JP4385129B2 - Method for producing molecularly aligned nanophotonic crystal device - Google Patents

Method for producing molecularly aligned nanophotonic crystal device Download PDF

Info

Publication number
JP4385129B2
JP4385129B2 JP2004165056A JP2004165056A JP4385129B2 JP 4385129 B2 JP4385129 B2 JP 4385129B2 JP 2004165056 A JP2004165056 A JP 2004165056A JP 2004165056 A JP2004165056 A JP 2004165056A JP 4385129 B2 JP4385129 B2 JP 4385129B2
Authority
JP
Japan
Prior art keywords
crystal device
molecules
molecular
photonic crystal
nanophotonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004165056A
Other languages
Japanese (ja)
Other versions
JP2005345741A (en
Inventor
史雄 佐々木
俊介 小林
聡 原市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004165056A priority Critical patent/JP4385129B2/en
Publication of JP2005345741A publication Critical patent/JP2005345741A/en
Application granted granted Critical
Publication of JP4385129B2 publication Critical patent/JP4385129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は、偏光子、LED、DFBレーザー、DBRレーザー、共振フィルター、光導波路、光回路、光ファイバー、光偏向、プリズム等をはじめとする各種分野において好適である、分子配列型ナノフォトニック結晶デバイスの製造方法及び分子配列型ナノフォトニック結晶デバイスに関するものである。   The present invention is a molecular array type nanophotonic crystal device suitable for various fields including a polarizer, LED, DFB laser, DBR laser, resonant filter, optical waveguide, optical circuit, optical fiber, optical deflection, prism, etc. And a molecular arrangement type nanophotonic crystal device.

近年、情報技術、バイオテクノロジー、医療、エネルギー問題、環境問題などの多くの分野に関し、ナノテクノロジーがその解決の鍵を握るものとして大変注目を集めている。
このナノテクノロジー分野において、とりわけ注目されているのがフォトニック結晶である。フォトニック結晶とは、誘電率の異なる2種以上の媒質を組合せた人工的な多次元周期構造のことをいい、構造や性質が固体結晶と似ていることから「結晶」と称されているものである。フォトニック結晶については各種の用途・応用が考えられ、その研究は多岐にわたって近時盛んに行われてきている。
In recent years, nanotechnology has attracted a great deal of attention as the key to its solution in many fields such as information technology, biotechnology, medical care, energy problems, and environmental problems.
In this nanotechnology field, photonic crystals are particularly attracting attention. A photonic crystal is an artificial multidimensional periodic structure that combines two or more media with different dielectric constants, and is called a “crystal” because its structure and properties are similar to a solid crystal. Is. Various uses and applications are considered for photonic crystals, and their research has been extensively performed recently.

本発明者らは、J会合体等の室温でも十分に安定な吸収バンドを持つ物質を、空間的に規則性を持たせて配列した、1次元フォトニック結晶デバイスに当たる微小共振器構造について開示している(特開2002−328350号公報)。しかし先の出願の微小共振器構造では、微小共振器を構成する溝に埋め込むJ会合体等における分子の配向について何ら考慮されなかった。   The present inventors have disclosed a microresonator structure corresponding to a one-dimensional photonic crystal device in which substances having a sufficiently stable absorption band at room temperature, such as a J-aggregate, are arranged with spatial regularity. (Japanese Patent Laid-Open No. 2002-328350). However, in the microresonator structure of the previous application, no consideration was given to the orientation of molecules in a J aggregate or the like embedded in a groove constituting the microresonator.

特開2003−195001号公報JP 2003-195001 A 特開2002−328350号公報JP 2002-328350 A

分子配向を揃えることでフォトニック結晶デバイスの光学的異方性特性の向上が期待されるとともに、材料の安定性が高まるという効果が期待される。
分子配向を揃えることによる効果は従来より認識されていたが、J会合体等の分子配列型ナノフォトニック結晶をサブミクロンスケールの構造に導入する場合、ナノメータサイズの分子の配向を一方向に揃える等の分子配列の制御は困難であった。
By aligning the molecular orientation, the optical anisotropy characteristics of the photonic crystal device are expected to be improved, and the effect of increasing the stability of the material is expected.
The effect of aligning molecular orientation has been recognized in the past, but when introducing a molecular array type nanophotonic crystal such as a J-aggregate into a submicron-scale structure, the alignment of nanometer-sized molecules is aligned in one direction. It was difficult to control the molecular arrangement.

したがって、本発明は従来の工程にアニール処理工程を付加することにより、J会合体の分子の配向が溝の長手方向に揃った分子配列型ナノフォトニック結晶デバイスの製造方法を提供することを目的とする。
また本発明は上記の製造方法によって製造された分子配列型ナノフォトニック結晶デバイスを提供することを目的とする。
Accordingly, an object of the present invention is to provide a method for producing a molecular arrangement type nanophotonic crystal device in which the orientation of molecules of the J aggregate is aligned in the longitudinal direction of the groove by adding an annealing process to the conventional process. And
Another object of the present invention is to provide a molecular arrangement type nanophotonic crystal device manufactured by the above manufacturing method.

本発明は、基板上に周期的な間隔で複数の細長い溝を形成する工程、溝の中に擬イソシアニンを埋設する工程、及び該基板の温度を35℃〜40℃に保持するとともに溝の長手方向に沿って水蒸気を含んだガスを吹き付けることによりアニール処理する工程を含むことを特徴とする分子配列型ナノフォトニック結晶デバイスの製造方法を提供するものである。 The present invention includes a step of forming a plurality of elongated grooves at periodic intervals on a substrate, a step of embedding pseudoisocyanine in the grooves, and maintaining the temperature of the substrate at 35 ° C. to 40 ° C. and the length of the grooves An object of the present invention is to provide a method for producing a molecular array type nanophotonic crystal device comprising a step of annealing by spraying a gas containing water vapor along a direction .

本発明では、温度・雰囲気ガス・その流量や方向性を制御することで、分子配列を制御できるため、分子配列の揃った特性のよい分子配列型ナノフォトニック結晶デバイスを提供することができる。   In the present invention, since the molecular arrangement can be controlled by controlling the temperature, the atmospheric gas, the flow rate, and the directionality thereof, it is possible to provide a molecular arrangement type nanophotonic crystal device having good characteristics with uniform molecular arrangement.

次に、本発明の実施の形態について図面を参照して詳細に説明する。
図1(a)は、本発明の製造に係る分子配列型ナノフォトニック結晶デバイスの実施例を模式的に示す斜視図である。
図1(b)はそのb−b断面図である。ここで偏光方向の便宜のため、図1(b)には、x、y及びz方向が表示されている。図1(b)において、y方向は、紙面に垂直かつ溝の長手方向に当たる。またx方向は溝と交差する方向であり、基板の厚み方向はz方向に当たる。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1A is a perspective view schematically showing an example of a molecular arrangement type nanophotonic crystal device according to the production of the present invention.
FIG.1 (b) is the bb sectional drawing. Here, for convenience of the polarization direction, the x, y, and z directions are displayed in FIG. In FIG. 1B, the y direction corresponds to the vertical direction of the paper and the longitudinal direction of the groove. The x direction is a direction intersecting with the groove, and the thickness direction of the substrate corresponds to the z direction.

石英基板等のバルク材料をリソグラフィーやエッチングなどで削って、複数の細長い溝を空間的に規則性を持たせて形成する。
次に溝の中へJ会合体を埋め込む。埋め込まれたJ会合体の分子の配向は、ここでは一方向に揃ったものではない。
次に埋め込まれたJ会合体に対してアニール処理を行う。
本発明でいうアニール処理とは、温度・雰囲気ガス・その流量や方向性を制御して、J会合体の分子配列が動いて、分子の配向が一方向に揃うように行う処理をいう。
A bulk material such as a quartz substrate is cut by lithography or etching to form a plurality of elongated grooves with spatial regularity.
Next, the J aggregate is embedded in the groove. The molecular orientation of the embedded J aggregates is not aligned in one direction here.
Next, the embedded J aggregate is annealed.
The annealing treatment referred to in the present invention refers to a treatment performed by controlling the temperature, the atmosphere gas, its flow rate and directionality so that the molecular arrangement of the J aggregates moves and the molecular orientation is aligned in one direction.

図2は、分子配列型ナノフォトニック結晶構造とその分子配向性を示した部分拡大概念図である。図2では、J会合体(擬イソシアニン)の分子が数百ナノメートルの空間に溝の長手方向に向きを揃えて配列されているのが模式的に図示されている。   FIG. 2 is a partially enlarged conceptual diagram showing a molecular arrangement type nanophotonic crystal structure and its molecular orientation. FIG. 2 schematically shows that molecules of a J aggregate (pseudoisocyanine) are arranged in a space of several hundred nanometers in the direction of the length of the groove.

擬イソシアニン(PIC)J会合体を用いた分子配列型ナノフォトニック結晶構造を例に詳述する。
石英ガラス基板に複数の細長い溝を、210nmの幅、400nmの深さ、420nm間隔で空間的に規則性を持たせて形成し、回折格子を構成する。
次に擬イソシアニン分子をメタノールに溶かした溶液を準備し、これを石英ガラス基板上にスピンコートし、溝の中に埋め込むことによりナノフォトニック結晶構造を得る。
擬イソシアニンの分子を溝中に埋め込む工程は、上記石英ガラス基板上のスピンコートに代えて、石英ガラス基板を垂直に立て溝に沿って溶液を流し込むキャスト膜やビーカーなどにたまった溶液に基板を浸して垂直に引き上げるディップコートなどの手法を用いてもよい。
A molecular arrangement type nanophotonic crystal structure using pseudo-isocyanine (PIC) J aggregate will be described in detail.
A plurality of elongated grooves are formed in a quartz glass substrate with a width of 210 nm, a depth of 400 nm, and spatial regularity at intervals of 420 nm to constitute a diffraction grating.
Next, a solution in which pseudo-isocyanine molecules are dissolved in methanol is prepared, spin-coated on a quartz glass substrate, and embedded in the groove to obtain a nanophotonic crystal structure.
The step of embedding the pseudoisocyanine molecules in the groove is to replace the spin coating on the quartz glass substrate with the quartz glass substrate standing vertically and pouring the solution into a cast film or beaker that flows the solution along the groove. A technique such as dip coating that immerses and pulls up vertically may be used.

最後に上記フォトニック結晶構造に対して、アニール処理を行う。
アニール処理は、35℃〜40℃に保持したフォトニック結晶基板に、水蒸気を含んだ窒素ガスを、数十秒間矢印で示すように溝の長手方向に沿って流す。この場合水蒸気濃度は10%程度以下とした。
以上の工程により溝の長手方向に擬イソシアニン分子が整列した結晶構造を有する分子配列型ナノフォトニック結晶デバイスが完成される。
Finally, an annealing process is performed on the photonic crystal structure.
In the annealing treatment, a nitrogen gas containing water vapor is caused to flow along the longitudinal direction of the groove as indicated by an arrow for several tens of seconds on a photonic crystal substrate maintained at 35 ° C. to 40 ° C. In this case, the water vapor concentration was about 10% or less.
Through the above steps, a molecular arrangement type nanophotonic crystal device having a crystal structure in which pseudo-isocyanine molecules are aligned in the longitudinal direction of the groove is completed.

ここで石英ガラス基板は、表面が清浄であることが必要である。また分子との相性を考慮した表面処理をして分子が動き易くすることが効果的である。擬イソシアニン分子の場合、水との相性が良く、石英ガラス基板上の清浄表面が親水性であることから、分子が動き易くなっている。   Here, the quartz glass substrate needs to have a clean surface. It is also effective to make the molecules easy to move by performing a surface treatment considering the compatibility with the molecules. In the case of the pseudoisocyanine molecule, the compatibility with water is good, and the clean surface on the quartz glass substrate is hydrophilic, so that the molecule is easy to move.

アニール処理により擬イソシアニン分子が整列したフォトニック結晶デバイスが得られるメカニズムは次のように考えられる。
擬イソシアニン分子の水に対する溶解度はかなり低いが、擬イソシアニン分子が固化して結晶になるときに結晶水が含まれていることがよく知られている。つまり水は擬イソシアニン分子そのものを溶かして動かすまでにはいかないが、水を取り込むことで分子配列が動くことに寄与しており、これとアニール時の温度の35℃〜40℃とがちょうどバランスして分子配列が動くこと、及びガスの流れの方向と1次元フォトニック結晶の溝の長手方向が一致しているために溝の長手方向に沿った分子配列が実現できた。
The mechanism for obtaining a photonic crystal device in which pseudo-isocyanine molecules are aligned by annealing treatment is considered as follows.
Although the solubility of pseudo-isocyanine molecules in water is quite low, it is well known that crystal water is contained when pseudo-isocyanine molecules are solidified into crystals. In other words, water does not go until the pseudo-isocyanine molecule itself is dissolved and moved, but it contributes to the movement of the molecular arrangement by incorporating water, and this just balances the annealing temperature of 35 ° C to 40 ° C. Therefore, the molecular arrangement along the longitudinal direction of the groove was realized because the molecular arrangement moved and the direction of gas flow coincided with the longitudinal direction of the groove of the one-dimensional photonic crystal.

図3は、1次元フォトニック結晶構造に関しアニール処理の効果を検証するための図面である。アニール処理前後の透過スペクトルの変化をフォトニック結晶構造がある場合と無い場合について示してある。図3の下段の2図は本発明によるアニール処理の効果を示すもので、擬イソシアニン分子が整列したフォトニック結晶について、本発明の実施例として行った1次元フォトニック結晶構造を用いたアニール処理前後の透過スペクトルを表している。
回折格子(1次元フォトニック結晶構造)があるときには、620nm付近に強い共振器モードが透過光(E//y)の減少として観測される。
FIG. 3 is a view for verifying the effect of the annealing process on the one-dimensional photonic crystal structure. The change in the transmission spectrum before and after annealing is shown with and without the photonic crystal structure. FIG. 3 at the bottom of FIG. 3 shows the effect of the annealing process according to the present invention. For the photonic crystal in which pseudo-isocyanine molecules are aligned, the annealing process using the one-dimensional photonic crystal structure performed as an example of the present invention is performed. The front and back transmission spectra are shown.
When there is a diffraction grating (one-dimensional photonic crystal structure), a strong resonator mode is observed near 620 nm as a decrease in transmitted light (E // y).

580nm近傍の吸収帯は、擬イソシアニン特有の最低励起子バンドであり、回折格子(1次元フォトニック結晶構造)の有無によらない。
上記吸収帯は分子・分子集合体の配列方向にのみ吸収を有することが知られている。
アニール前後の上記吸収帯におけるE//x透過スペクトルを比較すると、アニール処理前に0.3程度であったものがアニール処理後では0.45程度となっている。
したがって、x方向の分子配列のものが減少して、y方向の分子配列のものがアニール処理前に比べて著しく向上していることがわかる。
このことは分子の長軸が1次元フォトニック結晶のy軸方向に向きを揃えて並んでいる事を示している。
The absorption band near 580 nm is the lowest exciton band peculiar to pseudoisocyanine and does not depend on the presence or absence of a diffraction grating (one-dimensional photonic crystal structure).
It is known that the absorption band has absorption only in the arrangement direction of molecules / molecular aggregates.
Comparing the E // x transmission spectra in the absorption band before and after annealing, what was about 0.3 before the annealing treatment is about 0.45 after the annealing treatment.
Therefore, it can be seen that the molecular arrangement in the x direction is reduced, and the molecular arrangement in the y direction is remarkably improved as compared with that before the annealing treatment.
This indicates that the long axes of the molecules are aligned in the y-axis direction of the one-dimensional photonic crystal.

なお比較のためフォトニック結晶構造が無いとき、即ち、溝を形成することなく擬イソシアニン分子をメタノールに溶かした溶液を準備し、これを石英ガラス基板上にスピンコートしたものの、アニール処理前後のスペクトルを図3の上段の2図に示してある。この場合には、透過スペクトルにはアニール処理の前後で変化がなく、またE//xとE//yとの差異もなく両者とも0.1程度である。これは擬イソシアニン分子の長軸が向きを揃えることなく並んでいる事を示している。   For comparison, when there is no photonic crystal structure, that is, a solution in which pseudoisocyanine molecules are dissolved in methanol without forming a groove is prepared, and this is spin-coated on a quartz glass substrate. Is shown in FIG. In this case, the transmission spectrum does not change before and after the annealing treatment, and there is no difference between E // x and E // y, and both are about 0.1. This indicates that the major axes of the pseudoisocyanine molecules are aligned without aligning the directions.

以上のことから、フォトニック結晶構造に対してアニール処理工程を付加することが、フォトニック結晶構造をデバイスとして活用していく上で有効であることがわかる。   From the above, it can be seen that adding an annealing process to the photonic crystal structure is effective in utilizing the photonic crystal structure as a device.

以上、好ましい実施の形態、実施例について説明したが、本発明はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜の変更が可能なものである。
即ち基板としては、石英ガラス基板を例に説明したが石英ガラス以外のガラス基板でもよく、また実施例では透過スペクトルをとるために透明なガラス基板を用いているが、シリコン等の半導体基板であってもよい。
As mentioned above, although preferable embodiment and an Example were described, this invention is not limited to this, In the range which does not deviate from the summary of this invention, an appropriate change is possible.
In other words, a quartz glass substrate has been described as an example of the substrate, but a glass substrate other than quartz glass may be used. In the embodiment, a transparent glass substrate is used to obtain a transmission spectrum, but a semiconductor substrate such as silicon is used. May be.

擬イソシアニンを例示したがこれに限らず、他の分子性結晶のJ会合体について適用可能である。
その際のアニール処理の条件は、J会合体の分子の配向が一方向に揃うように、J会合体毎に、PIC分子に対する水のように分子配列を動かす溶媒を変えたり、温度・雰囲気ガス・その流量や方向性を考慮して決定すればよい。
Although pseudo isocyanine was illustrated, it is not restricted to this, It is applicable about the J aggregate of other molecular crystals.
The annealing conditions at this time are such that the solvent that moves the molecular arrangement like water for the PIC molecules is changed for each J aggregate, and the temperature / atmosphere gas is adjusted so that the molecules of the J aggregate are aligned in one direction.・ Determine in consideration of the flow rate and directionality.

発光素子、レーザーはもとより、光導波路・分波路や光変調器など集積型光素子に関わるもので分子配列を必要とする部分に使用可能である。
さらに、分子配向を揃えることで光学的異方性を利用した光デバイス(偏光子や位相整合を利用した波長変換など)の集積デバイス化への応用が期待される。
In addition to light emitting elements and lasers, they are related to integrated optical elements such as optical waveguides / branches and optical modulators, and can be used in parts that require molecular alignment.
Furthermore, it is expected that optical devices utilizing optical anisotropy (such as wavelength conversion using polarizers and phase matching) will be applied to integrated devices by aligning molecular orientation.

フォトニック結晶デバイスを模式的に示す斜視図である。It is a perspective view which shows a photonic crystal device typically. フォトニック結晶デバイスのb−b断面図である。It is bb sectional drawing of a photonic crystal device. 本発明実施例としての1次元フォトニック結晶構造と分子配向性を示した概念図である。It is the conceptual diagram which showed the one-dimensional photonic crystal structure and molecular orientation as an Example of this invention. 本発明に関わる1次元フォトニック結晶中の分子集合体の透過スペクトル図である。FIG. 3 is a transmission spectrum diagram of a molecular assembly in a one-dimensional photonic crystal according to the present invention.

符号の説明Explanation of symbols

1 石英ガラス基板
2 細長い溝
3 水蒸気を含んだ窒素ガス
4 擬イソシアニン
1 Quartz glass substrate 2 Elongated groove
3 Nitrogen gas containing water vapor 4 Pseudoisocyanine

Claims (1)

基板上に周期的な間隔で複数の細長い溝を形成する工程、溝の中に擬イソシアニンを埋設する工程、及び該基板の温度を35℃〜40℃に保持するとともに溝の長手方向に沿って水蒸気を含んだガスを吹き付けることによりアニール処理する工程を含むことを特徴とする分子配列型ナノフォトニック結晶デバイスの製造方法。 Forming a plurality of elongated grooves at periodic intervals on the substrate, embedding pseudoisocyanine in the grooves, and maintaining the temperature of the substrate at 35 ° C. to 40 ° C. along the longitudinal direction of the grooves The manufacturing method of the molecular arrangement type | mold nanophotonic crystal device characterized by including the process of annealing-treating by spraying the gas containing water vapor | steam .
JP2004165056A 2004-06-02 2004-06-02 Method for producing molecularly aligned nanophotonic crystal device Expired - Fee Related JP4385129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165056A JP4385129B2 (en) 2004-06-02 2004-06-02 Method for producing molecularly aligned nanophotonic crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165056A JP4385129B2 (en) 2004-06-02 2004-06-02 Method for producing molecularly aligned nanophotonic crystal device

Publications (2)

Publication Number Publication Date
JP2005345741A JP2005345741A (en) 2005-12-15
JP4385129B2 true JP4385129B2 (en) 2009-12-16

Family

ID=35498187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165056A Expired - Fee Related JP4385129B2 (en) 2004-06-02 2004-06-02 Method for producing molecularly aligned nanophotonic crystal device

Country Status (1)

Country Link
JP (1) JP4385129B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110888257A (en) * 2019-11-26 2020-03-17 Tcl华星光电技术有限公司 Polaroid assembly, manufacturing method of polaroid assembly and display panel

Also Published As

Publication number Publication date
JP2005345741A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
Wang et al. Recent advances in perovskite micro‐and nanolasers
US7346248B2 (en) Ferroelectric nanophotonic materials and devices
Kuehne et al. Organic lasers: recent developments on materials, device geometries, and fabrication techniques
Wei et al. Recent Advances in 1D Organic Solid‐State Lasers
Shi et al. 1D organic micro/nanostructures for photonics
US10398005B1 (en) Dynamically tunable materials for parity-time symmetric electro-optical devices
Huang et al. Wavelength-turnable organic microring laser arrays from thermally activated delayed fluorescent emitters
Polman et al. Materials science aspects of photonic crystals
WO2004054049A2 (en) Nanocrystal waveguide (now) laser
WO2010131046A1 (en) Photonic crystal structure and method of formation thereof
CN108039637B (en) Method for preparing organic echo wall type (WGM) resonant cavity
Zhang et al. Smart protein-based biolasers: An alternative way to protein conformation detection
Kumar et al. A mechanophotonic approach toward an organic, flexible crystal optical interferometer
Pradeep et al. Micromanufacturing of Geometrically and Dimensionally Precise Molecular Single‐Crystal Photonic Microresonators via Focused Ion Beam Milling
JP4385129B2 (en) Method for producing molecularly aligned nanophotonic crystal device
Gao et al. Room-temperature continuous-wave microcavity lasers from solution-processed smooth quasi-2D perovskite films with low thresholds
Zhao et al. Deterministic assembly of colloidal quantum dots for multifunctional integrated photonics
JP4925029B2 (en) Laser resonator manufacturing method capable of cutting or bending
Viktorovitch et al. Photonic crystals: basic concepts and devices
Huang et al. Low-threshold triple-wavelength lasing from a subwavelength triangle microcavity polymer laser fabricated by imaging holography
Wang et al. Metal Halide Perovskites for Coherent Light Emission
Zhang et al. Organic Self-assembled Microcavities and Microlasers
Wang et al. Wavelength tunable two-photon-pumped distributed feedback zirconia waveguide lasers
Wang et al. Organic-inorganic Lead Halide Perovskite CH3NH3PbBr3 Nanolaser Array based on Silicon Grating
Yu Optical properties of deoxyribonucleic acid (DNA) and its application in distributed feedback (DFB) laser device fabrication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees