JP4384009B2 - Slide gate valve, double damper equipped with this slide gate valve, and pyrolysis gasifier equipped with this double damper - Google Patents

Slide gate valve, double damper equipped with this slide gate valve, and pyrolysis gasifier equipped with this double damper Download PDF

Info

Publication number
JP4384009B2
JP4384009B2 JP2004319512A JP2004319512A JP4384009B2 JP 4384009 B2 JP4384009 B2 JP 4384009B2 JP 2004319512 A JP2004319512 A JP 2004319512A JP 2004319512 A JP2004319512 A JP 2004319512A JP 4384009 B2 JP4384009 B2 JP 4384009B2
Authority
JP
Japan
Prior art keywords
slide gate
valve
pressure
gas
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004319512A
Other languages
Japanese (ja)
Other versions
JP2006132584A (en
Inventor
晃 木戸口
淳太郎 牛越
健 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2004319512A priority Critical patent/JP4384009B2/en
Publication of JP2006132584A publication Critical patent/JP2006132584A/en
Application granted granted Critical
Publication of JP4384009B2 publication Critical patent/JP4384009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、スライドゲート弁、このスライドゲート弁を備えた二重ダンパおよびこの二重ダンパを備えた熱分解ガス化装置に関し、さらに詳しくは圧力差のある連通路において、閉弁状態における高圧側から低圧側への気体の流通を防止するとともに、その効果を確実にかつ、長期に渡って維持できるスライドゲート弁、このスライドゲート弁を備えた二重ダンパおよびこの二重ダンパを備えた熱分解ガス化装置に関するものである。   The present invention relates to a slide gate valve, a double damper provided with the slide gate valve, and a pyrolysis gasifier including the double damper, and more particularly, in a communication path having a pressure difference, in a high pressure side in a closed state. The sliding gate valve that prevents the flow of gas from the low pressure side to the low pressure side and can maintain its effect reliably and for a long time, the double damper equipped with this slide gate valve, and the thermal decomposition equipped with this double damper The present invention relates to a gasifier.

従来から、圧力差のある連通路において高圧側から低圧側への気体の流通を防ぐ場合には、連通路を開閉するスライドゲート弁が種々用いられている。例えば、ホッパ等に被投入物を投入する際の気体の流通を防ぐためには、ホッパ上方の連通路に2つのスライドゲート弁を上下に所定間隔をあけて設置した二重ダンパが用いられている。   Conventionally, in order to prevent gas flow from the high pressure side to the low pressure side in a communication path having a pressure difference, various slide gate valves that open and close the communication path have been used. For example, in order to prevent the flow of gas when an object to be charged is introduced into a hopper or the like, a double damper in which two slide gate valves are vertically installed at a predetermined interval in a communication path above the hopper is used. .

この二重ダンパは、被投入物を投入する際に、上下のスライドゲート弁を交互に開閉して、開弁時の気体の流通を防いでいる。一方で、このスライドゲート弁の閉弁時の気体の流通を防ぐためには、スライドゲート弁のスライドする弁体と弁体が当接する弁座とを密着させて、すき間をなくすまたは小さくする構造とするのが一般的である。   This double damper prevents the flow of gas when the valve is opened by alternately opening and closing the upper and lower slide gate valves when the object to be charged is charged. On the other hand, in order to prevent the flow of gas when the slide gate valve is closed, the sliding valve body of the slide gate valve and the valve seat with which the valve body abuts are in close contact with each other to eliminate or reduce the gap. It is common to do.

例えば、弁座を弾性体で押圧して弁体に密着させて、すき間をなくす構造が提案されている(特許文献1参照)。この提案では、さらに弁座への異物の噛み込みによるすき間の発生を防ぐために、弁体の上面に摺動するヒレ状のダストカッターを設けて、弁体がスライドする際に異物を取り除く機構としている。   For example, a structure has been proposed in which a valve seat is pressed with an elastic body to be brought into close contact with the valve body to eliminate a gap (see Patent Document 1). In this proposal, in order to prevent the occurrence of gaps due to foreign matter biting into the valve seat, a fin-like dust cutter that slides on the upper surface of the valve body is provided, and a mechanism for removing foreign matter when the valve body slides is provided. Yes.

また、スライドする弁体と連通路の下端面との間にチューブ状のパッキンを設けて、閉弁時にこのパッキンにエアを圧入して膨張させて弁体と連通路下端面とのすき間を塞ぐ構造が提案されている(特許文献2参照)。   In addition, a tube-shaped packing is provided between the sliding valve element and the lower end surface of the communication path, and when the valve is closed, air is pressed into the packing and expanded to close the gap between the valve element and the lower end surface of the communication path. A structure has been proposed (see Patent Document 2).

しかしながら、これらの提案では弁体のスライドによる摺動、当接部分の摩耗や経時劣化等によるすき間の発生を防ぐことができないという問題があった。また、ダストカッター等によって異物の噛み込みを防ぐようにしても、異物の大きさ等によって十分に噛み込みを防ぐことができずに、すき間が発生するという問題があった。
特開昭49―106018号公報 実開昭59―106400号公報
However, these proposals have a problem that it is impossible to prevent the occurrence of gaps due to sliding of the valve body, wear of the contact portion, deterioration with time, and the like. Further, even if the dust cutter or the like is used to prevent the foreign matter from being caught, there is a problem that a gap is generated because the foreign matter cannot be sufficiently prevented from being caught due to the size of the foreign matter or the like.
JP-A 49-106018 Japanese Utility Model Publication No.59-106400

本発明の目的は、圧力差のある連通路において、閉弁状態における高圧側から低圧側への気体の流通を防止するとともに、その効果を確実にかつ、長期に渡って維持できるスライドゲート弁、このスライドゲート弁を備えた二重ダンパおよびこの二重ダンパを備えた熱分解ガス化装置を提供することにある。   The purpose of the present invention is to prevent the flow of gas from the high pressure side to the low pressure side in the closed state in the communication path having a pressure difference, and to ensure that the effect can be maintained reliably over a long period of time, An object of the present invention is to provide a double damper equipped with the slide gate valve and a pyrolysis gasifier equipped with the double damper.

上記目的を達成するため本発明のスライドゲート弁は、圧力差のある連通路を開閉するスライドゲート弁であって、前記連通路を開閉する2つのスライド可能な弁体を離間して配置し、前記両弁体間の圧力と前記連通路の前記両弁体よりも高圧側の圧力との圧力差を検知する圧力センサと、前記両弁体間に前記連通路の前記両弁体よりも低圧側の気体を供給する供給ポンプと、前記両弁体の閉弁状態で前記圧力センサの検知した圧力差に基づいて前記供給ポンプからの気体供給量を制御して該圧力差を小さくする制御装置とを備えたことを特徴とするものである。   In order to achieve the above object, the slide gate valve of the present invention is a slide gate valve for opening and closing a communication passage having a pressure difference, and disposing two slidable valve bodies for opening and closing the communication passage, A pressure sensor for detecting a pressure difference between a pressure between the valve bodies and a pressure on a higher pressure side than the valve bodies in the communication path; and a pressure lower than the valve bodies in the communication path between the valve bodies. And a control device for reducing the pressure difference by controlling the gas supply amount from the supply pump based on the pressure difference detected by the pressure sensor in the closed state of both valve bodies. It is characterized by comprising.

また、本発明の二重ダンパは、圧力差のある連通路に2つのスライドゲート弁を所定間隔をあけて連設する二重ダンパにおいて、前記スライドゲート弁の少なくとも一方を、前記連通路を開閉する2つのスライド可能な弁体を離間して配置し、前記両弁体間の圧力と前記連通路の前記両弁体よりも高圧側の圧力との圧力差を検知する圧力センサと、前記両弁体間に前記連通路の前記両弁体よりも低圧側の気体を供給する供給ポンプと、前記両弁体の閉弁状態で前記圧力センサの検知した圧力差に基づいて前記供給ポンプからの気体供給量を制御して該圧力差を小さくする制御装置とを備えたスライドゲート弁としたことを特徴とするものである。   The double damper of the present invention is a double damper in which two slide gate valves are connected to a communication passage having a pressure difference at a predetermined interval, and at least one of the slide gate valves is opened and closed. Two slidable valve bodies that are spaced apart from each other, a pressure sensor that detects a pressure difference between the pressure between the two valve bodies and a pressure on the higher pressure side of the two valve bodies in the communication path; A supply pump for supplying a gas at a lower pressure than the two valve bodies in the communication path between the valve bodies, and a pressure difference detected by the pressure sensor in a closed state of the both valve bodies from the supply pump. The slide gate valve includes a control device that controls the gas supply amount to reduce the pressure difference.

また、本発明の熱分解ガス化装置は、廃棄物を低酸素雰囲気で熱分解等させてガス化するガス化炉と、該ガス化炉に圧力差のある連通路を通じて廃棄物を投入する廃棄物投入系統と、該ガス化炉から投入した廃棄物の燃焼残渣を圧力差のある連通路を通じて排出する残渣排出系統とを備えた熱分解ガス化装置において、前記廃棄物投入系統と前記残渣排出系統の少なくとも一方に、2つのスライドゲート弁を所定間隔をあけて連設する二重ダンパを設け、前記スライドゲート弁の少なくとも一方を、前記連通路を開閉する2つのスライド可能な弁体を離間して配置し、前記両弁体間の圧力と前記連通路の前記両弁体よりも高圧側の圧力との圧力差を検知する圧力センサと、前記両弁体間に前記連通路の前記両弁体よりも低圧側の気体を供給する供給ポンプと、前記両弁体の閉弁状態で前記圧力センサの検知した圧力差に基づいて前記供給ポンプからの気体供給量を制御して該圧力差を小さくする制御装置とを備えたスライドゲート弁としたことを特徴とするものである。   Further, the pyrolysis gasification apparatus of the present invention includes a gasification furnace that gasifies by thermally decomposing waste in a low-oxygen atmosphere, and a waste that is thrown into the gasification furnace through a communication path having a pressure difference. In the pyrolysis gasification apparatus comprising a waste input system and a residue discharge system for discharging the combustion residue of waste input from the gasification furnace through a communication passage having a pressure difference, the waste input system and the residue discharge At least one of the systems is provided with a double damper that connects two slide gate valves at a predetermined interval, and at least one of the slide gate valves is separated from two slidable valve bodies that open and close the communication passage. And a pressure sensor for detecting a pressure difference between the pressure between the two valve bodies and a pressure on the higher pressure side of the communication passages than the two valve bodies, and both the communication passages between the two valve bodies. Supply gas on the low pressure side of the valve body A slide gate comprising: a supply pump; and a control device for reducing the pressure difference by controlling a gas supply amount from the supply pump based on a pressure difference detected by the pressure sensor when both the valve bodies are closed. It is characterized by being a valve.

本発明のスライドゲート弁によれば、圧力差のある連通路を開閉するスライドゲート弁であって、連通路を開閉する2つのスライド可能な弁体を離間して配置し、両弁体間の圧力と連通路の両弁体よりも高圧側の圧力との圧力差を検知する圧力センサと、両弁体間に連通路の両弁体よりも低圧側の気体を供給する供給ポンプと、両弁体の閉弁状態で圧力センサの検知した圧力差に基づいて供給ポンプからの気体供給量を制御してこの圧力差を小さくする制御装置とを備えたので、両弁体が閉弁状態において両弁体よりも高圧側から両弁体間に流入する気体を低減することができる。一方で、両弁体間から両弁体よりも低圧側へ流入する気体は増大するが、この流入する気体の多くは、両弁体よりも低圧側から供給された気体となる。   According to the slide gate valve of the present invention, a slide gate valve that opens and closes a communication passage having a pressure difference, the two slidable valve bodies that open and close the communication passage are arranged apart from each other, A pressure sensor for detecting a pressure difference between the pressure and the pressure on the higher pressure side than both valve bodies of the communication path, a supply pump for supplying a gas on the lower pressure side than both valve elements of the communication path between both valve bodies, And a control device for reducing the pressure difference by controlling the gas supply amount from the supply pump based on the pressure difference detected by the pressure sensor in the closed state of the valve body. It is possible to reduce the gas flowing between the valve bodies from the higher pressure side than the both valve bodies. On the other hand, although the gas flowing into the low pressure side from both valve bodies increases from both valve bodies, most of the inflowing gas is gas supplied from the low pressure side than both valve bodies.

したがって、実質的に両弁体を通り抜けて高圧側から低圧側へ流入するの気体量は、両弁体よりも高圧側から両弁体間に流入する気体 となるので、このスライドゲート弁によって連通路の高圧側から低圧側への気体の流通を防ぐことが可能となる。   Therefore, the amount of gas that substantially passes through both valve bodies and flows from the high-pressure side to the low-pressure side is a gas that flows from the high-pressure side to the both valve bodies rather than both valve bodies. It is possible to prevent gas from flowing from the high pressure side to the low pressure side of the passage.

さらに、弁体のスライド開閉の繰り返しによる摺動、当接部分の摩耗や異物の噛み込み等により、閉弁状態におけるすき間が大きくなっても、そのすき間の増大によって、上記した効果には影響が生じないので、確実にかつ、長期に渡ってこの効果を維持することができる。   Furthermore, even if the clearance in the closed state becomes large due to sliding caused by repeated opening and closing of the valve body, wear of the abutting portion, or foreign object biting, the above effect is affected by the increase in the clearance. Since this does not occur, this effect can be maintained reliably and over a long period of time.

本発明の二重ダンパによれば、圧力差のある連通路に2つのスライドゲート弁を所定間隔をあけて連設する二重ダンパにおいて、スライドゲート弁の少なくとも一方を、連通路を開閉する2つのスライド可能な弁体を離間して配置し、両弁体間の圧力と連通路の両弁体よりも高圧側の圧力との圧力差を検知する圧力センサと、両弁体間に連通路の両弁体よりも低圧側の気体を供給する供給ポンプと、両弁体の閉弁状態で圧力センサの検知した圧力差に基づいて供給ポンプからの気体供給量を制御してこの圧力差を小さくする制御装置とを備えたスライドゲート弁としたので、上記したスライドゲート弁の有する効果を得ることができる。即ち、スライドゲート弁の閉弁状態で、連通路の高圧側から低圧側への気体の流通を防ぐことが可能となるとともに、確実にかつ、長期に渡ってこの効果を維持することができる。   According to the double damper of the present invention, in a double damper in which two slide gate valves are connected to a communication passage having a pressure difference at a predetermined interval, at least one of the slide gate valves is opened and closed. Two slidable valve bodies are arranged apart from each other, a pressure sensor that detects the pressure difference between the pressure between the two valve bodies and the pressure on the higher pressure side of both valve bodies, and the communication path between the two valve bodies The supply pump that supplies the gas on the low pressure side of both valve bodies, and the gas supply amount from the supply pump is controlled based on the pressure difference detected by the pressure sensor when both valve bodies are closed, and this pressure difference is Since the slide gate valve is provided with the control device for reducing the size, the effect of the slide gate valve can be obtained. That is, in the closed state of the slide gate valve, it is possible to prevent the gas from flowing from the high pressure side to the low pressure side of the communication path, and to maintain this effect reliably and over a long period of time.

また、二重ダンパの有する効果、即ち、スライドゲート弁の開弁時における連通路の高圧側から低圧側への気体の流通を防ぐことができ、スライドゲート弁の開弁時、閉弁時のいずれの場合においても気体流通に対して優れた遮断性が発揮できる。   In addition, the effect of the double damper, that is, the flow of gas from the high pressure side to the low pressure side of the communication passage when the slide gate valve is opened can be prevented, and when the slide gate valve is opened and closed In any case, excellent barrier properties against gas flow can be exhibited.

本発明の熱分解ガス化装置によれば、廃棄物を低酸素雰囲気で熱分解等させてガス化するガス化炉と、このガス化炉に圧力差のある連通路を通じて廃棄物を投入する廃棄物投入系統と、このガス化炉から投入した廃棄物の燃焼残渣を圧力差のある連通路を通じて排出する残渣排出系統とを備えた熱分解ガス化装置において、廃棄物投入系統と残渣排出系統の少なくとも一方に、2つのスライドゲート弁を所定間隔をあけて連設する二重ダンパを設け、スライドゲート弁の少なくとも一方を、連通路を開閉する2つのスライド可能な弁体を離間して配置し、両弁体間の圧力と連通路の両弁体よりも高圧側の圧力との圧力差を検知する圧力センサと、両弁体間に連通路の両弁体よりも低圧側の気体を供給する供給ポンプと、両弁体の閉弁状態で圧力センサの検知した圧力差に基づいて供給ポンプからの気体供給量を制御してこの圧力差を小さくする制御装置とを備えたスライドゲート弁としたので、上記したスライドゲート弁および二重ダンパの有する効果を得ることができる。   According to the pyrolysis gasification apparatus of the present invention, a gasification furnace that thermally decomposes waste in a low-oxygen atmosphere and gasifies it, and a waste that throws the waste into the gasification furnace through a communication path having a pressure difference In a pyrolysis gasifier having a waste input system and a residue discharge system that discharges combustion residues of waste input from the gasification furnace through a communication passage having a pressure difference, the waste input system and the residue discharge system At least one is provided with a double damper that connects two slide gate valves at a predetermined interval, and at least one of the slide gate valves is arranged with two slidable valve elements that open and close the communication passage being spaced apart from each other. , A pressure sensor that detects the pressure difference between the pressure between both valve bodies and the pressure on the higher pressure side than both valve bodies in the communication path, and the gas on the lower pressure side than both valve bodies in the communication path is supplied between both valve bodies Pressure in the closed state of the supply pump and both valve bodies Since the slide gate valve is provided with a control device that controls the gas supply amount from the supply pump based on the pressure difference detected by the sensor to reduce this pressure difference, the slide gate valve and the double damper have An effect can be obtained.

即ち、スライドゲート弁の閉弁状態で、廃棄物投入系統や残渣排出系統の連通路の高圧側から低圧側への気体の流通を防ぐことができるとともに、確実にかつ、長期に渡ってこの効果を維持することができる。   That is, in the closed state of the slide gate valve, it is possible to prevent the gas flow from the high pressure side to the low pressure side of the communication path of the waste input system and the residue discharge system, and this effect is ensured for a long time. Can be maintained.

また、スライドゲート弁の開弁時における廃棄物投入系統や残渣排出系統の連通路の高圧側から低圧側への気体の流通を防ぐことができ、スライドゲート弁の開弁時、閉弁時のいずれの場合においても気体流通に対して優れた遮断性が発揮できる。   In addition, gas flow from the high-pressure side to the low-pressure side of the communication path of the waste input system and residue discharge system when the slide gate valve is opened can be prevented, and when the slide gate valve is opened and closed In any case, excellent barrier properties against gas flow can be exhibited.

これによって、ガス化炉内が負圧の場合は、ガス化炉内への外気の流入による生成ガスの質低下を防ぐことが可能となる。また、ガス化炉内が正圧の場合は、ガス化炉からの大気中への生成ガスの流出することを防ぐことが可能となる。   As a result, when the inside of the gasifier has a negative pressure, it is possible to prevent the quality of the generated gas from being deteriorated due to the inflow of outside air into the gasifier. Moreover, when the inside of a gasification furnace is a positive pressure, it becomes possible to prevent outflow of the product gas from the gasification furnace to the atmosphere.

以下、本発明のスライドゲート弁、二重ダンパおよび熱分解ガス化装置を図に示した実施形態に基づいて説明する。図1にスライドゲート弁1の全体概要を例示する。圧力差のある連通路9にスライドゲート弁1が装着されて、高圧側連通路9a(図中では上側)と低圧側連通路9b(図中では下側)が形成される。   Hereinafter, a slide gate valve, a double damper, and a pyrolysis gasifier of the present invention will be described based on the embodiments shown in the drawings. FIG. 1 illustrates an overall outline of the slide gate valve 1. The slide gate valve 1 is attached to the communication path 9 having a pressure difference, and a high-pressure side communication path 9a (upper side in the figure) and a low-pressure side communication path 9b (lower side in the figure) are formed.

スライドゲート弁1は、この連通路9を開閉する高圧側弁体2と低圧側弁体3との離間した配置された2つの弁体を有し、両弁体間2、3には弁体間空間4が形成されている。両弁体2、3は外枠6の内部にガイドレール7に沿ってスライド可能に設置され、連結する作動ロッド5によって互いに連動してスライドする構造となっている。外枠6の作動ロッド5との摺動部には、シール材8が設置され、図示しない作動モータによって作動ロッド5がスライドしても気密性が保たれる。   The slide gate valve 1 has two valve bodies that are spaced apart from a high pressure side valve body 2 and a low pressure side valve body 3 that open and close the communication passage 9. An interspace 4 is formed. Both valve bodies 2 and 3 are installed inside the outer frame 6 so as to be slidable along the guide rail 7, and have a structure that slides in conjunction with each other by a connecting operating rod 5. A sealing material 8 is installed at a sliding portion of the outer frame 6 with the operating rod 5, and airtightness is maintained even when the operating rod 5 is slid by an operating motor (not shown).

弁体間空間4および高圧側連通路9aの圧力を測定し、この圧力差を検知する圧力センサ14が設置されて、検知データに基づいて制御を行う制御装置15が設けられている。   A pressure sensor 14 that measures the pressure in the inter-valve space 4 and the high-pressure side communication passage 9a and detects the pressure difference is provided, and a control device 15 that performs control based on the detection data is provided.

弁体間空間4と低圧側連通路9bとは、途中に供給ポンプ10を備えた気体供給路11によって連通可能となっている。供給ポンプ10は制御装置15によって気体供給量が制御される。   The inter-valve space 4 and the low-pressure side communication passage 9b can communicate with each other through a gas supply passage 11 provided with a supply pump 10 in the middle. The supply amount of the supply pump 10 is controlled by the control device 15.

このスライドゲート弁1が閉弁する際は、作動ロッド5のスライドとともに、両弁体2、3がスライドして図1に示すような閉弁状態となる。この実施形態では、両弁体2、3が連結しており、連動してスライドする構造となっているが、それぞれ個別にスライドする構造としてもよい。   When the slide gate valve 1 is closed, the valve bodies 2 and 3 are slid together with the slide of the operating rod 5 to be in a closed state as shown in FIG. In this embodiment, both valve bodies 2 and 3 are connected to each other and slide in conjunction with each other, but may be structured to slide individually.

閉弁状態では、両弁体2、3によって連通路9は遮断されることになるが、各部品の製造誤差、経時的な劣化や摩耗等によって、完全に両弁体2、3ですき間をなくして高圧側連通路9aから低圧側連通路9bへの気体a2の流通を止めることはできない。   In the closed state, the communication passage 9 is blocked by the two valve bodies 2 and 3, but the clearance between the two valve bodies 2 and 3 is completely removed due to manufacturing errors of parts, deterioration over time and wear. Without this, the flow of the gas a2 from the high pressure side communication path 9a to the low pressure side communication path 9b cannot be stopped.

そこで、圧力センサ14の検知した弁体間空間4と高圧側連通路9aとの圧力差の検知データに基づいて、この圧力差を小さくするように供給ポンプ10の気体供給量を制御して低圧側連通路9bから弁体間空間4に気体a1を供給する。この制御によって、弁体間空間4と高圧側連通路9aとの圧力差を微小にして高圧側連通路9aから弁体間空間4への気体a2の流入をほぼ防止することができる。   Therefore, based on the detection data of the pressure difference between the inter-valve space 4 detected by the pressure sensor 14 and the high-pressure side communication passage 9a, the gas supply amount of the supply pump 10 is controlled so as to reduce this pressure difference. The gas a1 is supplied to the inter-valve space 4 from the side communication passage 9b. By this control, the pressure difference between the inter-valve space 4 and the high-pressure side communication passage 9a can be made minute to almost prevent the flow of the gas a2 from the high-pressure side communication passage 9a into the inter-valve space 4.

一方で、弁体間空間4と低圧側連通路9bとの圧力差は大きくなり、弁体間空間4から低圧側連通路9bへの気体の流入は増大することになる。しかしながら、弁体間空間4の大部分を占めるのは供給ポンプ10によって供給された低圧側連通路9bの気体a1であるため、実質的に両弁体2、3を通過して高圧側連通路9aから低圧側連通路9bへと流入する気体a2の量は、高圧側連通路9aから弁体間空間4へ流入した微量となる。   On the other hand, the pressure difference between the inter-valve space 4 and the low-pressure side communication passage 9b increases, and the inflow of gas from the inter-valve space 4 to the low-pressure side communication passage 9b increases. However, since most of the inter-valve space 4 occupies the gas a1 of the low-pressure side communication passage 9b supplied by the supply pump 10, it substantially passes through both valve bodies 2 and 3 and passes through the high-pressure side communication passage. The amount of the gas a2 flowing from 9a to the low pressure side communication passage 9b becomes a very small amount flowing into the inter-valve space 4 from the high pressure side communication passage 9a.

気体の流入量は、圧力差の平方根に比例する。そこで、例えば高圧側連通路9aと低圧側連通路9bとの圧力差が20mmAqの場合、この制御によって弁体間空間4と高圧側連通路9aとの圧力差を2mmAq、弁体間空間4と低圧側連通路9bとの圧力差を18mmAqにしたとすれば、高圧側連通路9aから低圧側連通路9bへの気体a2の流入量は圧力差2mmAqの平方根に比例することになる。   The amount of gas inflow is proportional to the square root of the pressure difference. Therefore, for example, when the pressure difference between the high pressure side communication passage 9a and the low pressure side communication passage 9b is 20 mmAq, the pressure difference between the inter-valve space 4 and the high pressure side communication passage 9a is 2 mmAq and the inter-valve space 4 is controlled by this control. If the pressure difference with the low-pressure side communication path 9b is 18 mmAq, the amount of gas a2 flowing from the high-pressure side communication path 9a into the low-pressure side communication path 9b is proportional to the square root of the pressure difference 2 mmAq.

一方で、この制御をしないで単純に2つの弁体で閉弁した場合は、弁体間空間4の圧力は高圧側連通路9aと低圧側連通路9bとの平均値となり、弁体間空間4と高圧側連通路9aとの圧力差および弁体間空間4と低圧側連通路9bとの圧力差は10mmAqとなる。したがって、高圧側連通路9aから低圧側連通路9bへの気体a2の流入量は圧力差10mmAqの平方根に比例することになる。   On the other hand, when the valve is simply closed by two valve bodies without performing this control, the pressure in the inter-valve space 4 becomes the average value of the high-pressure side communication path 9a and the low-pressure side communication path 9b, and the inter-valve space 4 and the pressure difference between the high pressure side communication path 9a and the pressure difference between the inter-valve space 4 and the low pressure side communication path 9b are 10 mmAq. Therefore, the inflow amount of the gas a2 from the high pressure side communication path 9a to the low pressure side communication path 9b is proportional to the square root of the pressure difference of 10 mmAq.

即ち、本発明のスライドゲート弁1によって流入量を50%以上抑制することができる。高圧側連通路9aと低圧側連通路9bとの圧力差が大きい程、この効果は大きくなる。   That is, the inflow amount can be suppressed by 50% or more by the slide gate valve 1 of the present invention. This effect increases as the pressure difference between the high-pressure side communication path 9a and the low-pressure side communication path 9b increases.

さらに、本発明では圧力差を小さくすることで気体流通を防ぐので、両弁体2、3の繰り返しのスライド開閉による摺動、当接部分の摩耗や異物の噛み込み等によって閉弁時にすき間が増大することがあっても、高圧側連通路9aから低圧側連通路9bへの気体の流通を防ぐ効果に影響が生じない。即ち、この効果を確実にかつ、長期に渡って維持することができる。閉弁時に両弁体2、3が当接する部分にシール材を設けて、併用することですき間の発生を抑制することができる。   Further, in the present invention, since the gas flow is prevented by reducing the pressure difference, there is a clearance when the valve is closed due to sliding by opening and closing the valve bodies 2 and 3 repeatedly, wear of the contact portion, biting of foreign matter, and the like. Even if it increases, the effect of preventing the flow of gas from the high-pressure side communication path 9a to the low-pressure side communication path 9b is not affected. That is, this effect can be reliably maintained for a long time. By providing a seal material at the part where both valve bodies 2 and 3 come into contact when the valve is closed, the generation of gaps can be suppressed.

スライドゲート弁1を開弁する際は、供給ポンプ10を停止して弁体間空間4に無駄な気体の供給を止める。この際に、スライドゲート弁1を開閉する作動ロッド5または作動ロッド5を作動させる図示しない作動モータの開閉作動に応じて供給ポンプ10の運転と停止を制御装置15によって制御することで、自動化システムにすることもできる。   When the slide gate valve 1 is opened, the supply pump 10 is stopped to stop supplying unnecessary gas to the inter-valve space 4. At this time, the control device 15 controls the operation and stop of the supply pump 10 according to the opening / closing operation of the operating rod 5 that opens and closes the slide gate valve 1 or the operating motor (not shown) that operates the operating rod 5. It can also be.

または、図2に示すように気体供給路11の供給ポンプ10よりも下流側に切換弁12を設け、この切換弁12と気体供給路11の供給ポンプ10よりも上流側とを連通可能とする気体循環路13を設けるようにしてもよい。気体循環路13は切換弁12と低圧側連通路9bとを連通するように設けてもよい。   Alternatively, as shown in FIG. 2, a switching valve 12 is provided on the downstream side of the supply pump 10 of the gas supply path 11 so that the switching valve 12 and the upstream side of the supply pump 10 of the gas supply path 11 can communicate with each other. A gas circulation path 13 may be provided. The gas circulation path 13 may be provided so as to communicate the switching valve 12 and the low pressure side communication path 9b.

この構造でスライドゲート弁1を開弁する際は、切換弁12を切り換えて弁体間空間4へ供給する気体a1を気体循環路13を介して循環させる。スライドゲート弁1を開閉する作動ロッド5または作動ロッド5を作動させる作動モータ16の開閉作動に応じて切換弁12の切換を制御装置15によって制御することで、自動化システムにすることもできる。   When the slide gate valve 1 is opened with this structure, the switching valve 12 is switched and the gas a1 supplied to the inter-valve space 4 is circulated through the gas circulation path 13. By controlling the switching of the switching valve 12 by the control device 15 in accordance with the opening / closing operation of the operating rod 5 that opens and closes the slide gate valve 1 or the operating motor 16 that operates the operating rod 5, an automated system can be realized.

次に本発明の二重ダンパ19を図に示した実施形態に基づいて説明する。図3に二重ダンパ19の全体概要を例示する。圧力差のある連通路9に2つの本発明のスライドゲート弁1a、1bが所定間隔をあけて連設されて、高圧側連通路9a(図中では上側)、低圧側連通路9b(図中では下側)および両スライドゲート弁1a、1b間にダンパ空間17が形成される。   Next, the double damper 19 of the present invention will be described based on the embodiment shown in the drawings. FIG. 3 illustrates an overall outline of the double damper 19. Two slide gate valves 1a and 1b of the present invention are connected to a communication passage 9 having a pressure difference at a predetermined interval, and are connected to a high pressure side communication passage 9a (upper side in the drawing) and a low pressure side communication passage 9b (in the drawing). The lower side) and a damper space 17 is formed between the slide gate valves 1a and 1b.

高圧側スライドゲート弁1aは、両スライドゲート弁1a、1bが閉弁状態で圧力センサ14が検知した高圧側連通路9aとダンパ空間17との圧力差に基づいて、供給ポンプ10によってダンパ空間17から弁体間空間4に供給される気体b2の供給量を制御して、この圧力差を小さくする。   The high-pressure side slide gate valve 1a is supplied to the damper space 17 by the supply pump 10 based on the pressure difference between the high-pressure side communication path 9a and the damper space 17 detected by the pressure sensor 14 with both the slide gate valves 1a and 1b closed. The supply amount of the gas b2 supplied to the inter-valve space 4 is controlled to reduce this pressure difference.

低圧側スライドゲート弁1bは、両スライドゲート弁1a、1bが閉弁状態で圧力センサ14が検知した低圧側連通路9bとダンパ空間17との圧力差に基づいて、供給ポンプ10によって低圧側連通路9bからから弁体間空間4に供給される気体b2の供給量を制御して、この圧力差を小さくする。詳細については、上記した本発明のスライドゲート弁1と同様であり、両スライドゲート弁1a、1bの閉弁状態で、連通路9の高圧側から低圧側への気体の流通を防ぐことが可能となるとともに、確実にかつ、長期に渡ってこの効果を維持することができる。   The low pressure side slide gate valve 1b is connected to the low pressure side communication by the supply pump 10 based on the pressure difference between the low pressure side communication passage 9b and the damper space 17 detected by the pressure sensor 14 with both the slide gate valves 1a and 1b closed. The supply amount of the gas b2 supplied from the passage 9b to the inter-valve space 4 is controlled to reduce this pressure difference. The details are the same as those of the slide gate valve 1 of the present invention described above, and it is possible to prevent gas from flowing from the high pressure side to the low pressure side of the communication passage 9 when both the slide gate valves 1a and 1b are closed. At the same time, this effect can be maintained reliably and over a long period of time.

二重ダンパ19は、連通路9に被投入物を投入する際または被排出物を排出する際に、これらの投入、排出に合わせて交互にスライドゲート弁1a、1bを開閉して高圧側から低圧側への気体の流通を防ぐことができる。即ち、スライドゲート弁1a、1bの開弁時に気体の流通を防ぐことができ、本発明のスライドゲート弁1を用いることで、スライドゲート弁1の閉弁時および開弁時において気体の流通を防止することが可能となる。   The double damper 19 opens and closes the slide gate valves 1a and 1b alternately from the high pressure side when charging or discharging discharged materials into the communication passage 9 according to the loading and discharging. Gas distribution to the low pressure side can be prevented. That is, gas flow can be prevented when the slide gate valves 1a and 1b are opened, and by using the slide gate valve 1 of the present invention, gas flow can be prevented when the slide gate valve 1 is closed and opened. It becomes possible to prevent.

この実施形態では、両スライドゲート弁1a、1bに本発明のスライドゲート弁1を用いているが、図4に示すように高圧側を一般的なスライドゲート弁18として、低圧側を本発明のスライドゲート弁1としてもよい。また、その反対の配置にしてもよく、いずれか一方を本発明のスライドゲート弁1にすることで、スライドゲート弁1の閉弁時および開弁時において優れた気体の流通防止効果を得ることができる。   In this embodiment, the slide gate valve 1 of the present invention is used for both slide gate valves 1a and 1b. However, as shown in FIG. 4, the high pressure side is a general slide gate valve 18, and the low pressure side is the present invention. The slide gate valve 1 may be used. Further, the arrangement may be reversed, and by using one of the slide gate valves 1 of the present invention, an excellent gas flow prevention effect can be obtained when the slide gate valve 1 is closed and opened. Can do.

この二重ダンパ19を用いる装置として、本発明の熱分解ガス化装置の実施形態を図5に例示する。   As an apparatus using this double damper 19, an embodiment of the pyrolysis gasification apparatus of the present invention is illustrated in FIG.

この装置は、廃棄物を低酸素雰囲気で熱分解等させてガス化する移動床式熱分解ガス化装置であり、上部に投入口26を立設し、上方に生成ガス排出路21を有する縦型のガス化炉20を備えている。投入口26の上方には被燃焼物となる廃棄物を貯蔵する廃棄物ホッパ23とガス化炉20内の通気性を改善するための移動床を形成する軽石、セラミックス等の粒状の不燃性ペレットを貯蔵するペレットホッパ22とが設置されている。   This apparatus is a moving bed type pyrolysis gasification apparatus that gasifies waste by pyrolysis or the like in a low-oxygen atmosphere. A vertical inlet 26 is provided at the top and a product gas discharge passage 21 is provided above. A gasification furnace 20 of the type is provided. Above the input port 26, a waste hopper 23 for storing the waste to be burned and a granular incombustible pellet such as pumice and ceramics that form a moving bed for improving the air permeability in the gasification furnace 20 And a pellet hopper 22 for storing the.

廃棄物ホッパ23には、上方の連通路9に二重ダンパ19が、下方にスクリューフィーダ25が設けられている。ペレットホッパ22には、上方の連通路9に二重ダンパ19が、下方に投入機24が設けられている。   The waste hopper 23 is provided with a double damper 19 in the upper communication path 9 and a screw feeder 25 in the lower part. The pellet hopper 22 is provided with a double damper 19 in the upper communication path 9 and a feeder 24 in the lower part.

ガス化炉20の底部には回転駆動モータ28で回転する回転軸31に固定されたテーブルフィーダ29が備わり、テーブルフィーダ29に隣接して二重ダンパ19を備えた残渣排出室27が設けられている。回転軸31にはガス供給孔30が備わり、ガス化炉20内に空気等と水蒸気が放射状に噴射可能となっている。   A table feeder 29 fixed to a rotary shaft 31 rotated by a rotary drive motor 28 is provided at the bottom of the gasification furnace 20, and a residue discharge chamber 27 having a double damper 19 is provided adjacent to the table feeder 29. Yes. The rotating shaft 31 is provided with a gas supply hole 30 so that air or the like and water vapor can be injected radially into the gasification furnace 20.

ガス化炉20の側面には複数の温度センサ32、複数の炉内圧力センサ34および充填された廃棄物等のレベルを検知するレベルセンサ33が適所に配置されている。   On the side surface of the gasification furnace 20, a plurality of temperature sensors 32, a plurality of in-furnace pressure sensors 34, and a level sensor 33 for detecting the level of filled waste or the like are disposed at appropriate positions.

廃棄物は廃棄物ホッパ23からスクリューフィーダ25によって投入口26を経て、ガス化炉20に投入される。不燃性ペレットは、ペレットホッパ22から投入機24によって投入口26を経てガス化炉20に投入される。   The waste is introduced from the waste hopper 23 into the gasification furnace 20 through the inlet 26 by the screw feeder 25. The nonflammable pellets are fed from the pellet hopper 22 to the gasification furnace 20 through the charging port 26 by the charging machine 24.

このガス化炉20内は微負圧または微正圧に設定されるため、両ホッパ22、23の上方の連通路9には二重ダンパ19を設けて、廃棄物や不燃性ペレットの補充のためにスライドゲート弁1を開弁する際の気体の流通を防いでいる。ガス化炉20内が微負圧の場合は、外気がガス化炉20内に流入して生成ガスGの質が低下し、ガス化炉20が微正圧の場合は、生成ガスGが大気中に流出してしまうためである。     Since the inside of the gasification furnace 20 is set to a slight negative pressure or a slightly positive pressure, a double damper 19 is provided in the communication passage 9 above both the hoppers 22 and 23 to replenish waste and nonflammable pellets. Therefore, the flow of gas when the slide gate valve 1 is opened is prevented. When the gasification furnace 20 has a slight negative pressure, the outside air flows into the gasification furnace 20 and the quality of the product gas G decreases. When the gasification furnace 20 has a slight positive pressure, the product gas G is in the atmosphere. This is because it will flow out.

そこで、本発明のスライドゲート弁1を用いると閉弁状態においても既述したとおり、気体の流通を防ぐことができ、確実かつ、長期的にその効果を維持することができる。   Therefore, when the slide gate valve 1 of the present invention is used, the gas flow can be prevented as described above even in the closed state, and the effect can be maintained reliably and in the long term.

ガス化炉20内に廃棄物および不燃性ペレットが投入、充填されて点火されると、ガス化炉20底部の回転軸31のガス供給孔30から供給される空気等によって廃棄物の一部が燃焼して例えば1000℃程度の燃焼体A3が形成される。ここで空気等の流通性は不燃性ペレットによって確保される。定常状態ではこの燃焼体A3が安定した位置に形成され、その上方に還元雰囲気の熱分解帯A2が形成され、さらにその上方に乾燥帯A1が形成される。燃焼帯A3の下方には燃焼して流下した燃焼残渣Dからなる層がガス供給孔30から供給される空気等によって、冷却されて冷却帯A4となる。   When waste and incombustible pellets are charged, filled and ignited in the gasification furnace 20, a part of the waste is caused by air or the like supplied from the gas supply hole 30 of the rotary shaft 31 at the bottom of the gasification furnace 20. Combustion body A3 of about 1000 ° C., for example, is formed by combustion. Here, the flowability of air or the like is ensured by nonflammable pellets. In a steady state, this combustor A3 is formed at a stable position, a pyrolysis zone A2 of a reducing atmosphere is formed above it, and a dry zone A1 is further formed above it. Below the combustion zone A3, the layer composed of the combustion residue D burned down is cooled by the air supplied from the gas supply holes 30 and becomes the cooling zone A4.

熱分解帯A2においては、廃棄物が熱分解されて可燃性の熱分解ガス、炭素(チャー)、不燃性の残渣Dとなる。生成したチャーの一部はガス供給孔30から供給される水蒸気と反応して水性ガス(CO、H)が生成される。 In the pyrolysis zone A2, the waste is pyrolyzed into combustible pyrolysis gas, carbon (char), and nonflammable residue D. A part of the generated char reacts with water vapor supplied from the gas supply hole 30 to generate water gas (CO, H 2 ).

残渣Dはテーブルフィーダ29によって、残渣排出室27を経て、装置の外部へ排出される。この場合も廃棄物等のホッパ22、23への投入の際と同様に、圧力差のある連通路9におけるスライドゲート弁1を開弁する際の気体の流通を防ぐために二重ダンパ19が設けられている。ここに本発明の二重ダンパ19を用いることで、スライドゲート弁1の開弁時のみならず、閉弁状態においても気体の流通を防ぐことができ、確実かつ、長期的にその効果を維持することができる。   The residue D is discharged by the table feeder 29 through the residue discharge chamber 27 to the outside of the apparatus. In this case as well, a double damper 19 is provided in order to prevent gas from flowing when the slide gate valve 1 is opened in the communication passage 9 having a pressure difference, as in the case of putting wastes into the hoppers 22 and 23. It has been. Here, by using the double damper 19 of the present invention, gas flow can be prevented not only when the slide gate valve 1 is opened but also when the valve is closed, and the effect is maintained reliably and in the long term. can do.

熱分解ガスと水性ガスとからなる生成ガスGは、熱分解帯A2の上方にある廃棄物のすき間を通って上昇する際に廃棄物を乾燥させて、乾燥帯A1が形成され、これによって生成ガスGは、例えば200℃程度に冷却されて生成ガス排出路21から排出されて燃料ガス等として有効利用される。   The product gas G composed of the pyrolysis gas and the water gas dries the waste when it rises through the gap of the waste above the pyrolysis zone A2, so that a dry zone A1 is formed. The gas G is cooled to about 200 ° C., for example, and discharged from the product gas discharge path 21 and is effectively used as fuel gas or the like.

このような熱分解ガス化装置においては、装置の稼動を止めてメンテナンスできる期間が制約されるため、長期的に気体の流通防止効果を維持することができる本発明の二重ダンパ19を好適に用いることができる。   In such a pyrolysis gasification apparatus, since the period during which the operation of the apparatus can be stopped and maintenance can be restricted, the double damper 19 of the present invention that can maintain the effect of preventing gas flow for a long time is preferably used. Can be used.

この例では、廃棄物を低酸素雰囲気で熱分解等させてガス化する熱分解ガス化装置において、廃棄物、ペレット等をガス化炉20に投入する投入系統と燃焼残渣を排出する排出系統との両系統に本発明の二重ダンパ19を用いているが、少なくとも一方の系統に本発明の二重ダンパ19を用いるようにしてもよい。   In this example, in a pyrolysis gasifier that thermally decomposes and gasifies waste in a low-oxygen atmosphere, an input system that inputs waste, pellets, and the like into the gasification furnace 20, and an exhaust system that discharges combustion residues, Although the double damper 19 of the present invention is used for both of these systems, the double damper 19 of the present invention may be used for at least one of the systems.

本発明のスライドゲート弁の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the slide gate valve of this invention. 本発明のスライドゲート弁の他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of the slide gate valve of this invention. 本発明の二重ダンパの一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the double damper of this invention. 本発明の二重ダンパの他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of the double damper of this invention. 本発明の熱分解ガス化装置の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the thermal decomposition gasification apparatus of this invention.

符号の説明Explanation of symbols

1 (本発明の)スライドゲート弁
1a (本発明の)高圧側スライドゲート弁
1b (本発明の)低圧側スライドゲート弁
2 高圧側弁体 3 低圧側弁体 4 弁体間空間
5 作動ロッド 6 外枠 7 ガイドレール 8 シール材
9 連通路 9a 高圧側連通路 9b 低圧側連通路
10 供給ポンプ 11 気体供給路 12 切換弁
13 気体循環路 14 圧力センサ 15 制御装置
16 作動モータ 17 ダンパ空間
18 一般的なスライドゲート弁
19 二重ダンパ
20 ガス化炉 21 生成ガス排出路
22 ペレットホッパ 23 廃棄物ホッパ
24 ペレット投入機 25 スクリューフィーダ
26 投入路 27 残渣排出室
28 回転駆動モータ 29 テーブルフィーダ
30 ガス供給孔 31 回転軸
32 温度センサ 33 レベルセンサ 34 炉内圧力センサ
1 Slide gate valve (of the present invention)
1a (invention) high pressure side slide gate valve
1b (invention) low pressure side slide gate valve
2 High pressure side valve body 3 Low pressure side valve body 4 Space between valve bodies
5 Operating rod 6 Outer frame 7 Guide rail 8 Sealing material
DESCRIPTION OF SYMBOLS 9 Communication path 9a High pressure side communication path 9b Low pressure side communication path 10 Supply pump 11 Gas supply path 12 Switching valve 13 Gas circulation path 14 Pressure sensor 15 Control device 16 Actuator motor 17 Damper space 18 General slide gate valve 19 Double damper 20 Gasification furnace 21 Generated gas discharge passage
22 Pellet hopper 23 Waste hopper
24 Pellet feeder 25 Screw feeder
26 Input path 27 Residue discharge chamber 28 Rotation drive motor 29 Table feeder 30 Gas supply hole 31 Rotating shaft 32 Temperature sensor 33 Level sensor 34 In-furnace pressure sensor

Claims (5)

圧力差のある連通路を開閉するスライドゲート弁であって、前記連通路を開閉する2つのスライド可能な弁体を離間して配置し、前記両弁体間の圧力と前記連通路の前記両弁体よりも高圧側の圧力との圧力差を検知する圧力センサと、前記両弁体間に前記連通路の前記両弁体よりも低圧側の気体を供給する供給ポンプと、前記両弁体の閉弁状態で前記圧力センサの検知した圧力差に基づいて前記供給ポンプからの気体供給量を制御して該圧力差を小さくする制御装置とを備えたことを特徴とするスライドゲート弁。   A slide gate valve that opens and closes a communication path having a pressure difference, wherein two slidable valve bodies that open and close the communication path are arranged apart from each other, and the pressure between the valve bodies and the both of the communication paths are A pressure sensor for detecting a pressure difference with respect to a pressure on a higher pressure side than the valve body, a supply pump for supplying a gas on a lower pressure side than the both valve bodies of the communication path between the valve bodies, and the both valve bodies And a control device for reducing the pressure difference by controlling the gas supply amount from the supply pump based on the pressure difference detected by the pressure sensor in the closed state. 前記両弁体を連動可能に連結した請求項1に記載のスライドゲート弁。   The slide gate valve according to claim 1, wherein the two valve bodies are connected so as to be interlocked. 前記供給ポンプが前記両弁体間に供給する気体を前記連通路の前記両弁体よりも低圧側に切り換えて循環させる循環路を設けた請求項1または2に記載のスライドゲート弁。   3. The slide gate valve according to claim 1, further comprising a circulation path for switching and circulating the gas supplied between the valve bodies by the supply pump to a lower pressure side than the both valve bodies of the communication path. 圧力差のある連通路に2つのスライドゲート弁を所定間隔をあけて連設する二重ダンパにおいて、前記スライドゲート弁の少なくとも一方を請求項1〜3のいずれかに記載のスライドゲート弁としたことを特徴とする二重ダンパ。   In the double damper which connects two slide gate valves to the communicating path with a pressure difference at predetermined intervals, at least one of the slide gate valves is the slide gate valve according to any one of claims 1 to 3. Double damper characterized by that. 廃棄物を低酸素雰囲気で熱分解させてガス化するガス化炉と、該ガス化炉に圧力差のある連通路を通じて廃棄物を投入する廃棄物投入系統と、該ガス化炉から投入した廃棄物の燃焼残渣を圧力差のある連通路を通じて排出する残渣排出系統とを備えた熱分解ガス化装置において、前記廃棄物投入系統と前記残渣排出系統の少なくとも一方に、請求項4に記載の二重ダンパを設けたことを特徴とする熱分解ガス化装置。   A gasification furnace that thermally decomposes and gasifies waste in a low-oxygen atmosphere, a waste input system that inputs waste through a communication passage having a pressure difference in the gasification furnace, and a waste that is input from the gasification furnace 5. A pyrolysis gasification apparatus comprising a residue discharge system for discharging a combustion residue of a waste through a communication passage having a pressure difference, wherein at least one of the waste input system and the residue discharge system includes A pyrolysis gasifier having a heavy damper.
JP2004319512A 2004-11-02 2004-11-02 Slide gate valve, double damper equipped with this slide gate valve, and pyrolysis gasifier equipped with this double damper Expired - Fee Related JP4384009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004319512A JP4384009B2 (en) 2004-11-02 2004-11-02 Slide gate valve, double damper equipped with this slide gate valve, and pyrolysis gasifier equipped with this double damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004319512A JP4384009B2 (en) 2004-11-02 2004-11-02 Slide gate valve, double damper equipped with this slide gate valve, and pyrolysis gasifier equipped with this double damper

Publications (2)

Publication Number Publication Date
JP2006132584A JP2006132584A (en) 2006-05-25
JP4384009B2 true JP4384009B2 (en) 2009-12-16

Family

ID=36726321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004319512A Expired - Fee Related JP4384009B2 (en) 2004-11-02 2004-11-02 Slide gate valve, double damper equipped with this slide gate valve, and pyrolysis gasifier equipped with this double damper

Country Status (1)

Country Link
JP (1) JP4384009B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7036794B2 (en) * 2004-08-13 2006-05-02 Vat Holding Ag Method for control of a vacuum valve arranged between two vacuum chambers
JP2009017117A (en) * 2007-07-03 2009-01-22 Nippon Antenna Co Ltd Nondirectional antenna
JP2009063009A (en) * 2007-09-04 2009-03-26 Nippon Valqua Ind Ltd Gate valve
DE102007048673A1 (en) 2007-10-10 2009-04-23 Lurgi Gmbh Gas generators for the pressure gasification of solid granular fuels
CN102853096A (en) * 2012-09-11 2013-01-02 中国核电工程有限公司 Passive pressure balance system for solving boiler effect of core-grade sluice valve
CN107387789B (en) * 2017-09-04 2019-05-24 江苏雄越石油机械设备制造有限公司 A kind of anti-leak flap type
KR102421628B1 (en) * 2020-12-16 2022-07-15 주식회사 디엠에스 Damper system, substrate processing apparatus including the same and substrate processing method

Also Published As

Publication number Publication date
JP2006132584A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
CA2545549C (en) Pyrolyzing gasification system and method of use
JP4384009B2 (en) Slide gate valve, double damper equipped with this slide gate valve, and pyrolysis gasifier equipped with this double damper
US20150027560A1 (en) Gasification reactor
CN104428592B (en) The equipment that clinker and/or alloplastic materials are transported for dry type
KR102110167B1 (en) Water-cooled and air-cooled integral grate bar corresponding to the burning rate of biomass by dividng and arranging the discharge port of the combustion air
JP4620620B2 (en) Waste gasifier and operating method thereof
KR100917928B1 (en) Multiple incinerator plant consist of duplex hopper and combustion
JP2006242535A (en) Method of supplying treated object to moving bed gasification furnace and moving bed gasification furnace
KR101353018B1 (en) Pyrolysis gasification type waste incineration apparatus for preventing clinker of combustor
KR102175676B1 (en) Fluidized bed pyrolysis apparatus and a pyloysis method of organic material using the same
JP5936946B2 (en) Fluidized bed gasifier
US4357883A (en) Bed drain cover assembly for a fluidized bed
CN104321590B (en) For the method transporting the impurity in pressurised fluidized bed incinerator system
JP4176570B2 (en) Waste treatment apparatus and treatment method
KR20190062124A (en) Pyrolysis gasifier
JP4770435B2 (en) Method and apparatus for cooling waste pyrolysis char
JP2019131718A (en) Stop method of slag discharge system, slag discharge system and gasification composite power generator
JP2005147349A (en) Slide gate valve and thermal decomposition gasifying device using the slide gate valve
JP2007285599A (en) Movable bed gasification furnace
JP2005003266A (en) Stationary type soot blower for coal gasification device
JP2008255244A (en) Apparatus for cooling carbonized product
EP2657321A1 (en) Gasogen for the production of gases for external combustion in boilers, furnaces, internal combustion engines and other devices or apparatuses which use said gases and the process to improve the treatment of biomass by means of the gasogen
JP3609025B2 (en) Water-cooled shut-off valve and boiler with swirl melting furnace provided with the same
WO2017104620A1 (en) Char discharge device, char recovery device provided therewith, char discharge method, and integrated gasification combined cycle equipment
KR101523654B1 (en) Apparatus for opening and closing of CDQ facilities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees