JP4383694B2 - Mixing heater - Google Patents

Mixing heater Download PDF

Info

Publication number
JP4383694B2
JP4383694B2 JP2001176379A JP2001176379A JP4383694B2 JP 4383694 B2 JP4383694 B2 JP 4383694B2 JP 2001176379 A JP2001176379 A JP 2001176379A JP 2001176379 A JP2001176379 A JP 2001176379A JP 4383694 B2 JP4383694 B2 JP 4383694B2
Authority
JP
Japan
Prior art keywords
air
temperature
combustion
heat exchanger
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001176379A
Other languages
Japanese (ja)
Other versions
JP2002364834A (en
Inventor
力 保田
剛史 橘
Original Assignee
日本ファーネス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ファーネス株式会社 filed Critical 日本ファーネス株式会社
Priority to JP2001176379A priority Critical patent/JP4383694B2/en
Publication of JP2002364834A publication Critical patent/JP2002364834A/en
Application granted granted Critical
Publication of JP4383694B2 publication Critical patent/JP4383694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、混合加熱装置に関するものであり、より詳細には、比較的低温の空気及び水蒸気を混合し且つ加熱し、ガス化炉、改質炉等の外部機器に対して高温混合気を連続供給する混合加熱装置に関するものである。
【0002】
【従来の技術】
加熱炉、焼却炉等の燃焼炉、微粉端ボイラー又は重油ボイラー等のボイラー、石炭ガス化炉、廃棄物ガス化炉等のガス化炉、固形物又は半固形物を還元雰囲気で熱分解する熱分解炉、更には、熱分解ガスを改質する改質炉等の反応炉が知られている。この種の炉又は燃焼機器に対して、比較的高温の予熱空気を供給し、燃焼反応又はガス化作用を促進する技術が、近年殊に注目されている。燃焼用空気を高温に加熱する技術として、ハニカム型又はペレット型蓄熱体等を用いた蓄熱型熱交換装置が、本願出願人による特願平5─6911号(特開平6−213585号公報)等に開示されている。蓄熱型熱交換装置は、一対の蓄熱体を利用して空気を高温に予熱する燃焼用空気供給システムを構成し、蓄熱体は、大気温相当の低温空気と、燃焼域の燃焼排ガスとに交互に接触する。燃焼排ガスに接触して受熱した蓄熱体は、燃焼ガス温相当の温度に加熱され、低温空気は、加熱後の蓄熱体に伝熱接触して受熱し、800℃を超える高温に予熱される。
【0003】
本発明者等は、このような蓄熱体の構成を応用し、高温空気、高温水蒸気又は高温不活性ガス等の高温気流を燃焼炉等に連続供給することができる給気流加熱装置を開発し、特願平10−189号(特開平10−246428号公報)等において提案している。この形式の加熱装置は、800℃を超える高温空気及び高温水蒸気を石炭又は廃棄物ガス化装置等に連続供給可能な高温空気等発生装置として既に実用化されている。
【0004】
【発明が解決しようとする課題】
上記高温空気等発生装置は、一対の蓄熱型熱交換器、一対の燃焼域及び単一の分流域から構成され、第1工程と第2工程とを交互に反復する。第1工程では、低温空気又は水蒸気は、第1蓄熱体で加熱し、加熱後の高温気流は、外部機器供給流と機内燃焼用気流とに分流する。外部機器供給流は、機外のガス化炉等に供給され、他方、機内燃焼用気流は、第2燃焼域に導入され、第2燃焼域で燃焼する。第2燃焼域に生成した高温の燃焼排ガスは、第2蓄熱体を高温に加熱した後、排気される。第2工程では、低温空気又は水蒸気は、第2蓄熱体で加熱された後、外部機器供給流と機内燃焼用気流とに分流する。第1工程と同様、外部機器供給流は、機外のガス化炉等に供給され、機内燃焼用気流は、第1燃焼域に導入され、第1燃焼域で燃焼して高温の燃焼排ガスを生成する。燃焼排ガスは、第1蓄熱体を通して排気される。高温空気等発生装置は、第1及び第2工程を交互に反復することにより、ガス化炉等に高温空気又は高温水蒸気を連続的に供給する。
【0005】
このような構成の高温空気等発生装置は、高温の空気流又は水蒸気流をガス化炉等に連続的に供給するという所期の目的を達成したばかりでなく、連続供給される空気及び水蒸気の温度及び流量が極めて安定することが本発明者等の実験で判明したことから、700℃を超える高温給気流を安定的に外部機器に供給可能な画期的な高温空気又は高温水蒸気発生装置として、高い評価を受けるに至った。
【0006】
近年、廃棄物ガス化装置に関し、高温水蒸気及び高温空気の混合気をガス化炉及び改質炉に導入するシステム構成が提案され、本願発明者等は、その実用化研究に既に着手し、実用化実験を実施している。この種のシステムでは、大気温相当温度の常温空気を水蒸気と混合した後、空気及び水蒸気の混合気をハニカム構造の蓄熱体に導入し、蓄熱体の放熱により混合気を加熱する。ここに、一般的な水蒸気発生装置、例えば、石油又は石炭燃焼ボイラー、或いは、廃ガスボイラー等で生成した水蒸気は、約150℃程度の温度を保有するにすぎず、このため、水蒸気を常温空気に直に混合した際に水蒸気が凝集ないし凝縮し、再液化する現象が観られる。従って、低温空気を水蒸気温度以上の温度に予熱すべく、電気加熱器等の空気加熱器を蓄熱体上流の空気供給路に配設し、空気加熱器で予熱した空気を水蒸気と混合する方式が採用されている。
【0007】
しかしながら、このような空気加熱器を給気流加熱装置の空気供給路に付加的に設けた場合、システム全体の初期設備費が高額化するばかりでなく、空気加熱器を運転するための動力又は燃料の供給、更には、空気加熱器の維持管理が必要となるので、エネルギー効率が悪化し、ランニングコストが増大するという課題が生じた。
【0008】
本発明は、かかる課題に鑑みてなされたものであり、その目的とするところは、比較的低温の空気及び水蒸気を混合し且つ加熱し、外部機器に対して高温混合気を連続供給する混合加熱装置において、水蒸気と混合する空気を加熱する空気加熱器を付加的に設けず、しかも、水蒸気の凝集又は凝縮を生じさせることなく、空気及び水蒸気を良好に混合することができる混合加熱装置を提供することにある。
【0009】
【課題を解決するための手段及び作用】
上記目的を達成すべく、本発明の混合加熱装置は、燃焼反応による燃焼排ガスを生成する燃焼域(6) と、低温空気及び燃焼排ガスを交互に流通可能な流路を備えた蓄熱型熱交換器(11:12) とを有し、熱交換器は、低温空気を加熱する空気予熱部(11A:12A) と、空気及び水蒸気の混合気を加熱する混合気加熱部(11B:12B) とに分割される。水蒸気を導入可能な水蒸気混合室(11C:12C) が空気予熱部と混合気加熱部との間に形成され、空気予熱部は、低温空気を水蒸気の温度以上の温度に加熱して水蒸気混合室に通す。
本発明の上記構成によれば、水蒸気混合室に導入された低温水蒸気は、空気予熱部を通過した空気と混合する。空気予熱部を通過した空気は、空気予熱部によって既に加熱され、水蒸気温度よりも高い温度を有する。従って、低温水蒸気の凝集又は凝縮は、発生しない。
【0010】
【発明の実施の形態】
本発明の好適な実施形態によれば、上記熱交換器は、多数の狭小流路を備えたハニカム構造の蓄熱体により構成される。更に好ましくは、蓄熱体の各部寸法及び材質は、0.8以上の温度効率を発揮するように設定される。
本発明の実施形態において、混合加熱装置は、少なくとも1対の上記熱交換器、給排流路(13-17) 、高温給気流路(H1:H2:HA:HB:HG)及び流路切換弁(30)を有する。給排流路は、燃焼域と熱交換器との間に配置され、高温給気流路は、給排流路に接続され、外部機器に高温給気流を供給する。流路切換弁は、給排流路に配置され、第1の熱交換器と燃焼域との連通を遮断し且つ第2熱交換器と燃焼域とを連通させる第1位置と、第2熱交換器と燃焼域との連通を遮断し且つ第1熱交換器と燃焼域とを連通させる第2位置とに交互に切換えられる。第1位置では、第1熱交換器により加熱された高温混合気流は、給排流路から高温給気流路に送出され、燃焼域の燃焼排ガスは、給排流路及び第2熱交換器を介して排気される。第2位置では、第2熱交換器により加熱された給気流は、給排流路から高温給気流路に送出され、燃焼域の燃焼排ガスは、給排流路及び第1熱交換器を介して排気される。
【0011】
好ましくは、燃焼域は、連続運転可能な単一のバーナー設備を備え、高温給気流路は、該給気流路を開閉制御する開閉制御弁を備える。
本発明の他の実施形態では、特願平10−189号(特開平10−246428号公報)等に開示された形式の装置、即ち、一対の蓄熱型熱交換器(11:12) 、一対の燃焼域(13:14) 及び単一の分流域(9) を備えた構成の給気流加熱装置において、熱交換器は、低温空気を加熱する空気予熱部(11A:12A) と、空気及び水蒸気の混合気を加熱する混合気加熱部(11B:12B) とに分割され、水蒸気を導入可能な水蒸気混合室(11C:12C) が空気予熱部と混合気加熱部との間に形成される。
本発明の好ましい実施形態によれば、複数の上記混合加熱装置を備えた混合加熱システムが提供され、各混合加熱装置は、単一の燃焼域を共用する。
【0012】
本発明の他の好ましい実施形態では、上記混合加熱装置は、固体又は液体燃料ガス化装置の熱源設備を構成し、高温給気流路は、固体又は液体燃料ガス化炉及び/又は熱分解ガス改質炉に接続される。
図1は、本発明の好適な実施形態を概念的に示す混合加熱装置の概略断面図である。本実施形態において、混合加熱装置は、高温空気を連続的に外部機器に供給する高温空気発生装置を構成する。高温空気の温度は、800℃以上の温度に設定される。
【0013】
混合加熱装置1は、給気給送路LAを介して導入した大気温相当温度の低温空気(常温空気)を高温に加熱する第1及び第2の蓄熱型熱交換器11、12を備える。熱交換器11、12は、多数の狭小流路を備えたハニカム構造のセラミックス製蓄熱体からなる。給気給送路LAには、強制給気ファン2が介装される。給気給送路LAは、熱交換器11、12と交互に連通し、低温空気を熱交換器11、12に交互に供給する。強制排気ファン3を備えた排気導出路EXが、熱交換器11、12と交互に連通し、給気給送路LAと連通していない側の熱交換器11、12から燃焼排ガスを機外に誘引し、排気する。
【0014】
第1及び第2の直線流路13、14が、熱交換器11、12の前方に延び、直線流路13、14は、傾斜流路15、16に連続する。傾斜流路15、16は、混合加熱装置1の中心軸線に対して所定角度をなして屈曲し、接続部17に連続する。接続部17には、流路切換弁30が配設され、流路切換弁30は、弁軸32及び可動弁体31を備える。可動弁体31は、弁軸32を中心に第1位置(図1A)及び第2位置(図1B)に交互に切り替えられる。弁軸32及び可動弁体31は、1000℃を超える高温雰囲気で作動可能な耐熱材料、例えば、アルミナ、ジルコニア等のセラミックスの成形部材からなり、好ましくは、冷却水流路が弁軸32の軸芯部に形成される。
【0015】
混合加熱装置1は、熱風炉7を有し、熱風炉7は、連続運転する単一のバーナー設備5を備えた単一の燃焼域6を備える。燃焼域6は、接続部17の前方に配設される。流路15、16は、流路切換弁30の切換制御により、燃焼域6と交互に連通する。
【0016】
燃焼用空気(常温空気)を供給する空気供給路CAが、バーナー設備5に接続される。空気供給ファン4が、空気供給路CAに介装され、燃焼用空気をバーナー設備5に連続供給する。LPG、軽油、重油、石炭ガス化ガス、廃棄物ガス化ガス等の炭化水素系燃料を常時供給可能な燃料供給路Fが、バーナー設備5に接続され、バーナー設備5に燃焼用燃料を供給する。なお、各バーナー設備5は、単数又は複数のバーナーユニットにより構成される。また、バーナー設備5には、パイロットバーナ及び点火用トランスなどの付帯設備が一般に設けられるが、これらの付帯設備については、図を簡略化するために図示を省略されている。
【0017】
高温混合気流出口18、19が、流路13、14に夫々開口し、高温空気流路H1、H2が、流出口18、19に夫々接続される。流路H1、H2には、開閉制御弁41、42が介装され、開閉制御弁41、42は、制御装置40により開閉制御される。流路H1、H2は、合流部43において合流し、高温空気給送路HGが、合流部43から外部機器、例えば、ガス化設備のガス化炉及び改質炉等(図示せず)に延びる。
【0018】
第1及び第2熱交換装置11:12は、空気予熱部11A:12Aと、混合気加熱部11B:12Bとに分割され、混合域11C:12Cが、空気予熱部11A:12A及び混合気加熱部11B:12Bの間に形成される。水蒸気供給路LS1:LS2が、混合域11C:12Cに接続され、廃ガスボイラー等の水蒸気発生装置で生成した温度100℃〜200℃程度の水蒸気(以下、低温水蒸気という)が、水蒸気供給路LS1:LS2を介して混合域11C:12Cに導入される。制御装置40により開閉制御可能な水蒸気供給制御弁46:47が、水蒸気供給路LS1:LS2に介装される。
【0019】
図1(A)には、混合加熱装置1の第1位置(第1加熱工程)が示され、図1(B)には、混合加熱装置1の第2位置(第2加熱工程)が示されている。
【0020】
第1加熱工程(図1A)において、流路切換弁30は、流路13、15と燃焼域6とを隔絶し且つ流路14、16を燃焼域6と連通させる第1位置に位置する。第1位置(図1A)では、制御弁41、46は開放し、制御弁42、47は閉鎖する。
【0021】
給気給送路LAは、外気温相当の低温空気を第1熱交換器11に供給する。低温空気は、空気予熱部11Aに伝熱接触して受熱し、約200℃〜300℃の温度、即ち、水蒸気の温度よりも高温に加熱される。加熱後の空気は、混合域11Cで水蒸気供給路LSの低温水蒸気と混合する。空気及び水蒸気の混合気は、高温の混合気加熱部11Bに供給され、混合気加熱部11Bに伝熱接触して受熱し、800℃以上、好ましくは、1000℃〜1100℃の高温に加熱される。高温に加熱された混合気Hは、流路13から高温混合気流路H1に流入し、開閉制御弁41を介して高温混合気給送路HGに給送され、外部機器に供給される。
【0022】
空気供給路CA及び燃料供給路Fは、燃焼用空気及び炭化水素系燃料をバーナー設備5に連続供給し、バーナー設備5は、連続的に燃焼作動する。燃焼域6に生成した高温の燃焼排ガスEは、流路16、14から第2熱交換器12に導入され、第2熱交換器12のハニカム型蓄熱体(空気予熱部12A及び混合気加熱部12B)を流通した後、排気導出路EXから機外に排気される。
【0023】
これに対し、第2加熱工程(図1B)では、流路切換弁30は、流路14、16と燃焼域6とを隔絶し且つ流路13、15を燃焼域6と連通させる第2位置に位置する。第2位置(図1B)では、制御弁42、47は開放し、制御弁41、46は閉鎖する。
【0024】
給気給送路LAは、外気温相当の低温空気を第2熱交換器12に供給する。低温空気は、上述の第1加熱工程において加熱された高温の空気予熱部12Aに伝熱接触して受熱し、約200℃〜300℃の温度に加熱される。加熱後の空気は、混合域12Cで水蒸気供給路LSの低温水蒸気と混合する。空気及び水蒸気の混合気は、高温の混合気加熱部12Bに供給され、混合気加熱部12Bに伝熱接触して受熱し、800℃以上、好ましくは、1000℃〜1100℃の高温に加熱される。高温に加熱された混合気Hは、流路14から高温混合気流路H2に流入し、開閉制御弁41を介して高温混合気給送路HGに給送され、外部機器に供給される。
【0025】
燃焼域6に生成した高温の燃焼排ガスEは、流路15、13から第1熱交換器11に導入され、第1熱交換器11のハニカム型蓄熱体(空気予熱部11A及び混合気加熱部11B)を流通した後、排気導出路EXから機外に排気される。
【0026】
制御装置40を構成する電子制御機器は、給気ファン2、排気ファン3、空気供給ファン4及びバーナー設備5の作動を制御する運転制御手段を備えるとともに、流路切換弁30及び制御弁41、42、46、47の位置を制御する切換制御手段を備える。切換制御手段は、流路切換弁30及び制御弁41、42、46、47を同期切換制御し、混合加熱装置1を所定時間間隔、例えば、60秒以下に設定された切換時間毎に第1位置又は第2位置に交互に切換える。
【0027】
熱交換器11:12は、空気予熱部11A:11B及び混合気加熱部12A:12Bの各ハニカム型蓄熱体を複合した熱交換器全体として、0.7以上、更に好ましくは、0.9以上の温度効率を発揮するように設計される。給気給送路LAの低温空気(温度Tci)は、蓄熱体のハニカム流路を通過し、ハニカム構造体のセル壁の伝熱面と伝熱接触してセル壁と熱交換し、高温混合気H(温度Tco)に加熱される。蓄熱体は、低温空気との熱交換により冷却する。燃焼域6の燃焼排ガス(温度Thi)は、冷却した蓄熱体のハニカム流路を通過し、セル壁の伝熱面と伝熱接触してセル壁と熱交換し、蓄熱体を高温に加熱する。燃焼排ガスは、蓄熱体との熱交換により、比較的低温の燃焼排ガス(温度Tho)として排気される。例えば、空気及び燃焼排ガスの温度は、以下の如く設定される。
低温空気温度Tci =約20℃
燃焼排ガス温度Thi =約1200℃
【0028】
高温空気温度Tco =約1100℃
低温排ガス温度Tho =約150℃
図2は、熱交換器11、12の蓄熱体の構造を示す斜視図である。
空気予熱部11A:12A及び混合気加熱部11B:12Bを分割する位置は、空気予熱部11A:12Aによる低温空気の予熱温度と、空気及び水蒸気の混合比とによって実質的に決定される。混合気加熱部11B:12Bの全長D2は、空気予熱部11A:12Aの全長D1よりも大きく、長さD1/D2の比率は、例えば、1/3〜2/3の範囲内に設定される。また、空気及び水蒸気の混合比は、例えば、3/1〜1/3の範囲内の比率に設定される。空気予熱部11A:12Aは、低温水蒸気の温度よりも高温に空気を加熱すれば良く、空気の予熱温度は、200℃〜300℃の範囲内の温度に設定される。混合域11C:12Cには、加熱後の空気が導入されるので、混合域11C:12Cに導入された低温水蒸気の凝集又は凝縮は、発生しない。
【0029】
このような混合加熱装置1によれば、低温水蒸気を低温空気に混合した場合に生じる問題、即ち、水蒸気中の水分の凝集ないし凝縮は、空気予熱部11A:12Aによる低温空気の予熱により防止されるので、低温空気を予め電気加熱器等で予熱する従来の予熱工程を省略することができる。
【0030】
図3は、本発明の他の好適な実施形態を概念的に示す混合加熱装置の概略断面図である。図3において、図1に示す各構成要素と実質的に同一又は同等の構成要素については、同一の参照符号が付されている。
【0031】
図3に示す実施形態では、複数の混合加熱装置1が、単一の熱風炉7を共有する。熱風炉7は、複数の混合加熱装置1に隣接して配置され、各々の混合加熱装置1は、熱風炉7の燃焼域6と連通する連結部8を備える。熱風炉7は、連続的に燃焼作動するバーナー設備5を備え、燃焼域6は、連結部8を介して各混合加熱装置1の接続部17と連通する。なお、各バーナー設備5は、単数又は複数のバーナーユニットにより構成される。
接続部17には、上述の流路切換弁30が夫々配設され、開閉制御弁41、42が、各混合加熱装置1の流路H1、H2に夫々介装される。混合加熱装置1は、上述の第1加熱工程及び第2加熱工程を交互に反復するように構成され、制御装置40は、流路切換弁30を第1又は第2位置に交互に切換えるとともに、流路切換弁30の切換制御と連動して、制御弁41:42、46:47を交互に開閉作動させる。各々の混合加熱装置1の流路H1、H2から交互に導出される高温混合気は、合流部43において合流し、高温混合気給送路Gから外部機器に供給される。なお、各混合加熱装置1の高温混合気は、異なる外部機器に対して夫々供給しても良い。
【0032】
図4は、本発明の更に他の実施形態を概念的に示す混合加熱装置の概略断面図である。
図4に示す混合加熱装置1は、一対の蓄熱型熱交換器11:12、一対の流路13:14及び単一の分流域9を備える。流路13:14は、バーナー設備5a:5bを備えた燃焼域を構成する。熱交換器11:12は、低温空気を加熱する空気予熱部11A:12Aと、空気及び水蒸気の混合気を加熱する混合気加熱部11B:12Bとに分割される。水蒸気を導入可能な水蒸気混合室11C:12Cが空気予熱部11A:12Aと混合気加熱部11B:12Bとの間に形成される。
【0033】
第1加熱工程(図4A)において、第1熱交換器11によって加熱された混合気Hは、分流域9において機内燃焼用気流h1と外部機器供給流h2とに分流し、外部機器供給流h2は、高温混合気給送路HGによって外部機器に供給され、機内燃焼用気流h1は、流路14に導入され、バーナー設備5bの作動により燃焼した後、第2熱交換器12を介して排気される。他方、第2加熱工程(図4B)において、第2熱交換器12によって加熱された混合気Hは、分流域9において機内燃焼用気流h1と外部機器供給流h2とに分流し、外部機器供給流h2は、高温混合気給送路HGによって外部機器に供給され、機内燃焼用気流h1は、流路13に導入され、バーナー設備5aの作動により燃焼した後、第1熱交換器11を介して排気される。混合加熱装置は、所定の切換時間毎に第1加熱工程及び第2加熱工程を交互に実行する。
【0034】
図1に示す実施形態と同様、図3及び図4に示す実施形態においても、水蒸気は、水蒸気混合室11C:12Cに導入され、水蒸気の温度以上の温度を有する空気と混合する。従って、水蒸気中の水分の凝集ないし凝縮を防止することができる。
【0035】
【実施例】
以下、添付図面を参照して、本発明に係る混合加熱装置の実施例について、詳細に説明する。
図5は、本発明の第1実施例に係る混合加熱装置を使用した廃棄物ガス化装置のシステム構成を示すシステムフロー図である。
【0036】
廃棄物ガス化装置は、廃棄物を熱分解するガス化炉と、ガス化炉の熱分解ガスを粗燃料ガスに改質する改質炉とを備える。ガス化炉は、高温混合気給送路HAを介して第1混合加熱装置1Aに接続され、改質炉は、高温混合気給送路HBを介して第2混合加熱装置1Bに接続される。第1混合加熱装置1Aは、空気の比率が高い混合気、例えば、空気及び水蒸気の混合比が1:0〜5:2の範囲の混合気を800℃以上、好ましくは、約1000℃に加熱し、ガス化炉に連続供給する。第2混合加熱装置1Bは、空気の比率が低い混合気、例えば、空気及び水蒸気の混合比が1:5〜1:1の範囲の混合気を800℃以上、好ましくは、約1000℃に加熱し、改質炉に連続供給する。
【0037】
廃棄物が、廃棄物導入手段WTによってガス化炉内に装入され、高温混合気給送路HAの高温空気がガス化炉内に導入される。ガス化炉内の廃棄物は、高温混合気により加熱され、ガス及び残渣に熱分解し、熱分解ガスがガス化炉内に生成する。熱分解ガスは、熱分解ガス給送路PGを介して、改質炉に導入される。高温混合気給送路HBの高温混合気が、改質炉に供給され、熱分解ガスと混合する。熱分解ガス中の炭化水素は、高温水蒸気と水蒸気改質反応し、この結果、熱分解ガスは、炭化水素、一酸化炭素及び水素を含む改質ガス(高温粗ガス)に改質される。炭化水素及び高温水蒸気の吸熱改質反応(CxHx+H2 O→CO +H2 +H2 O)に要する反応熱は、水蒸気自体が保有する顕熱により供給されるばかりでなく、炭化水素及び高温空気の発熱反応(CxHx+O2 +N2 →CO+CO2 +H2 +H2 O+N2 )により発生した熱により供給される。
【0038】
改質炉の改質ガスは、改質ガス給送路RG1によって廃ガスボイラに導入される。廃ガスボイラの気─液熱交換器には、温水供給管HWが接続される。温水供給管HWの上流端は、混合加熱装置1A:1Bの流路切換弁30に接続され、給水供給管が、流路切換弁30の弁軸32に接続される。冷却水として弁軸32の冷却水流路を流通する給水は、弁軸32を冷却して受熱し、温水として温水供給管HWに供給される。温水供給管HWの温水は、廃ガスボイラ内の熱交換器により改質ガスと熱交換して気化し、低温水蒸気として低温水蒸気供給路LSに送出される。供給路LSの水蒸気は、工場又は建築物の暖房・給湯設備に対して、熱媒体流体として供給される。所望により、水蒸気を発電設備の蒸気タービン等に供給しても良い。低温水蒸気供給路LSは又、水蒸気供給路LS1:LS2に接続され、混合加熱装置1A:1Bに低温水蒸気を供給する。
【0039】
廃ガスボイラを通過した改質ガスは、改質ガス給送路RG2からバクフィルター等の除塵装置に導入され、除塵装置にて浄化された後、ブースターファンBFの圧力下に改質ガス給送路RG3に送出され、熱風炉7の燃料ガスとして混合加熱装置1A:1Bの各バーナー設備5に供給される。所望により、改質ガスの一部は、ガスタービン発電装置等の内燃機関に燃料ガスとして供給しても良い。空気供給ファン4が、空気供給路CAを介してバーナー設備5に接続され、大気温相当の外気(常温空気)が、バーナー設備5に供給される。なお、混合加熱装置1のバーナー設備には、スタートアップ用燃料(LPG等)の供給手段や、パイロットバーナ及び点火用トランスなどの付帯設備(図示せず)が設けられる。
【0040】
混合加熱装置1A:1Bは、給気給送路LA、排気導出路EX及び熱交換器11、12の連通を制御する流路切換装置20を備える。流路切換装置20は、一対の給気開閉弁21、22と、一対の排気開閉弁23、24とから構成される。給気開閉弁21、22は、給気給送路LAを熱交換器11、12と交互に連通させ、排気開閉弁23、24は、排気導出路EXを熱交換器11、12と交互に連通させる。制御装置40は、第1工程において、開閉弁21、24を開放し且つ開閉弁22、23を閉塞し、第2工程では、開閉弁21、24を閉鎖し且つ開閉弁22、23を開放する。
【0041】
図6は、混合加熱装置1(1A:1B)の構造を示す横断面図及び縦断面図である。
混合加熱装置1は、上下に整列配置した第1加熱ユニット51及び第2加熱ユニット52に分割される。第1加熱ユニット51は、第1熱交換器11を収容し且つ流路13、15を形成し、第2加熱ユニット52は、第2熱交換器12を収容し且つ流路14、16を形成する。第1及び第2加熱ユニット51:52は、混合加熱装置1の中心軸線に関して上下対称の構造を有する。
【0042】
熱風炉7は、加熱ユニット51:52の前方に配置され、燃焼域6は、接続部17を介して加熱ユニット51:52と交互に連通する。加熱ユニット51:52、接続部17及び熱風炉7は、耐熱性キャスタブル・ライニング材料、耐熱レンガ、耐火・断熱レンガ又は耐熱性セラミックス材料等の各種耐火・耐熱性材料により一体的に形成される。
【0043】
流路切換弁30の弁軸32は、左右の側壁59を貫通し、左右一対の軸受33に支承される。流体シリンダ装置等の駆動装置34が、弁軸32の一端に作動的に連結される。流路切換弁30は、駆動装置34の作動により、実線で示す第1位置と、仮想線で示す第2位置とに交互に切換えられる。弁軸32の一端には、給水供給管SWが連結され、弁軸32の他端には、温水供給管HWが連結される。
【0044】
加熱ユニット51:52の後端部には、低温空気室53:54が形成され、低温空気室53は、給気給送路LAと連通する。混合域11C:12Cを形成する水蒸気混合室55:56が、空気予熱部11A:12Aを介して低温空気室53と連通する。直線流路13、14は、混合気加熱部11B:12Bを介して混合室55、56と連通する。高温混合気の流路H1:H2:HA:HBを形成する垂直ダクト57が、流出口18、19に隣接して配置される。直線流路13、流出口18及び高温混合気流路H1は相互連通し、直線流路14、流出口19及び高温混合気流路H2は相互連通する。
【0045】
次に、混合加熱装置1の作動について説明する。
図6に示す第1加熱工程において、低温空気が給気給送路LAから低温空気室53に導入され、低温水蒸気が低温水蒸気供給路LS1から水蒸気混合室55に導入される。低温空気は、空気予熱部11Aによって200〜300℃程度の温度に加熱された後、供給路LS1の低温水蒸気と混合する。空気及び水蒸気の混合気は、混合気加熱部11Bによって約1000℃の温度に加熱される。高温混合気Hは、直線流路13から流出口18に流出し、開閉制御弁41、高温混合気流路H1:HA:HBを介してガス化炉又は改質炉(図5)に供給される。
【0046】
バーナー設備5は、常時運転し、熱風炉6の燃焼排ガスEは、流路16、14、混合気加熱部11B、水蒸気混合室56及び空気予熱部11Aを流通して排気導出路EXに導出される。燃焼排ガスEは、混合気加熱部11B及び空気予熱部11Aのハニカム型蓄熱体を加熱し、自らは150℃程度の温度に冷却し、排気される。
【0047】
60秒以下に設定された切換時間が経過した時、制御装置40は、駆動装置34を作動し、弁軸32を回転して弁体31を第2位置(仮想線で示す)に切換える。同時に、制御装置40は、流路切換装置20及び制御弁41、42、46、47を第2位置に切換え、第2加熱工程を実行する。
【0048】
第2加熱工程では、低温空気は、給気給送路LAから低温空気室54に導入され、低温水蒸気は、低温水蒸気供給路LS2から水蒸気混合室56に導入される。低温空気は、空気予熱部12Aによって200〜300℃程度の温度に加熱された後、低温水蒸気と混合し、空気及び水蒸気の混合気は、混合気加熱部12Bによって約1000℃の温度に加熱される。高温混合気Hは、直線流路14から流出口19に流出し、開閉制御弁42、流路H2、給送路HA:HBを介してガス化炉又は改質炉(図5)に供給される。熱風炉6の燃焼排ガスEは、流路15、13、混合気加熱部11B、水蒸気混合室55及び空気予熱部11Aを流通して排気導出路EXに導出される。燃焼排ガスEは、混合気加熱部11B及び空気予熱部11Aのハニカム型蓄熱体を加熱し、150℃程度の温度に冷却した低温の排気ガスとして系外に排気される。
【0049】
かくして、混合加熱装置1は、空気予熱部11A:12Aにより低温空気を水蒸気の温度以上の温度に予熱した後、水蒸気混合室55、56で低温水蒸気と混合するように構成されているので、水蒸気及び空気の混合時に水蒸気の凝集又は凝縮が生じるのを確実に防止することができる。
【0050】
また、混合加熱装置1は、バーナー設備5の連続運転により、空気及び水蒸気の高温混合気をガス化炉及び改質炉等の外部機器に連続供給する。制御装置40は、混合加熱装置1の切換時間を設定変更する際、流路切換弁30、流路切換装置20及び制御弁41、42、46、47を切換時期を設定変更すれば良く、従って、確実且つ簡便に混合加熱装置1を制御することができる。
【0051】
更に、上記構成の廃棄物ガス化装置では、混合加熱装置1自体がスタートアップ用の加熱手段を備えるので、改質炉及びガス化炉のスタートアップ用加熱手段を省略することができる。加えて、ガス化炉の熱分解ガスは、最終的に混合加熱装置1の燃焼域6で完全燃焼した後、熱交換器11、12により急冷されるので、ダイオキシンの発生又は再合成等の問題を未然に回避し得る。
【0052】
図7は、本発明の第2実施例に係る混合加熱装置を使用した廃棄物ガス化装置のシステム構成を示すシステムフロー図である。
図7に示す混合加熱装置1Aは、約1000℃の高温混合気をガス化炉に供給し、混合加熱装置1Bは、約1000℃の高温混合気を改質炉に供給する。廃棄物ガス化装置の全体構成は、上記第1実施例の廃棄物ガス化装置と実質的に同一である。
【0053】
本実施例では、混合加熱装置1A:1Bは、単一の熱風炉7を共用する。熱風炉7のバーナー設備5は、連続燃焼し、燃焼域6は、高温雰囲気を常時維持する。
【0054】
図8は、図7に示す混合加熱装置1A:1Bの全体構造を示す縦断面図及び横断面図である。
混合加熱装置1A:1Bは、単一の熱風炉7に対して並列に配置され、連結部8によって熱風炉7の炉壁に夫々連結される。各々の混合加熱装置1A:1Bは、上下に整列配置した第1加熱ユニット51及び第2加熱ユニット52に分割され、各加熱ユニット51:52は、接続部17において接合する。流路H1:H2:HA:HBを形成する垂直ダクト57が、流出口18、19に隣接して配置される。前述の実施例における混合加熱装置1A:1Bと同様、混合加熱装置1A:1Bは、空気予熱部11A:12A及び混合気加熱部11B:12Bに分割された熱交換器11:12を備えており、混合域11C:12Cを形成する水蒸気混合室55:56が、空気予熱部11A:12Aと混合気加熱部11B:12Bとの間に画成される。
【0055】
混合加熱装置1は、空気予熱部11A:12Aにより低温空気を水蒸気の温度以上の温度(約100℃〜200℃)に予熱した後、水蒸気混合室55、56で低温水蒸気と混合するように構成され、混合時に生じ得る水蒸気の凝集又は凝縮を確実に防止する。
【0056】
また、本例の混合加熱装置1は、単独の熱風炉7及びバーナー設備5の連続運転により、複数の混合加熱装置1A:1Bを運転する。各混合加熱装置1A:1Bは、低温空気及び低温水蒸気を混合し且つ高温加熱し、ガス化炉又は改質炉に高温混合気を連続供給する。従って、熱風炉7及びバーナー設備5の設置台数は削減し、廃棄物ガス化システム全体の運転効率は改善するので、初期設備投資費用は軽減し、システムの運転及び維持・管理は省力化される。
【0057】
図9は、図8に示す混合加熱装置の変形例を示す横断面図であり、図10は、図9に示す混合加熱装置のI−I線断面図及びII−II線断面図である。
図9及び図10に示す混合加熱装置1は、左右対称且つ上下対称に配置された4体の加熱ユニット60A:60B:60C:60Dを備える。各加熱ユニット60は、後端部から低温空気室53、第1蓄熱体11A、水蒸気混合室55、第2蓄熱体11B、直線流路13、流路切換弁30及び傾斜流路15を直列に配列した構成を有し、傾斜流路15は、連結部8において相互連通する。各流路切換弁30は、弁体31、弁軸32、軸受33及び駆動装置34を備え、弁体31は、流路13、15の間に形成された切換弁収容域35に配置される。弁軸32の一端には、給水供給管SWが連結され、弁軸32の他端には、温水供給管HWが連結される。
【0058】
各加熱ユニット60の側壁59には、流出口18が開口し、流出口18は、開閉制御弁41を介して垂直ダクト57の高温給気流路58に連通する。開閉制御弁41は、流路切換弁30と同様の構造を有し、弁体45、弁軸49、軸受(図示せず)及び駆動装置(図示せず)を備える。開閉制御弁41は、制御装置40の制御下に流路切換弁30と同期作動し、流路13を高温給気流路58に選択的に連通させる。所望により、給水供給管SWは弁軸49の一端に連結され、温水供給管HWは弁軸49の他端に連結される。
【0059】
混合加熱装置1は、4体の加熱ユニット60を2体毎に任意に組合わせ、2組の混合加熱装置1A:1Bとして使用することができる。例えば、上下に整列した加熱ユニット60A:60Cを混合加熱装置1A(図7)として使用し、同様に上下整列した加熱ユニット60B:60Dを混合加熱装置1B(図7)として使用し得る。
【0060】
図11は、図6に示す混合加熱装置を使用した他の形式の廃棄物ガス化装置に関し、そのシステム構成を示すシステムフロー図である。
図11に示す廃棄物ガス化装置は、高温混合気発生装置を構成する混合加熱装置1を備える。混合加熱装置1には、低温水蒸気供給路LS1:LS2が接続される。混合加熱装置1は、前述の第1加熱工程及び第2加熱工程を反復し、水蒸気混合室55:56に供給された低温水蒸気は、空気予熱部11A:12Aによって200〜300℃程度の温度に加熱された予熱空気と混合する。空気及び水蒸気の混合気は、混合気加熱部11B:12Bによって約1000℃の温度に加熱され、高温混合気流路HGに給送される。高温混合気流路HGは、分配流路MG1:MG2に分岐し、各流路MG1:MG2に介装された流量制御弁71:72の制御下に廃棄物ガス化炉及び改質炉に分配される。
【0061】
なお、本例の廃棄物ガス化装置では、空気供給路CAは、給気給送路LAから分岐し、除塵装置の下流側に配置された熱交換器を介してバーナー設備5に供給される。熱交換器は、汎用のレキュペレータ型熱交換器からなり、空気供給路CAの燃焼用空気は、改質ガスと熱交換し、予熱される。熱交換器の改質ガスは、ブースターファンBFの圧力下に改質ガス給送路RG4に送出され、バーナー設備5に供給される。
【0062】
また、流路切換弁30の弁軸49に供給された冷却水(給水)は、弁軸32の冷却水流路を流通する間に気化し、低温水蒸気として低温水蒸気供給路LSに導入される。
【0063】
以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能であり、該変形例又は変更例も又、本発明の範囲内に含まれるものであることは、いうまでもない。
【0064】
例えば、単一の熱風炉に接続可能な混合加熱装置の台数は、2機に制限されるものではなく、3機以上の混合加熱装置を単一の熱風炉に連結しても良い。
【0065】
また、蓄熱型熱交換器及び流路切換弁の構造は、上記実施例の構造に限定されるものではなく、例えば、熱交換器としてペレット型蓄熱体を使用し、流路切換弁の駆動装置として、電動モータ等を用いた機械的駆動機構を使用しても良い。
【0066】
更に、混合加熱装置を使用可能なシステムは、上述の廃棄物ガス化システムに限定されるものではなく、例えば、上記混合加熱装置を微粉炭ボイラー等の給気系に使用しても良い。
【0067】
【発明の効果】
以上説明した如く、本発明の混合加熱装置によれば、低温空気は、混合加熱装置の熱交換器を構成する空気予熱部によって加熱され、低温水蒸気は、加熱後の空気と混合する。従って、本発明の混合加熱装置は、付加的な空気加熱器を備えず、しかも、水蒸気の凝集又は凝縮を生じさせることなく、空気及び水蒸気を良好に混合することができる。
【図面の簡単な説明】
【図1】本発明の好適な実施形態を概念的に示す混合加熱装置の概略断面図である。
【図2】熱交換器を構成する蓄熱体の構造を示す斜視図である。
【図3】本発明の他の好適な実施形態を概念的に示す混合加熱装置の概略断面図である。
【図4】本発明の更に他の実施形態を概念的に示す混合加熱装置の概略断面図である。
【図5】本発明の第1実施例に係る混合加熱装置を使用した廃棄物ガス化装置のシステム構成を示すシステムフロー図である。
【図6】混合加熱装置の構造を示す横断面図及び縦断面図である。
【図7】本発明の第2実施例に係る混合加熱装置を使用した廃棄物ガス化装置のシステム構成を示すシステムフロー図である。
【図8】図7に示す混合加熱装置の全体構造を示す縦断面図及び横断面図である。
【図9】図8に示す混合加熱装置の変形例を示す横断面図である。
【図10】図9に示す混合加熱装置のI−I線断面図(図10A)及びII−II線断面図(図10B)である。
【図11】図6に示す混合加熱装置を使用した他の形式の廃棄物ガス化装置に関し、そのシステム構成を示すシステムフロー図である。
【符号の説明】
1 混合加熱装置
2 給気ファン
3 排気ファン
5 バーナー設備
6 燃焼域
7 熱風炉
8 連結部
11:12 蓄熱型熱交換器
11A:12A 空気予熱部
11B:12B 混合気加熱部
11C:12C 混合域
13、14 直線流路
15、16 傾斜流路
17 接続部
18:19 高温混合気流出口
30 流路切換弁
40 制御装置
41:42 開閉制御弁
46:47 水蒸気供給制御弁
53:54 低温空気室
55:56 水蒸気混合室
57 垂直ダクト
CA 空気供給路
LA 給気給送路
LS:LS1:LS2、低温水蒸気供給路
EX 排気導出路
H1:H2 高温混合気流路
HA:HB:HG 高温混合気給送路
H 高温気流
E 燃焼排ガス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mixing and heating apparatus, and more specifically, mixing and heating relatively low-temperature air and water vapor, and continuously supplying a high-temperature mixture to an external device such as a gasification furnace or a reforming furnace. The present invention relates to a mixed heating apparatus to be supplied.
[0002]
[Prior art]
Heat that decomposes pyrolysis of solid or semi-solid materials in a reducing atmosphere, combustion furnaces such as heating furnaces, incinerators, boilers such as fine powder boilers or heavy oil boilers, gasification furnaces such as coal gasification furnaces, waste gasification furnaces, etc. A cracking furnace and a reaction furnace such as a reforming furnace for reforming pyrolysis gas are known. In recent years, a technique for supplying a relatively high-temperature preheated air to a furnace or combustion equipment of this type to promote a combustion reaction or gasification has attracted particular attention. As a technique for heating combustion air to a high temperature, a heat storage type heat exchange device using a honeycomb type or pellet type heat storage body is disclosed in Japanese Patent Application No. 5-6911 (Japanese Patent Application Laid-Open No. 6-213585) by the applicant of the present application. Is disclosed. The heat storage type heat exchange device constitutes a combustion air supply system that preheats air to a high temperature using a pair of heat storage elements, and the heat storage elements alternate between low temperature air corresponding to the atmospheric temperature and combustion exhaust gas in the combustion zone. To touch. The heat storage body that has received heat in contact with the combustion exhaust gas is heated to a temperature corresponding to the combustion gas temperature, and the low-temperature air receives heat in contact with the heated heat storage body and is preheated to a high temperature exceeding 800 ° C.
[0003]
The present inventors have applied such a structure of the heat storage body and developed a supply air heating device capable of continuously supplying a high temperature air flow such as high temperature air, high temperature steam or high temperature inert gas to a combustion furnace, etc. This is proposed in Japanese Patent Application No. 10-189 (Japanese Patent Laid-Open No. 10-246428). This type of heating device has already been put into practical use as a high-temperature air generator capable of continuously supplying high-temperature air and high-temperature steam exceeding 800 ° C. to coal or a waste gasifier.
[0004]
[Problems to be solved by the invention]
The high-temperature air generator is composed of a pair of heat storage heat exchangers, a pair of combustion zones, and a single shunt zone, and repeats the first step and the second step alternately. In the first step, the low-temperature air or water vapor is heated by the first heat storage body, and the high-temperature airflow after the heating is divided into an external device supply flow and an in-machine combustion airflow. The external device supply flow is supplied to a gasification furnace or the like outside the machine, while the in-machine combustion airflow is introduced into the second combustion zone and combusted in the second combustion zone. The high-temperature combustion exhaust gas generated in the second combustion zone is exhausted after heating the second heat storage body to a high temperature. In the second step, the low-temperature air or water vapor is heated by the second heat storage body, and then is divided into an external device supply flow and an in-machine combustion air flow. As in the first step, the external equipment supply stream is supplied to a gasification furnace outside the machine, and the in-machine combustion airflow is introduced into the first combustion zone and burned in the first combustion zone to produce high-temperature combustion exhaust gas. Generate. The combustion exhaust gas is exhausted through the first heat storage body. The generator for high temperature air or the like continuously supplies high temperature air or high temperature steam to a gasification furnace or the like by alternately repeating the first and second steps.
[0005]
The high-temperature air generator having such a configuration not only achieves the intended purpose of continuously supplying a high-temperature air stream or steam stream to a gasification furnace or the like, but also provides a continuous supply of air and steam. Since it was found through experiments by the present inventors that the temperature and flow rate are extremely stable, as an epoch-making high-temperature air or high-temperature steam generator capable of stably supplying a high-temperature air flow exceeding 700 ° C. to an external device. , Has been highly evaluated.
[0006]
In recent years, regarding a waste gasifier, a system configuration for introducing a mixture of high-temperature steam and high-temperature air into a gasification furnace and a reforming furnace has been proposed. Experiments are being conducted. In this type of system, room temperature air having a temperature equivalent to atmospheric temperature is mixed with water vapor, and then a mixture of air and water vapor is introduced into a heat storage body having a honeycomb structure, and the air-fuel mixture is heated by heat dissipation from the heat storage body. Here, the steam generated by a general steam generator, for example, an oil or coal combustion boiler, or a waste gas boiler, only has a temperature of about 150 ° C., so that the steam is converted into room temperature air. When water is directly mixed, water vapor is condensed or condensed and reliquefied. Therefore, in order to preheat low-temperature air to a temperature equal to or higher than the steam temperature, an air heater such as an electric heater is disposed in the air supply path upstream of the heat storage body, and the air preheated by the air heater is mixed with the steam. It has been adopted.
[0007]
However, when such an air heater is additionally provided in the air supply path of the airflow heating device, not only the initial equipment cost of the entire system is increased, but also the power or fuel for operating the air heater. Supply, and further maintenance of the air heater is required, resulting in a problem that energy efficiency is deteriorated and running cost is increased.
[0008]
The present invention has been made in view of such problems, and the object of the present invention is to mix and heat relatively low-temperature air and water vapor, and to mix and heat the mixture to continuously supply a high-temperature mixture to external equipment. Provided is a mixing and heating device capable of mixing air and water vapor well without additionally providing an air heater for heating air mixed with water vapor and without causing condensation or condensation of water vapor. There is to do.
[0009]
[Means and Actions for Solving the Problems]
In order to achieve the above object, the mixing and heating apparatus of the present invention is a regenerative heat exchange comprising a combustion zone (6) for generating combustion exhaust gas by a combustion reaction, and a flow path capable of alternately circulating low-temperature air and combustion exhaust gas. The heat exchanger includes an air preheating unit (11A: 12A) for heating low-temperature air, and an air-fuel mixture heating unit (11B: 12B) for heating a mixture of air and water vapor. It is divided into. A steam mixing chamber (11C: 12C) capable of introducing steam is formed between the air preheating unit and the mixture heating unit, and the air preheating unit heats the low-temperature air to a temperature equal to or higher than the temperature of the steam, Pass through.
According to the above configuration of the present invention, the low temperature steam introduced into the steam mixing chamber is mixed with the air that has passed through the air preheating section. The air that has passed through the air preheating unit is already heated by the air preheating unit and has a temperature higher than the water vapor temperature. Therefore, no condensation or condensation of low temperature steam occurs.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
According to a preferred embodiment of the present invention, the heat exchanger is constituted by a heat storage body having a honeycomb structure provided with a large number of narrow channels. More preferably, each part dimension and material of a thermal storage body are set so that the temperature efficiency of 0.8 or more may be exhibited.
In the embodiment of the present invention, the mixing and heating device includes at least one pair of the above heat exchanger, supply / discharge flow path (13-17), high-temperature air supply flow path (H1: H2: HA: HB: HG), and flow path switching. It has a valve (30). The supply / exhaust flow path is disposed between the combustion zone and the heat exchanger, and the high temperature supply air flow path is connected to the supply / exhaust flow path, and supplies the high temperature supply air flow to an external device. The flow path switching valve is disposed in the supply / exhaust flow path, shuts off the communication between the first heat exchanger and the combustion zone, and communicates the second heat exchanger and the combustion zone with the second heat. It is alternately switched to a second position where communication between the exchanger and the combustion zone is cut off and communication between the first heat exchanger and the combustion zone is established. In the first position, the high-temperature mixed air stream heated by the first heat exchanger is sent from the supply / exhaust flow path to the high-temperature supply air flow path, and the combustion exhaust gas in the combustion zone passes through the supply / discharge flow path and the second heat exchanger. Exhausted through. In the second position, the supply airflow heated by the second heat exchanger is sent from the supply / exhaust flow path to the high-temperature supply air flow path, and the combustion exhaust gas in the combustion zone passes through the supply / discharge flow path and the first heat exchanger. Exhausted.
[0011]
Preferably, the combustion zone is provided with a single burner facility capable of continuous operation, and the high-temperature air supply passage is provided with an opening / closing control valve for controlling opening and closing of the air supply passage.
In another embodiment of the present invention, an apparatus of the type disclosed in Japanese Patent Application No. 10-189 (Japanese Patent Application Laid-Open No. 10-246428), that is, a pair of heat storage heat exchangers (11:12), a pair of In the air supply heating device having a configuration with a combustion zone (13:14) and a single shunt zone (9), the heat exchanger includes an air preheating section (11A: 12A) for heating low-temperature air, air and Divided into a mixture heating section (11B: 12B) that heats the steam mixture, a steam mixing chamber (11C: 12C) into which steam can be introduced is formed between the air preheating section and the mixture heating section .
According to a preferred embodiment of the present invention, a mixed heating system including a plurality of the mixed heating devices is provided, and each mixed heating device shares a single combustion zone.
[0012]
In another preferred embodiment of the present invention, the mixing and heating device constitutes a heat source facility of a solid or liquid fuel gasifier, and the high-temperature air supply channel is a solid or liquid fuel gasifier and / or pyrolysis gas reformer. Connected to the quality furnace.
FIG. 1 is a schematic sectional view of a mixing and heating apparatus conceptually showing a preferred embodiment of the present invention. In the present embodiment, the mixed heating device constitutes a high-temperature air generator that continuously supplies high-temperature air to external equipment. The temperature of the hot air is set to a temperature of 800 ° C. or higher.
[0013]
The mixed heating device 1 includes first and second regenerative heat exchangers 11 and 12 that heat low temperature air (normal temperature air) having a temperature corresponding to an atmospheric temperature introduced via the air supply / feed path LA to a high temperature. The heat exchangers 11 and 12 are made of a ceramic heat storage body having a honeycomb structure provided with a large number of narrow flow paths. A forced air supply fan 2 is interposed in the air supply / feed path LA. The supply air supply path LA communicates with the heat exchangers 11 and 12 alternately, and supplies low-temperature air to the heat exchangers 11 and 12 alternately. The exhaust lead-out path EX provided with the forced exhaust fan 3 communicates alternately with the heat exchangers 11 and 12, and exhausts the combustion exhaust gas from the heat exchangers 11 and 12 on the side not communicating with the supply air supply path LA. Attract and exhaust.
[0014]
The first and second straight flow paths 13 and 14 extend in front of the heat exchangers 11 and 12, and the straight flow paths 13 and 14 are continuous with the inclined flow paths 15 and 16. The inclined flow paths 15 and 16 are bent at a predetermined angle with respect to the central axis of the mixing and heating device 1, and continue to the connection portion 17. The connection portion 17 is provided with a flow path switching valve 30, and the flow path switching valve 30 includes a valve shaft 32 and a movable valve body 31. The movable valve body 31 is switched alternately between the first position (FIG. 1A) and the second position (FIG. 1B) around the valve shaft 32. The valve shaft 32 and the movable valve body 31 are made of a heat-resistant material that can operate in a high-temperature atmosphere exceeding 1000 ° C., for example, a molded member made of ceramics such as alumina or zirconia. Formed in the part.
[0015]
The mixing and heating apparatus 1 includes a hot stove 7, and the hot stove 7 includes a single combustion zone 6 including a single burner facility 5 that is continuously operated. The combustion zone 6 is disposed in front of the connection portion 17. The flow paths 15 and 16 communicate with the combustion zone 6 alternately by switching control of the flow path switching valve 30.
[0016]
An air supply path CA for supplying combustion air (normal temperature air) is connected to the burner facility 5. An air supply fan 4 is interposed in the air supply path CA, and continuously supplies combustion air to the burner facility 5. A fuel supply path F capable of constantly supplying hydrocarbon fuels such as LPG, light oil, heavy oil, coal gasification gas, and waste gasification gas is connected to the burner facility 5 and supplies combustion fuel to the burner facility 5 . In addition, each burner installation 5 is comprised by the single or several burner unit. The burner facility 5 is generally provided with incidental facilities such as a pilot burner and an ignition transformer. However, these incidental facilities are not shown in order to simplify the drawing.
[0017]
The high temperature mixed air flow outlets 18 and 19 open to the flow paths 13 and 14, respectively, and the high temperature air flow paths H 1 and H 2 are connected to the flow outlets 18 and 19, respectively. Open / close control valves 41, 42 are interposed in the flow paths H 1, H 2, and the open / close control valves 41, 42 are controlled to open / close by the control device 40. The flow paths H1 and H2 merge at the merge section 43, and the high-temperature air supply path HG extends from the merge section 43 to external devices such as a gasification furnace and a reforming furnace (not shown) of a gasification facility. .
[0018]
The first and second heat exchange devices 11:12 are divided into an air preheating unit 11A: 12A and an air mixture heating unit 11B: 12B, and the mixing zone 11C: 12C is an air preheating unit 11A: 12A and air mixture heating. Part 11B: formed between 12B. The steam supply path LS1: LS2 is connected to the mixing zone 11C: 12C, and steam generated at a temperature of about 100 ° C. to 200 ° C. (hereinafter referred to as low temperature steam) generated by a steam generator such as a waste gas boiler is supplied to the steam supply path LS1. : Introduced into the mixing zone 11C: 12C via LS2. A steam supply control valve 46:47 that can be controlled to open and close by the control device 40 is interposed in the steam supply path LS1: LS2.
[0019]
1A shows the first position (first heating step) of the mixing and heating apparatus 1, and FIG. 1B shows the second position (second heating step) of the mixing and heating apparatus 1. Has been.
[0020]
In the first heating step (FIG. 1A), the flow path switching valve 30 is located at a first position that isolates the flow paths 13 and 15 from the combustion zone 6 and communicates the flow paths 14 and 16 with the combustion zone 6. In the first position (FIG. 1A), the control valves 41 and 46 are opened, and the control valves 42 and 47 are closed.
[0021]
The supply air supply path LA supplies the first heat exchanger 11 with low-temperature air corresponding to the outside air temperature. The low-temperature air receives and receives heat from the air preheating unit 11A, and is heated to a temperature of about 200 ° C. to 300 ° C., that is, higher than the temperature of water vapor. The heated air is mixed with the low temperature steam in the steam supply path LS in the mixing zone 11C. The mixture of air and water vapor is supplied to the high-temperature mixture heating unit 11B, receives heat through heat transfer contact with the mixture-heating unit 11B, and is heated to a high temperature of 800 ° C or higher, preferably 1000 ° C to 1100 ° C. The The air-fuel mixture H heated to high temperature flows into the high-temperature air-fuel mixture flow path H1 from the flow path 13, is fed to the high-temperature air-fuel mixture feed path HG via the open / close control valve 41, and is supplied to the external device.
[0022]
The air supply path CA and the fuel supply path F continuously supply combustion air and hydrocarbon-based fuel to the burner facility 5, and the burner facility 5 continuously performs combustion operation. The high-temperature combustion exhaust gas E generated in the combustion zone 6 is introduced into the second heat exchanger 12 through the flow paths 16 and 14, and the honeycomb-type heat storage body (the air preheating unit 12 </ b> A and the mixture heating unit 12) of the second heat exchanger 12. 12B) and then exhausted from the exhaust outlet passage EX to the outside of the machine.
[0023]
On the other hand, in the second heating step (FIG. 1B), the flow path switching valve 30 isolates the flow paths 14, 16 and the combustion zone 6 and communicates the flow paths 13, 15 with the combustion zone 6. Located in. In the second position (FIG. 1B), the control valves 42 and 47 are opened and the control valves 41 and 46 are closed.
[0024]
The supply air supply path LA supplies the second heat exchanger 12 with low-temperature air corresponding to the outside air temperature. The low-temperature air receives and receives heat from the high-temperature air preheating unit 12A heated in the first heating step, and is heated to a temperature of about 200 ° C to 300 ° C. The heated air is mixed with the low temperature steam in the steam supply path LS in the mixing zone 12C. The mixture of air and water vapor is supplied to the high-temperature mixture heating unit 12B, receives heat by contact with the mixture heating unit 12B, and is heated to 800 ° C or higher, preferably 1000 ° C to 1100 ° C. The The air-fuel mixture H heated to high temperature flows into the high-temperature air-fuel mixture flow path H2 from the flow path 14, is fed to the high-temperature air-fuel mixture feed path HG via the open / close control valve 41, and is supplied to the external device.
[0025]
The high-temperature combustion exhaust gas E generated in the combustion zone 6 is introduced into the first heat exchanger 11 from the flow paths 15 and 13, and the honeycomb type heat storage body (the air preheating unit 11 </ b> A and the mixture heating unit 11) of the first heat exchanger 11. 11B) and then exhausted from the exhaust outlet passage EX to the outside of the machine.
[0026]
The electronic control device constituting the control device 40 includes operation control means for controlling the operation of the air supply fan 2, the exhaust fan 3, the air supply fan 4 and the burner equipment 5, and the flow path switching valve 30 and the control valve 41, Switching control means for controlling the positions of 42, 46 and 47 is provided. The switching control means performs synchronous switching control of the flow path switching valve 30 and the control valves 41, 42, 46, 47, and controls the mixing and heating device 1 for each switching time set to a predetermined time interval, for example, 60 seconds or less. Alternately switch to position or second position.
[0027]
The heat exchanger 11:12 is 0.7 or more, more preferably 0.9 or more, as a whole heat exchanger in which the honeycomb type heat accumulators of the air preheating unit 11A: 11B and the mixture heating unit 12A: 12B are combined. It is designed to exhibit the temperature efficiency. The low-temperature air (temperature Tci) in the air supply / feed passage LA passes through the honeycomb flow path of the heat accumulator, and heat exchanges with the heat transfer surface of the cell wall of the honeycomb structure to exchange heat with the cell wall. Heated to a gas H (temperature Tco). The heat storage body is cooled by heat exchange with low-temperature air. The combustion exhaust gas (temperature Thi) in the combustion zone 6 passes through the honeycomb flow path of the cooled heat storage body, heat-contacts with the heat transfer surface of the cell wall, exchanges heat with the cell wall, and heats the heat storage body to a high temperature. . The combustion exhaust gas is exhausted as a relatively low temperature combustion exhaust gas (temperature Tho) by heat exchange with the heat storage body. For example, the temperature of air and combustion exhaust gas is set as follows.
Low temperature air temperature Tci = about 20 ° C
Combustion exhaust gas temperature Thi = about 1200 ℃
[0028]
High temperature air temperature Tco = about 1100 ° C
Low temperature exhaust gas temperature Tho = about 150 ° C
FIG. 2 is a perspective view showing the structure of the heat storage body of the heat exchangers 11 and 12.
The position where the air preheating unit 11A: 12A and the mixture heating unit 11B: 12B are divided is substantially determined by the preheating temperature of the low temperature air by the air preheating unit 11A: 12A and the mixing ratio of air and water vapor. The total length D2 of the air-fuel mixture heating unit 11B: 12B is larger than the total length D1 of the air preheating unit 11A: 12A, and the ratio of the length D1 / D2 is set within a range of, for example, 1/3 to 2/3. . Moreover, the mixing ratio of air and water vapor | steam is set to the ratio within the range of 3/1-1/3, for example. Air preheating part 11A: 12A should just heat air to temperature higher than the temperature of low-temperature steam, and the preheating temperature of air is set as the temperature within the limits of 200 ° C-300 ° C. Since the heated air is introduced into the mixing zone 11C: 12C, aggregation or condensation of the low-temperature steam introduced into the mixing zone 11C: 12C does not occur.
[0029]
According to such a mixing and heating apparatus 1, problems caused when low-temperature steam is mixed with low-temperature air, that is, aggregation or condensation of moisture in the steam is prevented by preheating the low-temperature air by the air preheating unit 11A: 12A. Therefore, the conventional preheating process which preheats low temperature air with an electric heater etc. previously can be skipped.
[0030]
FIG. 3 is a schematic sectional view of a mixing and heating apparatus conceptually showing another preferred embodiment of the present invention. 3, components that are substantially the same as or equivalent to the components shown in FIG. 1 are given the same reference numerals.
[0031]
In the embodiment shown in FIG. 3, a plurality of mixed heating devices 1 share a single hot stove 7. The hot stove 7 is disposed adjacent to the plurality of mixing and heating devices 1, and each mixing and heating device 1 includes a connecting portion 8 that communicates with the combustion zone 6 of the hot stove 7. The hot stove 7 includes a burner facility 5 that continuously performs combustion operation, and the combustion zone 6 communicates with a connection portion 17 of each mixing and heating device 1 through a connection portion 8. In addition, each burner installation 5 is comprised by the single or several burner unit.
The connecting portion 17 is provided with the above-described flow path switching valve 30, and opening / closing control valves 41 and 42 are interposed in the flow paths H 1 and H 2 of the mixing and heating devices 1, respectively. The mixing and heating device 1 is configured to alternately repeat the first heating step and the second heating step described above, and the control device 40 alternately switches the flow path switching valve 30 to the first or second position, In conjunction with the switching control of the flow path switching valve 30, the control valves 41:42 and 46:47 are alternately opened and closed. The high temperature air-fuel mixture alternately derived from the flow paths H1 and H2 of each mixing and heating device 1 joins at the confluence section 43 and is supplied from the high temperature air-fuel mixture feed path G to the external device. In addition, you may supply the high temperature gas mixture of each mixing heating apparatus 1 with respect to a different external apparatus, respectively.
[0032]
FIG. 4 is a schematic sectional view of a mixing and heating apparatus conceptually showing still another embodiment of the present invention.
The mixing heating apparatus 1 shown in FIG. 4 includes a pair of heat storage type heat exchangers 11:12, a pair of flow paths 13:14, and a single flow dividing region 9. The flow path 13:14 constitutes a combustion zone provided with the burner equipment 5a: 5b. The heat exchanger 11:12 is divided into an air preheating unit 11A: 12A for heating low-temperature air and an air mixture heating unit 11B: 12B for heating an air / water vapor mixture. A steam mixing chamber 11C: 12C capable of introducing steam is formed between the air preheating unit 11A: 12A and the mixture heating unit 11B: 12B.
[0033]
In the first heating step (FIG. 4A), the air-fuel mixture H heated by the first heat exchanger 11 is divided into the in-machine combustion air flow h1 and the external device supply flow h2 in the flow dividing region 9, and the external device supply flow h2 Is supplied to an external device through a high-temperature air-fuel mixture feed path HG, and the in-machine combustion air flow h1 is introduced into the flow path 14 and combusted by the operation of the burner facility 5b, and then exhausted through the second heat exchanger 12. Is done. On the other hand, in the second heating step (FIG. 4B), the air-fuel mixture H heated by the second heat exchanger 12 is divided into the in-machine combustion air flow h1 and the external device supply flow h2 in the flow dividing region 9, and supplied to the external device. The flow h2 is supplied to an external device through a high-temperature mixture feed path HG, and the in-machine combustion airflow h1 is introduced into the flow path 13 and burned by the operation of the burner facility 5a, and then passed through the first heat exchanger 11. Exhausted. The mixed heating device alternately executes the first heating process and the second heating process at every predetermined switching time.
[0034]
Similar to the embodiment shown in FIG. 1, in the embodiment shown in FIGS. 3 and 4, the water vapor is introduced into the water vapor mixing chamber 11 </ b> C: 12 </ b> C and mixed with air having a temperature equal to or higher than the temperature of the water vapor. Therefore, aggregation or condensation of moisture in water vapor can be prevented.
[0035]
【Example】
Hereinafter, embodiments of a mixing and heating apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 5 is a system flow diagram showing the system configuration of the waste gasifier using the mixing and heating apparatus according to the first embodiment of the present invention.
[0036]
The waste gasification apparatus includes a gasification furnace that thermally decomposes waste, and a reforming furnace that reforms the pyrolysis gas of the gasification furnace into a crude fuel gas. The gasification furnace is connected to the first mixing and heating apparatus 1A via the high-temperature mixture feeding path HA, and the reforming furnace is connected to the second mixing and heating apparatus 1B via the high-temperature mixture feeding path HB. . The first mixing and heating apparatus 1A heats an air-fuel mixture having a high air ratio, for example, an air-fuel mixture having a mixture ratio of air and water vapor of 1: 0 to 5: 2 to 800 ° C or higher, preferably about 1000 ° C. And continuously supplied to the gasifier. The second mixing and heating apparatus 1B heats an air-fuel mixture having a low air ratio, for example, an air-fuel mixture having a mixture ratio of air and water vapor of 1: 5 to 1: 1 to 800 ° C. or higher, preferably about 1000 ° C. And continuously supplied to the reforming furnace.
[0037]
Waste is introduced into the gasification furnace by the waste introduction means WT, and the high-temperature air in the high-temperature mixture feed path HA is introduced into the gasification furnace. The waste in the gasification furnace is heated by the high-temperature gas mixture and thermally decomposed into gas and residue, and pyrolysis gas is generated in the gasification furnace. The pyrolysis gas is introduced into the reforming furnace via the pyrolysis gas supply path PG. The high-temperature air-fuel mixture in the high-temperature air-fuel mixture feed path HB is supplied to the reforming furnace and mixed with the pyrolysis gas. Hydrocarbons in the pyrolysis gas undergo a steam reforming reaction with high-temperature steam, and as a result, the pyrolysis gas is reformed into a reformed gas (high-temperature crude gas) containing hydrocarbon, carbon monoxide and hydrogen. Endothermic reforming reaction of hydrocarbon and high temperature steam (CxHx + H 2 O → CO + H 2 + H 2 The reaction heat required for O) is not only supplied by the sensible heat of water vapor itself, but also exothermic reaction of hydrocarbons and hot air (CxHx + O 2 + N 2 → CO + CO 2 + H 2 + H 2 O + N 2 ).
[0038]
The reformed gas in the reforming furnace is introduced into the waste gas boiler through the reformed gas supply path RG1. A hot water supply pipe HW is connected to the gas-liquid heat exchanger of the waste gas boiler. The upstream end of the hot water supply pipe HW is connected to the flow path switching valve 30 of the mixing and heating apparatus 1A: 1B, and the water supply supply pipe is connected to the valve shaft 32 of the flow path switching valve 30. Water supplied through the cooling water flow path of the valve shaft 32 as cooling water cools the valve shaft 32 to receive heat, and is supplied as hot water to the hot water supply pipe HW. The hot water in the hot water supply pipe HW is vaporized by heat exchange with the reformed gas by a heat exchanger in the waste gas boiler, and is sent to the low temperature steam supply path LS as low temperature steam. The water vapor in the supply channel LS is supplied as a heat medium fluid to a factory or building heating / hot water supply facility. If desired, steam may be supplied to a steam turbine of a power generation facility. The low-temperature steam supply path LS is also connected to the steam supply path LS1: LS2, and supplies low-temperature steam to the mixing and heating apparatus 1A: 1B.
[0039]
The reformed gas that has passed through the waste gas boiler is introduced from the reformed gas feed path RG2 into a dust remover such as a back filter and purified by the dust remover, and then the reformed gas feed path under the pressure of the booster fan BF. It is sent to RG3 and supplied to each burner facility 5 of the mixing and heating apparatus 1A: 1B as the fuel gas of the hot stove 7. If desired, part of the reformed gas may be supplied as fuel gas to an internal combustion engine such as a gas turbine power generator. The air supply fan 4 is connected to the burner facility 5 through the air supply path CA, and outside air (normal temperature air) corresponding to the atmospheric temperature is supplied to the burner facility 5. Note that the burner facility of the mixing and heating apparatus 1 is provided with a supply means for start-up fuel (LPG or the like) and incidental facilities (not shown) such as a pilot burner and an ignition transformer.
[0040]
The mixed heating device 1A: 1B includes a flow path switching device 20 that controls communication between the air supply / feed passage LA, the exhaust outlet passage EX, and the heat exchangers 11 and 12. The flow path switching device 20 includes a pair of air supply on / off valves 21 and 22 and a pair of exhaust on / off valves 23 and 24. The air supply on / off valves 21 and 22 alternately connect the air supply / supply path LA with the heat exchangers 11 and 12, and the exhaust on / off valves 23 and 24 alternately connect the exhaust outlet passage EX with the heat exchangers 11 and 12. Communicate. The control device 40 opens the on-off valves 21 and 24 and closes the on-off valves 22 and 23 in the first step, and closes the on-off valves 21 and 24 and opens the on-off valves 22 and 23 in the second step. .
[0041]
FIG. 6 is a transverse sectional view and a longitudinal sectional view showing the structure of the mixed heating apparatus 1 (1A: 1B).
The mixing and heating apparatus 1 is divided into a first heating unit 51 and a second heating unit 52 that are arranged vertically. The first heating unit 51 accommodates the first heat exchanger 11 and forms the flow paths 13 and 15, and the second heating unit 52 accommodates the second heat exchanger 12 and forms the flow paths 14 and 16. To do. The first and second heating units 51:52 have a vertically symmetrical structure with respect to the central axis of the mixed heating apparatus 1.
[0042]
The hot stove 7 is disposed in front of the heating unit 51:52, and the combustion zone 6 communicates with the heating unit 51:52 alternately via the connecting portion 17. The heating unit 51:52, the connecting portion 17, and the hot stove 7 are integrally formed of various fire-resistant / heat-resistant materials such as a heat-resistant castable / lining material, a heat-resistant brick, a fire-resistant / heat-insulating brick, or a heat-resistant ceramic material.
[0043]
The valve shaft 32 of the flow path switching valve 30 penetrates the left and right side walls 59 and is supported by a pair of left and right bearings 33. A drive device 34 such as a fluid cylinder device is operatively connected to one end of the valve shaft 32. The flow path switching valve 30 is alternately switched between a first position indicated by a solid line and a second position indicated by an imaginary line by the operation of the driving device 34. A water supply pipe SW is connected to one end of the valve shaft 32, and a hot water supply pipe HW is connected to the other end of the valve shaft 32.
[0044]
A low temperature air chamber 53: 54 is formed at the rear end of the heating unit 51: 52, and the low temperature air chamber 53 communicates with the supply air supply path LA. The steam mixing chamber 55:56 forming the mixing zone 11C: 12C communicates with the low temperature air chamber 53 via the air preheating unit 11A: 12A. The straight flow paths 13 and 14 communicate with the mixing chambers 55 and 56 via the mixture heating section 11B: 12B. A vertical duct 57 forming a flow path H1: H2: HA: HB of the high-temperature air-fuel mixture is disposed adjacent to the outlets 18 and 19. The straight flow path 13, the outlet 18 and the high-temperature mixture flow path H1 communicate with each other, and the straight flow path 14, the outlet 19 and the high-temperature mixture flow path H2 communicate with each other.
[0045]
Next, the operation of the mixing and heating apparatus 1 will be described.
In the first heating step shown in FIG. 6, low-temperature air is introduced into the low-temperature air chamber 53 from the supply air supply path LA, and low-temperature steam is introduced into the water-vapor mixing chamber 55 from the low-temperature steam supply path LS1. The low-temperature air is heated to a temperature of about 200 to 300 ° C. by the air preheating unit 11A and then mixed with the low-temperature water vapor in the supply path LS1. The mixture of air and water vapor is heated to a temperature of about 1000 ° C. by the mixture heating section 11B. The high-temperature air-fuel mixture H flows out from the straight flow path 13 to the outlet 18 and is supplied to the gasification furnace or reforming furnace (FIG. 5) via the open / close control valve 41 and the high-temperature air-fuel mixture flow path H1: HA: HB. .
[0046]
The burner facility 5 is always operated, and the combustion exhaust gas E of the hot stove 6 is led to the exhaust outlet passage EX through the flow paths 16 and 14, the mixture heating section 11B, the steam mixing chamber 56 and the air preheating section 11A. The The combustion exhaust gas E heats the honeycomb-type heat storage body of the air-fuel mixture heating unit 11B and the air preheating unit 11A, cools itself to a temperature of about 150 ° C., and is exhausted.
[0047]
When the switching time set to 60 seconds or less has elapsed, the control device 40 operates the driving device 34 to rotate the valve shaft 32 to switch the valve body 31 to the second position (indicated by a virtual line). At the same time, the control device 40 switches the flow path switching device 20 and the control valves 41, 42, 46, 47 to the second position, and executes the second heating step.
[0048]
In the second heating step, low-temperature air is introduced into the low-temperature air chamber 54 from the supply air supply path LA, and low-temperature steam is introduced into the steam mixing chamber 56 from the low-temperature steam supply path LS2. The low temperature air is heated to a temperature of about 200 to 300 ° C. by the air preheating unit 12A and then mixed with the low temperature steam, and the mixture of air and water vapor is heated to a temperature of about 1000 ° C. by the mixture heating unit 12B. The The high-temperature air-fuel mixture H flows out from the straight flow path 14 to the outlet 19 and is supplied to the gasification furnace or reforming furnace (FIG. 5) via the open / close control valve 42, the flow path H2, and the feed path HA: HB. The The combustion exhaust gas E from the hot stove 6 flows through the flow paths 15, 13, the mixture heating section 11 </ b> B, the steam mixing chamber 55, and the air preheating section 11 </ b> A and is led to the exhaust outlet path EX. The combustion exhaust gas E heats the honeycomb-type heat storage body of the mixture heating section 11B and the air preheating section 11A, and is exhausted out of the system as a low-temperature exhaust gas cooled to a temperature of about 150 ° C.
[0049]
Thus, since the mixing and heating apparatus 1 is configured to preheat the low temperature air to a temperature equal to or higher than the temperature of the water vapor by the air preheating unit 11A: 12A, and then mix it with the low temperature water vapor in the water vapor mixing chambers 55 and 56. In addition, it is possible to reliably prevent water vapor from condensing or condensing during mixing of air.
[0050]
The mixing and heating apparatus 1 continuously supplies a high-temperature mixture of air and water vapor to an external device such as a gasification furnace and a reforming furnace by continuously operating the burner facility 5. When the control device 40 changes the switching time of the mixing and heating device 1, the control device 40 only needs to change the switching timing of the flow path switching valve 30, the flow path switching device 20, and the control valves 41, 42, 46, 47. The mixing and heating apparatus 1 can be controlled reliably and simply.
[0051]
Furthermore, in the waste gasifier having the above-described configuration, the mixing and heating apparatus 1 itself includes a start-up heating unit, so that the start-up heating unit for the reforming furnace and the gasification furnace can be omitted. In addition, since the pyrolysis gas of the gasification furnace is finally completely burned in the combustion zone 6 of the mixing and heating apparatus 1 and then rapidly cooled by the heat exchangers 11 and 12, problems such as generation of dioxins or resynthesis are caused. Can be avoided in advance.
[0052]
FIG. 7 is a system flow diagram showing the system configuration of the waste gasifier using the mixing and heating apparatus according to the second embodiment of the present invention.
The mixed heating device 1A shown in FIG. 7 supplies a high-temperature mixture at about 1000 ° C. to the gasification furnace, and the mixing heating device 1B supplies a high-temperature mixture at about 1000 ° C. to the reforming furnace. The overall configuration of the waste gasifier is substantially the same as the waste gasifier of the first embodiment.
[0053]
In this embodiment, the mixed heating devices 1A: 1B share a single hot stove 7. The burner facility 5 of the hot stove 7 continuously burns, and the combustion zone 6 always maintains a high temperature atmosphere.
[0054]
FIG. 8 is a longitudinal sectional view and a transverse sectional view showing the overall structure of the mixed heating apparatus 1A: 1B shown in FIG.
The mixed heating devices 1 </ b> A and 1 </ b> B are arranged in parallel to the single hot stove 7, and are connected to the furnace wall of the hot stove 7 by the connecting portion 8. Each of the mixed heating devices 1A: 1B is divided into a first heating unit 51 and a second heating unit 52 that are arranged vertically, and each heating unit 51:52 is joined at the connection portion 17. Vertical ducts 57 forming flow paths H1: H2: HA: HB are arranged adjacent to the outlets 18,19. Similar to the mixed heating device 1A: 1B in the above-described embodiment, the mixed heating device 1A: 1B includes a heat exchanger 11:12 divided into an air preheating unit 11A: 12A and a mixed gas heating unit 11B: 12B. The steam mixing chamber 55:56 forming the mixing zone 11C: 12C is defined between the air preheating unit 11A: 12A and the mixture heating unit 11B: 12B.
[0055]
The mixing and heating device 1 is configured to preheat low-temperature air to a temperature equal to or higher than the temperature of water vapor (about 100 ° C. to 200 ° C.) by the air preheating unit 11A: 12A and then mix it with the low-temperature water vapor in the water vapor mixing chambers 55 and 56. And reliably prevent water vapor agglomeration or condensation during mixing.
[0056]
Moreover, the mixing heating apparatus 1 of this example operates several mixing heating apparatus 1A: 1B by the continuous operation of the single hot stove 7 and the burner installation 5. FIG. Each mixing heating apparatus 1A: 1B mixes low temperature air and low temperature steam and heats them at a high temperature, and continuously supplies the high temperature mixture to the gasification furnace or reforming furnace. Accordingly, the number of installed hot stove furnaces 7 and burner equipment 5 is reduced, and the operation efficiency of the entire waste gasification system is improved. Therefore, the initial capital investment cost is reduced, and the operation, maintenance and management of the system are saved. .
[0057]
9 is a cross-sectional view showing a modification of the mixing and heating apparatus shown in FIG. 8, and FIG. 10 is a cross-sectional view taken along the lines II and II-II of the mixing and heating apparatus shown in FIG.
The mixed heating apparatus 1 shown in FIGS. 9 and 10 includes four heating units 60A: 60B: 60C: 60D arranged symmetrically in the left-right direction and vertically. Each heating unit 60 includes a low-temperature air chamber 53, a first heat storage body 11A, a steam mixing chamber 55, a second heat storage body 11B, a straight flow path 13, a flow path switching valve 30, and an inclined flow path 15 in series from the rear end. The inclined flow paths 15 communicate with each other at the connecting portion 8. Each flow path switching valve 30 includes a valve body 31, a valve shaft 32, a bearing 33, and a drive device 34, and the valve body 31 is disposed in a switching valve accommodation area 35 formed between the flow paths 13 and 15. . A water supply pipe SW is connected to one end of the valve shaft 32, and a hot water supply pipe HW is connected to the other end of the valve shaft 32.
[0058]
An outlet 18 opens on the side wall 59 of each heating unit 60, and the outlet 18 communicates with the high-temperature air supply passage 58 of the vertical duct 57 via the opening / closing control valve 41. The opening / closing control valve 41 has the same structure as the flow path switching valve 30 and includes a valve body 45, a valve shaft 49, a bearing (not shown), and a drive device (not shown). The open / close control valve 41 operates synchronously with the flow path switching valve 30 under the control of the control device 40, and selectively connects the flow path 13 to the high temperature air supply flow path 58. If desired, the feed water supply pipe SW is connected to one end of the valve shaft 49, and the hot water supply pipe HW is connected to the other end of the valve shaft 49.
[0059]
The mixing and heating apparatus 1 can be used as two sets of mixing and heating apparatuses 1A and 1B by arbitrarily combining four heating units 60 every two. For example, the heating units 60A: 60C aligned vertically can be used as the mixing heating device 1A (FIG. 7), and the heating units 60B: 60D similarly aligned vertically can be used as the mixing heating device 1B (FIG. 7).
[0060]
FIG. 11 is a system flow diagram showing the system configuration of another type of waste gasifier using the mixed heating apparatus shown in FIG.
The waste gasifier shown in FIG. 11 includes a mixing and heating device 1 that constitutes a high-temperature mixture generator. A low temperature steam supply path LS1: LS2 is connected to the mixing and heating apparatus 1. The mixing and heating apparatus 1 repeats the first heating process and the second heating process described above, and the low temperature steam supplied to the steam mixing chamber 55:56 is brought to a temperature of about 200 to 300 ° C. by the air preheating unit 11A: 12A. Mix with heated preheated air. The mixture of air and water vapor is heated to a temperature of about 1000 ° C. by the mixture heating section 11B: 12B and fed to the high temperature mixture flow path HG. The high-temperature mixture channel HG branches to the distribution channel MG1: MG2 and is distributed to the waste gasification furnace and the reforming furnace under the control of the flow rate control valves 71:72 interposed in the channels MG1: MG2. The
[0061]
In the waste gasifier of this example, the air supply path CA branches from the air supply / feed path LA and is supplied to the burner facility 5 via a heat exchanger arranged on the downstream side of the dust removing apparatus. . The heat exchanger is a general-purpose recuperator type heat exchanger, and the combustion air in the air supply path CA is preheated by exchanging heat with the reformed gas. The reformed gas of the heat exchanger is sent to the reformed gas supply path RG4 under the pressure of the booster fan BF and supplied to the burner facility 5.
[0062]
Further, the cooling water (water supply) supplied to the valve shaft 49 of the flow path switching valve 30 is vaporized while flowing through the cooling water flow path of the valve shaft 32, and is introduced into the low temperature steam supply path LS as low temperature steam.
[0063]
The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications or changes can be made within the scope of the present invention described in the claims. Needless to say, such modifications and variations are also included in the scope of the present invention.
[0064]
For example, the number of mixing and heating devices connectable to a single hot stove is not limited to two, and three or more mixing and heating devices may be connected to a single hot stove.
[0065]
Further, the structure of the heat storage type heat exchanger and the flow path switching valve is not limited to the structure of the above embodiment. For example, a pellet type heat storage body is used as the heat exchanger, and the flow path switching valve driving device is used. Alternatively, a mechanical drive mechanism using an electric motor or the like may be used.
[0066]
Furthermore, the system which can use a mixing heating apparatus is not limited to the above-mentioned waste gasification system, For example, you may use the said mixing heating apparatus for supply systems, such as a pulverized coal boiler.
[0067]
【The invention's effect】
As described above, according to the mixing and heating apparatus of the present invention, the low-temperature air is heated by the air preheating unit constituting the heat exchanger of the mixing and heating apparatus, and the low-temperature steam is mixed with the heated air. Therefore, the mixing and heating apparatus of the present invention does not include an additional air heater and can mix air and water vapor well without causing water vapor aggregation or condensation.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a mixing and heating apparatus conceptually showing a preferred embodiment of the present invention.
FIG. 2 is a perspective view showing a structure of a heat storage body constituting a heat exchanger.
FIG. 3 is a schematic sectional view of a mixing and heating apparatus conceptually showing another preferred embodiment of the present invention.
FIG. 4 is a schematic sectional view of a mixing and heating apparatus conceptually showing still another embodiment of the present invention.
FIG. 5 is a system flow diagram showing a system configuration of a waste gasifier using the mixed heating apparatus according to the first embodiment of the present invention.
FIG. 6 is a transverse sectional view and a longitudinal sectional view showing the structure of the mixing and heating apparatus.
FIG. 7 is a system flow diagram showing a system configuration of a waste gasifier using a mixed heating apparatus according to a second embodiment of the present invention.
8 is a longitudinal sectional view and a transverse sectional view showing the entire structure of the mixing and heating apparatus shown in FIG.
9 is a cross-sectional view showing a modification of the mixing and heating apparatus shown in FIG.
10 is a cross-sectional view taken along line II (FIG. 10A) and a cross-sectional view taken along line II-II (FIG. 10B) of the mixing and heating apparatus shown in FIG.
11 is a system flow diagram showing the system configuration of another type of waste gasifier using the mixing and heating apparatus shown in FIG. 6;
[Explanation of symbols]
1 Mixing heating device
2 Air supply fan
3 Exhaust fan
5 Burner equipment
6 Combustion zone
7 Hot stove
8 connecting part
11:12 heat storage heat exchanger
11A: 12A Air preheating part
11B: 12B mixture heating section
11C: 12C mixing zone
13, 14 Straight channel
15, 16 Inclined channel
17 Connection
18:19 Hot mixed air flow outlet
30 Channel switching valve
40 Control device
41:42 Open / close control valve
46:47 Water vapor supply control valve
53:54 Low temperature air chamber
55:56 Steam mixing chamber
57 Vertical duct
CA air supply path
LA air supply path
LS: LS1: LS2, low temperature steam supply path
EX Exhaust outlet passage
H1: H2 high-temperature gas mixture flow path
HA: HB: HG High-temperature mixture feed path
H Hot air current
E Combustion exhaust gas

Claims (7)

比較的低温の空気及び水蒸気を混合し、空気及び水蒸気の混合気を加熱し、高温混合気を導入すべき外部機器に対して高温混合気を供給する混合加熱装置において、
燃焼反応による燃焼排ガスを生成する燃焼域と、
低温空気及び燃焼排ガスを交互に流通可能な流路を備えた蓄熱型熱交換器とを有し、
該熱交換器は、空気予熱部と、混合気加熱部とに分割され、水蒸気を導入可能な水蒸気混合室が前記空気予熱部と前記混合気加熱部との間に画成され、前記空気予熱部は、前記低温空気を前記水蒸気の温度以上の温度に加熱することを特徴とする混合加熱装置。
In a mixing and heating device that mixes relatively low temperature air and water vapor, heats the air and water vapor mixture, and supplies the high temperature mixture to an external device to which the high temperature mixture is to be introduced.
A combustion zone for generating combustion exhaust gas by a combustion reaction;
A heat storage type heat exchanger having a flow path capable of alternately circulating low-temperature air and combustion exhaust gas,
The heat exchanger is divided into an air preheating unit and an air mixture heating unit, and a water vapor mixing chamber into which water vapor can be introduced is defined between the air preheating unit and the air mixture heating unit, and the air preheating unit The unit heats the low-temperature air to a temperature equal to or higher than the temperature of the water vapor.
前記熱交換器は、多数の狭小流路を備えたハニカム構造の蓄熱体を有することを特徴とする請求項1に記載の混合加熱装置。The mixed heating apparatus according to claim 1, wherein the heat exchanger includes a honeycomb-structured heat accumulator having a plurality of narrow flow paths. 少なくとも1対の前記熱交換器と、
前記燃焼域と前記熱交換器との間に配置された給排流路と、
該給排流路に接続され且つ前記外部機器に高温給気流を供給する高温給気流路と、
前記給排流路に配置された流路切換弁とを有し、
前記流路切換弁は、第1の前記熱交換器と前記燃焼域との連通を遮断し且つ第2の前記熱交換器と前記燃焼域とを連通させる第1位置と、前記第2熱交換器と前記燃焼域との連通を遮断し且つ前記第1熱交換器と前記燃焼域とを連通させる第2位置とに交互に切換えられ、
前記第1位置では、前記第1熱交換器により加熱された高温混合気流は、前記給排流路から前記高温給気流路に送出され、前記燃焼域の燃焼排ガスは、前記給排流路及び第2熱交換器を介して排気され、前記第2位置では、前記第2熱交換器により加熱された給気流は、前記給排流路から前記高温給気流路に送出され、前記燃焼域の燃焼排ガスは、前記給排流路及び第1熱交換器を介して排気されることを特徴とする請求項1又は2に記載の混合加熱装置。
At least one pair of the heat exchangers;
A supply / discharge flow path disposed between the combustion zone and the heat exchanger;
A high-temperature air supply channel connected to the supply / exhaust channel and supplying a high-temperature airflow to the external device;
A flow path switching valve disposed in the supply / discharge flow path,
The flow path switching valve has a first position that blocks communication between the first heat exchanger and the combustion zone and allows communication between the second heat exchanger and the combustion zone, and the second heat exchange. Alternately switched to a second position that shuts off the communication between the combustor and the combustion zone and connects the first heat exchanger and the combustion zone,
In the first position, the high-temperature mixed air stream heated by the first heat exchanger is sent from the supply / discharge channel to the high-temperature supply channel, and the combustion exhaust gas in the combustion zone is In the second position, the supply airflow exhausted through the second heat exchanger and heated by the second heat exchanger is sent from the supply / exhaust flow path to the high-temperature supply flow path, and in the combustion zone. The mixed heating apparatus according to claim 1 or 2, wherein the combustion exhaust gas is exhausted through the supply / exhaust flow path and the first heat exchanger.
前記燃焼域は、連続運転可能な単一のバーナー設備を備え、前記高温給気流路は、該給気流路を開閉制御する開閉制御弁を備えることを特徴とする請求項3に記載の混合加熱装置。The mixed heating according to claim 3, wherein the combustion zone includes a single burner facility capable of continuous operation, and the high-temperature air supply passage includes an open / close control valve that controls opening and closing of the air supply passage. apparatus. 一対の前記熱交換器と、一対の前記燃焼域と、単一の分流域とを備え、
前記分流域は、第1及び第2燃焼域の間に配置され、第1燃焼域は、前記分流域と第1熱交換器との間に配置され、第2燃焼域は、前記分流域と第2熱交換器との間に配置され、前記外部機器に高温混合気を供給する高温給気流路が、前記分流域に接続され、
第1加熱工程において第1熱交換器によって加熱された混合気は、前記分流域において外部機器供給流と機内燃焼用気流とに分流し、外部機器供給流は、前記高温給気流路によって外部機器に供給され、前記機内燃焼用気流は、第2燃焼域に導入され、燃焼した後、第2熱交換器を介して排気され、
第2加熱工程において第2熱交換器によって加熱された混合気は、前記分流域において外部機器供給流と機内燃焼用気流とに分流し、外部機器供給流は、前記高温給気流路によって外部機器に供給され、前記機内燃焼用気流は、第1燃焼域に導入され、燃焼した後、第1熱交換器を介して排気され、
前記第1加熱工程及び第2加熱工程は交互に実行されることを特徴とする請求項1又は2に記載の混合加熱装置。
A pair of heat exchangers, a pair of combustion zones, and a single shunt zone,
The shunt region is disposed between the first and second combustion regions, the first combustion region is disposed between the shunt region and the first heat exchanger, and the second combustion region is disposed with the shunt region. A high-temperature air supply passage that is arranged between the second heat exchanger and supplies a high-temperature air-fuel mixture to the external device is connected to the shunt region;
The air-fuel mixture heated by the first heat exchanger in the first heating step is divided into an external device supply flow and an in-machine combustion airflow in the diversion region, and the external device supply flow is separated from the external device by the high-temperature air supply flow path. The in-machine combustion airflow is introduced into the second combustion zone, burned, and then exhausted through the second heat exchanger,
The air-fuel mixture heated by the second heat exchanger in the second heating step is divided into an external device supply flow and an in-machine combustion airflow in the diversion region, and the external device supply flow is separated from the external device by the high-temperature air supply flow path. The in-machine combustion airflow is introduced into the first combustion zone, burned, and then exhausted through the first heat exchanger,
The mixed heating apparatus according to claim 1 or 2, wherein the first heating step and the second heating step are performed alternately.
請求項3乃至5のいずれか1項に記載の混合加熱装置の高温給気流路を固体又は液体燃料のガス化炉に接続したことを特徴とする固体又は液体燃料のガス化装置。A gasification apparatus for solid or liquid fuel, wherein the high-temperature air supply flow path of the mixing and heating apparatus according to any one of claims 3 to 5 is connected to a gasification furnace for solid or liquid fuel. 固体又は液体燃料のガス化炉が生成した熱分解ガスを改質する改質炉に対して、請求項3乃至5のいずれか1項に記載の混合加熱装置の高温給気流路を接続したことを特徴とする固体又は液体燃料のガス化装置。The high-temperature air supply flow path of the mixing and heating device according to any one of claims 3 to 5 is connected to a reforming furnace that reforms a pyrolysis gas generated by a gasification furnace of solid or liquid fuel. A solid or liquid fuel gasifier.
JP2001176379A 2001-06-11 2001-06-11 Mixing heater Expired - Fee Related JP4383694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001176379A JP4383694B2 (en) 2001-06-11 2001-06-11 Mixing heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001176379A JP4383694B2 (en) 2001-06-11 2001-06-11 Mixing heater

Publications (2)

Publication Number Publication Date
JP2002364834A JP2002364834A (en) 2002-12-18
JP4383694B2 true JP4383694B2 (en) 2009-12-16

Family

ID=19017375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001176379A Expired - Fee Related JP4383694B2 (en) 2001-06-11 2001-06-11 Mixing heater

Country Status (1)

Country Link
JP (1) JP4383694B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782472B1 (en) 2016-08-24 2017-10-23 양형학 A hot air supplying apparatus which producing less tar

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392988B2 (en) * 2007-03-06 2014-01-22 メタウォーター株式会社 Biomass gasification method and biomass gasification apparatus
CN102466234A (en) * 2010-11-05 2012-05-23 王霁 Constant-temperature and constant-pressure non-metal air preheater
CN107815514A (en) * 2017-12-07 2018-03-20 中冶京诚工程技术有限公司 The system and recovery method of washing slag water Steam Recovery and the white haze that disappears
CN109945602B (en) * 2019-03-18 2024-02-06 江苏九盛印染设备有限公司 Drying oven system of tentering setting machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782472B1 (en) 2016-08-24 2017-10-23 양형학 A hot air supplying apparatus which producing less tar

Also Published As

Publication number Publication date
JP2002364834A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
AU777486B2 (en) Apparatus and method for gasifying liquid or solid fuel
AU2004237256B2 (en) Thermally integrated fuel cell system
CN109193009B (en) Solid oxide fuel cell composite system and method of use
US20040197617A1 (en) Fuel cell system and burner arrangement for a fuel cell system
PT1053394E (en) Method for energy fuel conversion systems
JPH07506214A (en) Method and apparatus for converting chemical energy of fuel into thermal energy and simultaneously directly into electrical energy
JP2007527837A (en) Supply of steam and hydrogen to a synthesis gas production process or synthesis gas production plant
JP2005274123A (en) Power generation system and control method thereof
JP4383694B2 (en) Mixing heater
JPH0246857B2 (en)
JP4037599B2 (en) Gasification apparatus and gasification method for solid or liquid fuel
JP4033610B2 (en) Wet fuel gasification system and gasification method
US20100047727A1 (en) Method of reheating in a furnace using a fuel of low calorific power, and furnace using this method
JP4508660B2 (en) Combined power generation system using high-temperature fuel cell
JP4127886B2 (en) Supply air heating device and supply air heating method
JP4527130B2 (en) Reformer
JP3939459B2 (en) Steam reforming method and steam reforming apparatus
JP2002364822A (en) Air supply flow heating device and method
JP3869751B2 (en) A method of using waste heat generated during pig iron production in a rotary open hearth
JP2017096532A (en) Regenerative combustion furnace
JP4315292B2 (en) Water gas generating apparatus and water gas generating method
JP3774288B2 (en) Supply air preheating device and supply air preheating method
JP2004168872A (en) System and method for modifying gasified solid fuel
PL198811B1 (en) Superatmospheric combustor for combusting lean concentrations of a burnable gas
JP5942692B2 (en) Fuel cell power generator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4383694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees