JP4385650B2 - Optical fat measuring device - Google Patents

Optical fat measuring device Download PDF

Info

Publication number
JP4385650B2
JP4385650B2 JP2003150782A JP2003150782A JP4385650B2 JP 4385650 B2 JP4385650 B2 JP 4385650B2 JP 2003150782 A JP2003150782 A JP 2003150782A JP 2003150782 A JP2003150782 A JP 2003150782A JP 4385650 B2 JP4385650 B2 JP 4385650B2
Authority
JP
Japan
Prior art keywords
light
fat
contact
living body
contact surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003150782A
Other languages
Japanese (ja)
Other versions
JP2004350836A5 (en
JP2004350836A (en
Inventor
和也 近藤
真司 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2003150782A priority Critical patent/JP4385650B2/en
Publication of JP2004350836A publication Critical patent/JP2004350836A/en
Publication of JP2004350836A5 publication Critical patent/JP2004350836A5/ja
Application granted granted Critical
Publication of JP4385650B2 publication Critical patent/JP4385650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、脂肪の状態を光学式に測定することができる光式脂肪測定装置に関する。
【0002】
【従来の技術】
図13に、従来の技術による光式脂肪測定装置を示す(例えば、特許文献1を参照)。図に示すように、光式脂肪測定装置は、生体表面1に接触する脂肪測定用接触子131と、脂肪測定用接触子131に内蔵された光源132と、複数の受光素子133a〜133dと、光源132の光量を制御する光量制御回路134、受光素子133a〜133dをいずれかの切替を行うとともに、切り替えられた受光素子から得られた信号を増幅器136へ出力する切替回路135と、切替回路135からの出力を増幅する増幅器136と、増幅器136の信号をA/D変換するA/D変換回路137と、ユーザが測定のための入力を行うための入力部138と、入力部138からの情報またはA/D変換回路137からの信号を処理し、光量制御回路134、切替回路135および表示部140を制御するCPU139と、CPU139が処理する各種情報を表示する表示部140とを備えている。
【0003】
このような光式脂肪測定装置によれば、生体表面1に配置された光源132から、皮下脂肪2、筋肉5等からなる生体内部に入射した光のうち、生体内部で散乱、吸収されながら伝播して再び生体表面にあらわれた光141,142等を受光素子133a〜133dを選択的に用いて受光し、この受光した光に基づいて、CPU139等により生体内部の皮下脂肪2の厚みを測定することができる。
【0004】
【特許文献1】
特開2000−155091号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の脂肪測定装置においては、生体組織1の中でも柔らかい皮下脂肪2は外力により変形しやすい。したがって、脂肪測定用接触子131を生体表面1にそっと載せるだけでも生体表面1は変形し、測定ごとに、皮下脂肪2の厚みは変動してしまう。そのため測定再現性が悪化していた。この問題点は、特に皮下脂肪2が厚い場合に顕著であった。
【0006】
また、皮下脂肪2が厚くなると、受光素子133a〜133dの受光量はだんだん飽和し、ある程度以上の厚い皮下脂肪は測れないという問題点があった。
【0007】
そこで本発明は上記従来の問題点に鑑み、皮下脂肪等の脂肪の状態を再現性良く高精度に測定することができ、さらにより厚い脂肪まで測定することができる光式脂肪測定装置を提供することを目的とする。
【0008】
【発明を解決するための手段】
上記の目的を達成するために、第1の本発明は、生体表面に7kPa以上の圧力を印加する圧力印加手段、前記圧力が印加された部位を含む前記生体表面上に配置される単数または複数の光出射部、および前記圧力が印加された部位を含む前記生体表面上に、前記光出射部と所定の距離を置いて配置される単数または複数の光入射部を有する脂肪測定用接触子と、
前記光出射部から光を出射するための単数または複数の光源と、
前記光入射部から光を受光するための単数または複数の受光部と、
前記受光部の光の受光量に基づき、前記生体の脂肪の状態を演算する演算手段とを備え
前記脂肪測定用接触子は、前記生体表面と面接触する第1の接触面を有する成形部を有し、
前記光出射部および光入射部は、前記第1の接触面上に設けられ、
前記第1の接触面は、少なくとも一対の前記光入射部と前記光出射部との間に設けられた凸部を有する光式脂肪測定装置
である。
【0009】
また、第2の本発明は、前記生体の脂肪の状態は、脂肪厚または脂肪率である第1の本発明の光式脂肪測定装置である。
【0010】
また、第3の本発明は、前記演算部は、前記受光量が規定範囲内に安定しているかどうかを判定し、前記規定範囲内で安定している受光量に基づき、前記演算を行う第1の本発明の光式脂肪測定装置である
【0011】
た、第の本発明は、前記光入射部は、前記凸部の主面上にも設けられている第の本発明の光式脂肪測定装置である。
【0012】
また、第の本発明は、前記成形部は、前記第1の接触面の周囲に設けられ、前記第1の接触面と段差を有する、前記生体表面と接触する第2の接触面を有する第の本発明の光式脂肪測定装置である。
【0013】
また、第の本発明は、前記第2の接触面は、前記第1の接触面と平行である第の本発明の光式脂肪測定装置である。
【0014】
また、第の本発明は、前記脂肪測定用接触子の前記圧力印加手段は、前記脂肪測定用接触子そのものであって、
前記圧力は、前記脂肪測定用接触子の自重である第1の本発明の光式脂肪測定装置である。
【0015】
また、第の本発明は、前記脂肪測定用接触子の、少なくとも前記第1の接触面および/または前記第2の接触面は遮光性を有する第の本発明の光式脂肪測定装置である。
【0016】
【発明の実施の形態】
以下、図面を用いて、本発明の光式脂肪測定装置について詳細に説明する。
【0017】
(実施の形態1)
図1は本発明の実施の形態1における光式脂肪測定装置の構成図であり、図2は同光式脂肪測定装置の成形部3を生体表面1と接する接触面3a側から見た上面図である。
【0018】
皮膚4、皮下脂肪2、筋肉5の3層からなる生体表面1上に、生体表面1を押し下げる方向に成形する成形部3を配置するようにしている。
【0019】
成形部3内には、光源素子が内蔵された光源部6と、複数の受光部7とが設けられている。受光部7には計測用受光素子8と補正用受光素子9がそれぞれ内蔵されている。計測用受光素子8と光源部6との距離は45mmであり、補正用受光素子9と光源部6との距離は22.5mmである。光源部6から出射する光の出射口は直径φ1.5mmであり、計測用受光素子8及び補正用受光素子9の光の入射口はφ1.5mmである。なお、計測用受光素子8と光源部6との距離は35mm〜80mmの間であることが好ましく、補正用受光素子9と光源部6との距離は15mm〜30mmであることが好ましい。
【0020】
光源部6が点灯したときに、補正用受光素子9において補正用受光量(Y1)が受光され、計測用受光素子8において計測用受光量(Y2)が受光される。ここで、光源部6は光源素子として中心波長が785nmのレーザーダイオードを用いている。なお、光源素子は、上記のものに限らず、中心波長が500nm〜1000nmのレーザーダイオードまたはLEDなどを用いれば、皮下脂肪2と筋肉5との光伝搬特性の差を大きくとることができるので好ましい。さらに光源素子から光ファイバーなどの導光部品を用いて生体表面1まで光を導光する構成とすると、光源素子で発生した熱が生体表面1に伝わらないので好ましい。
【0021】
受光部7の受光素子としてフォトダイオードを用いている。なお、受光素子はCdSなどの光電変換素子でもよい。また、生体表面から受光素子までを光ファイバーなどの導光部品を用いて光を導光する構成としても良い。
【0022】
また、成形部3は直径60mmの円盤形状をしており、後述するように所定の重量を有する。生体表面1と接する面は略平面形状にすることで、生体表面1は平面形状に安定し、測定再現性に寄与する。
【0023】
また、成形部3は遮光のために黒色ABSでできている。成形部3の材質は光源部6からの光に対して低反射率のものであることで、生体表面1から出射した光が再び生体へもどることを防ぐことができ、受光部7では生体の深い領域を伝搬してきた光のみを受光することができ測定精度が向上する。また、ノイズとなる光源以外からの外乱光を遮光することもでき測定精度が向上する。なお、成形部3は黒色ABSに限らず、遮光性のある材料なら任意のものを用いて作成してもよい。また、塗装等の処理により、生体表面1と接触する接触面3aのみに遮光性を与えるようにしてもよい。
【0024】
さらに成形部3は縁を丸くすることで生体表面1に鋭角な部分があたらない構造とすることで、成形部3を生体表面1に押し当てても、ユーザは縁による痛みを感じない。
【0025】
演算部10では、受光部7で得られた受光量に基づき、皮下脂肪2の厚みを算出する。算出された皮下脂肪2の厚みは表示部11に表示され、通信部12を通して他の機器にデータとして送られる。
【0026】
また、入力部13から直接、または通信部12を通して他の機器から、身長、体重、年齢、性別、測定部位などのデータを入力することにより、皮下脂肪2の厚みと相関性のある体脂肪率を演算部10で計算し、表示部11に表示したり、通信部12によって他の機器へデータを転送したりすることもできる。
【0027】
なお、上記の構成において、光源部6は本発明の光出射部、受光部は本発明の光入射部、光源素子は本発明の光源、補正用受光素子9および計測用受光素子8は本発明の受光素子、演算部10は本発明の演算手段、成形部3は本発明の成形部および脂肪測定用接触子、接触面3aは本発明の第1の接触面に相当する。
【0028】
以上のような構成を有する本発明の実施の形態1における光式脂肪測定装置の動作を説明する。
【0029】
まず、計測原理について説明する。筋肉5と皮下脂肪2とでは光の伝搬特性が大きく異なり、筋肉5ではより吸収傾向が強く、皮下脂肪2ではより散乱傾向が強い。この特性の違いは500nm〜1000nmの波長の光で顕著である。そのため、光源部6より生体表面1から入射した光は皮下脂肪厚が厚いほど皮下脂肪2内で拡散し、深さ方向だけでなく、横方向にも広がる。したがって、この横方向に広がり再び生体表面1に出射した光は皮下脂肪2が厚いほど増加する。
【0030】
この横方向に広がり再び生体表面1に出射した光を受光部7で受光することにより、皮下脂肪2の厚みが測定できる。
【0031】
次に計測の手順について説明する。第1の動作として、光源部6が点灯していない状態で、成形部3を、接触面3aが面接触するように生体表面1に押し当てる。
【0032】
第2の動作として、受光部7での受光量が100pW以下になることで、受光部7全体が生体表面1と接し、生体表面1が押し下げられていると確認されて光源部6が点灯し、光が生体表面1を照射する。
【0033】
このとき、接触面3aを介して生体表面1に加えられる圧力の働きにより、皮下脂肪2の厚みは、接触面3aに対応する部分は、それ以上変形しないまでに一様につぶれて安定している。圧力としては、実質上7kPa以上であれば、皮下脂肪厚が安定するので好ましい。
【0034】
第3の動作として、補正用受光素子9に到達した光14を計測することにより補正用受光量(第1の距離での受光量Y1)が得られ、計測用受光素子8に到達した光15を計測することにより計測用受光量(第2の距離での受光量Y2)が得られる。
【0035】
ここで、補正用受光量および計測用受光量の両受光量は成形部3を生体表面1に押し当てる強さや、皮下脂肪2の厚みが変化することにより変動するので、補正用受光量および計測用受光量が安定したかどうかを判定することで、押し当てる強さや、皮下脂肪2の厚みが安定していることを確認する。これにより精度の高い測定が可能となる。
【0036】
受光量が安定しているかどうかの判定は、サンプリングサイクル100Hzで各受光素子の受光量毎に計測を行い、200msのサンプリング時間における各受光量の最大値と最小値の差が最大値の10%以内に収まるかどうかを判定することにより行う。なお、心拍の影響と、人の体動の影響を除去するために、サンプリングサイクルは速いほうが良く100Hz以上、サンプリング時間は短いほうがよく500ms以下であることが好ましい。
【0037】
次に、演算部10での皮下脂肪2の厚みの算出方法について説明する。図3に、計測用受光量と皮下脂肪2の厚みとの関係を示す。図3において、白丸が計測用受光量と皮下脂肪2の厚みとの関係を示している。また、点線が1次回帰直線である。
【0038】
図からわかるように、計測用受光量と皮下脂肪2の厚みとの相関を示す複数の1次回帰直線をあらかじめ求めておき、1次回帰直線と計測用受光量とを用いることにより、皮下脂肪2の厚みを再現性良く高精度に測定することができる。
【0039】
ところで、計測用受光量には皮膚の散乱及び吸収のばらつきの影響が誤差要因として含まれている。この皮膚の影響を補正するために、補正用受光量を用いる。
【0040】
計測用受光量(第2の距離での受光量Y2)を補正用受光量(第1の距離での受光量Y1)で割ったパラメータY2/Y1と皮下脂肪2の厚みとの関係を図4に示す。図4において、白丸がY2/Y1と皮下脂肪2の厚みとの関係を示している。また、点線が1次回帰直線である。
【0041】
図3と比較して、明らかにばらつきは収まり、補正用受光量による補正の効果のあることがわかる。1次回帰直線とY2/Y1とを用いることにより、皮膚5の影響及び生体表面に加わる圧力の影響を補正することができるので、皮下脂肪厚をさらに再現性良く高精度に測定することができる。
【0042】
このように、本実施の形態によれば、接触面3aを介して生体表面1に加えられる圧力の働きにより、皮下脂肪2の厚みをそれ以上変形しないまでに一様につぶれさせて安定させ、この変形した状態が安定していることを判定した上で測定を行うようにしたことにより、皮下脂肪厚を再現性良く高精度に測定することができる。
【0043】
なお、以上の説明においては、図1、図2の構成のように光源部6を1つの光源素子、受光部7を計測用受光素子8と補正用受光素子9からなる構成としたが、図5の構成図及び図6の成形部3の上面図に示すように、受光部7を1つの受光素子、光源部6を計測用光源素子16と補正用光源素子17からなる構成としてもよい。この場合、補正用光源素子17が点灯し計測用光源素子16が消灯しているときに、受光部7において受光される光18の受光量が補正用受光量となり、補正用光源素子17が消灯し計測用光源素子16が点灯しているときに、受光部7において受光される光19の受光量が計測用受光量となる。また、光源素子および受光素子の個数も上記の構成に限定されない。さらに、補正用受光量と計測用受光量との二種の受光量が得られるようにする限り、光源部6,受光部7のいずれも複数の光源素子、複数の受光素子を用いるようにしてもよい。
【0044】
ここで、さらに図7の構成図および図8に示すように、成形部3の接触面3a上に、本発明の凸部に相当する凸部20を設けてもよい。ここで凸部20は、接触面3aと段差をもち、接触面3aと実質上平行な接触面3bを有し、その面上に補正用受光素子9を配している。
【0045】
このような凸部20を有する成形部3を用いて上記と同様の測定を行うと、この凸部20により生体表面1上の光源部6と計測用受光素子8との間の一部の領域が、接触面3aにより押し下げられている部分より深く押し下げられることで、接触面3aと接触面3bとの段差が生体内の浅い領域を伝播してきた光21をカットする。これにより、受光部7では生体内のより深い部分を伝播してきた光のみを受光できるようになり、皮下脂肪2の厚みの測定精度が向上する。
【0046】
また、接触面3aを介して圧力を加える方法は、図示しない外力を用いても良いが、成形部3の自重を利用してもよい。このとき成形部3の重量は1kg重であることが望ましい。また、本実施の形態は、体脂肪厚を測定するものとして説明を行ったが、本発明の脂肪の状態としては、体脂肪厚以外の状態を測定するものであってもよい。
【0047】
例えば、生体の体脂肪の割合を示す体脂肪率は、生体の各部位の皮下脂肪厚と相関性があり、皮下脂肪が厚いほど、体脂肪率は増加する。しかしながら、同じ皮下脂肪厚でも、筋肉量が多いと体重は重くなり体脂肪率は低くなる。
【0048】
そこで、入力部13もしくは通信部12から計測部位と体重などの情報を入力することにより、演算部10により体脂肪率を求めることができる。演算部10での計算には、あらかじめ体脂肪率が既知である検体を複数用意し、既定の計測部位の皮下脂肪厚を検体の重量で割った値と既知である体脂肪率との関係をグラフにプロットし、その一次近似直線から求めた計算式を用いる。なお、個々で体重のほかに、身長、性別、年齢などを入力し、各条件での個別の計算式を容易することで、より高精度な体脂肪率の算出が可能となる。
【0049】
(実施の形態2)
図9は本発明の実施の形態2における光式脂肪測定装置の構成図であり、図10は同光式脂肪測定装置の成形部3を生体表面1と接する接触面3a側から見た上面図である。
【0050】
実施の形態1と同様の部分については説明を省略し、異なる部分について説明する。生体表面1を押し下げる方向に成形する成形部3の接触面3a上には、さらに局所的に押し下げる凸部22が設けられている。凸部22も成形部3と同様遮光のために黒色ABSでできている。凸部22の形状は幅5mm長さ55mmの、接触面3aと平行な接触面3cを有し、高さ5mmの段差をもって接触面3aからせり出している。接触面3c上に光源部6と受光部7とが設けられている。なお、接触面3cは、接触面3aとは必ずしも平行でなくともよい。段差があればよい。受光部7は計測用受光素子8(第2の受光素子)と補正用受光素子9(第1受光素子)からなる。計測用受光素子8と光源部6との距離は45mmであり、補正用受光素子9と光源部6との距離は22.5mmであり、光源部6および各受光部7はほぼ一直線上に配置されている。なお、上記の構成において、接触面3cは本発明の第2の接触面に相当する。
【0051】
実施の形態1と異なる点は、凸部22で、接触面3aが接触している部分より局所的に皮下脂肪2を大きく変形させるようにしている。したがって、皮下脂肪2が厚い場合は、凸部22がない場合と比較して凸部22の高さ分だけ薄い皮下脂肪2を計測することになる。また、皮下脂肪2が薄い場合には皮下脂肪2は変形しないので計測する皮下脂肪2の厚みは変化しない。したがって、凸部22の高さの分だけより厚い皮下脂肪2が計測できる。
【0052】
このときの計測用受光量と皮下脂肪厚みの関係は図11に、皮膚の補正を行ったパラメータY2/Y1と皮下脂肪厚みとの関係は図12にそれぞれ示すようになり、この点線の1次回帰直線と計測用受光量もしくはパラメータY2/Y1とを用いることにより、皮下脂肪厚を局所的に薄くして計測することができ、薄くなった皮下脂肪厚からもとの皮下脂肪厚が換算できるので、より厚い皮下脂肪厚を再現性良く高精度に測定することができ、皮下脂肪厚の測定範囲を増大させることもできる。
【0053】
なお、上記の説明において生体は人体としたが、他の動物であってもよい。
【0054】
【発明の効果】
以上から明らかなように、本発明によれば、脂肪の状態を再現性良く高精度に測定することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における光式脂肪測定装置の構成図
【図2】同光式脂肪測定装置の成形部を生体表面と接する側から見た上面図
【図3】本発明の一実施の形態における光式脂肪測定装置により求めた計測用受光量と脂肪みとの関係を示すグラフ
【図4】同光式脂肪測定装置により求めたパラメータY2/Y1と皮下脂肪厚みとの関係を示すグラフ
【図5】同実施の形態における、光源部と受光部の構成が異なる光式脂肪測定装置の構成図
【図6】同光式脂肪測定装置の成形部を生体表面と接する側から見た上面図
【図7】同実施の形態における、突起部を設けた光式脂肪測定装置の構成図
【図8】同光式脂肪測定装置の成形部を生体表面と接する側から見た上面図
【図9】本発明の他の実施の形態における光式脂肪測定装置の構成図
【図10】同光式脂肪測定装置の成形部を生体表面と接する側から見た上面図
【図11】同光式脂肪測定装置により求めた計測用受光量と皮下脂肪厚みとの関係を示すグラフ
【図12】同光式脂肪測定装置により求めたパラメータY2/Y1と皮下脂肪厚みとの関係を示すグラフ
【図13】従来の光式脂肪測定装置の構成図
【符号の説明】
1 生体表面
2 皮下脂肪
3 成形部
4 皮膚
5 筋肉
6 光源部
7 受光部
8 計測用受光素子
9 補正用受光素子
10 演算部
11 表示部
12 通信部
13 入力部
14 補正用受光素子が受光する光子
15 計測用受光素子が受光する光子
16 計測用光源素子
17 補正用光源素子
18 補正用光源素子からの光
19 計測用受光素子からの光
20 凸部
21 生体の浅い部分を伝播する光
22 凸部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical type fat measurement equipment capable of measuring the state of the fat into the optical.
[0002]
[Prior art]
FIG. 13 shows an optical fat measurement device according to the prior art (see, for example, Patent Document 1). As shown in the figure, the optical fat measurement device includes a fat measurement contact 131 that contacts the living body surface 1, a light source 132 built in the fat measurement contact 131, a plurality of light receiving elements 133a to 133d, The light quantity control circuit 134 that controls the light quantity of the light source 132 and the light receiving elements 133a to 133d are switched, and a switching circuit 135 that outputs a signal obtained from the switched light receiving elements to the amplifier 136, and a switching circuit 135 An amplifier 136 that amplifies the output from the amplifier 136, an A / D conversion circuit 137 that performs A / D conversion on the signal of the amplifier 136, an input unit 138 for a user to input for measurement, and information from the input unit 138 Alternatively, the CPU 139 that processes a signal from the A / D conversion circuit 137 and controls the light amount control circuit 134, the switching circuit 135, and the display unit 140, and the CPU 13 There has been a display unit 140 for displaying various information to be processed.
[0003]
According to such an optical fat measurement device, light that is incident on the inside of the living body composed of subcutaneous fat 2, muscle 5 and the like from the light source 132 disposed on the living body surface 1 is propagated while being scattered and absorbed inside the living body. Then, the light 141, 142, etc. again appearing on the surface of the living body is received selectively using the light receiving elements 133a-133d, and the thickness of the subcutaneous fat 2 inside the living body is measured by the CPU 139, etc. based on the received light. be able to.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-155091
[Problems to be solved by the invention]
However, in the conventional fat measuring apparatus, the soft subcutaneous fat 2 in the living tissue 1 is easily deformed by an external force. Therefore, the living body surface 1 is deformed only by gently placing the fat measuring contact 131 on the living body surface 1, and the thickness of the subcutaneous fat 2 varies with each measurement. Therefore, the measurement reproducibility was deteriorated. This problem is particularly noticeable when the subcutaneous fat 2 is thick.
[0006]
Further, when the subcutaneous fat 2 becomes thicker, the amount of light received by the light receiving elements 133a to 133d is gradually saturated, and there is a problem that thick subcutaneous fat exceeding a certain level cannot be measured.
[0007]
Accordingly, in view of the above-described conventional problems, the present invention provides an optical fat measurement device that can measure the state of fat such as subcutaneous fat with high reproducibility and high accuracy, and can measure even thicker fat. For the purpose.
[0008]
[Means for Solving the Invention]
In order to achieve the above object, the first aspect of the present invention provides a pressure applying means for applying a pressure of 7 kPa or more to the surface of the living body, and the singular or plural disposed on the living body surface including the portion to which the pressure is applied. A fat measuring contact having one or a plurality of light incident portions arranged at a predetermined distance from the light emitting portion on the surface of the living body including the light emitting portion and the portion to which the pressure is applied. ,
One or a plurality of light sources for emitting light from the light emitting portion;
One or a plurality of light receiving parts for receiving light from the light incident part,
Computation means for computing the fat state of the living body based on the amount of light received by the light receiving unit ,
The fat measuring contact has a molded part having a first contact surface in surface contact with the living body surface,
The light emitting part and the light incident part are provided on the first contact surface,
The first contact surface is an optical fat measurement device having a convex portion provided between at least a pair of the light incident portion and the light emitting portion .
[0009]
The second aspect of the present invention is the optical fat measurement apparatus according to the first aspect of the present invention, wherein the state of fat of the living body is fat thickness or fat percentage.
[0010]
Further, in the third aspect of the present invention, the calculation unit determines whether the received light amount is stable within a specified range, and performs the calculation based on the received light amount that is stable within the specified range. 1 is an optical fat measurement apparatus according to the present invention .
[0011]
Also, a fourth aspect of the present invention, the light incident portion is the light type fat measuring apparatus of the first aspect of the present invention are also provided on the main surface of the convex portion.
[0012]
Moreover, 5th this invention has the 2nd contact surface which the said shaping | molding part is provided in the circumference | surroundings of the said 1st contact surface, has a level | step difference with the said 1st contact surface, and contacts the said biological body surface. It is an optical fat measuring device of the 1st present invention.
[0013]
The sixth aspect of the present invention is the optical fat measurement apparatus according to the fifth aspect of the present invention, wherein the second contact surface is parallel to the first contact surface.
[0014]
Further, according to a seventh aspect of the present invention, the pressure applying means of the fat measuring contact is the fat measuring contact itself,
The pressure is the optical fat measuring device according to the first aspect of the present invention, which is the weight of the fat measuring contact.
[0015]
The eighth aspect of the present invention is the optical fat measurement device according to the fifth aspect of the present invention, wherein at least the first contact surface and / or the second contact surface of the fat measurement contactor has a light shielding property. is there.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the optical fat measuring device of the present invention will be described in detail with reference to the drawings.
[0017]
(Embodiment 1)
FIG. 1 is a configuration diagram of the optical fat measurement device according to the first embodiment of the present invention, and FIG. 2 is a top view of the molding unit 3 of the optical fat measurement device as viewed from the contact surface 3a side in contact with the biological surface 1. It is.
[0018]
On the living body surface 1 composed of three layers of skin 4, subcutaneous fat 2, and muscle 5, a forming part 3 for forming the living body surface 1 in the direction of pushing down is disposed.
[0019]
In the molding unit 3, a light source unit 6 including a light source element and a plurality of light receiving units 7 are provided. The light receiving unit 7 incorporates a light receiving element 8 for measurement and a light receiving element 9 for correction. The distance between the measurement light receiving element 8 and the light source unit 6 is 45 mm, and the distance between the correction light receiving element 9 and the light source unit 6 is 22.5 mm. The light exit from the light source unit 6 has a diameter of φ1.5 mm, and the light entrance of the measurement light-receiving element 8 and the correction light-receiving element 9 is φ1.5 mm. The distance between the measurement light receiving element 8 and the light source unit 6 is preferably between 35 mm and 80 mm, and the distance between the correction light receiving element 9 and the light source unit 6 is preferably between 15 mm and 30 mm.
[0020]
When the light source unit 6 is turned on, the correction light receiving element 9 receives the correction light reception amount (Y1), and the measurement light receiving element 8 receives the measurement light reception amount (Y2). Here, the light source unit 6 uses a laser diode having a center wavelength of 785 nm as a light source element. The light source element is not limited to the above, and a laser diode or LED having a center wavelength of 500 nm to 1000 nm is preferably used because the difference in light propagation characteristics between the subcutaneous fat 2 and the muscle 5 can be increased. . Furthermore, it is preferable that light is guided from the light source element to the living body surface 1 using a light guide component such as an optical fiber because heat generated by the light source element is not transmitted to the living body surface 1.
[0021]
A photodiode is used as the light receiving element of the light receiving unit 7. The light receiving element may be a photoelectric conversion element such as CdS. Further, light may be guided from the living body surface to the light receiving element using a light guide component such as an optical fiber.
[0022]
The molded part 3 has a disk shape with a diameter of 60 mm and has a predetermined weight as will be described later. By making the surface in contact with the biological surface 1 into a substantially planar shape, the biological surface 1 is stabilized in a planar shape and contributes to measurement reproducibility.
[0023]
The molded part 3 is made of black ABS for light shielding. The material of the molding unit 3 is low in reflectance with respect to the light from the light source unit 6, so that the light emitted from the living body surface 1 can be prevented from returning to the living body again. Only the light propagating in the deep region can be received, and the measurement accuracy is improved. In addition, disturbance light from other than the light source that causes noise can be shielded, and the measurement accuracy is improved. The molding part 3 is not limited to black ABS, and may be formed using any material as long as it has a light shielding property. Moreover, you may make it give light-shielding property only to the contact surface 3a which contacts the biological body surface 1 by processes, such as coating.
[0024]
Further, the molded part 3 has a structure in which the edge is rounded so that an acute angle portion does not hit the living body surface 1, so that even if the molded part 3 is pressed against the living body surface 1, the user does not feel pain due to the edge.
[0025]
The calculation unit 10 calculates the thickness of the subcutaneous fat 2 based on the amount of light received by the light receiving unit 7. The calculated thickness of the subcutaneous fat 2 is displayed on the display unit 11 and sent as data to other devices through the communication unit 12.
[0026]
In addition, by inputting data such as height, weight, age, sex, measurement site, etc. directly from the input unit 13 or from other devices through the communication unit 12, the body fat rate correlates with the thickness of the subcutaneous fat 2. Can be calculated by the calculation unit 10 and displayed on the display unit 11, or the data can be transferred to another device by the communication unit 12.
[0027]
In the above configuration, the light source unit 6 is the light emitting unit of the present invention, the light receiving unit is the light incident unit of the present invention, the light source element is the light source of the present invention, the correction light receiving element 9 and the measurement light receiving element 8 are the present invention. The light receiving element, the calculation unit 10 corresponds to the calculation means of the present invention, the molding unit 3 corresponds to the molding unit and fat measurement contactor of the present invention, and the contact surface 3a corresponds to the first contact surface of the present invention.
[0028]
The operation of the optical fat measurement apparatus having the above-described configuration according to Embodiment 1 of the present invention will be described.
[0029]
First, the measurement principle will be described. The propagation characteristics of light are greatly different between the muscle 5 and the subcutaneous fat 2, the absorption tendency is stronger in the muscle 5, and the scattering tendency is stronger in the subcutaneous fat 2. This difference in characteristics is remarkable with light having a wavelength of 500 nm to 1000 nm. Therefore, the light incident from the biological surface 1 from the light source unit 6 is diffused in the subcutaneous fat 2 as the subcutaneous fat thickness is increased, and spreads not only in the depth direction but also in the lateral direction. Therefore, the light spreading in the lateral direction and emitted to the living body surface 1 increases as the subcutaneous fat 2 is thicker.
[0030]
The light that spreads in the lateral direction and is emitted to the living body surface 1 again is received by the light receiving unit 7, whereby the thickness of the subcutaneous fat 2 can be measured.
[0031]
Next, the measurement procedure will be described. As a first operation, in a state where the light source unit 6 is not lit, the molding unit 3 is pressed against the living body surface 1 so that the contact surface 3a is in surface contact.
[0032]
As a second operation, when the amount of light received by the light receiving unit 7 is 100 pW or less, it is confirmed that the entire light receiving unit 7 is in contact with the living body surface 1 and the living body surface 1 is pushed down, and the light source unit 6 is turned on. The light irradiates the living body surface 1.
[0033]
At this time, due to the action of pressure applied to the living body surface 1 through the contact surface 3a, the thickness of the subcutaneous fat 2 is uniformly crushed and stable until the portion corresponding to the contact surface 3a is not further deformed. Yes. The pressure is preferably 7 kPa or more because the subcutaneous fat thickness is stable.
[0034]
As a third operation, by measuring the light 14 that has reached the light-receiving element 9 for correction, a light-receiving amount for correction (light-receiving amount Y1 at the first distance) is obtained, and the light 15 that has reached the light-receiving element 8 for measurement. Is measured to obtain a measurement light reception amount (light reception amount Y2 at the second distance).
[0035]
Here, both the received light amount for correction and the received light amount for measurement fluctuate depending on the strength of pressing the molding unit 3 against the living body surface 1 and the thickness of the subcutaneous fat 2. By determining whether the received light amount is stable, it is confirmed that the pressing strength and the thickness of the subcutaneous fat 2 are stable. Thereby, measurement with high accuracy becomes possible.
[0036]
Whether the received light amount is stable is measured for each received light amount of each light receiving element at a sampling cycle of 100 Hz, and the difference between the maximum value and the minimum value of each received light amount at a sampling time of 200 ms is 10% of the maximum value. This is done by determining whether it falls within the range. In order to remove the influence of the heartbeat and the influence of the human body movement, the sampling cycle should be fast, preferably 100 Hz or more, and the sampling time should be short, preferably 500 ms or less.
[0037]
Next, a method for calculating the thickness of the subcutaneous fat 2 in the calculation unit 10 will be described. FIG. 3 shows the relationship between the amount of received light for measurement and the thickness of the subcutaneous fat 2. In FIG. 3, white circles indicate the relationship between the amount of received light for measurement and the thickness of the subcutaneous fat 2. A dotted line is a linear regression line.
[0038]
As can be seen from the figure, a plurality of primary regression lines showing the correlation between the amount of received light for measurement and the thickness of subcutaneous fat 2 are obtained in advance, and the subcutaneous fat is obtained by using the primary regression line and the amount of received light for measurement. The thickness of 2 can be measured with high reproducibility and high accuracy.
[0039]
By the way, the amount of received light for measurement includes the influence of scattering and absorption variations of the skin 4 as an error factor. In order to correct the influence of the skin 4 , the correction light reception amount is used.
[0040]
FIG. 4 shows the relationship between the parameter Y2 / Y1 obtained by dividing the measurement light reception amount (light reception amount Y2 at the second distance) by the correction light reception amount (light reception amount Y1 at the first distance) and the thickness of the subcutaneous fat 2. Shown in In FIG. 4, white circles indicate the relationship between Y2 / Y1 and the thickness of subcutaneous fat 2. A dotted line is a linear regression line.
[0041]
Compared with FIG. 3, the variation is clearly reduced, and it can be seen that there is an effect of correction by the amount of received light for correction. By using the linear regression line and Y2 / Y1, it is possible to correct the influence of the skin 5 and the pressure applied to the surface of the living body, so that the subcutaneous fat thickness can be measured with high reproducibility and high accuracy. .
[0042]
As described above, according to the present embodiment, the thickness of the subcutaneous fat 2 is crushed and stabilized without further deformation by the action of the pressure applied to the living body surface 1 through the contact surface 3a, By determining that the deformed state is stable and performing the measurement, the subcutaneous fat thickness can be measured with high reproducibility and high accuracy.
[0043]
In the above description, the light source unit 6 is configured by one light source element and the light receiving unit 7 is configured by the measurement light receiving element 8 and the correction light receiving element 9 as illustrated in FIGS. As shown in FIG. 5 and a top view of the molding unit 3 in FIG. 6, the light receiving unit 7 may be configured by one light receiving element, and the light source unit 6 may be configured by the measurement light source element 16 and the correction light source element 17. In this case, when the correction light source element 17 is turned on and the measurement light source element 16 is turned off, the received light amount of the light 18 received by the light receiving unit 7 becomes the correction received light amount, and the correction light source element 17 is turned off. When the measurement light source element 16 is turned on, the received light amount of the light 19 received by the light receiving unit 7 is the received light amount for measurement. Further, the number of light source elements and light receiving elements is not limited to the above configuration. Furthermore, as long as two types of received light amounts, that is, a correction light reception amount and a measurement light reception amount can be obtained, both the light source unit 6 and the light reception unit 7 use a plurality of light source elements and a plurality of light reception elements. Also good.
[0044]
Here, as shown in the configuration diagram of FIG. 7 and FIG. 8, a convex portion 20 corresponding to the convex portion of the present invention may be provided on the contact surface 3 a of the molding portion 3. Here, the convex portion 20 has a step with the contact surface 3a, has a contact surface 3b substantially parallel to the contact surface 3a, and the correction light-receiving element 9 is disposed on the surface.
[0045]
When measurement similar to the above is performed using the molding part 3 having such a convex part 20, a part of the region between the light source part 6 and the measurement light receiving element 8 on the biological surface 1 by the convex part 20. However, by being pushed down deeper than the portion pushed down by the contact surface 3a, the step between the contact surface 3a and the contact surface 3b cuts the light 21 that has propagated through the shallow region in the living body. As a result, the light receiving unit 7 can receive only light propagating through a deeper part in the living body, and the accuracy of measuring the thickness of the subcutaneous fat 2 is improved.
[0046]
Moreover, although the method of applying a pressure via the contact surface 3a may use the external force which is not shown in figure, you may utilize the dead weight of the shaping | molding part 3. FIG. At this time, the weight of the molded part 3 is preferably 1 kg. Moreover, although this Embodiment demonstrated as what measures body fat thickness, as a fat state of this invention, you may measure states other than body fat thickness.
[0047]
For example, the body fat percentage indicating the proportion of body fat in the living body is correlated with the subcutaneous fat thickness of each part of the living body, and the body fat percentage increases as the subcutaneous fat is thicker. However, even with the same subcutaneous fat thickness, if the muscle mass is large, the body weight increases and the body fat percentage decreases.
[0048]
Therefore, by inputting information such as the measurement site and weight from the input unit 13 or the communication unit 12, the calculation unit 10 can determine the body fat percentage. For the calculation in the calculation unit 10, a plurality of specimens whose body fat percentages are known are prepared in advance, and the relationship between the value obtained by dividing the subcutaneous fat thickness of the predetermined measurement site by the weight of the specimen and the known body fat percentage is calculated. Plot on the graph and use the calculation formula obtained from the linear approximation line . It is possible to calculate body fat percentage with higher accuracy by inputting height, sex, age, etc. in addition to body weight and facilitating individual calculation formulas for each condition.
[0049]
(Embodiment 2)
FIG. 9 is a configuration diagram of the optical fat measurement device according to the second embodiment of the present invention, and FIG. 10 is a top view of the molding unit 3 of the optical fat measurement device viewed from the contact surface 3a side in contact with the biological surface 1. It is.
[0050]
Description of the same parts as those in the first embodiment will be omitted, and different parts will be described. On the contact surface 3a of the molding part 3 that molds the living body surface 1 in the direction of pressing down, a convex part 22 that further presses down locally is provided. The convex portion 22 is also made of black ABS in order to block light like the molded portion 3. The convex portion 22 has a contact surface 3c parallel to the contact surface 3a having a width of 5 mm and a length of 55 mm, and protrudes from the contact surface 3a with a step of 5 mm in height. A light source unit 6 and a light receiving unit 7 are provided on the contact surface 3c. The contact surface 3c does not necessarily have to be parallel to the contact surface 3a. There should be a step. The light receiving unit 7 includes a measurement light receiving element 8 (second light receiving element) and a correction light receiving element 9 (first light receiving element). The distance between the measurement light receiving element 8 and the light source unit 6 is 45 mm, the distance between the correction light receiving element 9 and the light source unit 6 is 22.5 mm, and the light source unit 6 and each light receiving unit 7 are arranged substantially in a straight line. Has been. In the above configuration, the contact surface 3c corresponds to the second contact surface of the present invention.
[0051]
The difference from the first embodiment is that the convex portion 22 deforms the subcutaneous fat 2 to a greater extent locally than the portion where the contact surface 3a is in contact. Therefore, when the subcutaneous fat 2 is thick, the subcutaneous fat 2 that is thinner by the height of the convex portion 22 is measured than when the convex portion 22 is not provided. Further, when the subcutaneous fat 2 is thin, the subcutaneous fat 2 is not deformed, so that the thickness of the measured subcutaneous fat 2 does not change. Therefore, the thicker subcutaneous fat 2 can be measured by the height of the convex portion 22.
[0052]
FIG. 11 shows the relationship between the amount of received light for measurement and the subcutaneous fat thickness, and FIG. 12 shows the relationship between the skin correction parameter Y2 / Y1 and the subcutaneous fat thickness. By using the regression line and the received light amount for measurement or the parameter Y2 / Y1, the subcutaneous fat thickness can be measured locally thin, and the original subcutaneous fat thickness can be converted from the thinned subcutaneous fat thickness. Therefore, a thicker subcutaneous fat thickness can be measured with high reproducibility and high accuracy, and the measurement range of the subcutaneous fat thickness can be increased.
[0053]
In the above description, the living body is a human body, but may be another animal.
[0054]
【The invention's effect】
As is clear from the above, according to the present invention, the state of fat can be measured with high reproducibility and high accuracy.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an optical fat measurement device according to a first embodiment of the present invention. FIG. 2 is a top view of a molding part of the optical fat measurement device as viewed from the side in contact with a living body surface. FIG. 4 is a graph showing the relationship between the amount of received light for measurement and fatiness determined by the optical fat measurement device in one embodiment of the present invention. FIG. 4 shows the relationship between the parameter Y2 / Y1 determined by the optical fat measurement device and the subcutaneous fat thickness. FIG. 5 is a configuration diagram of an optical fat measuring device in which the configuration of the light source unit and the light receiving unit is different in the embodiment. FIG. 6 is a side of the molded fat measuring device in contact with the living body surface. FIG. 7 is a configuration diagram of an optical fat measurement device provided with a protrusion in the same embodiment. FIG. 8 is a view of a molding portion of the optical fat measurement device viewed from the side in contact with the living body surface. FIG. 9 is a top view of an optical fat measurement apparatus according to another embodiment of the present invention. Fig. 10 is a top view of the molding part of the optical fat measuring device as seen from the side in contact with the surface of the living body. Fig. 11 is a relationship between the amount of received light for measurement and the thickness of subcutaneous fat obtained by the optical fat measuring device. FIG. 12 is a graph showing the relationship between the parameter Y2 / Y1 obtained by the optical fat measurement device and the subcutaneous fat thickness. FIG. 13 is a configuration diagram of a conventional optical fat measurement device.
DESCRIPTION OF SYMBOLS 1 Living body surface 2 Subcutaneous fat 3 Molding part 4 Skin 5 Muscle 6 Light source part 7 Light receiving part 8 Measurement light receiving element 9 Correction light receiving element 10 Calculation part 11 Display part 12 Communication part 13 Input part 14 Photon which a correction light receiving element receives 15 Photons received by the measurement light receiving element 16 Measurement light source element 17 Correction light source element 18 Light from the correction light source element 19 Light from the measurement light receiving element 20 Convex part 21 Light propagating through a shallow part of the living body 22 Convex part

Claims (8)

生体表面に7kPa以上の圧力を印加する圧力印加手段、前記圧力が印加された部位を含む前記生体表面上に配置される単数または複数の光出射部、および前記圧力が印加された部位を含む前記生体表面上に、前記光出射部と所定の距離を置いて配置される単数または複数の光入射部を有する脂肪測定用接触子と、
前記光出射部から光を出射するための単数または複数の光源と、
前記光入射部から光を受光するための単数または複数の受光部と、
前記受光部の光の受光量に基づき、前記生体の脂肪の状態を演算する演算手段とを備え
前記脂肪測定用接触子は、前記生体表面と面接触する第1の接触面を有する成形部を有し、
前記光出射部および光入射部は、前記第1の接触面上に設けられ、
前記第1の接触面は、少なくとも一対の前記光入射部と光出射部との間に設けられた凸部を有する光式脂肪測定装置。
A pressure applying means for applying a pressure of 7 kPa or more to the surface of the living body, one or a plurality of light emitting portions arranged on the surface of the living body including the portion to which the pressure is applied, and a portion to which the pressure is applied On the surface of the living body, a fat measuring contact having one or a plurality of light incident portions arranged at a predetermined distance from the light emitting portion,
One or a plurality of light sources for emitting light from the light emitting portion;
One or a plurality of light receiving parts for receiving light from the light incident part,
Computation means for computing the fat state of the living body based on the amount of light received by the light receiving unit ,
The fat measuring contact has a molded part having a first contact surface in surface contact with the living body surface,
The light emitting part and the light incident part are provided on the first contact surface,
The optical fat measuring device, wherein the first contact surface has a convex portion provided between at least a pair of the light incident portion and the light emitting portion .
前記生体の脂肪の状態は、脂肪厚または脂肪率である請求項1に記載の光式脂肪測定装置。  The optical fat measuring device according to claim 1, wherein the fat state of the living body is fat thickness or fat percentage. 前記演算部は、前記受光量が規定範囲内に安定しているかどうかを判定し、前記規定範囲内で安定している受光量に基づき、前記演算を行う請求項1に記載の光式脂肪測定装置。  The optical fat measurement according to claim 1, wherein the calculation unit determines whether the received light amount is stable within a specified range, and performs the calculation based on the received light amount that is stable within the specified range. apparatus. 前記光入射部は、前記凸部の主面上にも設けられている請求項に記載の光式脂肪測定装置。The optical fat measuring apparatus according to claim 1 , wherein the light incident part is also provided on a main surface of the convex part . 前記成形部は、前記第1の接触面の周囲に設けられ、前記第1の接触面と段差を有する、前記生体表面と接触する第2の接触面を有する請求項に記載の光式脂肪測定装置。The forming section, the first provided around the contact surface, the having a first contact surface and the step, optical type fat according to claim 1 having a second contact surface in contact with the living body surface measuring device. 前記第2の接触面は、前記第1の接触面と平行である請求項に記載の光式脂肪測定装置。The optical fat measurement device according to claim 5 , wherein the second contact surface is parallel to the first contact surface . 前記脂肪測定用接触子の前記圧力印加手段は、前記脂肪測定用接触子そのものであって、
前記圧力は、前記脂肪測定用接触子の自重である請求項1に記載の光式脂肪測定装置。
The pressure applying means of the fat measuring contact is the fat measuring contact itself,
The optical fat measuring device according to claim 1, wherein the pressure is the weight of the fat measuring contact .
前記脂肪測定用接触子の、少なくとも前記第1の接触面および/または前記第2の接触面は遮光性を有する請求項に記載の光式脂肪測定装置 The optical fat measurement device according to claim 5 , wherein at least the first contact surface and / or the second contact surface of the fat measurement contactor has light shielding properties .
JP2003150782A 2003-05-28 2003-05-28 Optical fat measuring device Expired - Fee Related JP4385650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003150782A JP4385650B2 (en) 2003-05-28 2003-05-28 Optical fat measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150782A JP4385650B2 (en) 2003-05-28 2003-05-28 Optical fat measuring device

Publications (3)

Publication Number Publication Date
JP2004350836A JP2004350836A (en) 2004-12-16
JP2004350836A5 JP2004350836A5 (en) 2006-06-15
JP4385650B2 true JP4385650B2 (en) 2009-12-16

Family

ID=34046496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150782A Expired - Fee Related JP4385650B2 (en) 2003-05-28 2003-05-28 Optical fat measuring device

Country Status (1)

Country Link
JP (1) JP4385650B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100679106B1 (en) * 2006-02-07 2007-02-06 삼성전자주식회사 Apparatus for measuring fat using near infrared and method for operating the apparatus
KR100795921B1 (en) 2006-05-02 2008-01-21 삼성전자주식회사 Portable device for measuring body fat and optical sensor module of the device
KR100792259B1 (en) 2006-05-19 2008-01-07 삼성전자주식회사 Portable device for measuring body fat and optical sensor module of the device
KR100813169B1 (en) 2006-07-21 2008-03-17 삼성전자주식회사 Optical sensor module having tilt and body fat measurement appratus of having the optical sensor module
KR100829214B1 (en) 2006-08-31 2008-05-14 삼성전자주식회사 Body fat measurement appratus and method for operating the appratus
JP4919438B2 (en) * 2009-09-25 2012-04-18 パナソニック株式会社 Optical body composition measuring device

Also Published As

Publication number Publication date
JP2004350836A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US7315752B2 (en) Method and device for determining a light transport parameter in a biological matrix
US11009390B2 (en) Methods and systems for modulation and demodulation of optical signals
CN105188523B (en) Deep tissue blood flow meter using speckle contrast analysis
US9380968B2 (en) Light absorption coefficient distribution estimation device, concentration measurement device, and method for controlling light absorption coefficient distribution estimation device
JP4626704B2 (en) Blood component concentration measuring device and starting control device for moving body
WO2013073270A1 (en) Measurement device, measurement method, program, and recording medium
WO2015151587A1 (en) Measurement device, measurement method, program, and recording medium
JP7429047B2 (en) Performing transabdominal fetal oximetry using optical tomography
JP2008529645A (en) Blood flow sensor
JP3859746B2 (en) Optical measuring device for light absorber
JP5674093B2 (en) Concentration determination apparatus, concentration determination method, and program
US20060041198A1 (en) Biological information arithmetic apparatus, biological information arithmetic method, computer-executable program, and recording medium
JP2008237775A (en) Blood component measuring apparatus
JP4385650B2 (en) Optical fat measuring device
JP3928472B2 (en) Optical subcutaneous fat thickness measuring device
JP3928432B2 (en) Optical biological information measuring device
JP2016010717A (en) Concentration quantification apparatus
JP5652599B2 (en) Concentration determination apparatus, concentration determination method and program
JP5626879B2 (en) Concentration determination apparatus, concentration determination method, and program
US11337609B2 (en) Texture interface for measuring bio-signal and bio-signal measuring apparatus including the same
WO2017064836A1 (en) Measurement device
JP7253733B2 (en) How to calculate the amount of glucose
JP4552609B2 (en) Subcutaneous fat thickness measuring method, subcutaneous fat thickness measuring apparatus, program, and recording medium
JP6679605B2 (en) Measuring device and measuring method
WO2022070420A1 (en) Glucose amount calculation method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R151 Written notification of patent or utility model registration

Ref document number: 4385650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees