JP4386867B2 - High pressure fuel injection accumulator / distributor for automobile and manufacturing method thereof - Google Patents

High pressure fuel injection accumulator / distributor for automobile and manufacturing method thereof Download PDF

Info

Publication number
JP4386867B2
JP4386867B2 JP2005227182A JP2005227182A JP4386867B2 JP 4386867 B2 JP4386867 B2 JP 4386867B2 JP 2005227182 A JP2005227182 A JP 2005227182A JP 2005227182 A JP2005227182 A JP 2005227182A JP 4386867 B2 JP4386867 B2 JP 4386867B2
Authority
JP
Japan
Prior art keywords
holder
groove
outer peripheral
joint
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005227182A
Other languages
Japanese (ja)
Other versions
JP2007040247A (en
Inventor
泰士 長谷川
竜一 本間
豊 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Fukujukogyo Co Ltd
Original Assignee
Nippon Steel Corp
Fukujukogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Fukujukogyo Co Ltd filed Critical Nippon Steel Corp
Priority to JP2005227182A priority Critical patent/JP4386867B2/en
Priority to EP06782400A priority patent/EP1914418B1/en
Priority to CN2006800289439A priority patent/CN101238285B/en
Priority to KR1020087002740A priority patent/KR100937058B1/en
Priority to US11/989,844 priority patent/US7900603B2/en
Priority to PCT/JP2006/315555 priority patent/WO2007015566A1/en
Publication of JP2007040247A publication Critical patent/JP2007040247A/en
Application granted granted Critical
Publication of JP4386867B2 publication Critical patent/JP4386867B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車用高圧燃料噴射蓄圧分配器およびその製造方法に関し、特に、内圧1200気圧を超える圧力に耐える自動車用高圧燃料噴射蓄圧分配器(コモンレール)を液相拡散接合あるいはその他の溶接で組み立てて製造する際、接合部に不可避的に発生する接合不良が原因で生じる接合部強度低下と接合部からの破壊を、継ぎ手部位の形状設計で締結力を上げることにより確実に防止することのできる、自動車用高圧燃料噴射蓄圧分配器およびその製造方法に関する。   The present invention relates to an automobile high-pressure fuel injection / accumulation distributor and a method for manufacturing the same, and more particularly, an automobile high-pressure fuel injection / accumulation distributor (common rail) that can withstand a pressure exceeding 1200 atm is assembled by liquid phase diffusion bonding or other welding. The joint strength reduction and breakage from the joint caused by the joint failure inevitably occurring at the joint can be reliably prevented by increasing the fastening force in the joint site shape design. The present invention relates to a high-pressure fuel injection accumulator / distributor for automobiles and a manufacturing method thereof.

自動車用燃料に軽油を用いる場合、各燃焼室に軽油を空気と混合して均一に噴射し、その爆発燃焼効果を最も効率よくエンジンの動力に変換する技術として、コモンレールシステムが用いられる。これは、燃料をエンジンの各燃焼室へ高圧で気体との混合物として均一に噴射し、その噴射圧力を電子制御で調節することで、排出ガスの有害物質低減にも有効な技術である。欧州では乗用車に多用されていることもあり、不純物成分の少ない軽油を用いることで、高出力、低燃費、さらには大トルクを得られるようになるなど、そのシステム技術開発が続けられてきた。本システムの主要構成は、燃料タンクから軽油をポンプで吸引し、コモンレールと呼ばれる燃料蓄圧器に一時的に高圧で保持し、ここからオリフィスと呼ばれる細径の吐出口と配管を介して噴射ノズルへと送られる。噴射ノズルでは、圧送された燃料を燃焼用空気と混合し、均一にエンジン燃焼室へと送り込む集合配管と噴射機能が備えられている。噴射ノズルから吐出する燃料は均一に噴霧するほど燃焼効率が高く、かつ高圧であるほどこの目的を達成しやすい。すなわち、極力高圧の燃料噴射システムを形成することが、有害物質排出の少ない自動車用エンジンを開発する上で重要な技術要素となっている。ところが、現在のコモンレールシステムでは、最初の蓄圧器に燃料が圧入されるとき、その吐出口に至る過程で、蓄圧器そのものが燃料の圧力に耐えられず、内圧疲労破壊する場合があった。これを解決するために、コモンレール素材の鋼材強度を上げることが重要との認識のもと、鋼材の化学成分の調整、熱処理の調整で対応する技術開発が進み、噴射燃料圧力は1200気圧までは十分に信頼性の高いコモンレールシステムが既に実用化されている。   In the case of using light oil as fuel for automobiles, a common rail system is used as a technology for mixing light oil into each combustion chamber and uniformly injecting it, and converting the explosion combustion effect into engine power most efficiently. This is an effective technique for reducing harmful substances in exhaust gas by uniformly injecting fuel into each combustion chamber of an engine as a mixture with gas at high pressure and adjusting the injection pressure by electronic control. In Europe, it is often used in passenger cars, and the development of system technology has continued, such as using high-power, low fuel consumption, and high torque by using light oil with few impurity components. The main configuration of this system is to draw light oil from a fuel tank with a pump, hold it temporarily at a high pressure in a fuel accumulator called a common rail, and from here to an injection nozzle via a small-diameter discharge port called an orifice and piping Sent. The injection nozzle is provided with a collecting pipe and an injection function for mixing the pumped fuel with combustion air and feeding it uniformly into the engine combustion chamber. The fuel discharged from the injection nozzle has a higher combustion efficiency as it is sprayed uniformly, and the higher the pressure, the easier it is to achieve this purpose. That is, forming a high-pressure fuel injection system as much as possible is an important technical element in developing an automobile engine that emits less harmful substances. However, in the current common rail system, when fuel is injected into the first accumulator, the accumulator itself cannot withstand the pressure of the fuel in the process of reaching the discharge port, and internal pressure fatigue failure may occur. In order to solve this, with the recognition that it is important to increase the steel strength of the common rail material, the corresponding technological development has progressed by adjusting the chemical composition of the steel material and adjusting the heat treatment, and the injected fuel pressure is up to 1200 atm. A sufficiently reliable common rail system has already been put into practical use.

しかし、1200気圧を超える高圧用のコモンレールでは、現時点では成形鍛造で一体成形し、これに複雑な機械加工を施して製造している。このことは、材料強度が高くなれば成形性が劣り、かつ加工が困難であるため、大きなコストの増大を招くこととなり、高圧用コモンレールの実用化の課題として未解決のままである。現時点では、1500気圧までの高圧用コモンレールが一部で実用化されているものの、製造方法は鍛造と機械加工の組み合わせ以外の方法を採択できないため、上記の課題は依然として未解決のままであった。図1にコモンレールの形状の例を示す。図1において、(a)は平面図、(b)は正面図である。   However, the common rail for high pressure exceeding 1200 atm is currently manufactured by integrally forming by forming forging and performing complicated machining on it. This means that if the material strength is increased, the moldability is inferior and the processing is difficult, which causes a large increase in cost, and remains an unsolved problem for practical application of the high-pressure common rail. At present, high-pressure common rails up to 1500 atm have been put into practical use, but the manufacturing method cannot adopt a method other than a combination of forging and machining, so the above-mentioned problems still remain unsolved. . FIG. 1 shows an example of the shape of the common rail. 1A is a plan view, and FIG. 1B is a front view.

本発明者らは、この高圧用コモンレールの製造方法を根本から見直し、各部位を簡単形状の部品に分割して部位毎に量産し、溶接によってそれらを組み立てて製品とする方法に着目した。元来1体成型によって部品を形成し、形状が複雑である場合には型打ち鍛造や据え込み鍛造、あるいは鋳造や一部削りだし工程を経て製造すべき部品を、単純形状の部品に分割して製造し、それらを液相拡散接合によって組み立てる技術については特許文献1および2に記載がある。これらの技術は、液相拡散接合という精密接合技術の利点を用い、複雑形状の部品を接合によって実現する技術であるが、液相拡散接合が融点降下元素の拡散律速で進行する性質を有するため、高温で接合面に応力を負荷し続けなければならず、工程時間が比較的長く、かつ接合装置のコストが高いこともあって工業的には普及している状況にはない。   The present inventors have fundamentally reviewed the manufacturing method of this high-voltage common rail, focused on a method of dividing each part into simple-shaped parts, mass-producing each part, and assembling them into a product by welding. Parts are originally formed by one-piece molding, and if the shape is complicated, the parts to be manufactured through stamping forging, upsetting forging, casting or partial cutting processes are divided into simple shaped parts. Patent Documents 1 and 2 describe a technique for manufacturing these components and assembling them by liquid phase diffusion bonding. These technologies use the advantages of precision bonding technology called liquid phase diffusion bonding, and realize parts with complex shapes by bonding. However, liquid phase diffusion bonding has the property that it progresses at the diffusion rate-determining point of the melting point lowering element. However, the stress must be continuously applied to the joint surfaces at a high temperature, the process time is relatively long, and the cost of the joining apparatus is high, so that the situation is not widespread industrially.

特開2002−086279号公報JP 2002-086279 A 特開2002−263857号公報JP 2002-263857 A

しかしながら、上記特許文献1、2に記載の発明は、接合面への負荷応力が接合治具あるいは部品形状、さらには加工精度の問題から均一とならない場合や、加熱を均一に実施しない場合に生じる局部変形による接合面の精密突き合わせを安定して形成する技術については開示がない。自動車用高圧燃料噴射蓄圧分配器は適用される部位の性質上接合強度は設計に厳格に反映され、機関の信頼性獲得に最も重要な部位である。従って、例えば接合工程において管理が困難な因子、すなわち上記したような原因による不完全接合部が万が一発生した場合は、たとえ後の検査技術を万全にしたとしても生産コストという観点からは歩留まり向上が果たせず、部品のコスト高騰につながり、工業製品として好ましくない製造方法しか採ることができないという課題が未解決であった。   However, the inventions described in Patent Documents 1 and 2 occur when the load stress on the joining surface is not uniform due to the problem of the joining jig or part shape and processing accuracy, or when heating is not performed uniformly. There is no disclosure about a technique for stably forming a precision butt of a joint surface by local deformation. The high-pressure fuel injection / accumulation / distribution distributor for automobiles is the most important part for obtaining the reliability of the engine because the joint strength is strictly reflected in the design due to the nature of the part to be applied. Therefore, for example, in the event that an incomplete joint due to a cause that is difficult to manage in the joining process, such as the above, should occur, the yield can be improved from the viewpoint of production cost even if the subsequent inspection technique is perfected. It has not been solved, and the cost of parts has risen, and the problem that only a manufacturing method that is not preferable as an industrial product can be used has not been solved.

液相拡散接合などの面接合技術は精密継ぎ手を形成可能ではあるが、反面ごく僅かな開先形状の異常にも鋭敏であって、信頼性の高い継ぎ手を得る上では解決すべき課題が残っている。   Surface bonding technology such as liquid phase diffusion bonding can form precision joints, but on the other hand, it is also sensitive to slight groove shape abnormalities, and there remains a problem to be solved in order to obtain a reliable joint. ing.

そこで、本発明は、自動車燃料噴射部品であるコモンレールの燃料分岐管をレール本体に燃料の圧力損失や漏洩無く接続する為に必要なホルダーを、液相拡散接合やその他の接合技術、あるいはそれらの複合技術により接合する際の信頼性を大きく高めることのできる、自動車用高圧燃料噴射蓄圧分配器およびその製造方法を提供する。   Therefore, the present invention provides a liquid phase diffusion bonding, other bonding techniques, or a holder necessary for connecting a fuel branch pipe of a common rail, which is an automobile fuel injection component, to the rail body without fuel pressure loss or leakage. Provided are a high-pressure fuel injection accumulator / distributor for automobiles and a method for manufacturing the same, which can greatly increase the reliability when joining by a composite technique.

本発明は、上記のような従来技術の問題点、すなわち接合で形成したコモンレール本体とホルダーとの接合が、引張り強度等の機械的特性を満足していたとしても、非破壊検査等で確認できない微小欠陥や、ヒューマンエラーに基づく欠陥の見逃しがあって、部品が必要とする特性、特に長時間の内圧疲労耐久特性が実現できないという事態を漏れなく防止することを目的になされたものであって、その骨子とするところは以下のとおりである。
(1) 自動車用高圧燃料噴射蓄圧分配器(コモンレール)のレール本体に、等圧で燃料を分配するための複数の分岐通路からエンジンの燃焼室に挿入する噴射ノズルへの配管を取り付ける配管取付部品(ホルダー)を液相拡散接合等で接合した、溶接式コモンレールであって、前記ホルダーは、外周面の溶接接合面側端部に、ホルダー軸方向長さ2mm以上にわたる範囲で、かつ、全周にわたって、前記液相拡散接合等の溶接の際の熱間で形成された、ホルダー本体外周面から片側1mm以上外径が大きい突出部を有し、前記レール本体は、ホルダー接合位置にホルダー接合位置決定用溝を有し、該溝は、ホルダー接合部内周と嵌合可能な径の溝内周壁と、ホルダーとの接合面となる溝底面と、溝底面から3mm以上の深さで、ホルダー外径に片側1.5mm以内のクリアランスを加えた径を有する溝外周壁とからなり、さらに、該溝外周壁には、ホルダー外周面の接合面側端部の突出部と嵌合する窪み部を有し、該溝外周壁の窪み部と前記ホルダーの突出部との嵌合によるアンカー効果で、ホルダーとレール本体の締結力を高めることを特徴とする、自動車用高圧燃料噴射蓄圧分配器。
(2) 前記ホルダーおよびレール本体は、引張り強さが室温で800MPa以上、1500MPa以下、さらには1000℃以上の温度で200MPa以下の鋼材であり、燃料噴射システムに内圧が付加されたときに生じる、ホルダー引き抜きの塑性変形開始応力(弾性限)が、100℃までの範囲で200MPa以上であることを特徴とする、上記(1)に記載の自動車用高圧燃料噴射蓄圧分配器。
(3) 自動車用高圧燃料噴射蓄圧分配器(コモンレール)のレール本体に、等圧で燃料を分配するための複数の分岐通路からエンジンの燃焼室に挿入する噴射ノズルへの配管を取り付ける配管取付部品(ホルダー)を液相拡散接合等で接合する、自動車用高圧燃料噴射蓄圧分配器の製造方法であって、前記レール本体は、ホルダー接合位置にホルダー接合位置決定用溝を有し、該溝は、ホルダー接合部内周と勘合可能な径の溝内周壁と、ホルダーとの溶接接合面となる溝底面と、溝底面から3mm以上の深さで、ホルダー外径に片側1.5mm以内のクリアランスを加えた径を有する溝外周壁とからなり、さらに、該溝外周壁には、溝底面から溝深さ方向長さ2mm以上にわたる範囲で、かつ、全周にわたって、該溝外周壁面から片側1mm以上外径が大きい窪み部を有するように、レール本体を加工した後、該レール本体に前記ホルダーを液相拡散接合等で接合する際の、1000℃以上の高温に接合部が曝されている間に、ホルダー全体に10MPa以上の応力を、継ぎ手接合時の必要な応力付加時間に加えて0.1〜60秒間、付加することで、ホルダーの外周面の接合面側端部に、ホルダー軸方向長さ2mm以上にわたる範囲で、かつ、全周にわたって、ホルダー本体外周面から片側1mm以上外径が大きい突出部を熱間の塑性変形により形成して、該ホルダーの突出部を前記レール本体の溝外周壁の窪み部と嵌合させ、これによるアンカー効果で、ホルダーとレール本体の締結力を高めることを特徴とする、自動車用高圧燃料噴射蓄圧分配器の製造方法。
(4) 前記ホルダーの突出部を、予め片側1mm以上、機械加工、冷間プレスあるいは冷間鍛造、熱間鍛造あるいは熱間プレスと機械加工による研削の組み合わせにより形成するとともに、該ホルダー突出部のホルダー外周面に繋がる斜面のホルダー外周面と成す角度を45°以上とすることを特徴とする、上記(3)に記載の自動車用高圧燃料噴射蓄圧分配器の製造方法。
(5) 前記ホルダーおよびレール本体は、引張り強さが室温で800MPa以上、1500MPa以下、さらには1000℃以上の温度で200MPa以下の鋼材であり、燃料噴射システムに内圧が付加されたときに生じる、ホルダー引き抜きの塑性変形開始応力(弾性限)が、100℃までの範囲で200MPa以上であることを特徴とする、上記(3)または(4)に記載の自動車用高圧燃料噴射蓄圧分配器の製造方法。
The present invention cannot be confirmed by non-destructive inspection or the like even if the above-mentioned problems of the prior art, that is, the joint between the common rail body formed by joining and the holder satisfies the mechanical properties such as tensile strength. It was designed to prevent the occurrence of micro-defects and defects based on human errors, and the characteristics required of parts, especially the long-term internal pressure fatigue durability characteristics cannot be realized. The main points are as follows.
(1) Piping attachment parts for attaching piping to the injection nozzle inserted into the combustion chamber of the engine from a plurality of branch passages for distributing fuel at an equal pressure to the rail body of the high pressure fuel injection accumulator / distributor (common rail) for automobiles (Holder) is a welded common rail joined by liquid phase diffusion bonding or the like, and the holder extends to the weld joint surface side end of the outer peripheral surface over a length of 2 mm or more in the axial direction of the holder. Over the holder main body outer peripheral surface and formed with a projection having a large outer diameter of 1 mm or more on one side, and the rail main body is positioned at the holder joint position at the holder joint position. A groove for determination, the groove having an inner peripheral wall of a diameter that can be fitted to the inner periphery of the holder joint, a groove bottom surface that serves as a joint surface with the holder, and a depth of 3 mm or more from the groove bottom surface. Diameter And a groove outer peripheral wall having a diameter with a clearance of 1.5 mm or less on one side, and further, the groove outer peripheral wall has a hollow portion that fits into a protruding portion at the end of the joint outer surface of the holder outer peripheral surface. A high-pressure fuel injection / accumulation / distribution distributor for an automobile, wherein a fastening force between the holder and the rail body is enhanced by an anchor effect caused by fitting between the recess of the outer peripheral wall of the groove and the protrusion of the holder.
(2) The holder and the rail body are steel materials having a tensile strength of 800 MPa or more and 1500 MPa or less at room temperature, and 200 MPa or less at a temperature of 1000 ° C. or more, and are generated when an internal pressure is applied to the fuel injection system. The high-pressure fuel injection and accumulation distributor for automobiles according to (1) above, wherein the plastic deformation starting stress (elastic limit) of pulling out the holder is 200 MPa or more in the range up to 100 ° C.
(3) Piping fittings that attach piping to the injection nozzles that are inserted into the combustion chamber of the engine from a plurality of branch passages for distributing fuel at the same pressure to the rail body of the high-pressure fuel injection accumulator / distributor (common rail) for automobiles A method of manufacturing a high pressure fuel injection and accumulation distributor for an automobile, in which (holder) is joined by liquid phase diffusion joining or the like, wherein the rail body has a holder joining position determining groove at a holder joining position, The inner wall of the groove that can be fitted to the inner periphery of the holder joint, the groove bottom surface that becomes the weld joint surface with the holder, and a clearance of 1.5 mm or less on one side of the holder outer diameter at a depth of 3 mm or more from the groove bottom surface A groove outer peripheral wall having an added diameter, and further, the groove outer peripheral wall has a length extending from the groove bottom surface to a groove depth direction length of 2 mm or more and over the entire circumference, 1 mm from the groove outer peripheral wall surface on one side. After processing the rail body so as to have a recess having a large outer diameter, the joint is exposed to a high temperature of 1000 ° C. or higher when the holder is bonded to the rail body by liquid phase diffusion bonding or the like. In the meantime, a stress of 10 MPa or more is applied to the entire holder for 0.1 to 60 seconds in addition to the required stress application time at the time of joint joining, so that the holder shaft is attached to the end of the holder on the joint surface side. A protrusion having a large outer diameter of 1 mm or more on one side from the outer peripheral surface of the holder body is formed by hot plastic deformation over the entire circumference in a range extending in a direction length of 2 mm or more, and the protrusion of the holder is formed on the rail body. A manufacturing method of a high-pressure fuel injection / accumulation / distribution distributor for an automobile, characterized in that the fastening force between the holder and the rail body is increased by an anchor effect caused by fitting with a recess in the outer peripheral wall of the groove.
(4) The protrusion of the holder is formed in advance by 1 mm or more on one side, machining, cold pressing or cold forging, hot forging or a combination of hot pressing and machining, and grinding of the holder protrusion. The method for producing a high-pressure fuel injection / accumulation / distribution distributor for an automobile according to (3) above, wherein an angle formed between the outer peripheral surface of the slope and the outer peripheral surface of the holder is 45 ° or more.
(5) The holder and the rail body are steel materials having a tensile strength of 800 MPa or more and 1500 MPa or less at room temperature, and 200 MPa or less at a temperature of 1000 ° C. or more, and are generated when an internal pressure is applied to the fuel injection system. The manufacturing of the high-pressure fuel injection and accumulation distributor for automobiles according to (3) or (4) above, wherein the plastic deformation starting stress (elastic limit) of pulling out the holder is 200 MPa or more in the range up to 100 ° C. Method.

本発明によれば、特に、内圧1200気圧を超える圧力に耐える自動車用高圧燃料噴射蓄圧分配器(コモンレール)を液相拡散接合あるいはその他の溶接で組み立てて製造する際、接合部に不可避的に発生する接合不良が原因で生じる接合部強度低下や接合部からの破壊を有利に補完することができるため、その産業上の効果は計り知れない。   According to the present invention, particularly when an automobile high pressure fuel injection pressure accumulation distributor (common rail) that can withstand an internal pressure exceeding 1200 atm is assembled and manufactured by liquid phase diffusion bonding or other welding, it is inevitably generated at the joint. The industrial effect is immeasurable because it can advantageously compensate for the strength reduction of the joint and the destruction from the joint caused by the joint failure.

本発明は、自動車用燃料噴射システムであるコモンレールを接合で組み立てて製造する際に、継ぎ手に現行技術では不可避的に潜在する接合部欠陥を検出できない場合に、当該コモンレールに確実な継ぎ手信頼性を付与し、その機能を完全に発揮させるためのものである。本発明は、コモンレールの蓄圧構造と燃料分岐経路を内包し、内部の圧力検知あるいは圧力フィードバック機構を接続可能なレール本体(以降、本発明では、単に、レールともいう。)と、その燃料分配経路と配管を接続するコネクターである内ネジ式あるいは外ネジ式接続突起(以降、この部位をコモンレールのレール本体とは別に製造し、接合でレール本体に結合させる部品を、単に、ホルダーともいう。)からなる。ここでは、ホルダーとレールの接合部の詳細形状と構成、接合部の締結力向上機構について具体的に説明する。   In the present invention, when a common rail, which is a fuel injection system for automobiles, is assembled and manufactured by joining, if the joint technology cannot inevitably detect a joint defect that is unavoidably present in the joint, reliable joint reliability is ensured for the common rail. It is for giving and fully exhibiting its functions. The present invention includes a rail main body (hereinafter, also simply referred to as rail in the present invention) including a common rail pressure accumulating structure and a fuel branch path and capable of connecting an internal pressure detection or pressure feedback mechanism, and a fuel distribution path thereof. Inner screw type or external screw type connection projection that is a connector that connects the pipe and the pipe (hereinafter, this part is manufactured separately from the rail body of the common rail and the part that is joined to the rail body by joining is also simply called a holder) Consists of. Here, the detailed shape and configuration of the joint between the holder and the rail, and the fastening force improving mechanism of the joint will be specifically described.

図1には既にコモンレールの一形態(内ネジ式ホルダー型)を示し、レール本体2とホルダー1を図示した。レールは内部に貫通孔を有し、ここから孔の軸方向に垂直な方向へ燃料の分配のためのオリフィスを有している。なお、ここでは図1のコモンレールを例として解説するが、基本的に燃料の蓄圧器であるレールの形状には制限が無く、断面は今回のように矩形でも円形でも良く、エンジンへの燃料供給と配管の取り回しの利便性に応じて適宜形態を変化させることができる。ただし、貫通孔と分岐管構造だけは必須の要素である。図2には、レールを幅方向に切断した際の断面構成図を、図3には接合端部の塑性変形による突出部の成型を、図4には予め機械加工で突出部を形成した場合の継ぎ手の勘合の様子を詳細に示した。すなわち、
(1)レールとホルダーを別々に製造し、接合式組み立て用部品とした。
(2)レールとホルダーは液相拡散接合等の面接合で継ぎ手を形成することで母材と同等の引張り強度で接合される。この溶接に際しては、ホルダーとレールのオリフィス部分を高精度で連結し、メタルシールで配管を接続する際の燃料漏れを防止するためにレールへホルダーを位置ずれなく正確に接合するためのホルダー接合位置決定用溝(ガイド溝)(図2中の部分拡大図(b)参照。)を設ける。ガイド溝の深さはその機能から3mm以上とする。これ以下の深さでは、ホルダー軸心がメタルシールで連結する配管の軸心と大きくずれてしまい、締結の際に締め付けが達成できず、部分的に燃料が漏洩して圧力損失が生じ、燃料噴射機能が十分でなくなる場合があるか、または、ホルダー溶接接合面端に至るホルダー外面側の突出部と、レール本体ガイド溝に設けた、突出部に整合する外周壁窪み部(図2中の部分拡大図(b)参照。)とが、接合後に十分に勘合せず、ホルダーの引き抜き応力が200MPaを下回る場合があることをそれぞれ実験的に確認した。
(3)ホルダー外周面の接合端側に成型する1mm以上の突出部は、ホルダー軸方向に高さ2mm以上、レール本体のガイド溝深さ以下であることが必要であり、かつ突出部は機械加工で予め成型する際にはホルダー外壁と突出部がホルダー外壁に対して45°以上のテーパー面で繋がっている必要があり、レール本体側もこれに整合する溝外周壁窪み部を有している必要がある。この整合するレール本体溝外周壁窪み部とホルダー突出部のテーパー部が、ホルダーに引き抜き応力が発生した際に、摩擦力と嵌合によるアンカー効果で締結力を向上させる効果を発揮する。テーパー角度が45゜未満の場合は、ホルダー突出部のホルダー軸心方向の高さが2mmの場合に単純に幾何学的に1mmの突出部を予め加工成形できず、これに勘合するレール本体の溝外周壁窪み部の形状も同じ制限を受ける。また、実質的に90°以上の角度の加工はレール本体の溝外周壁窪み部側の加工が不可能となるために、制限は設けないものの現実的ではない。
(4)ホルダー突出部のレール本体溝外周壁窪み部への嵌合は、溶接接合時の1000℃以上の予熱を利用する高温塑性変形によって達成する。この高温塑性変形のための応力は、液相拡散接合の場合には、接合部開先への応力付加時に同時に与えることができ、例えば、他の溶接(電気抵抗溶接、摩擦圧接)では、応力付加が接合の際に必須となることから、接合の継ぎ手変形に必要な応力を付加直後にさらに塑性変形を促して形成し、ホルダー突出部とレール本体溝外周壁窪み部の嵌合を達成する。この嵌合の達成は、嵌合後に接合部を切断して断面を観察し、その観察結果に基づいて応力の大きさと応力付加の時期を決定し、該応力または該応力付加時期を工程管理しても締結力の確保は可能である。また、空隙が残留するか否かは超音波検査あるいはX線検査で確認することもできる。この応力と応力付加時期はコモンレールの材質、1000℃以上での材料の機械的特性、特に変形降伏応力で決定する因子であり、必要に応じて適宜決定できる。
(5)ホルダーとレール本体の溶接接合は十分な接合条件を選択し、非破壊検査にて欠陥検出を実施すれば工業的な安全係数を用いて特性を保証することができる。しかし、非破壊検査で検出できない小さな欠陥、あるいは探傷子から入射される超音波の波長に比較して極めて小さな欠陥、さらには溶接方法起因の種々の微小欠陥や溶接割れを見逃す場合を100%保証することは難しい。該接合部に要求される特性は、内圧変動時に生じる接合面と垂直な繰り返し引張り応力に耐える疲労特性となる。その繰り返し応力の蓄積による疲労破壊が最も予測しがたく、かつコモンレールの部品設計において最重要保証項目となる。この疲労破壊を防止する目的で接合部にホルダー突出部とレール本体溝外周壁窪み部を設け、それらの嵌合によるアンカー効果で締結力を十全に確保できるわけであるが、完全な疲労破壊の防止の為には、配管をメタルシールで締結する際に発生する残留引張り応力と、それに負荷される内圧変動に起因する繰り返し引張り応力に、ホルダーの引き抜き時塑性変形開始応力(弾性限)が勝っている必要があり、さらには、疲労破壊を考慮すれば、引き抜き時塑性変形開始応力は、接合部に負荷されるホルダー引き抜き応力の2倍が必要である。内圧が高くなったとしても、締結応力が内圧起因のホルダーの最大引き抜き時降伏開始応力の2倍を超えていれば疲労破壊は理論的に発生することはない。本発明の方法で締結したホルダーとレール本体の引き抜き時塑性変形開始応力は、溶接接合面に微小な欠陥が存在したとしても、締結力を発生させている面が溶接接合面のみでなく、2面に分散していることにより、突出部を有しない従来の溶接式コモンレールに比較して内圧疲労特性に優れる。
(6)ホルダーの材質については、化学成分の規定を特に設けない。ただし、高圧用コモンレールとして、内圧疲労特性に優れることが必要であり、そのために、材料の引張強度は、化学成分や熱処理等の調質処理、あるいは冷間加工などを適宜使用し、コモンレール成形組み立て完了後の最終製品形態において、800MPa以上が必要である。引張強度の上限は、本発明が溶接・接合技術を使用することから、この部分に接合中に侵入するごく僅かな水素が長距離を拡散してコモンレール内部の最大応力発生位置に集積した場合を想定し、水素起因の脆化が生じないよう1500MPa以下とする、水素脆化感受性の観点からの強度上限値を設けた。また、本発明の最大の特徴である、接合直後の余熱を利用してホルダー端部の高温塑性変形により突出部を成形あるいは張り出す加工が実質的に可能となるためには、鋼材の1000℃以上での強度(1000℃以上では、実質的には強度が温度の上昇に伴って下降するので、1000℃の引張り強さがこれを代表することとなる。)で200MPa以下であることが必要で、これを越える高温強度を有する材料はセラミックスや超高温用特殊合金のみとなるものの、重要な材質の要求仕様であるため、この値を規定する。これらの材料強度の規定を前提として、上述した本発明の効果を評価する際、すなわちホルダーの引き抜き時の塑性変形降伏開始応力(実質的にホルダーが溶接接合面と垂直方向にレールから分離する方向へ変形し、接合部の接合強度だけでホルダーの離脱を防止している状態になる応力、弾性限)が、エンジンに搭載されたときにコモンレールが曝されると推定される最高加熱温度100℃まで、200MPa以上であれば、接合したホルダーは、本発明の接合端部における突出部のアンカー効果と接合部の接合強度によって、実用上、接合部から破壊することはない。
FIG. 1 already shows one form of the common rail (inner screw type holder type), and shows the rail body 2 and the holder 1. The rail has a through hole inside, and an orifice for distributing fuel in a direction perpendicular to the axial direction of the hole. Here, the common rail in FIG. 1 will be described as an example, but the shape of the rail that is a fuel pressure accumulator is basically not limited, and the cross section may be rectangular or circular as in this time, and the fuel supply to the engine The form can be changed as appropriate according to the convenience of the piping. However, only the through hole and the branch pipe structure are essential elements. 2 is a cross-sectional configuration diagram when the rail is cut in the width direction, FIG. 3 is a projection formed by plastic deformation of the joint end, and FIG. 4 is a case where the projection is formed in advance by machining. The state of the fitting of the joint was shown in detail. That is,
(1) A rail and a holder were manufactured separately to form a joining-type assembly part.
(2) The rail and the holder are joined with a tensile strength equivalent to that of the base material by forming a joint by surface joining such as liquid phase diffusion joining. When welding, the holder and rail orifices are connected with high precision, and the holder joining position for joining the holder to the rail accurately without misalignment to prevent fuel leakage when connecting pipes with metal seals. A determination groove (guide groove) (see a partially enlarged view (b) in FIG. 2) is provided. The depth of the guide groove is 3 mm or more because of its function. If the depth is less than this, the holder axis will be greatly displaced from the axis of the pipe connected by the metal seal, and tightening cannot be achieved at the time of fastening. The injection function may not be sufficient, or a protrusion on the holder outer surface side that reaches the end of the holder weld joint surface, and an outer peripheral wall recess provided in the rail main body guide groove to match the protrusion (in FIG. 2) It was confirmed experimentally that the pull-out stress of the holder might be less than 200 MPa without sufficient fitting after joining.
(3) The protruding portion of 1 mm or more molded on the joining end side of the outer peripheral surface of the holder needs to have a height of 2 mm or more and a guide groove depth of the rail body in the holder axial direction, and the protruding portion is a machine When pre-molded by processing, the holder outer wall and the protrusion must be connected to the holder outer wall with a taper surface of 45 ° or more, and the rail body side also has a groove outer wall recess that matches this. Need to be. When the pulling stress is generated in the holder, the aligned rail body groove outer peripheral wall depression and the tapered portion of the holder projecting portion exhibit the effect of improving the fastening force by the frictional force and the anchor effect by the fitting. When the taper angle is less than 45 °, when the height of the holder protrusion in the axial direction of the holder is 2 mm, the 1 mm protrusion cannot be geometrically processed in advance. The shape of the groove outer wall recess is also subject to the same restrictions. In addition, machining at an angle of 90 ° or more becomes impossible because machining on the groove outer peripheral wall recess portion side of the rail body is not possible, but is not realistic.
(4) The fitting of the holder protrusion to the rail body groove outer peripheral wall recess is achieved by high-temperature plastic deformation utilizing preheating at 1000 ° C. or higher during welding joining. In the case of liquid phase diffusion bonding, this stress for high-temperature plastic deformation can be applied simultaneously when stress is applied to the joint groove. For example, in other welding (electric resistance welding, friction welding), the stress Since the addition is indispensable at the time of joining, the stress necessary for joint joint deformation is formed by further plastic deformation immediately after the addition, and the fitting of the holder protrusion and the rail body groove outer peripheral wall recess is achieved . To achieve this fitting, cut the joint after fitting and observe the cross-section, determine the magnitude of the stress and the time to apply the stress based on the observation results, and manage the stress or the time to apply the stress. However, it is possible to secure the fastening force. In addition, it can be confirmed by ultrasonic inspection or X-ray inspection whether a void remains. The stress and the stress application time are factors determined by the material of the common rail, the mechanical properties of the material at 1000 ° C. or higher, particularly the deformation yield stress, and can be determined as needed.
(5) If welding conditions between the holder and the rail body are selected with sufficient joining conditions and defect detection is performed by nondestructive inspection, characteristics can be guaranteed using an industrial safety factor. However, it guarantees 100% of small defects that cannot be detected by non-destructive inspection, or extremely small defects compared to the ultrasonic wave incident from the flaw detector, and various micro defects and weld cracks caused by the welding method. Difficult to do. The properties required for the joint are fatigue properties that can withstand repeated tensile stress perpendicular to the joint surface that occurs when the internal pressure varies. Fatigue failure due to repeated stress accumulation is the most difficult to predict and is the most important guarantee item in common rail component design. In order to prevent this fatigue failure, a holder protrusion and a rail body groove outer peripheral wall recess are provided at the joint, and the fastening effect can be secured sufficiently by the anchor effect, but complete fatigue failure In order to prevent this, the residual tensile stress that occurs when the pipe is fastened with a metal seal and the repeated tensile stress caused by fluctuations in the internal pressure applied to it, the plastic deformation start stress (elastic limit) when the holder is pulled out. In addition, if fatigue fracture is taken into consideration, the plastic deformation starting stress at the time of pulling out needs to be twice the holder pulling stress applied to the joint. Even if the internal pressure increases, fatigue fracture does not theoretically occur if the fastening stress exceeds twice the yield starting stress when the holder is pulled out due to the internal pressure. The plastic deformation initiation stress at the time of pulling out of the holder and the rail body fastened by the method of the present invention is not limited to the surface where the fastening force is generated, By being dispersed on the surface, the internal pressure fatigue characteristics are excellent as compared with a conventional welded common rail having no protrusion.
(6) Regarding the material of the holder, there are no specific chemical component provisions. However, as a common rail for high pressure, it is necessary to have excellent internal pressure fatigue characteristics. For this reason, the tensile strength of the material is appropriately adjusted by chemical treatment, tempering treatment such as heat treatment, or cold working, etc. In the final product form after completion, 800 MPa or more is required. The upper limit of the tensile strength is that when the present invention uses welding / joining technology, a very small amount of hydrogen that penetrates into this part diffuses over a long distance and accumulates at the maximum stress generation position inside the common rail. Assuming that the upper limit of strength from the viewpoint of hydrogen embrittlement susceptibility is set to 1500 MPa or less so that hydrogen-induced embrittlement does not occur. Further, in order to substantially enable the forming or projecting of the protruding portion by high-temperature plastic deformation of the holder end portion using the residual heat immediately after joining, which is the greatest feature of the present invention, It is necessary that the above strength (at 1000 ° C. or higher, the strength substantially decreases as the temperature increases, and the tensile strength at 1000 ° C. represents this) is 200 MPa or less. However, the only material with high temperature strength exceeding this is ceramics and special alloys for ultra-high temperatures, but this value is specified because it is a required specification for important materials. Based on the prescription of these material strengths, when evaluating the effect of the present invention described above, that is, the plastic deformation yield start stress when the holder is pulled out (the direction in which the holder is substantially separated from the rail in the direction perpendicular to the weld joint surface). The maximum heating temperature is estimated to be that the common rail will be exposed when it is mounted on the engine. Up to 200 MPa, the bonded holder is not practically broken from the bonded portion due to the anchor effect of the protruding portion and the bonded strength of the bonded portion of the present invention.

なお、本発明でホルダー外周面の接合面側端部に設ける突出部の形状を、外径方向で1mm以上、また、ホルダー本体外周面と突出部の斜面との成すテーパー角度45°以上という制限は、以下のような実験に基づいて決定した。すなわち、まず、外径24mm、厚み6mmの内ネジ式ホルダーを、突出部外径について、24mmから0.1mm単位で徐々に増加させて準備した。これに対応するレール本体側のホルダー接合位置決定用ガイド溝は、内径17.8mm、外径24.5mm、深さを3mmとし、さらには、ホルダー突出部に倣った窪み部をレール本体溝外周壁に、ホルダー突出部の外径の試験水準の種類に合わせて加工して、準備した。また、ホルダー外周面に突出部を持たないホルダー、およびこれに対応させたレール本体溝外周壁の窪み部のみを0.1mm単位で変化させたホルダー本体も用意した。   In the present invention, the shape of the protruding portion provided at the end portion on the joint surface side of the holder outer peripheral surface is 1 mm or more in the outer diameter direction, and the taper angle of 45 ° or more formed by the holder main body outer peripheral surface and the inclined surface of the protruding portion is limited. Was determined based on the following experiment. That is, first, an inner screw type holder having an outer diameter of 24 mm and a thickness of 6 mm was prepared by gradually increasing the protrusion outer diameter from 24 mm in units of 0.1 mm. The guide groove for determining the holder joint position on the rail body side corresponding to this has an inner diameter of 17.8 mm, an outer diameter of 24.5 mm, a depth of 3 mm, and a recess portion following the holder protrusion is provided on the outer periphery of the rail body groove. The wall was prepared by processing according to the type of test level of the outer diameter of the holder protrusion. Also, a holder having no protrusion on the outer peripheral surface of the holder, and a holder main body in which only the hollow portion of the outer peripheral wall of the rail main body corresponding to the holder was changed in units of 0.1 mm were prepared.

これらの部品を、液相拡散接合、電気抵抗溶接あるいは抵抗溶接後に液相拡散接合を実施する、複合接合を実施してコモンレールを試作し、ホルダーの引き抜き時塑性変形開始応力を測定した。なお、予め窪み部にホルダー突出部が完全に整合する際に必要な変形量は、間接的にホルダーに応力を負荷した場合に生じるホルダー高さの減少分を測定し、最適値を求め、この減少高さで管理した。   These parts were subjected to liquid phase diffusion bonding, electric resistance welding or liquid phase diffusion bonding after resistance welding, composite bonding was performed to produce a common rail, and the plastic deformation starting stress was measured when the holder was pulled out. Note that the amount of deformation required when the holder protrusion fully aligns with the recess in advance is determined by measuring the decrease in holder height that occurs when stress is indirectly applied to the holder, and obtaining the optimum value. Managed by decreasing height.

図5は、予め突出部をホルダーの切削加工時に設けた場合の、初期突出部外径のホルダー平行部外周面からの片側増分とホルダーの引き抜き応力時塑性変形開始応力(弾性限)の関係を示した。突出部の平行部外周面からの片側増分が丁度1mmを境に、引き抜き時塑性変形開始応力が200MPaを超えることが判る。このデータをもって、機械加工で突出部を成形する場合は突出部のホルダー外径の必要な片側増分量を1mm以上と決定した。なお、片側増分に上限規制は設けていないが、あまりに過大(実質的には3mm以上であることを実験で知見した)である場合には、事前機械加工の場合に切削代が大きくなりすぎて材料加工コストの問題があるため、限界はある。しかし、機構上は実質的な上限規制は無い。   FIG. 5 shows the relationship between the one-side increment from the outer peripheral surface of the holder parallel portion of the outer diameter of the initial protrusion and the plastic deformation start stress (elastic limit) at the time of pulling-out stress of the holder when the protrusion is provided in advance when cutting the holder. Indicated. It can be seen that the one-side increment from the outer peripheral surface of the parallel portion of the protrusion is just 1 mm, and the plastic deformation starting stress at the time of drawing exceeds 200 MPa. With this data, when forming the protrusion by machining, the required one-side incremental amount of the holder outer diameter of the protrusion was determined to be 1 mm or more. In addition, although there is no upper limit on one side increment, if it is too large (it has been experimentally found that it is substantially 3 mm or more), the cutting allowance becomes too large in the case of prior machining. There are limitations due to material processing cost issues. However, there is no practical upper limit on the mechanism.

図6は、突出部を設けない場合、接合時に塑性変形によって突出部を成形する場合の突出量を、接合後にホルダーの軸心位置で幅方向にコモンレールを切断して実際に測定した結果と、同一変形量の場合のホルダー引き抜き時塑性変形開始応力の関係を示す図である。予め突出部を設けない場合でも、結局レール本体側の窪み部に整合するように塑性変形部が張り出すことから、同じく1mmの突出部外径増分でホルダー引き抜き時塑性変形開始応力が200MPaを超える。この場合、ホルダーの接合端部の塑性変形量は実質的に突出部を事前加工した場合に比較して大きくなり、ホルダーの高さ変化が大きいが、完成する継ぎ手形状は突出部を予め設けない場合と相似であった。塑性変形量が異なっていても突出部の形状が相似となったのは突出部に連なるホルダー外周面も塑性変形によって外径を増しているため、同様な結果となったものである。   FIG. 6 shows the result of actually measuring the amount of protrusion when forming the protrusion by plastic deformation at the time of joining when the protrusion is not provided, by cutting the common rail in the width direction at the axial position of the holder after joining, It is a figure which shows the relationship of the plastic deformation start stress at the time of holder extraction in the case of the same deformation amount. Even if the protrusion is not provided in advance, the plastic deformation portion will eventually overhang so as to align with the recess on the rail body side, so that the plastic deformation start stress when the holder is pulled out exceeds 200 MPa when the holder outer diameter is increased by 1 mm. . In this case, the amount of plastic deformation at the joint end of the holder is substantially larger than when the protruding portion is pre-processed, and the height change of the holder is large, but the completed joint shape is not provided with the protruding portion in advance. It was similar to the case. Even when the amount of plastic deformation is different, the shape of the protrusion is similar because the outer peripheral surface of the holder connected to the protrusion is also increased in outer diameter due to plastic deformation.

図1に示したコモンレールを、次のように試作した。すなわち、230mm長、30mm角のレール本体と、24mm外径、厚み5mmのホルダーに内径側へ最大ネジ山高さ2mmの燃料分配のための分岐配管接続用ホルダーを表1に示す化学成分を有する材料を用いて別々に圧延、引き抜き、切削等で鋼板あるいは棒鋼より加工した。レール本体には、図2に示した、深さ3mmのホルダー接合位置決定用のガイド溝を加工した。図2において、(a)はレール本体を示した図で、(b)はホルダー接合部の拡大図である。ホルダー端部は、図3、図4に示すような突出部を予め設けたもの、および突出部を設けない場合の両方について準備した。図3において、(a)は状態A:接合ままの状態を示した図、(b)は状態B:接合直後に応力を負荷し、接合面が塑性変形してホルダー外壁がレールスリットへ膨出開始した状態を示した図、(c)は状態C:状態Bに更に応力を負荷し続け、温度が1000℃以上の状態で突出部をスリットに完全に充填し成形完了した状態を示した図である。また、図4において、(a)は状態A:接合ままの状態を示した図、(b)は状態B:接合直後に応力を負荷し、接合端部が塑性変形して予め加工した突出部がレールスリットへ膨出開示した状態を示した図、(c)は状態Bに更に応力を負荷し続け、温度が1000℃以上の状態で突出部をスリットに完全に充填し成形完了した状態を示した図である。なお、図4(b)において斜線部は膨出部8’であり、同様に図4(c)において斜線部は膨出部8”であり、予め加工した突出部がスリットに整合する。次に、図3または図4に示した工程で、ホルダーとレール本体とを、液相拡散接合または抵抗溶接、あるいは抵抗溶接と液相拡散接合の複合接合で溶接接合し、接合直後(複合接合の場合は最初の抵抗溶接時)の余熱により、ホルダーの接合端部が1000℃以上にあることを、ホルダー外壁がレール本体表面位置よりも0.2mm高い位置について放射温度計で温度を同時に測定して確認しつつ、ホルダーの接合面の反対側の端面より応力を付加し、予め別途計測して設定したホルダー高さの減少量をホルダーに応力を付加するクロスヘッドの変位量で計測して、必要なホルダー端部の塑性変形が、突出部を予め設けた場合と設けない場合に必要な変形量に達したことを確認して応力を除去し、続いて冷却してホルダーの高さが必要とされる仕様を満足することを確認した。この時の突出部成形のためあるいは突出部をレール本体溝外周壁窪み部に完全に嵌合させるための負荷応力は、ホルダーに付加した応力値で、抵抗溶接の場合に18MPa、液相拡散接合の場合に15MPaとした。さらに、コモンレール全体を不活性雰囲気中で1150℃に再加熱して10分保持後に、焼準および焼戻して組織を調質し、コモンレールの引張強度を2000気圧の内圧疲労に耐えられるように1000MPaとした。全く同一条件で製造したコモンレールを20体製造し、1体はホルダー中心軸を通る、コモンレールの幅方向に切断して突出部がレール本体溝外周壁窪み部に嵌合し、ホルダー接合両側端部の突出部のレール本体溝外周壁との外径の片側増分が1.12から1.47mmの範囲にあることを測定・確認した。この範囲で1体のコモンレールの全てのホルダー突出部の外径は変動したが、1.0mmを下回ることはなかった。ホルダー突出部の高さは2.0mmとなるようにホルダー端部を加工し、突出部外径とホルダー外周径との接合前の片側増分は1.1±0.05mmに管理するとともに、ホルダー端部の突出部加工の有無にかかわらず、レール本体溝外周壁の窪み部の窪み代が、ホルダー端部の塑性変形によって1.1±0.05mmとなるように加工した。ホルダー端部の突出部がホルダー本体外周面と繋がるテーパー角度は60°とした。これに勘合するレール本体溝外周壁の窪み部も同じ逆テーパーを設けた。なお、レール本体外周壁の外径とホルダー外径のクリアランスは、突出部を予め設けた場合、片側に1.2mm、突出部を予め加工しない場合では1.0mmとした。   The common rail shown in FIG. 1 was prototyped as follows. That is, a material having the chemical components shown in Table 1 is a 230 mm long, 30 mm square rail body, a holder for branch pipe connection for distributing fuel with a maximum thread height of 2 mm to the inner diameter side on a holder of 24 mm outer diameter and thickness 5 mm. Were separately processed from steel plate or steel bar by rolling, drawing, cutting, etc. In the rail body, a guide groove for determining a holder joint position having a depth of 3 mm shown in FIG. 2 was processed. 2A is a view showing a rail body, and FIG. 2B is an enlarged view of a holder joint portion. The holder end was prepared for both the case where the protrusions as shown in FIGS. 3 and 4 were provided in advance and the case where the protrusions were not provided. In FIG. 3, (a) shows the state A: as-bonded, (b) state B: stress is applied immediately after joining, the joint surface is plastically deformed, and the outer wall of the holder bulges to the rail slit The figure which showed the state which started, (c) is the figure which continued applying stress further to the state C: state B, and the state which completed the shaping | molding by completely filling a protrusion part into a slit in the state whose temperature is 1000 degreeC or more It is. 4A is a diagram showing a state A: as-joined, and FIG. 4B is a state B: a protruding portion that is pre-processed by applying a stress immediately after joining and plastically deforming the joining end portion. (C) shows a state in which bulging is disclosed to the rail slit, and (c) shows a state where the stress is continuously applied to the state B, and the protrusion is completely filled in the slit in a state where the temperature is 1000 ° C. or higher and the molding is completed. FIG. 4B, the hatched portion is the bulging portion 8 ′, and similarly, the hatched portion in FIG. 4C is the bulging portion 8 ″, and the pre-processed protrusion matches the slit. 3 and FIG. 4, the holder and the rail body are welded together by liquid phase diffusion bonding or resistance welding, or combined welding of resistance welding and liquid phase diffusion bonding. In the case of the first resistance welding in the case, the joint end of the holder is 1000 ° C or higher due to the residual heat), and the temperature is measured simultaneously with a radiation thermometer at a position where the holder outer wall is 0.2 mm higher than the rail body surface position. While confirming, add stress from the end surface opposite to the joint surface of the holder, measure the amount of decrease in holder height that was set separately by measuring in advance by the amount of displacement of the crosshead that applies stress to the holder, Required holder end After confirming that the plastic deformation has reached the required amount of deformation with and without the protrusions, remove the stress, and then cool to satisfy the specifications that require the height of the holder The load stress for forming the protrusion at this time or for completely fitting the protrusion to the recess of the outer wall of the rail body groove is the stress value added to the holder, in the case of resistance welding. 18 MPa, 15 MPa in the case of liquid phase diffusion bonding Further, after reheating the entire common rail to 1150 ° C. in an inert atmosphere and holding it for 10 minutes, the structure was tempered by normalizing and tempering, and the tensile strength of the common rail The pressure was set at 1000 MPa so that it could withstand internal pressure fatigue of 2000 atm.20 common rails manufactured under exactly the same conditions were manufactured, and one was cut in the width direction of the common rail, passing through the holder central axis. The protrusion fits into the rail body groove outer peripheral wall recess, and the one-side increment of the outer diameter of the protrusion at the both ends of the holder joint with the rail body groove outer peripheral wall is in the range of 1.12 to 1.47 mm. In this range, the outer diameter of all the holder protrusions of one common rail fluctuated, but it did not fall below 1.0 mm, and the height of the holder protrusion was 2.0 mm. The holder end is processed in this way, and the one-side increment before joining the protrusion outer diameter and the holder outer diameter is controlled to 1.1 ± 0.05 mm, and regardless of whether the holder end protrusion is processed or not, The clearance of the recess on the outer peripheral wall of the rail body groove was processed to 1.1 ± 0.05 mm by plastic deformation of the holder end, and the taper angle at which the protrusion of the holder end connects to the outer periphery of the holder body is 60 °. The concave part of the outer peripheral wall of the rail body groove to be joined was provided with the same reverse taper. In addition, the clearance between the outer diameter of the outer peripheral wall of the rail body and the outer diameter of the holder was set to 1.2 mm on one side when the protrusion was provided in advance, and 1.0 mm when the protrusion was not processed in advance.

以上の工程で組み立てたコモンレールのホルダーを引抜く評価試験を実施し、ホルダーの接合しない端部側の面積で引抜き力を除した引抜き応力を計測し、その変形が弾性から塑性に変化する点の応力を計測したところ400MPaであった。   We conducted an evaluation test to pull out the common rail holder assembled in the above process, measured the pulling stress excluding the pulling force in the area of the end side where the holder is not joined, and the deformation changed from elastic to plastic When the stress was measured, it was 400 MPa.

また、完成したコモンレールを、10体以上別途加工して取り付けた固定用治具を介して内圧疲労試験装置にセットし、最大噴射圧力3000気圧にて15Hzで1000万回の内圧疲労試験を実施した。試験にあたっては、ホルダー上部の開口端を塞ぐネジをホルダー内径側に加工したネジ形状に合うよう選択して3tonの最大トルクで締結し、実際のエンジンにおける使用環境を再現した。   In addition, 10 or more completed common rails were set in an internal pressure fatigue test apparatus via a fixing jig that was separately processed and attached, and an internal pressure fatigue test was performed 10 million times at 15 Hz at a maximum injection pressure of 3000 atm. . In the test, the screw that closes the opening end of the upper part of the holder was selected so as to match the shape of the screw machined on the inner diameter side of the holder and fastened with a maximum torque of 3 tons to reproduce the actual use environment in the engine.

疲労破壊に至る内圧負荷繰り返し数Nと付加圧力から計算される接合部応力の関係を図7に内部圧力−疲労破壊寿命線図で示した。この場合、接合部に付与される最大付加圧力は形状と内圧で決定するが、内圧2000気圧で発生する接合部最大主応力は190MPaと推定計算でき、また同様に3000気圧では270MPaとなる。図7の結果において、黒丸はレール本体からの破壊、→を有する黒丸は1000万回でも疲労破壊が発生しなかったデータを、さらに黒三角はホルダーとレールの接合部から破壊した場合を示した。実際のコモンレールに付加される内部圧力は2200気圧が想定されるものの中で最大であり、図7のデータによれば疲労限度の圧力を2300気圧と読み取ることができ、製造したコモンレールは最高2200気圧の内圧に1000万回の疲労試験でも耐えうることがわかる。さらに、図中では点線でホルダーに突起部を、また、レール本体溝外周壁に窪み部を付さない場合の結果も代表線として示した。疲労限界の応力はやや低下しているが、これは370万回および560万回で接合部から破壊したデータを疲労限の値として有しているためであり、本発明の技術によって接合で組み立てたコモンレールの接合部強度信頼性が従来技術に対して明確に向上していることが明らかである。   FIG. 7 shows the relationship between the number N of repeated internal pressure loads that lead to fatigue failure and the joint stress calculated from the applied pressure as an internal pressure-fatigue failure life diagram. In this case, the maximum applied pressure applied to the joint is determined by the shape and the internal pressure, but the joint maximum principal stress generated at an internal pressure of 2000 atmospheres can be estimated to be 190 MPa, and similarly at 3,000 atmospheres it is 270 MPa. In the results of FIG. 7, black circles indicate damage from the rail body, black circles with → indicate data in which fatigue failure did not occur even after 10 million cycles, and black triangles indicate the case where damage occurred from the joint between the holder and the rail. . The internal pressure applied to the actual common rail is the largest among those assumed to be 2200 atm. According to the data in FIG. 7, the fatigue limit pressure can be read as 2300 atm, and the manufactured common rail has a maximum of 2200 atm. It can be seen that it can withstand the internal pressure of 10 million times of fatigue test. Further, in the figure, the result of the case where the protrusion is not attached to the holder with a dotted line and the recess is not attached to the outer peripheral wall of the rail body groove is also shown as a representative line. The stress at the fatigue limit is slightly reduced, but this is because the fatigue limit value is obtained from the data fractured from the joint at 3.7 million times and 5.6 million times. It is clear that the joint rail reliability of the common rail is clearly improved over the prior art.

Figure 0004386867
Figure 0004386867

コモンレールの構造を内部も含めて詳細に示す図であり、(a)は平面図、(b)は正面図である。It is a figure which shows the structure of a common rail in detail including the inside, (a) is a top view, (b) is a front view. (a)は本発明に係る溶接式コモンレールの幅方向断面図と、(b)はその一部の突出部を設けたホルダーと、レール本体溝外周壁に設けた窪み部との勘合状態の断面拡大図を示す図である。(A) is a cross-sectional view in the width direction of a welded common rail according to the present invention, and (b) is a cross-section in a mating state between a holder provided with a part of the protrusion and a recess provided in the outer wall of the rail body groove. It is a figure which shows an enlarged view. (a),(b),(c)は、ホルダーの接合端部に溶接接合直後上方から応力を負荷して1000℃以上で塑性変形させ、突出部を成形する過程を示す図である。(A), (b), (c) is a figure which shows the process of applying a stress to the joining edge part of a holder from upper direction immediately after welding joining, and plastically deforming at 1000 degreeC or more, and shape | molding a protrusion part. (a),(b),(c)は、ホルダーの外周面端部に予め突出部を加工し、接合直後に上方から応力を負荷して1000℃以上で塑性変形させて突出部を膨出させてレール本体溝外周壁窪み部と勘合させる過程を示す図である。(A), (b), and (c), a protrusion is processed in advance at the end of the outer peripheral surface of the holder, and immediately after joining, stress is applied from above and plastic deformation is performed at 1000 ° C. or more to bulge the protrusion. It is a figure which shows the process made to fit and the rail main-body groove | channel outer peripheral wall hollow part. 予め加工した突出部外径のホルダー外径からの片側増分とホルダーの引き抜き応力時塑性変形開始応力の関係を示す図である。It is a figure which shows the relationship between the one-side increment from the holder outer diameter of the protrusion outer diameter processed beforehand, and the plastic deformation start stress at the time of the extraction stress of a holder. 突出部を接合時の塑性変形で形成する場合の突出部外径のホルダー外径からの片側増分とホルダーの引き抜き応力時塑性変形開始応力の関係を示す図である。It is a figure which shows the relationship between the one side increment from the holder outer diameter of the protrusion part outer diameter in the case of forming a protrusion part by the plastic deformation at the time of joining, and the plastic deformation start stress at the time of the extraction stress of a holder. 本発明の方法で製造したコモンレールの内圧疲労試験結果と従来技術の比較を示した図である。It is the figure which showed the comparison of the internal pressure fatigue test result of the common rail manufactured with the method of this invention, and a prior art.

符号の説明Explanation of symbols

1 配管取付部品(ホルダー)
2 レール本体
3 分岐細管(オリフィス)
4 ホルダーをレール本体に接合する際のガイド溝深さ
5 ホルダーの突出部のホルダー軸方向高さ
6 レール本体溝外周壁の窪み部
7 ホルダー突出部のテーパー角度
8 ホルダー突出部
8’ ホルダー外周面端部の高温塑性変形による突出部の成形過程
8” ホルダー外周面端部の高温塑性変形による突出部の最終形態
1 Piping mounting parts (holder)
2 Rail body 3 Branch capillary (orifice)
4 Guide groove depth when the holder is joined to the rail body 5 Holder axial height of the protrusion of the holder 6 Recessed portion of the outer wall of the rail body groove 7 Taper angle of the holder protrusion 8 Holder protrusion 8 'Holder outer surface Forming process of protruding part due to high temperature plastic deformation at the end 8 "Final shape of protruding part due to high temperature plastic deformation at the end of holder outer surface

Claims (5)

自動車用高圧燃料噴射蓄圧分配器(コモンレール)のレール本体に、等圧で燃料を分配するための複数の分岐通路からエンジンの燃焼室に挿入する噴射ノズルへの配管を取り付ける配管取付部品(ホルダー)を液相拡散接合等で接合した、溶接式コモンレールであって、前記ホルダーは、外周面の溶接接合面側の端部に、ホルダー軸方向長さ2mm以上にわたる範囲で、かつ、全周にわたって、前記液相拡散接合等の溶接の際の熱間で形成された、ホルダー本体外周面から片側1mm以上外径が大きい突出部を有し、前記レール本体は、ホルダー接合位置にホルダー接合位置決定用溝を有し、該溝は、ホルダー接合部内周と嵌合可能な径の溝内周壁と、ホルダーとの接合面となる溝底面と、溝底面から3mm以上の深さで、ホルダー外径に片側1.5mm以内のクリアランスを加えた径を有する溝外周壁とからなり、さらに、該溝外周壁には、ホルダー外周面の接合面側端部の突出部と嵌合する窪み部を有し、該溝外周壁の窪み部と前記ホルダーの突出部との嵌合によるアンカー効果で、ホルダーとレール本体の締結力を高めることを特徴とする、自動車用高圧燃料噴射蓄圧分配器。   Piping fittings (holders) that install piping from multiple branch passages for distributing fuel at the same pressure to the injection nozzles that are inserted into the combustion chamber of the engine to the rail body of the high-pressure fuel injection accumulator / distributor (common rail) for automobiles Are welded common rails joined by liquid phase diffusion bonding or the like, wherein the holder has a length in the holder axial direction of 2 mm or more at the end of the outer peripheral surface on the weld joint surface side, and over the entire circumference. It has a protrusion with a large outer diameter of 1 mm or more on one side from the outer peripheral surface of the holder body, which is formed in the heat during welding such as liquid phase diffusion bonding, and the rail body is used for determining the holder bonding position at the holder bonding position. The groove has a groove inner peripheral wall having a diameter that can be fitted to the inner periphery of the holder joint, a groove bottom surface that serves as a joint surface with the holder, and a depth of 3 mm or more from the groove bottom surface. Fragment A groove outer peripheral wall having a diameter with a clearance of 1.5 mm or less, and further, the groove outer peripheral wall has a hollow portion that fits into a protruding portion of the joint outer surface side end portion of the holder outer peripheral surface, A high-pressure fuel injection / accumulation / distribution distributor for an automobile, wherein a fastening force between the holder and the rail body is enhanced by an anchor effect caused by fitting of the recess of the outer peripheral wall of the groove and the protrusion of the holder. 前記ホルダーおよびレール本体は、引張り強さが室温で800MPa以上、1500MPa以下、さらには1000℃以上の温度で200MPa以下の鋼材であり、燃料噴射システムに内圧が付加されたときに生じる、ホルダー引き抜きの塑性変形開始応力(弾性限)が、100℃までの範囲で200MPa以上であることを特徴とする、請求項1に記載の自動車用高圧燃料噴射蓄圧分配器。   The holder and the rail body are steel materials having a tensile strength of 800 MPa or more and 1500 MPa or less at room temperature, and 200 MPa or less at a temperature of 1000 ° C. or more, and the holder pull-out generated when an internal pressure is applied to the fuel injection system. 2. The high-pressure fuel injection / accumulation / distribution distributor for an automobile according to claim 1, wherein a plastic deformation initiation stress (elastic limit) is 200 MPa or more in a range up to 100 ° C. 3. 自動車用高圧燃料噴射蓄圧分配器(コモンレール)のレール本体に、等圧で燃料を分配するための複数の分岐通路からエンジンの燃焼室に挿入する噴射ノズルへの配管を取り付ける配管取付部品(ホルダー)を液相拡散接合等で接合する、自動車用高圧燃料噴射蓄圧分配器の製造方法であって、前記レール本体は、ホルダー接合位置にホルダー接合位置決定用溝を有し、該溝は、ホルダー接合部内周と勘合可能な径の溝内周壁と、ホルダーとの溶接接合面となる溝底面と、溝底面から3mm以上の深さで、ホルダー外径に片側1.5mm以内のクリアランスを加えた径を有する溝外周壁とからなり、さらに、該溝外周壁には、溝底面から溝深さ方向長さ2mm以上にわたる範囲で、かつ、全周にわたって、該溝外周壁面から片側1mm以上外径が大きい窪み部を有するように、レール本体を加工した後、該レール本体に前記ホルダーを液相拡散接合等で接合する際の、1000℃以上の高温に接合部が曝されている間に、ホルダー全体に10MPa以上の応力を、継ぎ手接合時の必要な応力付加時間に加えて0.1〜60秒間、付加することで、ホルダーの外周面の接合面側端部に、ホルダー軸方向長さ2mm以上にわたる範囲で、かつ、全周にわたって、ホルダー本体外周面から片側1mm以上外径が大きい突出部を熱間の塑性変形により形成して、該ホルダーの突出部を前記レール本体の溝外周壁の窪み部と嵌合させ、これによるアンカー効果で、ホルダーとレール本体の締結力を高めることを特徴とする、自動車用高圧燃料噴射蓄圧分配器の製造方法。   Piping fittings (holders) that install piping from multiple branch passages for distributing fuel at the same pressure to the injection nozzles that are inserted into the combustion chamber of the engine to the rail body of the high-pressure fuel injection accumulator / distributor (common rail) for automobiles A high pressure fuel injection / accumulation / accumulator / distributor for automobiles, wherein the rail body has a holder joint position determination groove at a holder joint position, and the groove is a holder joint. A groove inner peripheral wall with a diameter that can be fitted to the inner periphery of the groove, a groove bottom surface that becomes a weld joint surface with the holder, a depth of 3 mm or more from the groove bottom surface, and a diameter that is less than 1.5 mm on one side of the holder outer diameter Further, the groove outer peripheral wall has a length extending from the groove bottom surface to the groove depth direction length of 2 mm or more and over the entire circumference from the groove outer peripheral wall by 1 mm or more on one side. After processing the rail body so as to have a large depression, the joint is exposed to a high temperature of 1000 ° C. or higher when the holder is bonded to the rail body by liquid phase diffusion bonding or the like. By applying a stress of 10 MPa or more to the entire holder for 0.1 to 60 seconds in addition to the required stress application time at the time of joint joining, the length of the holder in the axial direction on the joint surface side end of the outer peripheral surface of the holder A protrusion having a large outer diameter of 1 mm or more on one side from the outer peripheral surface of the holder main body is formed by hot plastic deformation in a range extending over 2 mm and over the entire circumference, and the protrusion of the holder is formed as a groove outer peripheral wall of the rail main body. A method of manufacturing a high-pressure fuel injection / accumulation / distribution distributor for an automobile, wherein the fastening effect between the holder and the rail body is increased by an anchor effect. 前記ホルダーの突出部を、予め片側1mm以上、機械加工、冷間プレスあるいは冷間鍛造、熱間鍛造あるいは熱間プレスと機械加工による研削の組み合わせにより形成するとともに、該ホルダー突出部のホルダー外周面に繋がる斜面のホルダー外周面と成す角度を45°以上とすることを特徴とする、請求項3に記載の自動車用高圧燃料噴射蓄圧分配器の製造方法。   The holder protrusion is formed in advance by machining, cold pressing or cold forging, hot forging, or a combination of hot pressing and grinding by machining, and the holder outer peripheral surface of the holder protrusion is 1 mm or more on one side. The manufacturing method of the high-pressure fuel-injection / accumulation-distributor for automobiles according to claim 3, wherein an angle formed between the inclined surface connected to the holder and the outer peripheral surface of the holder is 45 ° or more. 前記ホルダーおよびレール本体は、引張り強さが室温で800MPa以上、1500MPa以下、さらには1000℃以上の温度で200MPa以下の鋼材であり、燃料噴射システムに内圧が付加されたときに生じる、ホルダー引き抜きの塑性変形開始応力(弾性限)が、100℃までの範囲で200MPa以上であることを特徴とする、請求項3または4に記載の自動車用高圧燃料噴射蓄圧分配器の製造方法。   The holder and the rail body are steel materials having a tensile strength of 800 MPa or more and 1500 MPa or less at room temperature, and 200 MPa or less at a temperature of 1000 ° C. or more, and the holder pull-out generated when an internal pressure is applied to the fuel injection system. 5. The method for manufacturing a high-pressure fuel injection accumulator / distributor for an automobile according to claim 3 or 4, wherein a plastic deformation starting stress (elastic limit) is 200 MPa or more in a range up to 100 ° C.
JP2005227182A 2005-08-04 2005-08-04 High pressure fuel injection accumulator / distributor for automobile and manufacturing method thereof Expired - Fee Related JP4386867B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005227182A JP4386867B2 (en) 2005-08-04 2005-08-04 High pressure fuel injection accumulator / distributor for automobile and manufacturing method thereof
EP06782400A EP1914418B1 (en) 2005-08-04 2006-07-31 High-pressure fuel injection accumulator distributor for automobile and method of manufacturing the same
CN2006800289439A CN101238285B (en) 2005-08-04 2006-07-31 High pressure fuel injection pressure accumulation distributor for automobile and its manufacturing method
KR1020087002740A KR100937058B1 (en) 2005-08-04 2006-07-31 High-pressure fuel injection accumulator distributor for automobile and method of manufacturing the same
US11/989,844 US7900603B2 (en) 2005-08-04 2006-07-31 Automobile-use high pressure fuel injection accumulator-distributor and method of production of the same
PCT/JP2006/315555 WO2007015566A1 (en) 2005-08-04 2006-07-31 High-pressure fuel injection accumulator distributor for automobile and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227182A JP4386867B2 (en) 2005-08-04 2005-08-04 High pressure fuel injection accumulator / distributor for automobile and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007040247A JP2007040247A (en) 2007-02-15
JP4386867B2 true JP4386867B2 (en) 2009-12-16

Family

ID=37798461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227182A Expired - Fee Related JP4386867B2 (en) 2005-08-04 2005-08-04 High pressure fuel injection accumulator / distributor for automobile and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4386867B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190340B2 (en) * 2008-12-04 2013-04-24 株式会社オティックス Common rail
JP5090322B2 (en) * 2008-12-04 2012-12-05 株式会社オティックス Common rail
CN115673210A (en) * 2022-10-31 2023-02-03 江苏理研科技股份有限公司 Forging die for fuel common rail

Also Published As

Publication number Publication date
JP2007040247A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
KR100937058B1 (en) High-pressure fuel injection accumulator distributor for automobile and method of manufacturing the same
CA2568278C (en) Method of connecting a metallic bolt to a plastic workpiece
JP4386867B2 (en) High pressure fuel injection accumulator / distributor for automobile and manufacturing method thereof
KR101256973B1 (en) Liquid phase diffusion bonding pipe joint and manufacturing method therefor
Ruszkiewicz et al. Parameter sensitivity and process time reduction for friction element welding of 6061-T6 aluminum to 1500 MPa press-hardened steel
CN102072782B (en) Novel non-welding thermoelectric couple (resistor)
WO2007105660A1 (en) High-pressure fuel injection tube having connecting head portion and bend portion, and method for producing the same
JP4372064B2 (en) High pressure fuel injection accumulator / distributor for automobile and manufacturing method thereof
JP5234505B2 (en) Method and apparatus for joining metal members
JP4386888B2 (en) High pressure fuel injection accumulator / distributor for automobile and manufacturing method thereof
WO2012026205A1 (en) Joining method for joining parts with high fatigue strength
TWI619565B (en) Mechanical joining device and mechanical joining method
JP2020044538A (en) Joined body of copper pipe and aluminum pipe and method for joining the same
CN102292537B (en) Common rail, common rail holder, and method for producing common rail
JP6765575B2 (en) Resin delivery pipe and its manufacturing method
US20190063390A1 (en) Fuel injector
JPH06658A (en) Formation of joint for stainless steel products and different metallic material
JP5612000B2 (en) Bonding quality control method for press-fit bonding
JPWO2016111232A1 (en) Welded joint for thin plate member, method for manufacturing can body equipped with the welded joint, and piping method for pipe body equipped with the welded joint
CN220134867U (en) Pipeline connection structure of refrigerating system
CN216429809U (en) Marine diesel engine high-pressure oil pipe with high-frequency brazing conical sealing surface
JP4863255B2 (en) How to connect a branch connector to an accumulator
US20230302548A1 (en) Expansion clamping device and method for producing same
JP6503209B2 (en) Method of manufacturing joined products by press-fitting
JP3521071B2 (en) Fixing method by brazing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees