JP4389481B2 - Belt sorting device - Google Patents

Belt sorting device Download PDF

Info

Publication number
JP4389481B2
JP4389481B2 JP2003154958A JP2003154958A JP4389481B2 JP 4389481 B2 JP4389481 B2 JP 4389481B2 JP 2003154958 A JP2003154958 A JP 2003154958A JP 2003154958 A JP2003154958 A JP 2003154958A JP 4389481 B2 JP4389481 B2 JP 4389481B2
Authority
JP
Japan
Prior art keywords
belt
sorting
frame
unit
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003154958A
Other languages
Japanese (ja)
Other versions
JP2004351378A (en
Inventor
雄一 奥村
四郎 後藤
茂雄 半田
大三公 福永
博 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2003154958A priority Critical patent/JP4389481B2/en
Publication of JP2004351378A publication Critical patent/JP2004351378A/en
Application granted granted Critical
Publication of JP4389481B2 publication Critical patent/JP4389481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、大豆等をベルト面を転動させながら整粒と屑粒とに選別するベルト選別装置に関する。
【0002】
【従来の技術】
従来、選別ベルトを2面傾斜させて左右傾斜の傾斜低位側であって前後傾斜の高位側に被選別大豆を供給し、低い前側には転動する整粒を取出し、左右傾斜の高位側から扁平粒や欠粒などの屑粒を取出す形態の所謂ベルト選別機が公知である(特許文献1、2)。
【0003】
被選別粒の性状及び供給状態、ベルト面の性質によってベルト面の傾斜角度を最適に保持しようとする。例えば特許文献1の構成によれば、左右傾斜角度、すなわち選別ベルト送り方向傾斜角度を変更調節しうる構成としている。また、特許文献2には前後の傾斜角度を調節する技術が開示されている。
【0004】
【特許文献1】
実公昭60−20464号公報
【特許文献2】
実公昭59−6946号公報
【0005】
【発明が解決しようとする課題】
ところが上記特許文献1の構成によると、上下2段の構成であってこれを一挙に角度変更調節する構成が開示されているが、処理量を確保するために、当該選別機は一般に複数段に設ける形態が通常であって、これを一挙に調節作動させるには重量が大であるため容易でない。
【0006】
また、特許文献2は、単一段の選別機の各別調節であるから、複数段に設ける場合は、各選別ベルト毎にこれを構成しなければならず、設定操作が煩わしい。
【0007】
【課題を解決するための手段】
この発明は、設定操作の簡単化をはかるもので、次のような技術的手段を講じた。
即ち、請求項1に記載の発明は、2面傾斜させた選別ベルト(25)を左右の駆動ローラ(26)と被動ローラ(27)との間に巻回して左右一側の傾斜低位側から左右他側の傾斜上位側に向かって回転するよう設け、左右傾斜の低位側でかつ前後傾斜の上位側隅部に大豆供給部(28)を構成し、選別ベルト(25)を駆動ローラ(26)の軸部を駆動モータ(29)によって駆動して、整粒を前後傾斜に沿って前側に転動させてベルト(25)の前側端縁から回収し、外形が完全粒形を呈しない屑粒をベルト(25)面の移動(イ)に沿って左右傾斜の上位側に移動させて回収するベルト選別機において、上記選別ベルト(25)の上下複数段を単位選別部(33)として、これらの選別ベルト(25)の駆動ローラ(26)及び被動ローラ(27)とを兼用フレーム(37)に各固定し、主フレーム(38)と兼用フレーム(37)との間には中間フレーム(39)を設け、兼用フレーム(37)主フレーム(38)に対して左右傾斜角度(α)及び前後傾斜角度(β)をそれぞれ調整可能に設けるべく、中間フレーム(39)に対して兼用フレーム(37)をヒンジ(40,40)で傾斜角度変更可能に支持する構成とする共に、主フレーム(38)に対して中間フレーム(39)をヒンジ(44,44)で傾斜角度変更可能に支持する構成としたことを特徴とするベルト選別装置の構成とする。
【0008】
これによって、上下複数段の単位選別部33を単位として左右傾斜角度αや前後傾斜角度βを調整できる。供給部28からの被選別物は選別ベルト25の駆動によって前後傾斜の下位側に整粒が回収され、屑粒は傾斜上位側から回収される。
【0009】
また請求項2に記載の発明は、左右傾斜角度αは、左右傾斜低位側を主フレーム38に支持された中間フレーム39にヒンジ40,40を介して左右傾斜高位側が上下すべくなし、この傾斜高位側において兼用フレーム37と中間フレーム39との間に、中央部から軸方向前後を互いに逆方向に形成した螺軸41に螺合した螺合体42と、下端を該螺合体42に枢着し上端を上記兼用フレーム37に枢着した連結アーム43とを設け、螺軸41を正逆転させることより、中間フレーム39(主フレーム38)に対する兼用フレーム37の傾斜角度αを変更すべく構成する。これによって、上下複数段の選別ベルトを一挙に調整でき、しかも屑粒混入状況に応じて調整頻度の高い調節側であってもハンドル操作等によって容易に調整できる。
【0010】
請求項3に記載の発明は、前後傾斜角度βは、主フレーム38に対して中間フレーム39を前側のヒンジ44,44で角度変更可能に支持して調整できる構成とした。よって上記と同様に上下複数段の選別ベルトを一挙に調整できる。
【0011】
【発明の効果】
請求項1に係る発明は、主フレーム(38)と兼用フレーム(37)との間には中間フレーム(38)を設け、兼用フレーム37が主フレーム38に対して左右傾斜角度(α)及び前後傾斜角度(β)をそれぞれ調整可能に設けるべく、中間フレーム(39)に対して兼用フレーム(37)をヒンジ(40,40)で傾斜角度変更可能に支持する構成とする共に、主フレーム(38)に対して中間フレーム(39)をヒンジ(44,44)で傾斜角度変更可能に支持する構成としたことで、上下複数段の単位選別部33を単位として左右傾斜角度αや前後傾斜角度βを調整できるから、上下に単位選別部33を積重ねて使用する場合にも調節回数を少なく出来るものとなる。
【0012】
また、請求項2及び請求項3に記載の発明によると、上下複数段の選別ベルトを一挙に調整でき、しかも屑粒混入状況に応じて調整頻度の高い調節側であってもハンドル操作等によって容易に調整できる。なお中間フレームを構成することで、兼用フレームをこの中間フレームに対して角度調節可能に接続するものであるから、左右傾斜角度α及び前後傾斜角度βの角度調節機構の組み込みが容易である。
【0013】
【発明の実施の形態】
この発明の一実施の形態を図面に基づき説明する。
図1の選別施設は、適宜に乾燥された大豆の選別施設であって、荷受け部1、粗選部2、粒径選別部3、ベルト選別部4、製品タンク部5、出荷部6からなる。
【0014】
荷受け部1は、荷受け昇降機7と複数の原料タンク8a〜8dによって構成され、該昇降機7の原料投入ホッパ9にはダンプ車両10からの大豆投入を受入れる構成である。
粗選部2は比重選別形態や篩選別形態の複数の機材からなり、搬送上手側より直列状に設けられ種類分けしてダスト類を除去された大豆は次段の粒径選別部3に供給され、該ダスト類は夾雑物回収タンク群11に分離回収される構成である。前記原料タンク8a〜8dから高い昇降機24を経て揚上される大豆は粗選流調タンク12を経由して風力選別機13が設けられ搬送途中にて分離した大豆の皮等軽比重の夾雑物を分離除去する。14は篩選別機で、大豆よりも径大の茎類等の夾雑物を除去する構成である。該篩選別機14を経た大豆は、石抜機15、比重選別機16を経由すべく構成し、大豆粒径に近い石や夾雑物が除去される。
【0015】
上記夾雑物回収タンク群11は、皮類等極めて軽い夾雑物を回収するハスクタンク11a、皮類よりもやや重いが大豆よりも軽い比重の夾雑物を回収する第1のダストタンク11b、大豆粒径よりも大きい夾雑物を回収する第2のダストタンク11c、大豆の半割れを回収する半割れ回収タンク11d、及び後記ベルト選別部からの屑粒を回収するベルト選別回収タンク11eを備えている。風力選別部12からの軽比重の夾雑物は軽重によってダストタンク11aまたはダストタンク11bへ排出されるよう構成される。篩選別機13から3段階に仕分けら夾雑物は荒ごみを別途排出するほか、第2のダストタンク11c、半割れ回収タンク11dに排出される構成である。
【0016】
比重選別機16を経由して各種の夾雑物を除去された大豆は昇降機17によって粒径選別部3に供給される。この粒径選別部3は、同じ目合いのスリット孔を形成した回転選別筒18を6筒に構成する第1粒径選別部3aと、該選別筒18に対して目合いの大きいスリット孔を形成した回転選別筒19を4筒に構成する第2粒径選別部3bとからなり、これらを接続昇降機20を介して直列的に接続してなる。従って、供給される大豆は、第1粒径選別部3aのスリット状選別孔を漏下する小径粒と、第1粒径選別部3aの回転選別筒18の終端部から排出され第2粒径選別部3bに供給され、この第2粒径選別部3bの回転選別筒19のスリット状選別孔から漏下する中径粒と該回転選別筒19の排出部から排出される大径粒との都合3区分される構成である。
【0017】
なお、第1粒径選別部3aと第2粒径選別部3bとは、いずれも複数の回転選別筒18又は19を設けるが、夫々各選別筒には分配供給部から略均一に大豆を供給できる構成としている。
上記第1、第2粒径選別筒3a、3bからの排出部には3本設けられたフライトコンベア形態の小粒・中粒及び大粒の各供給搬送装置21a、21b、及び21cに接続されて搬送処理できる構成である。これら各供給搬送装置21a、21b、及び21cの搬送途中には開閉弁22a、22b、及び22cを後記ベルト選別機の設置位置に対応させてどのベルト選別機へも供給でき得るよう設けている。
【0018】
複数(図例では4機)のベルト選別機23a〜23dを備えたベルト選別部4は次の構成である。すなわち、2面傾斜させた選別ベルト25を左右の駆動ローラ26と被動ローラ27との間に巻回して設け、左右傾斜の低位側でかつ前後傾斜の上位側隅部に大豆供給部28を構成し、選別ベルト25を駆動ローラ26の軸部に直接接続した駆動モータ29によって駆動して該供給部28から大豆を供給すると、整粒はベルト25面の移動イに沿う動きは少なく前後傾斜に沿って前側に転動して主としてベルト25の前側端縁から落下しこの位置に設けた傾斜案内シュート30を介して整粒ホッパ31に回収される。また、外形が完全粒形を呈しない屑粒はベルト25面の移動イに沿って左右傾斜の上位側に移動し当該上位側に設けた屑粒ホッパ32に回収される構成である。
【0019】
上記において、上記選別ベルト25を2面傾斜に設けた選別ベルト25は上下2段を単位選別部33として、複数段(図例では6段)に段積状に構成している。すなわち、各選別ベルト25と、このベルト25の駆動ローラ26及び被動ローラ27とを枠組支持するフレーム34の上下2段の対を、駆動ローラ26と被動ローラ27を支持する支持メタル35,35、及び36,36を側面視及び正・背面視で矩形に構成する兼用フレーム37の上桟部37a及び下桟部37bに各固定する。そして、この兼用フレーム37を主フレーム38に対して左右傾斜角度α及び前後傾斜角度βとも調整可能に設けて、上下2段の単位選別部33を構成する。なお、左右傾斜角度αは、左右傾斜低位側(図2の右側)を主フレーム38に支持された中間フレーム39にヒンジ40,40を介して左右傾斜高位側が上下すべくなし、この傾斜高位側において兼用フレーム37と中間フレーム39との間に、中央部から軸方向前後を互いに逆方向に形成した螺軸41に螺合した螺合体42と、下端を該螺合体42に枢着し上端を上記兼用フレーム37に枢着した連結アーム43とを設け、螺軸41を着脱自在のハンドル(図示せず)を正逆転させることより、螺合体42を軸方向に移動調整することによって中間フレーム39(主フレーム38)に対する兼用フレーム37の傾斜角度αを変更できる構成としている。
【0020】
また、前後傾斜角度βは、主フレーム38に対して上記中間フレーム39を前側のヒンジ44,44で角度変更可能に支持し、反対側(後側)の調節ボルト45,45で主フレーム38に対して中間フレーム39を上下させて角度βを調整できる構成である。
【0021】
50は左右方向に移動する大豆を前後に分散させる拡散体である。
上記単位選別部33のうち、主フレーム38はその左右方向長さを異ならせて構成され、右側端を揃えて上下に複数段(図例では6段)に雛壇状に接続してなる。即ち、単位選別部33において主フレーム38は、ベース部材としての矩形状の横フレーム部38aと、該横フレーム部38aの左右側に夫々一対の柱部材38bを立設してなる。なお、上記雛檀状に接続する場合は、柱部材38bの左右間隔よりも更に長い横フレーム部38aとし、更にこの長さを下段側ほど長く構成することによって雛壇を形成できる。
【0022】
そして、最上段の主フレーム38には柱部材38bを接続する上部フレーム38cを有し、該上部フレーム38cには供給ホッパ51を設ける。このホッパ51内には繰り出しロール(図示せず)を設け、該ロールの回転軸芯方向に複数分割して小室に区分し該小室に供給筒52,52…を接続してなり、該供給筒52,52…を、各選別ベルト25の上面に固定して設ける供給シュート53にのぞませて大豆供給部28が構成される。こうして供給ホッパ51からの大豆を上下2段×6組=12段の選別ベルト25に各供給しながら整粒と屑粒とに選別するベルト選別機23を4機備えている。
【0023】
上記各ベルト選別機23a〜23dの供給ホッパ51には、前記供給搬送装置22a,22b,22cの開閉弁22a,22b,22cを夫々対応させて設け、いずれの選別粒径の大豆をも受入れ可能にしている。また、このうちベルト選別機23a、23bの供給ホッパ51a,51bが単一であって、上下12段全部に同じ粒径の大豆を供給するが、ベルト選別機23c,23dはこの供給ホッパを上半用と下半用のように複数に設けられ、例えば上・下に分割して上下2段×3組=6段の選別ベルト25に分けて異なる粒径を供給するもので、上記ベルト選別機23cには供給ホッパ51c1,51c2の2連に設けている。なおベルト選別機23dの場合は、上4組と下2組とに分けて供給しうるよう供給ホッパ51d1,51d2の2連構成としている。
【0024】
上記ベルト選別機23a〜23dからの整粒をまとめて搬送すべくフライトコンベア形態の排出搬送装置54a,54b,54cを、小・中・大粒用の3連に構成し、また、屑粒をまとめて搬送する排出搬送装置55を、上記ベルト選別機23a〜23dの下方に配設している。なお、屑粒用の排出搬送装置55の排出側は、前記夾雑物回収タンク群11のうちのベルト選別回収タンク11eに接続される。
【0025】
各ベルト選別機23a〜23dから上記排出搬送装置54a,54b,54cへの排出は、夫々のベルト選別機の上下整粒ホッパ31の下端側集合部に配設した切替バルブ56によっていずれの排出搬送装置54a,54bまたは54cに供給するかを選択する構成としている。すなわち、ベルト選別機23a〜23bには夫々切替弁56a〜56bを配置させるものであり、ベルト選別機23c及び23dの上・下位分割形態の場合には2組の切替弁56c1,56c2、及び56d1,56d2を各配設している。
【0026】
図外操作盤には、ベルト選別機23a〜23dへの開閉弁22a,22b,22cを指示する指示手段としての行き先スイッチを配設し、この行き先スイッチの選択設定に連動して、排出先指定の切替弁56a〜56d2を所定に切替連動するように構成して排出先に異なる粒径の整粒が混在しないよう構成している。
【0027】
前記整粒用の排出搬送装置54a,54bまたは54cは、製品タンク部5に接続する。製品タンク部5は、複数に配設した製品タンク群57a〜57eからなり、これらタンク群57a〜57eへの張込搬送装置58a〜58cに夫々接続部59a〜59c(例えば筒状案内シュート)を介して接続されている。これら張込搬送装置58a〜58cはフライトコンベア形態とされ、夫々上記製品タンク57a〜57eへの各対応箇所には小粒用開閉弁60a〜60e、中粒用開閉弁61a〜61e、及び大粒用開閉弁62a〜62eを設けてなり、図外操作盤にて製品タンク57a〜57eをいずれの粒径の整粒を収容するかを選択設定するものであり、開閉弁60,61及び62はその設定によって開位置を指定できる構成である。
【0028】
前記のように被選別大豆は昇降機17によって搬送された後、粒径選別部3を経てベルト選別部4に供給されて順に処理を受けるものであり、この処理フローを基準とするが、場合に応じて前記昇降機17から経路64を経て直接ベルト選別部4への供給搬送装置21に供給する場合もある。当該施設に持ち込む前に粒径選別処理を実施している場合などに行うものである。
【0029】
65a〜65cは上記接続部59a〜59cに夫々設けたサンプル取り出し部である。各接続部59a〜59cからサンプル採取された粒は搬送経路を経て自主検定装置66に供給される。この自主検定装置66には前記回転選別筒17及び回転選別筒18と同じ目合いの検定用選別筒を直列して2連に設け、サンプル粒を3段階に選別分離する構成とする。すなわち前記回転選別筒17と同じ目合いの検定用第1選別筒67と、前記回転選別筒18と同じ目合いの検定用第2選別筒68とを設け3段階に区分される構成である。各段階にて選別されたサンプル粒は、夫々に対応して設けるかあるいは兼用された計量器66aにて、選別分離毎の粒重量を測定し演算制御部69に送信できる構成である。
【0030】
演算制御部69は、サンプル毎に各目合いにおける排出重量を入力し、粒径選別部3における仕分けが規定レベル内にあるか否か、規定レベルにない場合には回転選別筒18又は19による選別の限界を超えた処理であるか、選別筒各部の異常を警報する。一例を示すと、小粒用接続部59aからサンプリングして自主検定装置66にて選別計量の結果を、小粒w1、中粒w2、大粒w3とする。小粒接続部からのサンプリングであるから、w1>>w2、及びw1>>w3である。従って、w2/w1>γ、又はw3/w1>δ(γ、δは所定基準値)の場合には、予定した小粒中に中粒、または大粒の混入比率が大きいとして警報を出力すべく構成する。粒径選別部3における供給量の過多、各部の調整不良等の要因が予測されるものでこれらの改善を示唆するものである(図7)。
【0031】
製品タンク部5は出荷昇降機70を経て出荷部6に接続されている。出荷部6は、フレキシブルコンテナ(フレコン)71に充填して出荷する形態と、トラックにてバラ出荷する形態とが選択できる構成としている。なお、各出荷に供される整粒は、上記出荷昇降機70を経て流調タンク72を経由して金属検出除去機73に至る構成である。この金属検出除去機73は、搬送経路途中にマグネットを配設して磁力によって金属を吸着除去する構成である。出荷対象の整粒はその後風力選別機74に供給される構成である。この風力選別機74では、粒径選別部3、ベルト選別部4及びその搬送経路等によって発生する粒からの分離物(付着埃類や表皮等)を風選除去するものである。75は計量機を備える計量タンクで、出荷重量を前記演算制御部67に出力し得る。
【0032】
上記の荷受け部1、粗選部2、粒径選別部3、ベルト選別部4、製品タンク部5、及び出荷部6は、3階に構成された建屋内に以下のように収容配置される。1階(1F)には、荷受けスペースと出荷スペースとが確保されて搬送車両の出入りを容易化するとともに、各種タンクが配置される。前記原料投入ホッパ8、夾雑物回収タンク11a〜11e、製品タンク57a〜57eがこの階に配置されるものである。
【0033】
建屋2階(2F)には、粗選部2の石抜機15及び比重選別機16、ベルト選別部4のベルト選別機23a〜23d及び整・屑粒用排出搬送装置54,55、出荷部6の風力選別機73等が配設される。また3階(3F)部分には、粗選部2の粗選流調タンク12や風力選別機13や篩選別機14を配設し、及び粒径選別部3やベルト選別機23への供給搬送装置21を配設している。
【0034】
上例の作用について説明する。荷受け部1に持ち込まれた大豆は、適宜に原料タンク8a〜8dのいずれか空きのタンクに供給される。この原料タンクの大豆は、昇降機24を経て粗選部2に供給される。粗選部2では、風力選別機13を通過して皮等の軽い塵埃類を風選除去する。また、篩選別機14に供給されると、大豆よりも径大の茎類等の夾雑物が除去される。更に石抜機15で石抜き処理され、比重選別機16では、大豆粒径に近くて軽い夾雑物を除去できる。
【0035】
上記の粗選を行った大豆は昇降機17を経て先ず粒径選別部3aに供給される。ここでは小粒とそれ以上の粒径の大豆に仕分けられ、小粒大豆は供給搬送装置21aに受けられる。次いで粒径選別部3bに送られた大豆はここで中粒と大粒とに分けられ、中粒大豆は供給搬送装置21bに、大粒大豆は供給搬送装置21cに夫々受けられる。
【0036】
上記供給搬送装置21a〜21cの開閉弁22は、操作盤によって予め設定された搬送先のベルト選別機23a〜23dに対応する箇所で開動しているため、この搬送先として設定されたベルト選別機23a〜23dのホッパ51部に小・中又は大粒大豆を供給できる。従って、荷受された大豆の粒径の多寡に応じてベルト選別機の台数あるいは使用段数を予測して上記ホッパ51への供給先を指定するとよい。ホッパ51部の大豆は、区分毎に設けられた供給シュート53,53によって供給シュート53に供給され所定の選別ベルト25面に供給される。
【0037】
ベルト選別機23a〜23dは、予め選別角度α及びβを調節設定しておく。即ち左右傾斜角度αは、螺軸41に連結したハンドルをもって該軸41を正・逆転に連動して所望角度に調整するものである。また、前後傾斜角度βは、調節ボルト45,45をもって所望角度に調整するものである。このような角度調整後、各駆動モータ29を起動すると、ベルト25面に供給された上記大豆は、外形が整い球形に近いものは、ベルト25が前後面傾斜しているため、低位の機枠前側に転動して整粒ホッパ31にて回収される。一方扁平粒等は転動し難くベルト25回転に伴って、左右傾斜の上位側に搬送されて屑粒ホッパ32に回収される。
【0038】
この実施例では、単位選別部33に構成されて、上下2段の選別ベルト25が共通の兼用フレーム37に支持されて、該兼用フレーム37を主フレーム38に対して左右角度α及び前後傾斜角度βを上記単位選別部33毎に変更できる構成であるから、複数単位を一挙に調整設定でき各選別ベルト25,25…毎の調整に比較して調整回数を単位選別部33の設置数分だけ行えばよく調整工数を削減できる。
【0039】
上記整粒ホッパ31から回収された整粒は、上下のホッパ部を連通させて小粒用開閉弁60、中粒用開閉弁61または大粒用開閉弁62部に集合させ、下方にのぞませた排出搬送装置54a,54bまたは54cに排出される。
一方屑粒ホッパ32の場合は上下のホッパが左右に位置ずれ配置されるが適宜の手段によって上位側ホッパからの屑粒が下位側の屑粒タンクに連通して回収可能に設けることより、下方にのぞませた屑粒用の排出搬送装置55に排出されるものである。
【0040】
予め小・中・大粒に仕分けてベルト選別機23に供給されるものであるから、ベルト選別機23から排出された整粒は粒径が揃っているため、該ベルト選別機から排出された整粒について粒径選別処理を行なう必要がない。
前記排出搬送装置54a,54b及び54cに排出された大豆粒は、接続部59を経由して収容すべき粒径穀粒を予め設定した製品タンク57a,57b又は57cに供給されるものとなる。またこの途中でサンプルが取り出され、自主検定装置66へその一部がサンプリングされて、前記の区分け処理と重量比率の算出が行なわれ、小・中・大粒の各割合や、前記粒径選別部3(3a,3b)の選別状態の精度判定を行なうものである。
【0041】
製品タンク57a〜57eまでに供給された整粒大豆は、その後の出荷計画にしたがって搬出され、出荷昇降機70によって1階から3階まで一挙に揚上し、3階で待機する金属検出除去機72やその階より下の風力選別機73に順次供給して金属除去処理および搬送、選別過程で生じた剥離皮、塵埃などを風選除去する。このような仕上処理を行なったのち、計量タンク74に供給して計量し、荷受け人毎にあるいは出荷量の確認等に用いられる。
【0042】
出荷に際しては、フレコン出荷形態あるいは車両によるバラ形態の出荷の選択ができる。
上記の実施例では、粒径選別部3を建屋の最上階(3階)に配置し、その下位側の階にはベルト選別機23を配置するものであるから、粒径選別部3からベルト選別部4への大豆の搬送は、途中フライトコンベア形態の供給搬送装置21を横設する構成でありながらも、上位から下位に搬送するものとなって、昇降機のような搬送形態をとらないで足り、大豆の損傷を極力防止できる。また、整品タンク57は1階部分に構成されて、ベルト選別部4からの搬送も上位から下位への自然流下構成となって大豆損傷を少なくさせる。
【0043】
符号76はベルト選別部4の雛壇型に積み重ねたベルト選別部4の各ベルト選別機23への穀粒供給状態等を観察するためのカメラであって、モニタ(図示せず)には大豆供給部28近傍である選別ベルト25の供給側が映し出される構成である。上下2段の選別ベルト25を単位選別部33に構成し、前後、左右各傾斜角度α、βおよびその他の各条件が同一となるように構成してあるから、当該単位選別部33における上位側選別ベルトも下位側選別ベルトも条件が一定となり、この選別ベルトに粒径など同一性状の大豆を供給すると、上・下位にて同じ選別分布をとるものと予測され、選別上位の選別状況をカメラ監視することで略全体の選別状況を把握することができるものである。したがって、上記雛壇型に積み重ねた単位選別部33の各上段側を監視することでベルト選別機23全体の被選別大豆の供給状況及びベルト面への拡散を確認でき、ひいては大豆の詰りを把握できる。なお、カメラ画像をモニタに直接表示して監視するほか、画像処理して、被選別大豆の有無を検出しうる構成として自動的に穀粒詰りを検出する構成としてもよい。
【0044】
なお、上記カメラ76を取付機台77が垂直方向の螺軸78に沿って上下移動すべく該螺軸78に正逆モータ79を取付け、カメラ位置を上下に微調整できる構成としている。したがって上下範囲に亘って広い範囲を測定対象とするため、上下方向に調整しながら適当な位置を選択できる。この上下移動に替えて、カメラ76を取付機台77に対して上下にあるいは上下左右に首振り自在に構成し、上下範囲に渡って広く測定対象とさせてもよい。
【0045】
図8は、雛壇状に設けた単位選別部を改良したものである。即ち、上下2段の選別ベルト81,82を直列接続状態となしている。二面傾斜した上段の選別ベルト81は前記選別ベルト25を同形態とするが、下段の選別ベルト82は、前後傾斜方向を上段の選別ベルト81と同方向傾斜とするが左右傾斜を逆に傾斜させている。該上段の選別ベルト81のベルト傾斜下位側に供給部83を備え上段の選別ベルト81の移送終端部から下段の選別ベルト82の傾斜下位側に向け案内供給部84を経て供給しうる構成である。案内供給部84には下段選別ベルト82への供給状態と適宜機外への供給状態とに切り換える切換弁85を備えている。そしてこれら上・下選別ベルト81,82の単位選別部はフレーム86によって枠組され、上下に雛壇状に積み重ねできる構成としている。なお、整粒回収ホッパは選別ベルト81の前後傾斜下端側に配設している。屑粒回収ホッパは案内供給部84の機外取出しに接続され、または下段選別ベルト82の傾斜上位の排出部に設けている。
【0046】
上記のように構成すると、供給された選別大豆は上段選別ベルト81によって選別され整粒と屑粒とに傾斜上下に分離される。屑粒中に含まれる整粒割合が高いときは下段選別ベルト82による選別を行う。こうして上下に長い選別経路を経て整粒と屑粒に選別される。なおここで、上段選別ベルト81の選別作用で所望の選別状態を得られるときは切換弁85によって機外排出状態となして下段選別ベルト82による選別を行わないようにすることができる。
【0047】
図9は、前記回転選別筒18,19の選別孔目詰りを除去すべく設ける目詰り防止体の構成を示すものである。正逆転駆動手段に連動する軸90を角軸に構成し、角軸90各辺にゴム片91,91…を、該角軸90の各辺長さmに対して適宜短い長さnの当て板92,92…をもって固定する。このため正転状態では(図9(イ))、ゴム片91は隣接の当て板92端面に規制されつつ回転選別筒外表面に接して付着糠や小米を掃き落とす。一方逆転の際(図9(ロ))、ゴム片91は、当て板92の端部の折曲部92aに湾曲して接触する範囲で変形でき、この折曲部92aは当て板92が角軸90の辺長さよりも短いからゴム片91の有効作用長さG2が前記正転時の有効作用長さG1よりも長くなっており、正転時は標準作用状態とし、時々の逆転時は強く作用させることによって、目詰りの防止を促進することができる。
【0048】
特開2002−177889号公報に開示の構成は一定方向に駆動回転する構成であるから、ゴムが変形して劣化を促進する。また変形することで弾性復帰性を損なうと当り面が少なく充分な除去性能が得られない。そこで上記のように正逆転連動可能な軸にゴム片をその有効作用長さを異ならせて設定することによって標準正転状態に対して逆転時の作用が強くなって目詰り除去効果を促進することができる。
【図面の簡単な説明】
【図1】 大豆選別施設の処理フロー図である。
【図2】 ベルト選別機一部の拡大斜視図である。
【図3】 ベルト選別機の背面図である。
【図4】 ベルト選別機の側面図である。
【図5】 傾斜角度調整部の斜視図である。
【図6】 ベルト選別機一部の斜視図である。
【図7】 フローチャートである。
【図8】 ベルト選別部の異なる例を示す正面図である。
【図9】 粒径選別部の目詰まり防止体の断面図である。
【符号の説明】
1…荷受け部、2…粗選部、3…粒径選別部、4…ベルト選別部、5…製品タンク部、6…出荷部、18,19…回転選別筒、23…ベルト選別機、25…選別ベルト、33…単位選別部、37…兼用フレーム、38…主フレーム、39…中間フレーム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a belt sorting device that sorts soybeans and the like into sized particles and scrap particles while rolling the belt surface.
[0002]
[Prior art]
Conventionally, the sorting belt is inclined to two sides, and the soybean to be sorted is supplied to the lower side of the left and right slopes and to the higher side of the front and rear slopes. A so-called belt sorter that takes out scrap particles such as flat particles and missing particles is known (Patent Documents 1 and 2).
[0003]
The inclination angle of the belt surface is optimally maintained depending on the properties and supply state of the selected grains and the properties of the belt surface. For example, according to the configuration of Patent Document 1, the horizontal tilt angle, that is, the sorting belt feed direction tilt angle can be changed and adjusted. Patent Document 2 discloses a technique for adjusting the front and rear tilt angles.
[0004]
[Patent Document 1]
Japanese Utility Model Publication No. 60-20464 [Patent Document 2]
Japanese Utility Model Publication No. 59-6946 [0005]
[Problems to be solved by the invention]
However, according to the configuration of the above-mentioned Patent Document 1, there is disclosed a configuration in which the upper and lower stages are configured to change and adjust the angle at a stroke. However, in order to secure a processing amount, the sorter is generally divided into a plurality of stages. The form to provide is normal, and it is not easy to adjust it all at once because it is heavy.
[0006]
Further, since Patent Document 2 is for each adjustment of a single-stage sorter, when it is provided in a plurality of stages, it must be configured for each sorter belt, and the setting operation is troublesome.
[0007]
[Means for Solving the Problems]
The present invention is intended to simplify the setting operation and has taken the following technical means.
That is, according to the first aspect of the present invention, the sorting belt (25) inclined in two directions is wound between the left and right drive rollers (26) and the driven roller (27), and the left and right sides are inclined from the lower side. It is provided so as to rotate toward the upper left side of the left and right other side, and the soybean feeding part (28) is formed at the lower side of the left and right side inclination and the upper side corner of the front and rear inclination, and the sorting belt (25) is driven by the drive roller (26 ) Is driven by the drive motor (29), and the sized particles are rolled forward along the front-rear inclination and collected from the front edge of the belt (25), and the outer shape of the scrap does not exhibit a complete particle shape. In the belt sorting machine that collects the grains by moving the grains to the upper side of the right and left slope along the movement (b) of the belt (25) surface, the upper and lower stages of the sorting belt (25) are unit sorting sections (33), The driving roller (26) and the driven roller of these sorting belts (25) La (27) were each fixed on the combined frame (37) and the intermediate frame (39) between the main frame (38) and combined frame (37) is provided, combined frame (37) the main frame (38 ) , The tilt angle of the dual-purpose frame (37) can be changed by the hinges (40, 40) with respect to the intermediate frame (39) so that the left and right tilt angles (α) and the front and rear tilt angles (β) can be adjusted. And a configuration of the belt sorting device characterized in that the intermediate frame (39) is supported by the hinges (44, 44) so that the inclination angle can be changed with respect to the main frame (38). To do.
[0008]
Accordingly, the left / right inclination angle α and the front / rear inclination angle β can be adjusted in units of the upper and lower unit selection units 33. As the object to be sorted from the supply unit 28 is driven by the sorting belt 25, the sized particles are collected on the lower side of the front and rear inclination, and the waste particles are collected from the upper side of the inclination.
[0009]
According to the second aspect of the present invention, the right / left inclination angle α is set so that the left / right inclined high side is moved up and down via hinges 40 and 40 to the intermediate frame 39 supported by the main frame 38 on the left / right inclined low side. On the higher side, between the dual-purpose frame 37 and the intermediate frame 39, a screwed body 42 screwed to a screw shaft 41 formed in the opposite direction from the center to the axial direction and a lower end pivotally attached to the screwed body 42. A connecting arm 43 whose upper end is pivotally attached to the dual-purpose frame 37 is provided, and by rotating the screw shaft 41 forward and backward, the inclination angle α of the dual-purpose frame 37 with respect to the intermediate frame 39 (main frame 38) is changed. Thereby, the upper and lower sorting belts can be adjusted all at once, and can be easily adjusted by operating the handle or the like even on the adjustment side having a high adjustment frequency according to the state of mixing of waste particles.
[0010]
The invention according to claim 3 is configured such that the front / rear inclination angle β can be adjusted by supporting the intermediate frame 39 with the hinges 44, 44 on the front side so that the angle can be changed with respect to the main frame 38. Therefore, similarly to the above, it is possible to adjust a plurality of upper and lower sorting belts at once.
[0011]
【The invention's effect】
According to the first aspect of the present invention, an intermediate frame (38) is provided between the main frame (38) and the dual-purpose frame (37). In order to provide the inclination angle (β) to be adjustable, the dual-purpose frame (37) is supported by the hinges (40, 40) so that the inclination angle can be changed with respect to the intermediate frame (39), and the main frame (38). ), The intermediate frame (39) is supported by the hinges (44, 44) so that the inclination angle can be changed. Therefore, the number of adjustments can be reduced even when the unit selectors 33 are stacked on top and bottom.
[0012]
Further, according to the invention described in claim 2 and claim 3, it is possible to adjust a plurality of upper and lower sorting belts at once, and even on the adjustment side where the adjustment frequency is high according to the state of waste particle mixing, Easy to adjust. By configuring the intermediate frame, the dual-purpose frame is connected to the intermediate frame so that the angle can be adjusted. Therefore, it is easy to incorporate an angle adjusting mechanism for the left / right inclination angle α and the front / rear inclination angle β.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
The sorting facility in FIG. 1 is a properly dried soybean sorting facility, which includes a cargo receiving portion 1, a coarse sorting portion 2, a particle size sorting portion 3, a belt sorting portion 4, a product tank portion 5, and a shipping portion 6. .
[0014]
The load receiving unit 1 includes a load receiving elevator 7 and a plurality of raw material tanks 8a to 8d. The raw material input hopper 9 of the elevator 7 receives the soybean input from the dump vehicle 10.
The coarse selection unit 2 is made up of a plurality of equipment of specific gravity selection type and sieve selection type, and the soybeans that are provided in series from the upper side of the conveyance and sorted to remove dusts are supplied to the next particle size selection unit 3 The dusts are separated and collected in the foreign substance collection tank group 11. Soybeans lifted from the raw material tanks 8a to 8d through a high elevator 24 are provided with a wind sorter 13 via a coarsely-selected flow control tank 12, and are separated by light specific gravity such as soybean skin. Is removed. Reference numeral 14 denotes a sieve sorter that removes impurities such as stems having a diameter larger than that of soybeans. The soybeans that have passed through the sieve sorter 14 are configured to pass through a stone remover 15 and a specific gravity sorter 16 to remove stones and foreign substances close to the soybean particle size.
[0015]
The foreign matter collection tank group 11 includes a husk tank 11a for collecting extremely light foreign matters such as skins, a first dust tank 11b for collecting foreign matter having a specific gravity slightly heavier than skins but lighter than soybeans, and soybean particle size. A second dust tank 11c that collects larger impurities, a half-crack collection tank 11d that collects half-cracks of soybeans, and a belt sorting and collecting tank 11e that collects scrap particles from the belt sorting section described later. The light specific gravity contaminants from the wind power sorting unit 12 are configured to be discharged to the dust tank 11a or the dust tank 11b by light weight. Contaminants sorted in three stages from the sieve sorter 13 are configured to be discharged into the second dust tank 11c and the half-crack collection tank 11d in addition to discharging the garbage separately.
[0016]
The soybeans from which various impurities have been removed via the specific gravity sorter 16 are supplied to the particle size sorting unit 3 by the elevator 17. The particle size selection unit 3 includes a first particle size selection unit 3a configured with six rotary selection cylinders 18 having slits having the same scale, and slit holes having a large scale relative to the selection cylinder 18. The formed rotary sorting cylinder 19 is composed of a second particle size sorting section 3b that is configured into four cylinders, and these are connected in series via a connection elevator 20. Therefore, the supplied soybean is discharged from the small-diameter grains leaking through the slit-shaped sorting holes of the first particle size sorting section 3a and the terminal portion of the rotary sorting cylinder 18 of the first particle size sorting section 3a. The medium diameter particles supplied to the sorting section 3b and leaking from the slit-shaped sorting holes of the rotary sorting cylinder 19 of the second particle size sorting section 3b and the large diameter grains discharged from the discharge section of the rotating sorting cylinder 19 It is the structure divided into three convenience.
[0017]
Each of the first particle size sorting unit 3a and the second particle size sorting unit 3b is provided with a plurality of rotary sorting cylinders 18 or 19, but each sorting cylinder is supplied with soybeans substantially uniformly from the distribution supply unit. It is configured as possible.
Three discharge units from the first and second particle size sorting cylinders 3a and 3b are connected to and transported by three supply / conveying devices 21a, 21b, and 21c in the form of a flight conveyor. It can be processed. In the middle of the conveyance of each of the supply and conveyance devices 21a, 21b, and 21c, the on-off valves 22a, 22b, and 22c are provided so that they can be supplied to any belt sorter corresponding to the installation position of the belt sorter described later.
[0018]
The belt sorting unit 4 including a plurality (four in the illustrated example) of belt sorters 23a to 23d has the following configuration. That is, the selection belt 25 inclined to two sides is wound between the left and right drive rollers 26 and the driven roller 27, and the soybean supply unit 28 is configured at the lower side of the left and right inclination and at the upper side corner of the front and rear inclination. When the sorting belt 25 is driven by a drive motor 29 directly connected to the shaft portion of the drive roller 26 and soybeans are supplied from the supply unit 28, the sizing is less inclined along the movement of the surface of the belt 25 and is inclined forward and backward. It rolls to the front side along, falls mainly from the front side edge of the belt 25, and is collect | recovered by the sizing hopper 31 via the inclination guide chute 30 provided in this position. Further, the scrap particles whose outer shape does not exhibit a perfect grain shape are configured to move to the upper side of the right and left slope along the movement of the belt 25 surface and be collected by the waste particle hopper 32 provided on the upper side.
[0019]
In the above description, the sorting belt 25 provided with the sorting belt 25 in two planes is configured in a plurality of stages (six stages in the illustrated example) in a stacked manner with the upper and lower two stages as unit sorting portions 33. That is, a pair of upper and lower stages of a frame 34 that supports each sorting belt 25 and the driving roller 26 and the driven roller 27 of the belt 25 as a frame, and support metals 35 and 35 that support the driving roller 26 and the driven roller 27. And 36 and 36 are fixed to the upper beam portion 37a and the lower beam portion 37b of the dual-purpose frame 37 that are rectangular in side view and normal / back view. This dual-purpose frame 37 is provided so as to be adjustable with respect to the main frame 38 in both the left and right inclination angles α and the front and rear inclination angles β, thereby constituting the upper and lower two-stage unit selection section 33. Note that the left / right inclination angle α is such that the left / right inclination lower side (the right side in FIG. 2) should move up and down on the intermediate frame 39 supported by the main frame 38 via the hinges 40, 40. In FIG. 4, between the dual-purpose frame 37 and the intermediate frame 39, a screwed body 42 screwed to a screw shaft 41 formed in the opposite direction from the center to the axial direction, and a lower end pivotally attached to the screwed body 42 and an upper end thereof. A connecting arm 43 pivotally attached to the dual-purpose frame 37 is provided, and an intermediate frame 39 is obtained by moving and adjusting the screwed body 42 in the axial direction by rotating the screw shaft 41 with a detachable handle (not shown). The inclination angle α of the dual-purpose frame 37 with respect to the (main frame 38) can be changed.
[0020]
Further, the front / rear inclination angle β is such that the intermediate frame 39 is supported by the front hinges 44 and 44 so that the angle can be changed with respect to the main frame 38, and the opposite (rear) adjustment bolts 45 and 45 are attached to the main frame 38. On the other hand, the angle β can be adjusted by moving the intermediate frame 39 up and down.
[0021]
50 is a diffuser that disperses soybeans moving in the left-right direction back and forth.
In the unit selection section 33, the main frame 38 is configured to have different lengths in the left-right direction, and is arranged in a platform shape in a plurality of stages (six stages in the illustrated example) with the right end aligned. In other words, the main frame 38 in the unit selecting portion 33 is formed by standing a rectangular horizontal frame portion 38a as a base member and a pair of column members 38b on the left and right sides of the horizontal frame portion 38a. In the case of connecting in the shape of a chick, the platform can be formed by forming the horizontal frame portion 38a which is longer than the left-right interval of the column member 38b and further increasing the length toward the lower side.
[0022]
The uppermost main frame 38 has an upper frame 38c for connecting the column member 38b, and a supply hopper 51 is provided on the upper frame 38c. A feed roll (not shown) is provided in the hopper 51, and is divided into a plurality of chambers divided in the direction of the rotation axis of the roll, and supply cylinders 52, 52... Are connected to the chambers. 52, 52... Are placed on a supply chute 53 that is fixedly provided on the upper surface of each sorting belt 25, so that the soybean supply unit 28 is configured. In this way, four belt sorters 23 for sorting the soybeans from the supply hopper 51 into the sized particles and the waste particles while supplying the soybeans from the upper and lower 2 stages × 6 sets = 12 stages of the sorting belt 25 are provided.
[0023]
The supply hopper 51 of each of the belt sorters 23a to 23d is provided with the on-off valves 22a, 22b, and 22c of the supply and transfer devices 22a, 22b, and 22c, respectively, and can accept soybeans of any selected particle size. I have to. Of these, the feeding hoppers 51a and 51b of the belt sorters 23a and 23b are single, and the soybeans having the same particle size are fed to all the upper and lower 12 stages. However, the belt sorting machines 23c and 23d Provided in plural for half and lower half, for example, divided into upper and lower and divided into upper and lower 2 stages x 3 sets = 6 stages of sorting belts 25 to supply different particle sizes. The machine 23c is provided with two supply hoppers 51c1 and 51c2. In the case of the belt sorter 23d, the supply hoppers 51d1 and 51d2 have a two-unit configuration so that the upper four sets and the lower two sets can be supplied separately.
[0024]
In order to collectively transport the sized particles from the belt sorters 23a to 23d, the discharge conveyor apparatus 54a, 54b, 54c in the form of a flight conveyor is configured in three lines for small, medium, and large particles, and also collects waste particles. A discharge transport device 55 that transports the belt is disposed below the belt sorters 23a to 23d. The discharge side of the waste particle discharge / conveyance device 55 is connected to the belt sorting / collecting tank 11e in the foreign matter collecting tank group 11.
[0025]
The discharge from the belt sorters 23a to 23d to the discharge / conveying devices 54a, 54b, and 54c is carried out by any switching valve 56 disposed at the lower end side collecting portion of the upper and lower sized hoppers 31 of the respective belt sorters. It is configured to select whether to supply to the device 54a, 54b or 54c. That is, the switching valves 56a to 56b are arranged in the belt sorters 23a to 23b, respectively, and in the case of the upper / lower divided form of the belt sorters 23c and 23d, two sets of switching valves 56c1, 56c2, and 56d1. , 56d2 are arranged.
[0026]
A non-illustrated operation panel is provided with a destination switch as an instruction means for instructing the on-off valves 22a, 22b, and 22c to the belt sorters 23a to 23d, and the discharge destination designation is performed in conjunction with the selection setting of the destination switch. The switching valves 56a to 56d2 are configured to be interlocked with each other in a predetermined manner so that sized particles having different particle sizes are not mixed in the discharge destination.
[0027]
The sizing and discharging apparatus 54 a, 54 b or 54 c is connected to the product tank unit 5. The product tank portion 5 is composed of a plurality of product tank groups 57a to 57e, and connecting portions 59a to 59c (for example, cylindrical guide chutes) are respectively connected to the tension transfer devices 58a to 58c to the tank groups 57a to 57e. Connected through. These tension conveying devices 58a to 58c are in the form of flight conveyors, and corresponding to the product tanks 57a to 57e are small particle opening / closing valves 60a to 60e, medium particle opening / closing valves 61a to 61e, and large particle opening / closing, respectively. Valves 62a to 62e are provided, and the product tanks 57a to 57e are selected and set in the non-illustrated operation panel so as to accommodate the particle sizes of the product tanks, and the on-off valves 60, 61 and 62 are set. The open position can be specified by.
[0028]
As described above, the soybean to be sorted is conveyed by the elevator 17 and then supplied to the belt sorting unit 4 through the particle size sorting unit 3 and sequentially processed. In response, the elevator 17 may supply the supply / conveying device 21 directly to the belt sorting unit 4 via the path 64. This is done, for example, when a particle size sorting process is carried out before bringing it into the facility.
[0029]
Reference numerals 65a to 65c denote sample take-out portions provided in the connection portions 59a to 59c, respectively. Grains sampled from the respective connecting portions 59a to 59c are supplied to the self-inspection device 66 through the transport path. This self-testing device 66 is provided with a series of test sorting cylinders having the same scale as the rotary sorting cylinder 17 and the rotary sorting cylinder 18 in series, and the sample grains are sorted and separated in three stages. That is, a first screening cylinder 67 for examination having the same scale as that of the rotary sorting cylinder 17 and a second screening cylinder 68 for examination having the same scale as that of the rotary sorting cylinder 18 are provided and divided into three stages. The sample particles selected at each stage can be measured correspondingly to each of the sample particles separated or separated by a measuring device 66a that is also used as the sample particles and transmitted to the calculation control unit 69.
[0030]
The calculation control unit 69 inputs the discharge weight at each scale for each sample, and whether or not the sorting in the particle size selection unit 3 is within the specified level. If not, the rotation selection cylinder 18 or 19 It warns of abnormalities in each part of the sorting cylinder whether the process exceeds the limit of sorting. As an example, sampling is performed from the small particle connecting portion 59a, and the result of selection weighing by the self-testing device 66 is set to a small particle w1, a medium particle w2, and a large particle w3. Since it is sampling from a small grain connection part, it is w1 >> w2 and w1 >> w3. Therefore, when w2 / w1> γ or w3 / w1> δ (γ and δ are predetermined reference values), a configuration is made to output an alarm that the mixture ratio of medium or large particles is large in the planned small particles. To do. Factors such as an excessive supply amount in the particle size selection section 3 and poor adjustment of each section are predicted, suggesting these improvements (FIG. 7).
[0031]
The product tank unit 5 is connected to the shipping unit 6 via a shipping elevator 70. The shipping unit 6 has a configuration in which a flexible container (flexible container) 71 can be packed and shipped, or a truck can be shipped separately. In addition, the sizing provided for each shipment has a configuration that reaches the metal detection and removal machine 73 through the shipping elevator 70 and the flow control tank 72. The metal detection and removal machine 73 has a configuration in which a magnet is disposed in the middle of the conveyance path and the metal is attracted and removed by a magnetic force. The sized particles to be shipped are then supplied to the wind power sorter 74. In this wind power sorter 74, separations (adhering dusts, skins, etc.) from grains generated by the particle size sorting section 3, the belt sorting section 4 and the conveyance path thereof are removed by wind. 75 is a weighing tank equipped with a weighing machine, and can output the shipping weight to the calculation control unit 67.
[0032]
The cargo receiving unit 1, the coarse selection unit 2, the particle size selection unit 3, the belt selection unit 4, the product tank unit 5, and the shipping unit 6 are accommodated and arranged in the building constructed on the third floor as follows. . On the first floor (1F), a receiving space and a shipping space are secured to facilitate entry and exit of the transport vehicle, and various tanks are arranged. The raw material charging hopper 8, contaminant collection tanks 11a to 11e, and product tanks 57a to 57e are arranged on this floor.
[0033]
On the second floor (2F) of the building, there are a stone remover 15 and a specific gravity sorter 16 of the coarse selection unit 2, belt sorters 23 a to 23 d of the belt sorter 4, discharge / conveying devices 54 and 55 for sorting / scrap particles, and a shipment unit 6 The wind sorter 73 and the like are arranged. In addition, on the third floor (3F), a rough flow control tank 12 of the rough selection unit 2, a wind sorter 13 and a sieve sorter 14 are arranged, and supplied to the particle size selection unit 3 and the belt sorter 23. A transport device 21 is provided.
[0034]
The operation of the above example will be described. The soybeans brought into the cargo receiver 1 are appropriately supplied to any empty tank of the raw material tanks 8a to 8d. The soybeans in the raw material tank are supplied to the coarse selection unit 2 via the elevator 24. The coarse selection unit 2 winds and removes light dust such as skin through the wind power sorter 13. Moreover, when supplied to the sieve sorter 14, impurities such as stems having a diameter larger than that of soybean are removed. Further, the stone removal machine 15 removes stones, and the specific gravity sorter 16 can remove light impurities close to the soybean particle diameter.
[0035]
The soybeans subjected to the above rough selection are first supplied to the particle size selection unit 3a via the elevator 17. Here, the soybeans are sorted into small grains and soybeans having a larger particle diameter, and the small soybeans are received by the supply and conveyance device 21a. Next, the soybeans sent to the particle size selection unit 3b are divided into medium grains and large grains. The medium soybeans are received by the supply / conveyance device 21b, and the large soybeans are received by the supply / conveyance device 21c.
[0036]
Since the on-off valve 22 of the supply and transport devices 21a to 21c is opened at a position corresponding to the belt sorters 23a to 23d of the transport destination set in advance by the operation panel, the belt sorter set as the transport destination. Small, medium or large soybeans can be supplied to the hoppers 51a to 23d. Therefore, it is preferable to specify the supply destination to the hopper 51 by predicting the number of belt sorters or the number of used stages according to the particle size of the received soybean. The soybean in the hopper 51 is supplied to the supply chute 53 by supply chutes 53 provided for each section and supplied to the surface of the predetermined sorting belt 25.
[0037]
The belt sorters 23a to 23d adjust and set the sorting angles α and β in advance. In other words, the right and left inclination angle α is adjusted to a desired angle by a handle connected to the screw shaft 41 in conjunction with forward / reverse rotation. Further, the front-rear inclination angle β is adjusted to a desired angle with the adjusting bolts 45, 45. When each drive motor 29 is started after such an angle adjustment, the soybeans supplied to the surface of the belt 25 are shaped like a sphere, and the belt 25 is inclined in the front and rear directions, so that the lower machine frame is provided. It rolls forward and is collected by the sized hopper 31. On the other hand, flat particles and the like are difficult to roll, and are transported to the upper side of the right and left slope and collected in the waste particle hopper 32 as the belt 25 rotates.
[0038]
In this embodiment, the unit sorting unit 33 is configured so that the upper and lower two-stage sorting belts 25 are supported by a common dual-purpose frame 37, and the dual-purpose frame 37 is inclined to the main frame 38 by a left-right angle α and a front-back inclination angle. Since β can be changed for each unit selection section 33, a plurality of units can be adjusted and set at a time, and the number of adjustments is equal to the number of installation of the unit selection section 33 as compared with the adjustment for each selection belt 25, 25. The adjustment man-hour can be reduced if it is performed.
[0039]
The sized particles collected from the sized particle hopper 31 are gathered into the small particle opening / closing valve 60, the medium particle opening / closing valve 61, or the large particle opening / closing valve 62 through the upper and lower hoppers, and passed down. The paper is discharged to the discharge conveyance device 54a, 54b or 54c.
On the other hand, in the case of the waste particle hopper 32, the upper and lower hoppers are displaced from side to side. However, the waste particles from the upper hopper communicate with the lower waste particle tank and can be recovered by appropriate means. It is discharged to the discharging and conveying device 55 for waste particles that have been passed through.
[0040]
Since the sized particles discharged from the belt sorter 23 have the same particle size, they are sorted into small, medium, and large grains in advance, and the sized particles discharged from the belt sorter 23 have the same particle size. There is no need to perform a particle size sorting process on the grains.
The soybean grains discharged to the discharge / conveying devices 54a, 54b and 54c are supplied to the product tanks 57a, 57b or 57c in which the grain size grains to be accommodated are set in advance via the connecting portion 59. In the middle of this, a sample is taken out, a part thereof is sampled to the self-testing device 66, and the classification process and the weight ratio calculation are performed. 3 (3a, 3b) is used to determine the accuracy of the sorting state.
[0041]
The sized soybeans supplied to the product tanks 57a to 57e are carried out according to the subsequent shipment plan, and are lifted from the first floor to the third floor at once by the shipping elevator 70, and the metal detection and removal machine 72 waiting on the third floor. Or the wind power separator 73 below the floor is sequentially supplied to remove the peeling skin, dust, and the like generated during the metal removal process and conveyance and the sorting process. After such finishing processing is performed, it is supplied to the measuring tank 74 and weighed and used for each consignee or for confirmation of the shipping amount.
[0042]
At the time of shipment, it is possible to select a flexible container shipment form or a rose form shipment by vehicle.
In the above embodiment, the particle size sorting unit 3 is arranged on the uppermost floor (3rd floor) of the building, and the belt sorter 23 is arranged on the lower floor, so that the belt from the particle size sorting unit 3 to the belt is arranged. The soybean is transported to the sorting unit 4 while the supply conveyor device 21 in the form of a flight conveyor is provided on the way. Sufficient and can prevent soybean damage as much as possible. Further, the finished product tank 57 is configured on the first floor portion, and the conveyance from the belt sorting unit 4 is also a natural flow structure from the upper to the lower, reducing soybean damage.
[0043]
Reference numeral 76 denotes a camera for observing the state of grain supply to each belt sorter 23 of the belt sorter 4 stacked on the platform of the belt sorter 4 and supplying soybeans to a monitor (not shown). The supply side of the sorting belt 25 in the vicinity of the section 28 is projected. The upper and lower two-stage sorting belt 25 is configured in the unit sorting section 33 so that the front and rear, left and right tilt angles α, β and other conditions are the same. The conditions of the sorting belt and the lower sorting belt are constant, and if soybeans with the same characteristics such as particle size are supplied to this sorting belt, it is predicted that the same sorting distribution will be taken at the upper and lower levels, and the sorting status of the upper sorting is camera By monitoring, it is possible to grasp the almost entire sorting situation. Therefore, by monitoring each upper side of the unit sorting unit 33 stacked in the above-mentioned platform shape, it is possible to check the supply status of the selected soybean in the entire belt sorter 23 and the diffusion to the belt surface, and thus grasp the soybean clogging. . In addition to displaying the camera image directly on the monitor for monitoring, image processing may be used to automatically detect grain clogging as a configuration that can detect the presence or absence of the selected soybean.
[0044]
The camera 76 is mounted on the screw shaft 78 so that the mounting machine base 77 moves up and down along the vertical screw shaft 78 so that the camera position can be finely adjusted up and down. Accordingly, since a wide range is measured over the vertical range, an appropriate position can be selected while adjusting in the vertical direction. Instead of this vertical movement, the camera 76 may be configured to swing up and down or up and down and left and right with respect to the mounting machine base 77 so as to be widely measured over the vertical range.
[0045]
FIG. 8 shows an improvement of the unit selection unit provided in the shape of a platform. That is, the upper and lower sorting belts 81 and 82 are connected in series. The upper sorting belt 81 inclined in two planes has the same form as the sorting belt 25, while the lower sorting belt 82 has the same longitudinal inclination as the upper sorting belt 81 but the left and right inclinations are reversed. I am letting. A supply unit 83 is provided on the lower belt inclination side of the upper sorting belt 81 and can be supplied from the transfer terminal end of the upper sorting belt 81 toward the lower inclination side of the lower sorting belt 82 via the guide supply unit 84. . The guide supply unit 84 includes a switching valve 85 that switches between a supply state to the lower sorting belt 82 and a supply state to the outside of the machine as appropriate. The unit sorting portions of the upper and lower sorting belts 81 and 82 are framed by a frame 86 and can be stacked in a vertical pattern. The sized and collected hopper is disposed on the lower end side of the sorting belt 81 in the front-rear direction. The waste particle collection hopper is connected to the outside of the guide supply unit 84 or is provided in the upper discharge unit of the lower sorting belt 82.
[0046]
If comprised as mentioned above, the supplied sorting soybean will be sorted by the upper sort belt 81, and it will be separated into the size regulation and the waste grain up and down. When the sizing ratio contained in the waste grains is high, sorting by the lower sorting belt 82 is performed. Thus, the particles are sorted into sized particles and waste particles through a vertically long sorting path. Here, when a desired sorting state can be obtained by the sorting action of the upper sorting belt 81, the switching valve 85 can be used to make a discharge state outside the machine so that the sorting by the lower sorting belt 82 is not performed.
[0047]
FIG. 9 shows the structure of a clogging prevention body provided to remove clogging of the sorting holes of the rotary sorting cylinders 18 and 19. The shaft 90 linked to the forward / reverse driving means is configured as a square axis, and rubber pieces 91, 91... Are applied to each side of the square axis 90 with a length n appropriately short with respect to each side length m of the square axis 90. It fixes with the board 92,92 .... For this reason, in the forward rotation state (FIG. 9 (A)), the rubber piece 91 is in contact with the outer surface of the rotary sorting cylinder while being regulated by the end face of the adjacent backing plate 92 and sweeps off adhering soot and small rice. On the other hand, at the time of reverse rotation (FIG. 9 (b)), the rubber piece 91 can be deformed within a range in which the rubber piece 91 is curved and in contact with the bent portion 92a at the end of the contact plate 92. Since the side length of the shaft 90 is shorter, the effective action length G2 of the rubber piece 91 is longer than the effective action length G1 at the time of normal rotation. By making it act strongly, prevention of clogging can be promoted.
[0048]
Since the configuration disclosed in Japanese Patent Laid-Open No. 2002-177889 is a configuration that is driven and rotated in a certain direction, the rubber is deformed to promote deterioration. Further, if the elastic returnability is impaired by deformation, the contact surface is small and sufficient removal performance cannot be obtained. Therefore, as described above, the rubber piece is set on the shaft that can be linked in the forward / reverse direction so that its effective action length is set differently, so that the action at the time of reverse rotation becomes stronger than the normal forward rotation state and the clogging removal effect is promoted. be able to.
[Brief description of the drawings]
FIG. 1 is a processing flow diagram of a soybean sorting facility.
FIG. 2 is an enlarged perspective view of a part of a belt sorter.
FIG. 3 is a rear view of the belt sorter.
FIG. 4 is a side view of a belt sorter.
FIG. 5 is a perspective view of an inclination angle adjustment unit.
FIG. 6 is a perspective view of a part of the belt sorter.
FIG. 7 is a flowchart.
FIG. 8 is a front view showing a different example of a belt selection unit.
FIG. 9 is a cross-sectional view of a clogging prevention body of a particle size selection unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Load receiving part, 2 ... Coarse selection part, 3 ... Particle size selection part, 4 ... Belt selection part, 5 ... Product tank part, 6 ... Shipment part, 18, 19 ... Rotation selection cylinder, 23 ... Belt selection machine, 25 ... sorting belt, 33 ... unit sorting section, 37 ... combined frame, 38 ... main frame, 39 ... intermediate frame

Claims (3)

2面傾斜させた選別ベルト(25)を左右の駆動ローラ(26)と被動ローラ(27)との間に巻回して左右一側の傾斜低位側から左右他側の傾斜上位側に向かって回転するよう設け、左右傾斜の低位側でかつ前後傾斜の上位側隅部に大豆供給部(28)を構成し、選別ベルト(25)を駆動ローラ(26)の軸部を駆動モータ(29)によって駆動して、整粒を前後傾斜に沿って前側に転動させてベルト(25)の前側端縁から回収し、外形が完全粒形を呈しない屑粒をベルト(25)面の移動(イ)に沿って左右傾斜の上位側に移動させて回収するベルト選別機において、上記選別ベルト(25)の上下複数段を単位選別部(33)として、これらの選別ベルト(25)の駆動ローラ(26)及び被動ローラ(27)とを兼用フレーム(37)に各固定し、主フレーム(38)と兼用フレーム(37)との間には中間フレーム(39)を設け、兼用フレーム(37)主フレーム(38)に対して左右傾斜角度(α)及び前後傾斜角度(β)をそれぞれ調整可能に設けるべく、中間フレーム(39)に対して兼用フレーム(37)をヒンジ(40,40)で傾斜角度変更可能に支持する構成とする共に、主フレーム(38)に対して中間フレーム(39)をヒンジ(44,44)で傾斜角度変更可能に支持する構成としたことを特徴とするベルト選別装置。A selection belt (25) inclined on two sides is wound between the left and right drive rollers (26) and the driven roller (27), and rotated from the lower inclined side on the left and right sides toward the upper inclined side on the other side. The soybean supply part (28) is formed at the lower side of the left and right inclination and the upper side corner of the front and rear inclination, and the sorting belt (25) is connected to the shaft of the drive roller (26) by the drive motor (29). Driven to roll the sized particles to the front side along the front-rear inclination and collected from the front edge of the belt (25). ) Along the upper and lower slopes of the belt sorting machine, and collecting the upper and lower stages of the sorting belt (25) as unit sorting sections (33), driving rollers (25) for these sorting belts (25). 26) and the driven roller (27). And each fixed to 7), an intermediate frame (39) between the main frame (38) and combined frame (37) is provided, lateral inclination angle to the combined frame (37) the main frame (38) (alpha ) And the front / rear tilt angle (β) are provided so as to be adjustable, and the dual-purpose frame (37) is supported by the hinge (40, 40) so that the tilt angle can be changed with respect to the intermediate frame (39). A belt selection device characterized in that the intermediate frame (39) is supported by the hinges (44, 44) so that the inclination angle can be changed with respect to the frame (38). 左右傾斜角度(α)は、左右傾斜低位側を主フレーム(38)に支持された中間フレーム(39)にヒンジ(40,40)を介して左右傾斜高位側が上下すべくなし、この傾斜高位側において兼用フレーム(37)と中間フレーム(39)との間に、中央部から軸方向前後を互いに逆方向に形成した螺軸(41)に螺合した螺合体(42)と、下端を該螺合体(42)に枢着し上端を上記兼用フレーム(37)に枢着した連結アーム(43)とを設け、螺軸(41)を正逆転させることより、中間フレーム(39)に対する兼用フレーム(37)の傾斜角度(α)を変更すべく構成したことを特徴とする請求項1に記載のベルト選別装置。  The left / right inclination angle (α) is such that the left / right inclination lower side should move up and down via the hinges (40, 40) to the intermediate frame (39) supported by the main frame (38). In FIG. 5, a screwed body (42) screwed between a dual-purpose frame (37) and an intermediate frame (39) is screwed into a screw shaft (41) formed in the opposite direction from the center in the axial direction, and the lower end is screwed. A connecting arm (43) pivotally attached to the united body (42) and having an upper end pivotally attached to the dual-purpose frame (37) is provided, and the screw shaft (41) is rotated in the forward and reverse directions. 37. The belt sorting device according to claim 1, wherein the belt sorting device is configured to change the inclination angle (α) of 37). 前後傾斜角度(β)は、主フレーム(38)に対して中間フレーム(39)を前側のヒンジ(44,44)で角度変更可能に支持して調整できる構成とした請求項1又は2に記載のベルト選別装置。  The front-rear inclination angle (β) can be adjusted by supporting the intermediate frame (39) with the front hinges (44, 44) so that the angle can be changed with respect to the main frame (38). Belt sorting device.
JP2003154958A 2003-05-30 2003-05-30 Belt sorting device Expired - Fee Related JP4389481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154958A JP4389481B2 (en) 2003-05-30 2003-05-30 Belt sorting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154958A JP4389481B2 (en) 2003-05-30 2003-05-30 Belt sorting device

Publications (2)

Publication Number Publication Date
JP2004351378A JP2004351378A (en) 2004-12-16
JP4389481B2 true JP4389481B2 (en) 2009-12-24

Family

ID=34049469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154958A Expired - Fee Related JP4389481B2 (en) 2003-05-30 2003-05-30 Belt sorting device

Country Status (1)

Country Link
JP (1) JP4389481B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101285361B1 (en) * 2013-04-05 2013-07-11 권중배 A vibrating screen appratus
KR101844671B1 (en) * 2016-08-16 2018-04-02 김상완 Distillation control device of soybean sugar machine
CN110090801B (en) * 2019-06-17 2024-03-01 裴会立 Bean multistage sorting machine

Also Published As

Publication number Publication date
JP2004351378A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US6758342B1 (en) Cereal grain sorting system and roll sorting machine
JP2018199102A (en) Granular material selection device
US5992776A (en) Process for processing ash
JP4389481B2 (en) Belt sorting device
JP4626195B2 (en) Stone extraction equipment
JP4552425B2 (en) Soybean preparation and shipping facility
JP4333207B2 (en) Soybean sorting facility
KR101092127B1 (en) Grain sorting machine
JP2000202364A (en) Three-stage sorter of grain or the like
EP0501590B1 (en) A bulk bin for agricultural products
JP4319515B2 (en) Grain swing sorting device
JP2000042495A (en) Grain sorting and weighing machine
JP2892051B2 (en) Grain sorting equipment
JP2886038B2 (en) Threshing equipment
JP2006095433A (en) Grain processing facility
JP2556531Y2 (en) Granular grain sorting equipment
JP3153674B2 (en) Independent verification method and apparatus for paddy or wheat
JP4234560B2 (en) Finishing wind selection device used in rice wheat preparation and shipping equipment
JP3021824B2 (en) Control device of swing sorting device
JP3540653B2 (en) Grain processing equipment
JP3829365B2 (en) Sample transfer device for grain drying facility
JP2001041861A (en) Apparatus for measuring quality of grain and grain- processing facility with the same
JPS5845772Y2 (en) Stone crushing ball sorting device
JP2004154775A (en) Grain treating equipment
JP3027678B2 (en) Sorting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4389481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151016

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees