawater. A slag crushed water treatment facility.
[7] The slag crushed water treatment facility according to the above [6], wherein a gas introduction part that introduces nitrogen gas into the cooling water and drives out the dissolved gas is provided in the cooling water introduction part of the vacuum evaporation part.

本発明の処理方法は、冷却水を循環使用する際に、循環系から抜き出した一部の冷却水を真空蒸発部に導き、循環系から抜き出さない冷却水を真空蒸発部の熱交換部に導入して該冷却水が保有する熱を利用して真空蒸発させ、蒸発残を系外に排出するので、排出量が大幅に減少し、廃液処理の負担が格段に軽減される。また、真空蒸発された蒸気を冷却凝縮して循環系に戻し再使用するので、補給に必要な水量も大幅に低減される。さらに、冷却水自体が保有する熱量を利用して真空蒸発させるので、熱エネルギーの有効な利用が図れる。
In the treatment method of the present invention, when the cooling water is circulated and used, a part of the cooling water extracted from the circulation system is guided to the vacuum evaporation section, and the cooling water not extracted from the circulation system is supplied to the heat exchange section of the vacuum evaporation section. Introducing and evaporating in vacuum using the heat held by the cooling water and discharging the evaporation residue to the outside of the system greatly reduces the amount of discharge and remarkably reduces the burden of waste liquid treatment. Further, since the vapor evaporated in vacuum is cooled and condensed and returned to the circulation system for reuse, the amount of water required for replenishment is greatly reduced. Furthermore, since the heat is held in the cooling water and evaporated in vacuum, the heat energy can be effectively used.

例えば、溶融スラグ水砕水の処理系において、本発明の処理方法は、溶融スラグの水砕に使用した冷却水の一部を循環系から抜き出して真空蒸発させ、その蒸発残を系外に排出するので、廃液量が格段に減少する。また、溶融スラグから冷却水に混入した汚染物は真空蒸発の際に残留物となって残るので、蒸気を冷却凝縮して循環系に戻すことができ、多量の新たな水を補給する必要がない。従って、水資源の有効利用を図ることができる。さらに本発明の処理方法では、冷却水や蒸発水を冷却する自然水の使用量は増加せず、また凝縮水は蒸発して回収したものであるので、純度の高い水が得られる。 For example, in a treatment system for molten slag granulated water, the treatment method of the present invention extracts a part of the cooling water used for molten slag granulation from the circulation system, evaporates it in vacuum, and discharges the evaporation residue outside the system. As a result, the amount of waste liquid is significantly reduced. In addition, since contaminants mixed into the cooling water from the molten slag remain as residues during vacuum evaporation, the steam can be cooled and condensed and returned to the circulation system, and a large amount of new water must be replenished. Absent. Therefore, effective use of water resources can be achieved. Furthermore, in the treatment method of the present invention, the amount of natural water used for cooling the cooling water and the evaporating water does not increase, and the condensed water is recovered by evaporation, so that highly pure water can be obtained.

また、本発明の処理方法は、溶融スラグと接触して水温が上昇した冷却水の保有する熱量によって真空蒸発を行うので、冷却系の熱エネルギーを有効に利用することができ、エネルギーコストを低減することができる。 In addition, since the treatment method of the present invention performs vacuum evaporation by the amount of heat held in the cooling water whose water temperature has increased due to contact with the molten slag, the thermal energy of the cooling system can be used effectively and the energy cost can be reduced. can do.

本発明の処理方法は、以上のような金属製錬における溶融スラグの水砕用冷却水の他に、溶融炉や製錬炉等の各種炉の水冷ジャケットを循環する冷却水、製鉄の圧延工程の冷却系において循環使用される冷却水、または発電設備の冷却系を循環する冷却水などに広く適用することができる。 The treatment method of the present invention is a cooling process for circulating water cooling jackets of various furnaces such as a melting furnace and a smelting furnace, in addition to the cooling water for granulating molten slag in metal smelting as described above, and a rolling process for iron making. The present invention can be widely applied to cooling water that is circulated and used in the cooling system of this type, or cooling water that circulates in the cooling system of power generation equipment.

本発明に係る処理方法は、水温が上昇した冷却水を冷却して循環使用する冷却系において、水温上昇した冷却水の一部を循環系から抜き出して真空蒸発部に導き、一方、循環系から抜き出さない水温上昇した冷却水を上記真空蒸発部の熱交換部に導き、この熱交換器に導入した冷却水の熱を利用して真空蒸発部の冷却水を真空蒸発させ、蒸発残を系外に排出し、蒸気を冷却凝縮して循環系に戻して再使用することを特徴とする冷却水の処理方法である。
Processing method according to the present invention is a cooling system where the water temperature is used circulated to cool the cooling water rises, leading to a vacuum evaporation unit by extracting part of the water temperature up cooling water from the circulation, whereas, from the circulatory system The cooling water whose temperature has not been withdrawn is led to the heat exchange section of the vacuum evaporation section, and the cooling water in the vacuum evaporation section is vacuum evaporated using the heat of the cooling water introduced into the heat exchanger, and the evaporation residue is systemized. It is a cooling water treatment method characterized in that it is discharged outside, the steam is cooled and condensed, returned to the circulation system, and reused.

以下、本発明の冷却水の処理方法を金属製錬における溶融スラグの水砕用冷却水を例として説明する。本発明の処理方法ないし処理設備の概略を図1に示す。図示するように、本発明の処理システムは、冷却水を循環使用するための循環系40を有しており、溶融スラグを冷却水に接触させて砕く水砕部10と、循環系の冷却水を海水等の自然水によって冷却する冷却部50が循環系40に設けられている。なお、説明の都合上、海水や河川水等を自然水と云う。処理コストを低減するうえで自然水の利用が有利である。 Hereinafter, the cooling water treatment method of the present invention will be described by taking, as an example, cooling water for granulating molten slag in metal smelting. An outline of the processing method or processing equipment of the present invention is shown in FIG. As shown in the figure, the treatment system of the present invention has a circulation system 40 for circulating and using cooling water, and a granulating unit 10 that crushes molten slag in contact with cooling water, and cooling water for the circulation system. The cooling system 50 is provided in the circulation system 40 to cool the water with natural water such as seawater. For convenience of explanation, seawater and river water are referred to as natural water. Use of natural water is advantageous in reducing the treatment cost.

本発明の処理方法システムは、さらに水温上昇した冷却水の一部を循環系から抜き出して蒸発させる真空蒸発部20、循環系から抜き出さない水温上昇した冷却水が保有する熱を加熱源とする真空蒸着部の熱交換部21、真空蒸発部の真空ポンプ24、真空蒸発した蒸気を海水等の自然水によって冷却する凝縮部30、凝縮部に設けた蒸気と海水との熱交換部31、蒸気を冷却凝縮した凝縮水を循環系に戻す管路32、蒸発残を系外に排出する管路22が循環系40に設けられている。さらに、循環系40には冷却水の補給用管路60が接続している。また、好ましくは、冷却水に窒素ガスを導入して溶存ガスを追い出すガス導入部23が真空蒸発部20の冷却水導入部分に設けられている。
Processing method system of the present invention, further a water temperature elevated vacuum evaporation section 20 for a part of the coolant evaporated withdrawn from circulation, heat heat source temperature up cooling water does not withdrawn from circulation's Heat exchanging part 21 of the vacuum evaporation part, vacuum pump 24 of the vacuum evaporation part, condensing part 30 for cooling the vacuum evaporated steam with natural water such as sea water, heat exchanging part 31 between steam and sea water provided in the condensing part, steam A conduit 32 for returning condensed water cooled and condensed to the circulation system and a conduit 22 for discharging the evaporation residue outside the system are provided in the circulation system 40. Further, a cooling water supply pipe 60 is connected to the circulation system 40. Preferably, a gas introduction part 23 for introducing a nitrogen gas into the cooling water to drive out the dissolved gas is provided in the cooling water introduction part of the vacuum evaporation part 20.

水砕部10において、溶融スラグに冷却水を接触させる方法および手段・設備は通常のものでよい。溶融スラグは冷却水によって急激に冷却されることによって熱歪みを生じて割れ、細粒になる。この水砕スラグはセメント等の資源として再利用される。 In the granulated portion 10, the method and means / equipment for bringing the cooling water into contact with the molten slag may be normal. When the molten slag is rapidly cooled by the cooling water, the molten slag is cracked into fine particles by causing thermal distortion. This granulated slag is reused as a resource such as cement.

水砕部10において溶融スラグに接触した冷却水は例えば水温が約55℃に上昇する。本発明の処理システムは、この水温が上昇した冷却水が保有する熱を利用して、循環系から抜き出した冷却水を真空蒸発させる。図示する例では、水砕部10を経過した循環系40の管路に真空蒸発部20が設けられている。 The cooling water that has come into contact with the molten slag in the granulated portion 10 has a water temperature, for example, rising to about 55 ° C. In the treatment system of the present invention, the cooling water extracted from the circulation system is vacuum-evaporated using the heat held by the cooling water whose temperature has risen. In the illustrated example, the vacuum evaporation unit 20 is provided in the pipeline of the circulation system 40 that has passed through the water granulating unit 10.

真空蒸発部20の冷却水導入部分にはガス導入部23が設けられている。溶融スラグに接触した冷却水にはスラグからガス成分が混入して溶存ガスが含まれている場合がある。この溶存ガス量が多いと冷却水を100℃以下で蒸発させるための真空度を保つのが難しくなるので、このような場合には、真空蒸発部20の冷却水導入部分にガス導入部23を設け、循環系から抜き出した冷却水に窒素ガス等を導入して溶存ガスを追い出した後に真空蒸発させると良い。 A gas introduction part 23 is provided in the cooling water introduction part of the vacuum evaporation part 20. The cooling water that has contacted the molten slag may contain dissolved gas due to gas components mixed from the slag. If the amount of dissolved gas is large, it is difficult to maintain a degree of vacuum for evaporating the cooling water at 100 ° C. or lower. In such a case, the gas introduction part 23 is provided in the cooling water introduction part of the vacuum evaporation part 20. It is preferable to evaporate in vacuum after introducing nitrogen gas or the like into the cooling water extracted from the circulation system to drive out the dissolved gas.

真空蒸発部20には熱交換部21が設けられている。該熱交換部21には、図1に示すように、循環系から抜き出さない水温上昇した冷却水が導入される。該熱交換部21は、例えば真空蒸発部20を貫通する多数のパイプ(図示省略)によって形成すれば良く、該パイプは循環系40の一部を形成しており、溶融スラグに接触して水温が上昇した冷却水が上記パイプを流れる間に、この冷却水の保有する熱量によって真空蒸発部20が加熱され、循環系から抜き出されて真空蒸発部20に導かれた冷却水が蒸発する。
The vacuum evaporation unit 20 is provided with a heat exchange unit 21. As shown in FIG. 1, cooling water having an increased water temperature that is not extracted from the circulation system is introduced into the heat exchange unit 21. The heat exchanging portion 21 may be formed by, for example, a large number of pipes (not shown) penetrating the vacuum evaporation portion 20, and the pipe forms a part of the circulation system 40. While the cooling water that has risen flows through the pipe, the vacuum evaporation unit 20 is heated by the amount of heat held by the cooling water, and the cooling water extracted from the circulation system and guided to the vacuum evaporation unit 20 evaporates.

例えば、水砕部10を経過した冷却水は溶融スラグとの接触によって約55℃前後に上昇した冷却水(循環系40から抜き出さない冷却水)を熱交換部21に導き、真空蒸発部20を加熱する。真空蒸発部20は真空ポンプ24によって適度な真空に保たれており、循環系40から抜き出した冷却水を真空下に導くことによって、約55℃程度の温度下で蒸発させることができる。真空蒸発部20は減圧密閉容器によって形成することができる。なお、真空ポンプ24は多量の水蒸気が入り込まないように凝縮部30の最後部に設けると良い。真空蒸発部20と凝縮部30とは真空ポンプ24の吸引によって該真空蒸発部20を真空に保つのに十分な口径の管路25によって連通されている。また、真空蒸発部20には補助加熱用のヒータを設けてもよい。熱交換部21を経過した冷却水は熱交換によって水温が約50℃前後に低下し、これを冷却部50に導いてさらに冷却する。


For example, the cooling water that has passed through the water granulating unit 10 leads the cooling water that has risen to about 55 ° C. due to contact with the molten slag (cooling water that is not extracted from the circulation system 40) to the heat exchanging unit 21, and the vacuum evaporation unit 20 Heat. The vacuum evaporation unit 20 is maintained at an appropriate vacuum by the vacuum pump 24 and can be evaporated at a temperature of about 55 ° C. by introducing the cooling water extracted from the circulation system 40 under vacuum. The vacuum evaporation part 20 can be formed by a vacuum sealed container. The vacuum pump 24 is preferably provided at the last part of the condensing unit 30 so that a large amount of water vapor does not enter. The vacuum evaporator 20 and the condenser 30 are connected by a pipe 25 having a diameter sufficient to keep the vacuum evaporator 20 in a vacuum by suction of the vacuum pump 24. Further, the vacuum evaporator 20 may be provided with a heater for auxiliary heating. The cooling water that has passed through the heat exchanging portion 21 has its water temperature lowered to about 50 ° C. by heat exchange, and this is led to the cooling portion 50 for further cooling.


一方、真空蒸発部20において循環系から抜き出した冷却水を蒸発させ、その蒸発残を系外に排出することによって廃液量が大幅に減少し、廃液処理の負担が格段に軽減される。具体的には、例えば、循環系から約10t/Hrの冷却水を抜き出した場合でも、真空蒸発によって廃液量を約1t/Hrに減量することができ、また溶融スラグとの接触によって冷却水に混入した汚染物の大部分は蒸発せずに残留するので、概ね約9t/Hrの蒸発量を循環系に戻すことができる。従って、循環系に補給する冷却水量は従来の方法よりも格段に少なくて良い。なお、蒸留残には汚染物が濃縮しており、この蒸発残は系外の廃液処理設備に排出される。 On the other hand, by evaporating the cooling water extracted from the circulation system in the vacuum evaporation unit 20 and discharging the evaporation residue to the outside of the system, the amount of waste liquid is greatly reduced, and the burden of waste liquid treatment is remarkably reduced. Specifically, for example, even when cooling water of about 10 t / Hr is extracted from the circulation system, the amount of waste liquid can be reduced to about 1 t / Hr by vacuum evaporation, and the cooling water can be converted into cooling water by contact with molten slag. Since most of the contaminated contaminants remain without being evaporated, the evaporation amount of about 9 t / Hr can be returned to the circulation system. Therefore, the amount of cooling water to be supplied to the circulation system may be much smaller than that of the conventional method. In addition, contaminants are concentrated in the distillation residue, and this evaporation residue is discharged to a waste liquid treatment facility outside the system.

真空蒸発した蒸発水(蒸気)は凝縮部30に導かれる。この凝縮部30には海水や河川水等の自然水によって蒸気を冷却する熱交換部31が設けられており、蒸気は冷却されて凝縮水になる。この熱交換部31は、例えば、海水等を入れた水槽に多数のパイプを設け、このパイプを蒸気が流れる間に海水によって冷却し凝縮する構造などであれば良い。水槽に導入された海水は熱交換の後に外部に排出される。 The evaporated water (vapor) evaporated in vacuum is guided to the condensing unit 30. The condensing unit 30 is provided with a heat exchanging unit 31 that cools the steam with natural water such as seawater or river water, and the steam is cooled to become condensed water. The heat exchanging unit 31 may have, for example, a structure in which a large number of pipes are provided in a water tank containing seawater and the like, and the pipes are cooled and condensed by seawater while steam flows. Seawater introduced into the aquarium is discharged outside after heat exchange.

真空蒸発部20によって蒸発され、凝縮部30を通過して冷却された凝縮水は管路32を通じて循環系40に戻される。一方、真空蒸発部20の熱交換部21を通過した循環系の冷却水の水温は例えば約50℃前後であるので、これを冷却部50に導き、海水等の自然水によって約42℃前後に冷却する。冷却部50の構造は凝縮部30と同様に形成することができる。 The condensed water evaporated by the vacuum evaporation unit 20 and cooled through the condensation unit 30 is returned to the circulation system 40 through the pipe line 32. On the other hand, the water temperature of the circulating cooling water that has passed through the heat exchanging unit 21 of the vacuum evaporation unit 20 is, for example, about 50 ° C., so that it is guided to the cooling unit 50 and is about 42 ° C. by natural water such as seawater. Cooling. The structure of the cooling unit 50 can be formed in the same manner as the condensing unit 30.

なお、真空蒸発部20の熱交換部21を通過した循環系の冷却水は先に述べたように例えば約50℃前後の水温を有するので、この熱量を系外の処理工程の熱源、例えば、別系統の廃液を真空蒸発して濃縮するための加熱源などに利用することができる。 Note that the cooling water in the circulation system that has passed through the heat exchange unit 21 of the vacuum evaporation unit 20 has a water temperature of about 50 ° C., for example, as described above. It can be used as a heating source for concentrating the waste liquid of another system by vacuum evaporation.

冷却部50を経由して水温を下げた冷却水は循環系40を通じて水砕部10に戻され、溶融スラグを水砕する冷却水として再び使用される。なお冷却水が水砕部10に戻される間に、管路60を通じて新たな水が補給される。具体的には、水砕部10において水砕スラグに付着して系外に搬出された水量と、真空蒸発部20において蒸留残として系外に抜き出された水量の合計量が補給される。先に述べたように、本発明の処理システムでは、真空蒸発によって廃液量が大幅に減量されているので、循環系に補給する冷却水量は従来の方法よりも格段に少なくて良い。 The cooling water whose water temperature has been lowered via the cooling unit 50 is returned to the granulating unit 10 through the circulation system 40 and used again as cooling water for granulating the molten slag. In addition, while cooling water is returned to the water granulating unit 10, new water is supplied through the pipe line 60. Specifically, the total amount of water that has adhered to the granulated slag in the granulating unit 10 and carried out of the system and the amount of water that has been extracted out of the system as a distillation residue in the vacuum evaporation unit 20 is replenished. As described above, in the treatment system of the present invention, the amount of waste liquid is greatly reduced by vacuum evaporation, so that the amount of cooling water to be replenished to the circulation system may be much smaller than that of the conventional method.

本発明の処理方法は、以上のような金属製錬における溶融スラグの水砕用冷却水の他に、溶融炉や製錬炉等の各種炉の水冷ジャケットを循環する冷却水、製鉄の圧延工程の冷却系において循環使用される冷却水、または発電設備の冷却系を循環する冷却水などに広く適用することができる。 The treatment method of the present invention is a cooling process for circulating water cooling jackets of various furnaces such as a melting furnace and a smelting furnace, in addition to the cooling water for granulating molten slag in metal smelting as described above, and a rolling process for iron making. The present invention can be widely applied to cooling water that is circulated and used in the cooling system of this type, or cooling water that circulates in the cooling system of power generation equipment.

〔実施例〕
図1に示す本発明の処理システムの具体的な適用例を示す。
1500t/Hrの冷却水を水砕工程に循環して、約1230℃の溶融スラグ約59t/Hrを水砕する場合、約3t/Hrの水量が水砕スラグに付着して系外に搬出される。この水砕によって水温が上昇した冷却水(水温約55℃)から約10t/Hrの水量を抜き出して真空蒸発部に送る。残量の冷却水は真空蒸発部の熱交換部を通じて循環系を流れる。この水温の高い冷却水によって真空蒸発部は約35mmHgの真空下、約55℃に加熱され、約9t/Hrの冷却水が蒸気になって凝縮部に導かれ、また約1t/Hrの冷却水が蒸発せずに残留し、系外の廃水処理設備に抜き出される。凝縮部には約20℃の海水が導入されており、凝縮部に導入された蒸気はこの海水によって冷却されて凝縮水になり、循環系の冷却水に合流する。一方、真空蒸発部の熱交換部を経た冷却水(約50℃)を冷却部に導入し、約42℃前後に冷却する。この冷却水に管路60を通じて新たに13t/Hrの水を補給し後に水砕部10に供給し、上記水砕工程を繰り返す。
〔Example〕
A specific application example of the processing system of the present invention shown in FIG. 1 will be shown.
When 1500t / Hr of cooling water is circulated in the water granulation process and about 59t / Hr of molten slag of about 1230 ° C, about 3t / Hr of water adheres to the granulated slag and is carried out of the system. The About 10 t / Hr of water is extracted from the cooling water (water temperature of about 55 ° C.) whose water temperature has been raised by this water granulation, and sent to the vacuum evaporation section. The remaining amount of cooling water flows through the circulation system through the heat exchange section of the vacuum evaporation section. With this high temperature cooling water, the vacuum evaporation section is heated to about 55 ° C. under a vacuum of about 35 mmHg, about 9 t / Hr of cooling water is converted into vapor and led to the condensation section, and about 1 t / Hr of cooling water. Remains without evaporating and is extracted to a wastewater treatment facility outside the system. Seawater at about 20 ° C. is introduced into the condensing part, and the steam introduced into the condensing part is cooled by this seawater to become condensed water, and merges with the cooling water in the circulation system. On the other hand, cooling water (about 50 ° C.) that has passed through the heat exchange section of the vacuum evaporation section is introduced into the cooling section and cooled to about 42 ° C. This cooling water is newly replenished with 13 t / Hr of water through the pipe line 60 and then supplied to the water granulating unit 10 to repeat the above water granulating step.

本発明の処理システムを示す概念図The conceptual diagram which shows the processing system of this invention 従来の処理システムを示す概念図Conceptual diagram showing a conventional processing system

符号の説明Explanation of symbols

10−水砕部、20−真空蒸発部、21−熱交換部、22−管路、23−ガス導入部、24−真空ポンプ、25−管路、30−凝縮部、31−熱交換部、32−管路、40−循環系、50−冷却部、60−補給用管路。 10-water granulation unit, 20-vacuum evaporation unit, 21-heat exchange unit, 22-pipeline, 23-gas introduction unit, 24-vacuum pump, 25-pipeline, 30-condensing unit, 31-heat exchange unit, 32-Pipe line, 40-Circulation system, 50-Cooling part, 60-Supply line.

Claims (7)

水温が上昇した冷却水を冷却して循環使用する冷却系において、水温上昇した冷却水の一部を循環系から抜き出して真空蒸発部に導き、一方、循環系から抜き出さない水温上昇した冷却水を上記真空蒸発部の熱交換部に導き、この熱交換器に導入した冷却水の熱を利用して真空蒸発部の冷却水を真空蒸発させ、蒸発残を系外に排出し、蒸気を冷却凝縮して循環系に戻して再使用することを特徴とする冷却水の処理方法。 In the cooling system where the water temperature is used circulated to cool the cooling water rises, leading to a vacuum evaporation unit by extracting part of the water temperature up cooling water from the circulation, whereas the water temperature up cooling water does not withdrawn from circulation Is led to the heat exchange part of the vacuum evaporation part, the cooling water introduced into the heat exchanger is used to evaporate the cooling water of the vacuum evaporation part , the evaporation residue is discharged out of the system, and the steam is cooled. A method for treating cooling water, wherein the cooling water is condensed and returned to the circulation system for reuse. 冷却水が、溶融スラグの水砕用冷却水、炉の水冷ジャケットの冷却水、製鉄の圧延工程における冷却水、または発電設備の冷却系を循環する冷却水である請求項1に記載する冷却水の処理方法。 The cooling water according to claim 1, wherein the cooling water is a cooling water for granulating molten slag, a cooling water for a water cooling jacket of a furnace, a cooling water in a steelmaking rolling process, or a cooling water circulating in a cooling system of a power generation facility. Processing method. 溶融スラグを水砕処理する際に、溶融スラグに接触して水温が上昇した冷却水を冷却して再び水砕用の冷却水として循環使用する方法において、水温上昇した冷却水の一部を循環系から抜き出して真空蒸発部に導き、一方、循環系から抜き出さない水温上昇した冷却水を上記真空蒸発部の熱交換部に導き、この冷却水の熱を利用して真空蒸発部の冷却水を真空蒸発させ、蒸発残を系外に排出する一方、蒸気を海水等の自然水によって冷却凝縮して循環系に戻し、また真空蒸発部の熱交換を経た循環系の冷却水を海水等の自然水によって冷却して再使用する請求項1に記載する冷却水の処理方法。 Circulating molten slag during the granulated processing, a method of recycling a contact with the molten slag cooling water temperature rises as cooling water again to cool water砕用, a portion of the water temperature up cooling water Extracted from the system and led to the vacuum evaporation section, while the cooling water whose water temperature has not been extracted from the circulation system is guided to the heat exchange section of the vacuum evaporation section, and the cooling water of the vacuum evaporation section is utilized by using the heat of the cooling water. The evaporation residue is discharged out of the system, while the steam is cooled and condensed with natural water such as seawater and returned to the circulation system. The cooling water treatment method according to claim 1, wherein the cooling water is reused after cooling with natural water. 循環系から抜き出した冷却水に窒素ガスを導入して溶存ガスを冷却水から追い出した後に該冷却水を真空蒸発させる請求項1〜請求項3の何れかに記載する冷却水の処理方法。 The method for treating cooling water according to any one of claims 1 to 3, wherein nitrogen gas is introduced into the cooling water extracted from the circulation system to expel dissolved gas from the cooling water and then the cooling water is evaporated in vacuum. 真空蒸発部で熱交換を行った循環系の冷却水が保有する熱をさらに別系統の廃液の加熱源として利用する請求項1〜請求項4の何れかに記載する冷却水の処理方法。 The processing method of the cooling water according to any one of claims 1 to 4, wherein the heat held by the cooling water in the circulation system that has exchanged heat in the vacuum evaporation section is used as a heating source for the waste liquid of another system. スラグ水砕水の処理設備であって、冷却水を循環使用するための循環系、溶融スラグに冷却水を接触させて砕く水砕部、溶融スラグに接触して水温上昇した冷却水の一部を循環系から抜き出して蒸発させる真空蒸発部、循環系から抜き出さない水温上昇した冷却水を導入して真空蒸着部の加熱源とする熱交換部、真空蒸発した蒸気を海水等の自然水によって冷却する凝縮部、この凝縮水を循環系に戻す管路、蒸発残を系外に排出する管路、循環系の冷却水を海水等の自然水によって冷却する冷却部を有することを特徴とするスラグ水砕水の処理設備。 A slag crushed water treatment facility that circulates and circulates cooling water, a crushed part that makes molten water come into contact with molten slag, and a part of the chilled water that comes into contact with molten slag and rises in water temperature A vacuum evaporation part that extracts and evaporates water from the circulation system, a heat exchange part that introduces cooling water whose water temperature has not been extracted from the circulation system and that serves as a heating source for the vacuum evaporation part , A cooling unit for cooling, a conduit for returning the condensed water to the circulation system, a conduit for discharging the evaporation residue outside the system, and a cooling unit for cooling the cooling water of the circulation system with natural water such as seawater. Slag granulated water treatment facility. 冷却水に窒素ガスを導入して溶存ガスを追い出すガス導入部が真空蒸発部の冷却水導入部分に設けられている請求項6に記載するスラグ水砕水の処理設備。 The processing equipment for slag crushed water according to claim 6, wherein a gas introduction part for introducing nitrogen gas into the cooling water and driving out the dissolved gas is provided in the cooling water introduction part of the vacuum evaporation part.
JP2005115954A 2005-04-13 2005-04-13 Cooling water treatment method and treatment equipment Expired - Fee Related JP4389833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115954A JP4389833B2 (en) 2005-04-13 2005-04-13 Cooling water treatment method and treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115954A JP4389833B2 (en) 2005-04-13 2005-04-13 Cooling water treatment method and treatment equipment

Publications (2)

Publication Number Publication Date
JP2006289303A JP2006289303A (en) 2006-10-26
JP4389833B2 true JP4389833B2 (en) 2009-12-24

Family

ID=37410479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115954A Expired - Fee Related JP4389833B2 (en) 2005-04-13 2005-04-13 Cooling water treatment method and treatment equipment

Country Status (1)

Country Link
JP (1) JP4389833B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557157A (en) * 2010-12-08 2012-07-11 无锡华润上华科技有限公司 Water processing system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830142A (en) * 2017-03-14 2017-06-13 湖北科林博伦新材料有限公司 A kind of brine waste concentration technology and device
CN107721058A (en) * 2017-10-30 2018-02-23 郑州格瑞塔电子信息技术有限公司 A kind of steel mill's sewage-treatment plant with Duplex treatment function
CN111342157B (en) * 2020-02-14 2023-10-03 华富(江苏)电源新技术有限公司 Lead-acid storage battery internal formation cooling water circulation system and control method
CN112113438A (en) * 2020-08-19 2020-12-22 中冶南方都市环保工程技术股份有限公司 High-temperature slag waste heat recycling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557157A (en) * 2010-12-08 2012-07-11 无锡华润上华科技有限公司 Water processing system

Also Published As

Publication number Publication date
JP2006289303A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4389833B2 (en) Cooling water treatment method and treatment equipment
CN101792830B (en) Method and device for collecting steam of flushing cinder and afterheat of hot water in iron-making blast furnace
JP5271100B2 (en) Waste heat power generation method using exhaust gas from incinerator
JP5465899B2 (en) Method and apparatus for separating and removing neutron absorber from coolant in cooling circuit
CN101260816A (en) Method and device for reclaiming and utilizing billet residual heat
US8926727B2 (en) Apparatus and method for condensing metal vapor
KR20110075384A (en) Method of multi-purpose seawater utilization in industrial usage
CN109595947B (en) Industrial slag sensible heat recovery system and recovery method thereof
JP2009227489A (en) Method for recovering heat energy in slag
CN106755666A (en) slag treatment and heat energy utilization method and device
KR20060090404A (en) Waste heat recovery system for steam power plant
JP2000199408A (en) Power generation method utilizing hot discharged water and power generation facility
US6547960B1 (en) Oil separating apparatus for oil containing substance and method therefor
JP2003117593A (en) Method for treating organic waste and equipment therefor
JP2007017035A (en) System for effectively using energy
JP4599139B2 (en) Steam turbine plant
JPS60195309A (en) Granulated slag waste heat recovery generating set
JP4080755B2 (en) Waste liquid combustion apparatus and combustion method
JPH11256251A (en) Continuous vacuum-refining method of aluminum alloy waste and apparatus thereof
JPS5926926A (en) Apparatus for removing co2 with hot potassium carbonate
JP2003222408A (en) Combustion device in liquid
CN217877171U (en) Calcium carbide production waste heat recovery system
JPH05126315A (en) Method of water supply and water drainage of deaerator in waste heat recovery boiler and device thereof
JP4593191B2 (en) Cleaning method of heat exchanger in incinerator
CN211851945U (en) Power generation system for recovering waste heat of electrolytic cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees