JP4385239B2 - Sintered stainless steel material for supercharger and method for producing the same - Google Patents

Sintered stainless steel material for supercharger and method for producing the same Download PDF

Info

Publication number
JP4385239B2
JP4385239B2 JP34523399A JP34523399A JP4385239B2 JP 4385239 B2 JP4385239 B2 JP 4385239B2 JP 34523399 A JP34523399 A JP 34523399A JP 34523399 A JP34523399 A JP 34523399A JP 4385239 B2 JP4385239 B2 JP 4385239B2
Authority
JP
Japan
Prior art keywords
supercharger
stainless steel
weight
steel material
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34523399A
Other languages
Japanese (ja)
Other versions
JP2001164345A (en
Inventor
義久 植田
真 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Fine Sinter Co Ltd
Original Assignee
IHI Corp
Fine Sinter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Fine Sinter Co Ltd filed Critical IHI Corp
Priority to JP34523399A priority Critical patent/JP4385239B2/en
Publication of JP2001164345A publication Critical patent/JP2001164345A/en
Application granted granted Critical
Publication of JP4385239B2 publication Critical patent/JP4385239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supercharger (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ターボチャジャー、スーパーチャジャー等の各種過給機に用いられる焼結ステンレス鋼材料及びその製造方法に関する。さらには、この材料を用いた過給機に関する。
【0002】
【従来技術】
例えば、自動車エンジンに用いられる過給機においては、常に排ガス等の高温にさらされる上、場合によっては部材どうしの摩擦・摺動にも耐えなければならない。このため、これらの過給機用材料には少なくとも耐熱性・耐摩耗性が要求される。
【0003】
一方、過給機の作製にあたって、これらの材料はいくつかの部品を互いに溶接することによってアッセンブリー化される場合も多い。殊に、複雑な形状を有する部位では、溶接により構成される部分の割合が高くなる。このため、溶接性も、これら部材に要求される一つの特性と言える。
【0004】
ところで、少なくとも耐熱性が要求される過給機で使用される構造部材(材質)としては、一般にステンレン鋼材料からなるものが汎用されているが、ステンレン鋼材料(特に焼結材料)は溶接による接合が容易ではない。このため、溶接性に優れたステンレス鋼材料の開発が切望されている。
【0005】
【発明が解決しようとする課題】
しかしながら、耐熱性・耐摩耗性と溶接性とを兼ね備えた材料は未だ開発されていない。例えば、オーステナイト系ステンレス鋼材料は高温域での使用には有効であるものの、一般に機械的強度が低い。一方、マルテンサイト系ステンレス鋼材料は機械的強度に優れる反面、溶接性がきわめて低いため、前記のような複雑なアッセンブリーの組立てには不向きである。
【0006】
このように、今までに開発されている材料では、過給機に要求される特性を十分に満足することができないというのが現状である。
【0007】
従って、本発明は、かかる従来技術の問題点に鑑みてなされたものであり、過給機用として優れた特性を発揮できる焼結ステンレス鋼材料を提供することを主な目的とする。
【0008】
【課題を解決するための手段】
本発明者は、上記従来技術の問題に鑑みて鋭意研究を重ねた結果、特定の構成からなる焼結ステンレス鋼材料が上記目的を達成できることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は、下記の過給機用焼結ステンレス鋼材料及びその製造方法に係るものである。
【0010】
1.Cr:8〜28重量%、Mo、W、V及びTiの少なくとも1種:1〜10重量%、Si:0.2〜5重量%、C:0.05〜0.8重量%、O:0.35重量%以下であって、残部がFe及び不可避元素からなることを特徴とする過給機用焼結ステンレス鋼材料。(第一発明)
2.Cr:8〜28重量%、Mo、W、V及びTiの少なくとも1種:1〜10重量%、Cu:0.5〜5重量%、Si:0.2〜5重量%、C:0.05〜0.8重量%、O:0.35重量%以下であって、残部がFe及び不可避元素からなることを特徴とする過給機用焼結ステンレス鋼材料。(第二発明)
3.マトリックスがマルテンサイトであり、硬質粒子としてCr、Mo、W、V及びTiの少なくとも1種のフェロアロイが存在する上記第1項又は第2項に記載の過給機用焼結ステンレス鋼材料。
【0011】
4.Cr、Mo、W、V及びTiの少なくとも1種の供給源の一部又は全部としてフェロアロイを用い、当該フェロアロイを含む原料粉末を成形及び焼結することを特徴とする上記第1項〜第3項のいずれかに記載の過給機用焼結ステンレス鋼材料の製造方法。
【0012】
5.フェロアロイが、フェロモリブデン、フェロタングステン、フェロバナジウム、フェロチタン及びフェロクロムの少なくとも1種である上記第4項記載の製造方法。
【0013】
6.上記第1項1〜第3項のいずれかに記載の材料を少なくとも一部に用いてなる過給機。
【0014】
【発明の実施の形態】
第一発明の過給機用焼結ステンレス鋼材料は、Cr:8〜28重量%(好ましくは9〜23重量%、より好ましくは10〜20重量%)、Mo、W、V及びTiの少なくとも1種:1〜10重量%(好ましくは2〜10重量%、より好ましくは3〜8重量%)、Si:0.2〜5重量%(好ましくは0.5〜4量%、より好ましくは0.5〜3重量%)、C:0.05〜0.8重量%(好ましくは0.1〜0.7重量%、より好ましくは0.1〜0.6重量%)、O:0.35重量%以下(好ましくは0.32重量%以下、より好ましくは0.25重量%以下)であって、残部がFe及び不可避元素からなることを特徴とする。
【0015】
また、第二発明の過給機用焼結ステンレス鋼材料は、Cr:8〜28重量%(好ましくは9〜23重量%、より好ましくは10〜20重量%)、Mo、W、V及びTiの少なくとも1種:1〜10重量%(好ましくは2〜10重量%、より好ましくは3〜8重量%)、Cu:0.5〜5重量%(好ましくは0.5〜4重量%、より好ましくは0.5〜3重量%)、Si:0.2〜5重量%(好ましくは0.5〜4重量%、より好ましくは0.5〜3重量%)、C:0.05〜0.8重量%(好ましくは0.1〜0.7重量%、より好ましくは0.1〜0.6重量%)、O:0.35重量%以下(好ましくは0.32重量%以下、より好ましくは0.25重量%以下)であって、残部がFe及び不可避元素からなることを特徴とする。すなわち、第二発明は、上記第一発明にさらにCuを必須成分として含むものである。Cuは寸法安定性等の向上に寄与することができる点で第二発明がより好ましい。
【0016】
第一発明及び第二発明(以下、両者を「本発明」という)の焼結体の構造としては、特に、マトリックスがマルテンサイトであり、硬質粒子(分散材)としてCr、Mo、W、V及びTiの少なくとも1種のフェロアロイが存在することが好ましい。フェロアロイとしては、Feを含むものであれば良く、例えばFe−Cr系、Fe−Mo系、Fe−W系、Fe−Ti系、Fe−V系等の2元系、Fe−Cr−Si系、Fe−Cr−C系等の3元系等が挙げられる。この中でも、フェロモリブデン、フェロタングステン、フェロバナジウム、フェロチタン及びフェロクロムの少なくとも1種を用いるのが好ましい。
【0017】
マトリックスは、マルテンサイトが実質的にマトリックスのすべてを占有していることが望ましいが、本発明の効果を妨げない範囲内で他の合金相が存在していても良い。マルテンサイトは、通常マトリックス中50体積%以上存在していれば良い。マルテンサイトが本発明材料におけるマトリックスの主要構成成分として存在することにより特に優れた機械的強度を発揮することができる。
【0018】
硬質粒子が存在する場合、その存在割合は、最終製品の用途、所望の合金特性等に応じて適宜設定できるが、通常は本発明材料中1〜20重量%程度、好ましくは2〜15重量%とすれば良い。かかる範囲内に設定することにより特に耐摩耗性等の向上を図ることができる。また、硬質粒子の平均粒径も硬質粒子の種類等によって適宜設定できるが、通常20〜150μm程度とすれば良い。
【0019】
本発明材料の製造方法は、例えば各合金成分の原料粉末を用いて公知の粉末冶金における焼結体の製造方法に従って実施することができる。例えば、原料粉末を混合し、成形した後、この成形体を焼結すれば良い。
【0020】
原料粉末としては、各成分ごとの単体粉末を用いることもできるが、これらの2成分以上が合金化した合金粉末を用いることもできる。特に、本発明ではCr、Mo、W、V及びTiの少なくとも1種の供給源の一部又は全部としてフェロアロイを用いることが好ましい。すなわち、前記のFe−Cr系、Fe−Mo系、Fe−W系、Fe−Ti系、Fe−Cr−Si系等の合金粉末を各成分の供給源の一部又は全部として用いることにより、これらの硬質粒子が分散材として存在する焼結体を効率良く製造することができる。なお、C(炭素)成分としては、特に黒鉛を用いることが好ましい。
【0021】
これらの原料粉末は、1種又は2種以上使用できる。また、これらは公知の製法により得られるもの又は市販品を用いることができる。原料粉末の平均粒径は、特に制限されないが、通常20〜150μm程度とすれば良い。
【0022】
原料粉末の成形は、公知の成形方法及び条件を採用できる。例えば、プレス成形、HIP法、CIP法、ホットプレス法等が挙げられる。成形に際し、必要に応じてバインダー、焼結助剤等の添加剤を配合することもできる。成形工程では、成形体の密度は、合金組成等によって適宜変更できるが、通常は焼結体密度が6〜7g/cm3程度となるように調節すれば良い。
【0023】
焼結工程では、成形体の焼結を行う。焼結温度は、合金組成等に応じて適宜設定できるが、通常は1100〜1300℃程度とすれば良い。焼結時間は、焼結温度等に応じて適宜調整することができる。焼結雰囲気は、通常は還元性雰囲気(アンモニアガス等)とすれば良いが、必要に応じて真空中、不活性ガス雰囲気等としても良い。焼結雰囲気の調整によって特に焼結体の含有酸素量の制御を行うこともできる。
【0024】
【発明の効果】
本発明の過給機用焼結ステンレス鋼材料は、特定の合金組成から構成されていることから、耐熱性・耐摩耗性に加えて、溶接性にも優れており、過給機の構造材料として好適に用いることができる。
【0025】
本発明の過給機用材料は、過給機のいずれの部位にも使用できる。また、本発明材料が適用できる過給機の種類としては特に限定されず、スーパーチャジャー、ターボチャジャー等のいずれのタイプであっても良い。また、自動車過給機のほか、航空機、船舶等の過給機にも適用することができる。特に、本発明では、自動車過給機に適している。
【0026】
本発明材料を少なくとも一部に用いてなる過給機は、溶接性に優れていることから各部位との接合が強固であり、しかも耐熱性・耐摩耗性に優れているので従来品よりも優れた耐久性を発揮できる。
【0027】
【実施例】
以下、実施例及び比較例を示し、本発明の特徴とするところを明確にする。
【0028】
実施例1〜6及び比較例1〜6
表1に示す原料粉末を用い、それぞれが表2に示す配合割合となるように秤量し、均一に混合することによって各混合原料を調製した。最終的な合金組成を表3に示す。
【0029】
【表1】

Figure 0004385239
【0030】
【表2】
Figure 0004385239
【0031】
【表3】
Figure 0004385239
【0032】
次いで、各混合粉末を金型プレスによって成形圧6ton/cm2で成形し、成形体を作製した。この成形体を分解アンモニア雰囲気中1200℃で1時間焼結を行った
【0033】
試験例1
実施例及び比較例で得られた焼結体について常温及び高温(500℃)での引張試験、シャルピー衝撃試験、摩耗試験及び溶接性試験を実施した。その結果を表4に示す。なお、各試験における測定方法は下記の通りである。
(1)引張試験
JIS Z 2550(1989)「機械構造部品用焼結材料」に規定された引張試験方法に基づいて実施した。
(2)シャルピー衝撃試験
JIS Z 2550(1989)「機械構造部品用焼結材料」に規定された衝撃試験方法に基づいて実施した。
(3)摩耗試験
大越式迅速摩耗試験機を用い、荷重:61.7N、速度:10.4m/秒、摩擦距離:100m、相手材:SUS303の測定条件で行った。
(4)溶接性
相手材としてSUS303(溶製材)を用い、この相手材との溶接を電子ビームで行い、溶接部のクラックの発生の有無を肉眼で判定した。
【0034】
【表4】
Figure 0004385239
【0035】
表4の結果より、実施例の焼結体は、いずれも、常温での引張強さ:580MPa以上、常温での伸び:1%以上、500℃での引張強さ:460MPa以上、500℃での伸び:0.7%以上、シャルピー衝撃値:10J/cm2以上、摩耗幅:1.3mm以下であり、かつ、溶接性も良好であることから、溶接性に優れた過給機用焼結ステンレス鋼材料(溶接用焼結ステンレス鋼材料)として有用であることがわかる。
【0036】
試験例2
実施例1の焼結体について硬質粒子の存在を調べた。その結果を図1に示す。図1では、走査型電子顕微鏡による二次電子像(図1中「SEI」)(大きな2つの薄い色の部分)、組成像(図1中「BEI」)(大きな2つの白っぽい部分)、FeKα線によるイメージ像(図1中「FeKα」)(大きな2つの濃い色の部分)及びMoKα線によるイメージ像(図1中「MoKα」)(大きな2つの白っぽい部分)を示す。これらの結果からも明らかなように硬質粒子の存在が確認できる。特に、BEIの結果からも明らかなように、白っぽい部分がマトリックスを構成する金属元素よりも重い金属元素であることからFeMo粒子があることがわかる。また、この粒子はX線回折分析により、FeMoであることを同定した。同様に、マトリックスがマルテンサイトであることも確認した。
【図面の簡単な説明】
【図1】実施例1で得られた焼結体の構造を示すイメージ図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sintered stainless steel material used for various turbochargers such as a turbocharger and a supercharger, and a method for producing the same. Furthermore, it is related with the supercharger using this material.
[0002]
[Prior art]
For example, in a supercharger used for an automobile engine, it is always exposed to high temperatures such as exhaust gas, and in some cases, it must endure friction and sliding between members. For this reason, at least heat resistance and wear resistance are required for these supercharger materials.
[0003]
On the other hand, in the production of a supercharger, these materials are often assembled by welding several parts together. In particular, in a portion having a complicated shape, the proportion of the portion formed by welding increases. For this reason, weldability is also one of the characteristics required for these members.
[0004]
By the way, as a structural member (material) used in a supercharger that requires at least heat resistance, a material made of stainless steel material is generally used. However, stainless steel material (especially sintered material) is obtained by welding. Joining is not easy. For this reason, development of the stainless steel material excellent in weldability is earnestly desired.
[0005]
[Problems to be solved by the invention]
However, a material having both heat resistance / wear resistance and weldability has not been developed yet. For example, an austenitic stainless steel material is effective for use in a high temperature range, but generally has low mechanical strength. On the other hand, a martensitic stainless steel material is excellent in mechanical strength, but has a very low weldability, and thus is not suitable for assembling such a complex assembly.
[0006]
As described above, the materials developed so far cannot sufficiently satisfy the characteristics required for the supercharger.
[0007]
Therefore, the present invention has been made in view of the problems of the prior art, and a main object thereof is to provide a sintered stainless steel material that can exhibit excellent characteristics for a supercharger.
[0008]
[Means for Solving the Problems]
As a result of intensive studies in view of the above-mentioned problems of the prior art, the present inventor has found that a sintered stainless steel material having a specific configuration can achieve the above object, and has completed the present invention.
[0009]
That is, the present invention relates to the following sintered stainless steel material for a supercharger and a method for producing the same.
[0010]
1. Cr: 8-28 wt%, at least one of Mo, W, V and Ti: 1-10 wt%, Si: 0.2-5 wt%, C: 0.05-0.8 wt%, O: A sintered stainless steel material for a supercharger, characterized by being 0.35% by weight or less and the balance being made of Fe and inevitable elements. (First invention)
2. Cr: 8-28% by weight, at least one of Mo, W, V and Ti: 1-10% by weight, Cu: 0.5-5% by weight, Si: 0.2-5% by weight, C: 0.0. A sintered stainless steel material for a supercharger, characterized by being 0.5 to 0.8% by weight, O: 0.35% by weight or less, and the balance being made of Fe and inevitable elements. (Second invention)
3. The sintered stainless steel material for a supercharger according to the above item 1 or 2, wherein the matrix is martensite and at least one ferroalloy of Cr, Mo, W, V and Ti is present as hard particles.
[0011]
4). The first to third items above, wherein ferroalloy is used as a part or all of at least one source of Cr, Mo, W, V and Ti, and raw material powder containing the ferroalloy is molded and sintered. The manufacturing method of the sintered stainless steel material for superchargers in any one of claim | items.
[0012]
5. The manufacturing method according to claim 4, wherein the ferroalloy is at least one of ferromolybdenum, ferrotungsten, ferrovanadium, ferrotitanium, and ferrochrome.
[0013]
6). The supercharger which uses the material in any one of said 1st term | claim 1-3rd item for at least one part.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The sintered stainless steel material for a supercharger of the first invention is composed of at least Cr: 8-28 wt% (preferably 9-23 wt%, more preferably 10-20 wt%), Mo, W, V and Ti. Type 1: 1 to 10% by weight (preferably 2 to 10% by weight, more preferably 3 to 8% by weight), Si: 0.2 to 5% by weight (preferably 0.5 to 4% by weight, more preferably 0.5 to 3 wt%), C: 0.05 to 0.8 wt% (preferably 0.1 to 0.7 wt%, more preferably 0.1 to 0.6 wt%), O: 0 .35% by weight or less (preferably 0.32% by weight or less, more preferably 0.25% by weight or less), with the balance being made of Fe and inevitable elements.
[0015]
Further, the sintered stainless steel material for the supercharger of the second invention is Cr: 8 to 28% by weight (preferably 9 to 23% by weight, more preferably 10 to 20% by weight), Mo, W, V and Ti. At least one of: 1 to 10 wt% (preferably 2 to 10 wt%, more preferably 3 to 8 wt%), Cu: 0.5 to 5 wt% (preferably 0.5 to 4 wt%, more Preferably 0.5 to 3 wt%), Si: 0.2 to 5 wt% (preferably 0.5 to 4 wt%, more preferably 0.5 to 3 wt%), C: 0.05 to 0 0.8 wt% (preferably 0.1 to 0.7 wt%, more preferably 0.1 to 0.6 wt%), O: 0.35 wt% or less (preferably 0.32 wt% or less, more Preferably, it is 0.25% by weight or less), and the balance consists of Fe and inevitable elements. That is, the second invention further includes Cu as an essential component in the first invention. The second invention is more preferable in that Cu can contribute to improvement in dimensional stability and the like.
[0016]
As the structure of the sintered body of the first invention and the second invention (hereinafter referred to as “the present invention”), in particular, the matrix is martensite and the hard particles (dispersing material) are Cr, Mo, W, V And at least one ferroalloy of Ti is preferably present. As the ferroalloy, any material may be used as long as it contains Fe, for example, a binary system such as Fe—Cr, Fe—Mo, Fe—W, Fe—Ti, Fe—V, etc., Fe—Cr—Si And ternary systems such as Fe-Cr-C. Among these, it is preferable to use at least one of ferromolybdenum, ferrotungsten, ferrovanadium, ferrotitanium, and ferrochrome.
[0017]
The matrix preferably has martensite substantially occupying the entire matrix, but other alloy phases may be present within a range not impeding the effects of the present invention. Martensite should just exist normally 50 volume% or more in a matrix. The presence of martensite as a main component of the matrix in the material of the present invention can exhibit particularly excellent mechanical strength.
[0018]
In the case where hard particles are present, the abundance ratio can be appropriately set according to the use of the final product, desired alloy characteristics, etc., but usually about 1 to 20% by weight, preferably 2 to 15% by weight in the material of the present invention What should I do? By setting within this range, it is possible to improve the wear resistance and the like. Further, the average particle diameter of the hard particles can be appropriately set depending on the kind of the hard particles and the like, but it may be usually about 20 to 150 μm.
[0019]
The manufacturing method of this invention material can be implemented according to the manufacturing method of the sintered compact in well-known powder metallurgy using the raw material powder of each alloy component, for example. For example, after the raw material powders are mixed and molded, the molded body may be sintered.
[0020]
As the raw material powder, a single powder for each component can be used, but an alloy powder in which two or more of these components are alloyed can also be used. In particular, in the present invention, it is preferable to use ferroalloy as part or all of at least one source of Cr, Mo, W, V, and Ti. That is, by using the alloy powder such as Fe-Cr, Fe-Mo, Fe-W, Fe-Ti, Fe-Cr-Si, etc. as a part or all of the supply source of each component, A sintered body in which these hard particles are present as a dispersing material can be produced efficiently. In addition, it is particularly preferable to use graphite as the C (carbon) component.
[0021]
These raw material powders can be used alone or in combination of two or more. In addition, those obtained by a known production method or commercially available products can be used. The average particle size of the raw material powder is not particularly limited, but is usually about 20 to 150 μm.
[0022]
For forming the raw material powder, a known forming method and conditions can be employed. For example, press molding, HIP method, CIP method, hot press method and the like can be mentioned. In molding, additives such as a binder and a sintering aid can be blended as necessary. In the forming step, the density of the formed body can be appropriately changed depending on the alloy composition and the like, but it is usually only necessary to adjust the sintered body density to be about 6 to 7 g / cm 3 .
[0023]
In the sintering process, the compact is sintered. The sintering temperature can be appropriately set according to the alloy composition and the like, but is usually about 1100 to 1300 ° C. The sintering time can be appropriately adjusted according to the sintering temperature and the like. The sintering atmosphere is usually a reducing atmosphere (ammonia gas or the like), but may be an inert gas atmosphere or the like in a vacuum as necessary. In particular, the amount of oxygen contained in the sintered body can be controlled by adjusting the sintering atmosphere.
[0024]
【The invention's effect】
Since the sintered stainless steel material for a supercharger of the present invention is composed of a specific alloy composition, it has excellent weldability in addition to heat resistance and wear resistance, and is a structural material for a supercharger. Can be suitably used.
[0025]
The supercharger material of the present invention can be used in any part of the supercharger. Further, the type of supercharger to which the material of the present invention can be applied is not particularly limited, and any type such as a supercharger or a turbocharger may be used. In addition to automobile superchargers, the present invention can also be applied to superchargers such as aircraft and ships. In particular, the present invention is suitable for an automobile supercharger.
[0026]
The turbocharger using at least a part of the material of the present invention is superior in weldability, so it has a strong joint with each part, and is superior in heat resistance and wear resistance, so it is superior to conventional products. Excellent durability.
[0027]
【Example】
Hereinafter, examples and comparative examples will be shown to clarify the features of the present invention.
[0028]
Examples 1-6 and Comparative Examples 1-6
Using the raw material powders shown in Table 1, each mixed raw material was prepared by weighing and mixing uniformly so as to have the mixing ratio shown in Table 2. Table 3 shows the final alloy composition.
[0029]
[Table 1]
Figure 0004385239
[0030]
[Table 2]
Figure 0004385239
[0031]
[Table 3]
Figure 0004385239
[0032]
Next, each mixed powder was molded by a mold press at a molding pressure of 6 ton / cm 2 to prepare a molded body. This molded body was sintered in a decomposed ammonia atmosphere at 1200 ° C. for 1 hour .
[0033]
Test example 1
The sintered bodies obtained in Examples and Comparative Examples were subjected to a tensile test, a Charpy impact test, a wear test, and a weldability test at normal temperature and high temperature (500 ° C.). The results are shown in Table 4. In addition, the measuring method in each test is as follows.
(1) Tensile test The tensile test was performed based on the tensile test method defined in JIS Z 2550 (1989) “Sintered material for machine structural parts”.
(2) Charpy impact test The Charpy impact test was performed based on the impact test method defined in JIS Z 2550 (1989) "Sintered material for machine structural parts".
(3) Wear test Using an Ogoshi type rapid wear tester, the measurement was performed under the following conditions: load: 61.7 N, speed: 10.4 m / sec, friction distance: 100 m, mating material: SUS303.
(4) SUS303 (melted material) was used as the weldable counterpart material, welding with the counterpart material was performed with an electron beam, and the presence or absence of cracks in the welded portion was determined with the naked eye.
[0034]
[Table 4]
Figure 0004385239
[0035]
From the results of Table 4, the sintered bodies of the examples all have a tensile strength at room temperature: 580 MPa or more, an elongation at room temperature: 1% or more, a tensile strength at 500 ° C .: 460 MPa or more, and 500 ° C. Elongation: 0.7% or more, Charpy impact value: 10 J / cm 2 or more, wear width: 1.3 mm or less, and good weldability. It turns out that it is useful as a sintered stainless steel material (sintered stainless steel material for welding).
[0036]
Test example 2
The sintered body of Example 1 was examined for the presence of hard particles. The result is shown in FIG. In FIG. 1, a secondary electron image (“SEI” in FIG. 1) (large two light-colored portions), a composition image (“BEI” in FIG. 1) (large two whitish portions), FeKα An image image by lines (“FeKα” in FIG. 1) (two large dark portions) and an image image by MoKα lines (“MoKα” in FIG. 1) (two large whitish portions) are shown. As is clear from these results, the presence of hard particles can be confirmed. In particular, as is apparent from the BEI results, it can be seen that FeMo particles are present because the whitish portion is a metal element heavier than the metal element constituting the matrix. The particles were identified as FeMo by X-ray diffraction analysis. Similarly, it was confirmed that the matrix was martensite.
[Brief description of the drawings]
1 is an image diagram showing the structure of a sintered body obtained in Example 1. FIG.

Claims (6)

Cr:8〜28重量%、Mo、W及びTiの少なくとも1種:1〜10重量%、Si:0.2〜5重量%、C:0.05〜0.8重量%、O:0.35重量%以下であって、残部がFe及び不可避元素からなることを特徴とし、マトリックスがマルテンサイトであり、硬質粒子としてCrのフェロアロイ並びにMo、W及びTiの少なくとも1種のフェロアロイが存在する過給機用焼結ステンレス鋼材料。Cr: 8-28% by weight, at least one of Mo, W and Ti: 1-10% by weight, Si: 0.2-5% by weight, C: 0.05-0.8% by weight, O: 0.0. 35% by weight or less, the balance being made of Fe and inevitable elements, the matrix being martensite, and the presence of Cr ferroalloy and at least one ferroalloy of Mo, W and Ti as hard particles. Sintered stainless steel material for feeders. Cr:8〜28重量%、Mo、W及びTiの少なくとも1種:1〜10重量%、Cu:0.5〜5重量%、Si:0.2〜5重量%、C:0.05〜0.8重量%、O:0.35重量%以下であって、残部がFe及び不可避元素からなることを特徴とし、マトリックスがマルテンサイトであり、硬質粒子としてCrのフェロアロイ並びにMo、W及びTiの少なくとも1種のフェロアロイが存在する過給機用焼結ステンレス鋼材料。Cr: 8-28 wt%, at least one of Mo, W and Ti: 1-10 wt%, Cu: 0.5-5 wt%, Si: 0.2-5 wt%, C: 0.05- 0.8 wt%, O: 0.35 wt% or less, the balance being made of Fe and inevitable elements, the matrix is martensite, Cr ferroalloy as hard particles, and Mo, W and Ti A sintered stainless steel material for a supercharger in which at least one ferroalloy is present. Cr、並びにMo、W及びTiの少なくとも1種の供給源を用い、各供給源の一部又は全部としてフェロアロイを用い、これらのフェロアロイを含む原料粉末を成形及び焼結することを特徴とする請求項1又は2に記載の過給機用焼結ステンレス鋼材料の製造方法。Cr, and Mo, claims with at least one source of W and Ti, with ferroalloy as part or all of the sources, characterized by molding and sintering a raw material powder containing these ferroalloys Item 3. A method for producing a sintered stainless steel material for a supercharger according to Item 1 or 2. Crのフェロアロイとしてフェロクロムを用い、Mo、W及びTiの少なくとも1種のフェロアロイとしてフェロモリブデン、フェロタングステン及びフェロチタンの少なくとも1種を用いる請求項3記載の製造方法。 Using ferrochromium as ferroalloys Cr, Mo, ferromolybdenum as the at least one ferro-alloy of W and Ti, the manufacturing method according to claim 3, wherein using at least one of ferro tungsten and Ferochita down. 請求項1又は2に記載の材料を少なくとも一部に用いてなる過給機。  The supercharger which uses the material of Claim 1 or 2 for at least one part. 請求項1又は2に記載の材料を少なくとも一部に用いてなる自動車過給機。An automobile supercharger using at least a part of the material according to claim 1.
JP34523399A 1999-12-03 1999-12-03 Sintered stainless steel material for supercharger and method for producing the same Expired - Fee Related JP4385239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34523399A JP4385239B2 (en) 1999-12-03 1999-12-03 Sintered stainless steel material for supercharger and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34523399A JP4385239B2 (en) 1999-12-03 1999-12-03 Sintered stainless steel material for supercharger and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001164345A JP2001164345A (en) 2001-06-19
JP4385239B2 true JP4385239B2 (en) 2009-12-16

Family

ID=18375207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34523399A Expired - Fee Related JP4385239B2 (en) 1999-12-03 1999-12-03 Sintered stainless steel material for supercharger and method for producing the same

Country Status (1)

Country Link
JP (1) JP4385239B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638090B2 (en) * 2001-08-03 2011-02-23 株式会社アキタファインブランキング Method for manufacturing variable blade profile in VGS type turbocharger

Also Published As

Publication number Publication date
JP2001164345A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
JP4891421B2 (en) Powder metallurgy mixture and method for producing powder metallurgy parts using the same
US4724000A (en) Powdered metal valve seat insert
GB2104551A (en) A method for manufacturing a cam-cam shaft assembly
EP2778243B1 (en) Iron based sintered sliding member and method for producing the same
JP3513150B2 (en) Iron-based powder, iron-based sintered product and method for producing iron-based sintered product
CN101111617A (en) Iron-based powder combination
US4274876A (en) Sintered hard metals having high wear resistance
US5969276A (en) Manganese containing materials having high tensile strength
JP3177482B2 (en) Low alloy steel powder for sinter hardening
JP2001527603A (en) Method of sintering an iron-based powder mixture to form a component
US4702772A (en) Sintered alloy
JP4385239B2 (en) Sintered stainless steel material for supercharger and method for producing the same
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
JP6741153B2 (en) Partially diffused alloy steel powder
JPH06510331A (en) Iron-based powder composition with good dimensional stability after sintering
EP0946324B1 (en) Production of nickel-containing strengthened sintered ferritic stainless steels
CN100362125C (en) A method of controlling the dimensional change when sintering an iron-based power mixture
US5808214A (en) Powder-produced material having wear-resistance
JP2001164346A (en) Sintered stainless steel material with heat and wear resistances, and manufacturing method therefor
EP0760724B1 (en) IRON BASED POWDER CONTAINING Mo, P AND C
JPH0772282B2 (en) High compressibility Cr alloy steel powder and method for producing high strength sintered material using the same
JPH0931612A (en) Iron-base sintered alloy excellent in strength and wear resistance
JPH0717923B2 (en) Low alloy iron powder for sintering and method for producing the same
JP3257196B2 (en) Iron-based sintered alloy for sliding members with excellent strength and wear resistance
JP4303172B2 (en) Ferrous sintered alloy valve seat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees