JP4383606B2 - Ash detoxification method - Google Patents
Ash detoxification method Download PDFInfo
- Publication number
- JP4383606B2 JP4383606B2 JP30277499A JP30277499A JP4383606B2 JP 4383606 B2 JP4383606 B2 JP 4383606B2 JP 30277499 A JP30277499 A JP 30277499A JP 30277499 A JP30277499 A JP 30277499A JP 4383606 B2 JP4383606 B2 JP 4383606B2
- Authority
- JP
- Japan
- Prior art keywords
- ash
- less
- mass
- piperidine
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Processing Of Solid Wastes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、都市ごみや産業廃棄物を焼却、熱分解、溶融などの熱処理によって排出される焼却灰や飛灰などの灰の無害化処理方法に関するものである。
【0002】
【従来の技術】
従来、飛灰の無害化処理方法として、例えば、特開平6−79254号公報には、飛灰に水とトリス(ジチオカルボキシ)ジエチレントリアミン、又はN1, N2−ビス(ジチオカルボキシ)ジエチレントリアミン、若しくはそれらの塩を添加して混練する方法が記載されている。
【0003】
【発明が解決しようとする課題】
しかし、特開平6−79254号公報に記載されている方法では、とくに高アルカリ性飛灰や溶融飛灰中に含有する鉛を溶出防止することが困難であるという問題があった。
本発明は、上記の問題点を解消し、焼却灰や飛灰などの廃棄物を熱処理した灰からの重金属の溶出防止を確実に安定して灰を無害化することができる灰の無害化処理方法に関するものである。
【0004】
【課題を解決するための手段】
本発明者らは、このような課題を解決するために鋭意検討の結果、灰を処理するに際し、灰にピペリジンペンタメチレンジチオカルバミン酸又はその塩を添加して混練することによって、灰を無害化することができるという事実を見出し、本発明に到達した。
すなわち、本発明は、灰にピペリジンペンタメチレンジチオカルバミン酸又はその塩と水を添加して混練することを特徴とする灰の無害化処理方法を要旨とするものである。
【0005】
以下、本発明を詳細に説明する。
本発明の対象となる灰は、通常、都市ごみや産業廃棄物を焼却、熱分解、溶融などの熱処理によって排出されるもので、焼却灰、焼却飛灰、直接溶融飛灰、ガス化溶融飛灰、灰溶融飛灰、ボイラー灰、空気予熱器灰、ガス冷却器灰、半乾式排ガス反応灰などが挙げられる。
【0006】
本発明に用いられるピペリジンペンタメチレンジチオカルバミン酸塩としては、ピペリジンペンタメチレンジチオカルバミン酸リチウム、ピペリジンペンタメチレンジチオカルバミン酸カリウム、ピペリジンペンタメチレンジチオカルバミン酸ナトリウム、ピペリジンペンタメチレンジチオカルバミン酸アンモニウムなどが挙げられる。
【0007】
本発明に用いられるピペリジンペンタメチレンジチオカルバミン酸又はその塩の添加量は、廃棄物の熱処理や排ガス処理方法などで灰の性状によって異なるが、通常、灰100質量部に対して、0.1〜30質量部となるように加えればよい。
【0008】
本発明においては、処理灰が取扱いやすい湿土状の含水率15〜45%となるように、水を添加する。ことが好ましい。用いられる水量は、灰の性状によって異なるが、通常、処理灰が灰100質量部に対して、20〜70質量部である。
【0009】
灰にピペリジンペンタメチレンジチオカルバミン酸又はその塩と水を添加して混練する方法は、とくに限定するものではないが、通常、二軸ニーダ型混練機を用いるのが好ましい。具体的には、まず第1混練機で灰とピペリジンペンタメチレンジチオカルバミン酸又はその塩を1〜30分間混練したのち、次いで第2混練機で水を加えて1〜30分間混練することが好ましい。
【0010】
【実施例】
以下、実施例によって、本発明を具体的に説明する。
なお、灰中の重金属類等の含有量は、「底質調査方法(環水管127号)」及び「工場排水試験方法(JISK−0102)」に従って測定した。
また、無害化処理を施した処理灰からの重金属類の溶出量は、「産業廃棄物に含まれる金属等の検出方法(環告13号)」に従って測定した。
【0011】
実施例1
化学組成がPb5,200mg/kg、Cd14mg/kg、T−Hg0.043mg/kg、Ca14,000mg/kg、Na3,800mg/kg、K3,100mg/kg、DS(溶解性蒸発残留物、溶解性塩濃度に相当)21,000mg/kg 、pH13.4、含水率0.08%、環境庁告示第13号による溶出試験方法(以下、環告13号法と称する)の溶出濃度がPb36mg/l、Cd0.001mg/l以下、T−Hg0.0005mg/l以下の、あらかじめ缶や針金などの異物を取り除いた都市ごみ焼却灰100質量部に対して、処理能力10kg/hの二軸ニーダ型混練機を用いて、まず第1混練機で100%ピペリジンペンタメチレンジチオカルバミン酸1質量部を添加して10分間混練したのち、次いで第2混練機で水35質量部を添加して10分間混練して無害化処理した。無害化した処理灰について、溶出濃度、pH、含水率を測定し、その結果を表1に示した。
表1より、処理灰の溶出濃度は、Pb0.005mg/l、Cd0.001mg/l以下、T−Hg0.0005mg/l以下で、Pbの埋立判定基準0.3mg/l以下を十分にクリアできた。
【0012】
実施例2
都市ごみ焼却飛灰とピペリジンペンタメチレンジチオカルバミン酸と水を同時に添加した以外は、実施例1と同様に行った。無害化した処理灰の測定項目も実施例1と同様に行い、その結果を表1に示した。
表1より、処理灰の溶出濃度は、Pb0.020mg/l、Cd0.001mg/l以下、T−Hg0.0005mg/l以下で、Pbの埋立判定基準0.3mg/l以下を十分にクリアできたが、実施例1よりもPb溶出濃度が高かった。
【0013】
実施例3
化学組成がPb7,790mg/kg、Cd337mg/kg、T−Hg4.20mg/kg、Ca131,000mg/kg、Na38,100mg/kg、K42,800mg/kg、DS237,000mg/kg、pH6.9、含水率0.10%、溶出濃度がPb25.7mg/l、Cd5.50mg/l、T−Hg0.0011mg/lの都市ごみ焼却飛灰100質量部に対して、10%ピペリジンペンタメチレンジチオカルバミン酸リチウム30質量部と水5質量部を用いた以外は、実施例1と同様にして無害化処理を行った。無害化した処理灰の測定項目も実施例1と同様に行い、その結果を表1に示した。
表1より、処理灰の溶出濃度は、Pb0.005mg/l以下、Cd0.001mg/l以下、T−Hg0.0005mg/l以下で、Pbの埋立判定基準0.3mg/l以下を十分にクリアできた。
【0014】
実施例4
化学組成がPb780mg/kg、Cd17.6mg/kg、T−Hg2.81mg/kg、Ca145,000mg/kg、Na37,800mg/kg、K67,200mg/kg、DS221,000mg/kg、pH12.5、含水率0.52%、溶出濃度がPb0.79mg/l、Cd0.001mg/l以下、T−Hg0.0005mg/l以下の都市ごみを600℃で熱分解した残渣を1,400℃で溶融したガス化溶融飛灰100質量部に対して、20%ピペリジンペンタメチレンジチオカルバミン酸カリウム10質量部と水20質量部を用いた以外は、実施例1と同様にして無害化処理を行った。無害化した処理灰の測定項目も実施例1と同様に行い、その結果を表1に示した。
表1より、処理灰の溶出濃度は、Pb0.005mg/l以下、Cd0.001mg/l以下、T−Hg0.0005mg/l以下で、Pbの埋立判定基準0.3mg/l以下を十分にクリアできた。
【0015】
実施例5
化学組成がPb7,790mg/kg、Cd337mg/kg、T−Hg4.20mg/kg、Ca131,000mg/kg、Na38,100mg/kg、K42,800mg/kg、DS237,000mg/kg、pH6.9、含水率0.10%、溶出濃度がPb25.7mg/l、Cd5.50mg/l、T−Hg0.0011mg/lの都市ごみ焼却飛灰100質量部に対して、10%ピペリジンペンタメチレンジチオカルバミン酸アンモニウム30質量部と水5質量部を用いた以外は、実施例1と同様にして無害化処理を行った。無害化処理灰の測定項目も実施例1と同様に行い、その結果を表1に示した。
表1より、処理灰の溶出濃度は、Pb0.005mg/l以下、Cd0.001mg/l以下、T−Hg0.0005mg/l以下で、Pbの埋立判定基準0.3mg/l以下を十分にクリアできた。
【0016】
実施例6
化学組成がPb14,900mg/kg、Cd372mg/kg、T−Hg1.17mg/kg、Ca21,000mg/kg 、Na97,900mg/kg、K134,000mg/kg、DS660,000mg/kg、pH5.7、含水率0.11%、溶出濃度がPb158mg/l、Cd1.81mg/l、T−Hg0.0005mg/l以下の都市ごみ焼却灰3質量部と都市ごみ焼却飛灰1質量部を 1,400℃で溶融した灰溶融飛灰100質量部に対して、50%ピペリジンペンタメチレンジチオカルバミン酸ナトリウム10質量部と水25質量部を用いた以外は、実施例1と同様にして無害化処理を行った。無害化した処理灰の測定項目も実施例1と同様に行い、その結果を表1に示した。
表1より、処理灰の溶出濃度は、Pb0.008mg/l、Cd0.001mg/l以下、T−Hg0.0005mg/l以下で、Pbの埋立判定基準0.3mg/l以下を十分にクリアできた。
【0017】
比較例1
ピペリジンペンタメチレンジチオカルバミン酸ナトリウムの代わりに、ジエチルジチオカルバミン酸ナトリウムを用いた以外は、実施例5と同様に行った。無害化した処理灰の測定項目も実施例1と同様に行い、その結果を表1に示した。表1より、処理灰の溶出濃度は、Pb7.82mg/l、Cd 0.001mg/l以下、T−Hg0.0005mg/l以下で、Pbの埋立判定基準0.3mg/l以下を大きくオーバーし、実施例5のピペリジンペンタメチレンジチオカルバミン酸ナトリウムに比べて、Pb溶出濃度が非常に高く、無害化性能が非常に劣ることが分かった。
【0018】
比較例2
ピペリジンペンタメチレンジチオカルバミン酸ナトリウムの代わりに、ピロリジンジチオカルバミン酸ナトリウムを用いた以外は、実施例5と同様に行った。無害化した処理灰の測定項目も実施例1と同様に行い、その結果を表1に示した。
表1より、処理灰の溶出濃度は、Pb0.25mg/l、Cd 0.001mg/l以下、T−Hg0.0005mg/l以下で、Pbの埋立判定基準0.3mg/l以下をクリアできたが、実施例5のピペリジンペンタメチレンジチオカルバミン酸ナトリウムに比べて、Pb溶出濃度が高く、無害化性能が劣ることが分かった。
【0019】
比較例3
ピペリジンペンタメチレンジチオカルバミン酸ナトリウムの代わりに、ピペラジンジチオカルバミン酸ナトリウムを用いた以外は、実施例5と同様に行った。無害化した処理灰の測定項目も実施例1と同様に行い、その結果を表1に示した。
表1より、処理灰の溶出濃度は、Pb0.27mg/l、Cd 0.001mg/l以下、T−Hg0.0005mg/l以下で、Pbの埋立判定基準0.3mg/l以下をクリアできたが、実施例5のピペリジンペンタメチレンジチオカルバミン酸ナトリウムに比べて、Pb溶出濃度が高く、無害化性能が劣ることが分かった。
【0020】
【表1】
【0021】
【発明の効果】
本発明によれば、ピペリジンペンタメチレンジチオカルバミン酸又はその塩は、灰中の重金属を化学的に重金属キレート化合物にし、灰中の重金属溶出防止性能が非常に優れており、廃棄物を熱処理した灰を確実に安定して無害化することを可能にした。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detoxifying ash such as incineration ash and fly ash discharged by heat treatment such as incineration, thermal decomposition, and melting of municipal waste and industrial waste.
[0002]
[Prior art]
Conventionally, as detoxification method fly ash, for example, JP-A-6-79254, the fly ash water and tris (dithiocarboxy) diethylenetriamine or N 1, N 2 - bis (dithiocarboxy) diethylenetriamine or A method of adding and kneading those salts is described.
[0003]
[Problems to be solved by the invention]
However, the method described in JP-A-6-79254 has a problem that it is difficult to prevent the elution of lead contained in highly alkaline fly ash or molten fly ash.
The present invention eliminates the above-mentioned problems, and is an ash detoxification process that can stably and stably detoxify heavy metals from ash obtained by heat treating waste such as incineration ash and fly ash. It is about the method.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve such problems, the present inventors detoxify the ash by adding piperidine pentamethylenedithiocarbamic acid or a salt thereof to the ash and kneading the ash. We have found the fact that it is possible to arrive at the present invention.
That is, the gist of the present invention is a ash detoxification method characterized by adding piperidine pentamethylenedithiocarbamic acid or a salt thereof and water and kneading the ash.
[0005]
Hereinafter, the present invention will be described in detail.
The ash subject to the present invention is usually discharged by heat treatment such as incineration, pyrolysis, melting of municipal waste and industrial waste. Incineration ash, incineration fly ash, direct fusion fly ash, gasification fusion fly Examples include ash, ash melt fly ash, boiler ash, air preheater ash, gas cooler ash, and semi-dry exhaust gas reaction ash.
[0006]
Examples of the piperidine pentamethylene dithiocarbamate used in the present invention include lithium piperidine pentamethylene dithiocarbamate, potassium piperidine pentamethylene dithiocarbamate, sodium piperidine pentamethylene dithiocarbamate, ammonium piperidine pentamethylene dithiocarbamate, and the like.
[0007]
The amount of piperidine pentamethylenedithiocarbamic acid or a salt thereof used in the present invention varies depending on the properties of ash due to heat treatment of waste, exhaust gas treatment method, etc., but is generally 0.1-30 with respect to 100 parts by mass of ash. What is necessary is just to add so that it may become a mass part.
[0008]
In the present invention, water is added so that the treated ash has a moisture content of 15 to 45% which is easy to handle. It is preferable. The amount of water used varies depending on the properties of the ash, but the treated ash is usually 20 to 70 parts by mass with respect to 100 parts by mass of the ash.
[0009]
A method of adding piperidine pentamethylenedithiocarbamic acid or a salt thereof and water to ash and kneading is not particularly limited, but it is usually preferable to use a biaxial kneader type kneader. Specifically, it is preferable to first knead ash and piperidine pentamethylenedithiocarbamic acid or a salt thereof in a first kneader for 1 to 30 minutes, and then add water in a second kneader and knead for 1 to 30 minutes.
[0010]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
In addition, content, such as heavy metals in ash, was measured in accordance with "Sediment survey method (annular water tube No. 127)" and "Factory drainage test method (JISK-0102)".
Further, the elution amount of heavy metals from the treated ash subjected to the detoxification treatment was measured in accordance with “Method for detecting metals contained in industrial waste (announcement No. 13)”.
[0011]
Example 1
Chemical composition is Pb5,200 mg / kg, Cd14 mg / kg, T-Hg 0.043 mg / kg, Ca14,000 mg / kg, Na3,800 mg / kg, K3,100 mg / kg, DS (soluble evaporation residue, soluble salt 21,000mg / kg, pH 13.4, moisture content 0.08%, dissolution test method according to Environmental Agency Notification No. 13 (hereinafter referred to as Ring No. 13 method) is Pb 36mg / l, Cd 0.001mg Using a twin-screw kneader with a processing capacity of 10 kg / h against 100 parts by mass of municipal waste incineration ash from which foreign matters such as cans and wires have been removed in advance, with a T / Hg of 0.0005 mg / l or less. First, 1 part by mass of 100% piperidine pentamethylenedithiocarbamic acid was added in the first kneader and kneaded for 10 minutes, and then 35 parts by mass of water was added in the second kneader and kneaded for 10 minutes for detoxification. . The decontaminated treated ash was measured for elution concentration, pH, and water content, and the results are shown in Table 1.
From Table 1, the elution concentration of treated ash is Pb 0.005 mg / l, Cd 0.001 mg / l or less, T-Hg 0.0005 mg / l or less, and can sufficiently clear the Pb landfill criteria 0.3 mg / l or less. It was.
[0012]
Example 2
This was carried out in the same manner as in Example 1 except that municipal waste incineration fly ash, piperidine pentamethylenedithiocarbamic acid and water were added simultaneously. The measurement items of the detoxified treated ash were also performed in the same manner as in Example 1, and the results are shown in Table 1.
From Table 1, the elution concentration of treated ash is Pb 0.020 mg / l, Cd 0.001 mg / l or less, T-Hg 0.0005 mg / l or less, and can sufficiently clear the Pb landfill criteria 0.3 mg / l or less. However, the Pb elution concentration was higher than that in Example 1.
[0013]
Example 3
Chemical composition is Pb7,790mg / kg, Cd337mg / kg, T-Hg4.20mg / kg, Ca131,000mg / kg, Na38,100mg / kg, K42,800mg / kg, DS237,000mg / kg, pH6.9, water content 30 parts by mass of 10% lithium piperidine pentamethylenedithiocarbamate per 100 parts by mass of municipal waste incineration fly ash with a rate of 0.10%, elution concentration of Pb 25.7 mg / l, Cd 5.50 mg / l, T-Hg 0.0011 mg / l And 5 parts by mass of water were used, and detoxification treatment was performed in the same manner as in Example 1. The measurement items of the detoxified treated ash were also performed in the same manner as in Example 1, and the results are shown in Table 1.
From Table 1, the elution concentration of treated ash is 0.005 mg / l or less for Pb, 0.001 mg / l or less for Cd, and 0.0005 mg / l or less for T-Hg. did it.
[0014]
Example 4
Chemical composition is Pb780mg / kg, Cd17.6mg / kg, T-Hg2.81mg / kg, Ca145,000mg / kg, Na37,800mg / kg, K67,200mg / kg, DS221,000mg / kg, pH12.5, water content Gasified molten fly ash obtained by melting the residue of pyrolysis of municipal waste at a rate of 0.52%, Pb 0.79 mg / l, Cd 0.001 mg / l or less, and T-Hg 0.0005 mg / l or less at 600 ° C at 1,400 ° C Detoxification treatment was performed in the same manner as in Example 1 except that 10 parts by mass of 20% potassium piperidine pentamethylenedithiocarbamate and 20 parts by mass of water were used with respect to 100 parts by mass. The measurement items of the detoxified treated ash were also performed in the same manner as in Example 1, and the results are shown in Table 1.
From Table 1, the elution concentration of treated ash is 0.005 mg / l or less for Pb, 0.001 mg / l or less for Cd, and 0.0005 mg / l or less for T-Hg. did it.
[0015]
Example 5
Chemical composition is Pb7,790mg / kg, Cd337mg / kg, T-Hg4.20mg / kg, Ca131,000mg / kg, Na38,100mg / kg, K42,800mg / kg, DS237,000mg / kg, pH6.9, water content 30 parts by mass of 10% ammonium piperidine pentamethylenedithiocarbamate per 100 parts by mass of municipal waste incineration fly ash with a rate of 0.10%, elution concentration of Pb 25.7 mg / l, Cd 5.50 mg / l, T-Hg 0.0011 mg / l And 5 parts by mass of water were used, and detoxification treatment was performed in the same manner as in Example 1. The measurement items for the detoxified ash were also performed in the same manner as in Example 1, and the results are shown in Table 1.
From Table 1, the elution concentration of treated ash is 0.005 mg / l or less for Pb, 0.001 mg / l or less for Cd, and 0.0005 mg / l or less for T-Hg. did it.
[0016]
Example 6
Chemical composition is Pb14,900mg / kg, Cd372mg / kg, T-Hg1.17mg / kg, Ca21,000mg / kg, Na97,900mg / kg, K134,000mg / kg, DS660,000mg / kg, pH5.7, water content Ashes melted at 1,400 ° C at a rate of 0.11%, elution concentration of Pb158mg / l, Cd1.81mg / l, T-Hg 3 mass parts of municipal incineration ash and 1 mass part of municipal waste incineration fly ash Detoxification treatment was performed in the same manner as in Example 1 except that 10 parts by mass of 50% sodium piperidine pentamethylenedithiocarbamate and 25 parts by mass of water were used with respect to 100 parts by mass of fly ash. The measurement items of the detoxified treated ash were also performed in the same manner as in Example 1, and the results are shown in Table 1.
From Table 1, the elution concentration of treated ash is Pb 0.008 mg / l, Cd 0.001 mg / l or less, T-Hg 0.0005 mg / l or less, and can sufficiently clear the Pb landfill criteria 0.3 mg / l or less. It was.
[0017]
Comparative Example 1
The same procedure as in Example 5 was carried out except that sodium diethyldithiocarbamate was used instead of sodium piperidinepentamethylenedithiocarbamate. The measurement items of the detoxified treated ash were also performed in the same manner as in Example 1, and the results are shown in Table 1. From Table 1, the elution concentration of treated ash is Pb 7.82 mg / l, Cd 0.001 mg / l or less, T-Hg 0.0005 mg / l or less, greatly exceeding the Pb landfill criteria 0.3 mg / l or less, Compared with the piperidine pentamethylenedithiocarbamate of Example 5, it was found that the Pb elution concentration was very high and the detoxification performance was very poor.
[0018]
Comparative Example 2
The same procedure as in Example 5 was carried out except that sodium pyrrolidine dithiocarbamate was used instead of sodium piperidine pentamethylenedithiocarbamate. The measurement items of the detoxified treated ash were also performed in the same manner as in Example 1, and the results are shown in Table 1.
From Table 1, the elution concentration of treated ash was Pb 0.25 mg / l, Cd 0.001 mg / l or less, and T-Hg 0.0005 mg / l or less, which cleared the Pb landfill criteria of 0.3 mg / l or less. It was found that the Pb elution concentration was high and the detoxification performance was inferior compared with the piperidine pentamethylenedithiocarbamate sodium of Example 5.
[0019]
Comparative Example 3
The same procedure as in Example 5 was conducted except that sodium piperazine dithiocarbamate was used instead of sodium piperidine pentamethylenedithiocarbamate. The measurement items of the detoxified treated ash were also performed in the same manner as in Example 1, and the results are shown in Table 1.
From Table 1, the elution concentration of treated ash was Pb 0.27 mg / l, Cd 0.001 mg / l or less, and T-Hg 0.0005 mg / l or less, which cleared the Pb landfill criteria of 0.3 mg / l or less. It was found that the Pb elution concentration was high and the detoxification performance was inferior compared with the piperidine pentamethylenedithiocarbamate sodium of Example 5.
[0020]
[Table 1]
[0021]
【The invention's effect】
According to the present invention, piperidine pentamethylenedithiocarbamic acid or a salt thereof has a heavy metal chelate compound chemically converted from a heavy metal in ash, and has an excellent ability to prevent heavy metal elution in ash. It was possible to make it stable and harmless.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30277499A JP4383606B2 (en) | 1999-10-25 | 1999-10-25 | Ash detoxification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30277499A JP4383606B2 (en) | 1999-10-25 | 1999-10-25 | Ash detoxification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001121108A JP2001121108A (en) | 2001-05-08 |
JP4383606B2 true JP4383606B2 (en) | 2009-12-16 |
Family
ID=17912975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30277499A Expired - Fee Related JP4383606B2 (en) | 1999-10-25 | 1999-10-25 | Ash detoxification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4383606B2 (en) |
-
1999
- 1999-10-25 JP JP30277499A patent/JP4383606B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001121108A (en) | 2001-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4000610B2 (en) | Method for immobilizing heavy metals in fly ash and heavy metal immobilizing agent | |
JP5504571B2 (en) | Heavy metal treating agent and method for treating heavy metal contaminants | |
JP2008272590A (en) | Heavy metal treating agent and stabilization treatment method of heavy metal contaminant using the same | |
JP4383606B2 (en) | Ash detoxification method | |
JP4434385B2 (en) | Ash detoxification method | |
JPH09225430A (en) | Method for immobilizing heavy metal and arsenic included in flying ash | |
JP2000301103A (en) | Detoxification treatment of incineration ash or fly ash | |
JP4562128B2 (en) | Waste disposal method | |
JP2008119620A (en) | Acidic waste treating agent | |
JP2003181411A (en) | Heavy metal elution preventing agent and treatment method of contaminated medium | |
JP3574928B2 (en) | Method for treating fly ash from incinerators and melting furnaces | |
JPH0679254A (en) | Treating method to make fly ash harmless | |
JP4067660B2 (en) | Method for refining fumes and producing aqueous sodium chloride solution | |
JP3065224B2 (en) | Heavy metal fixing agent and detoxification method using the same | |
JPH10151430A (en) | Treatment for detoxifying harmful substance contained in ash discharged from incinerator | |
JP3344896B2 (en) | Treatment method for heavy metal-containing ash | |
JPH10151429A (en) | Treatment for detoxifying harmful heavy metal contained in high alkaline dust collection ash | |
JP4442890B2 (en) | Waste disposal method | |
JP4259270B2 (en) | Incineration main ash treatment method | |
JP4702874B2 (en) | Heavy metal-containing waste treatment agent and heavy metal-containing waste treatment method | |
JP4078200B2 (en) | Detoxification method for incineration fly ash, etc. (low temperature) | |
JP2001212548A (en) | Method for stabilization treatment of ash | |
JP4035246B2 (en) | Waste disposal method | |
JP2001149888A (en) | Detoxifying treatment method of incineration ash | |
JP3988624B2 (en) | Fixing agent for mercury-containing ash |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061020 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090915 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090924 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4383606 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131002 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |