JP4383264B2 - Surface potential distribution measuring method and measuring apparatus - Google Patents

Surface potential distribution measuring method and measuring apparatus Download PDF

Info

Publication number
JP4383264B2
JP4383264B2 JP2004186177A JP2004186177A JP4383264B2 JP 4383264 B2 JP4383264 B2 JP 4383264B2 JP 2004186177 A JP2004186177 A JP 2004186177A JP 2004186177 A JP2004186177 A JP 2004186177A JP 4383264 B2 JP4383264 B2 JP 4383264B2
Authority
JP
Japan
Prior art keywords
potential distribution
surface potential
sample
measurement sample
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004186177A
Other languages
Japanese (ja)
Other versions
JP2006010430A (en
Inventor
浩之 須原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004186177A priority Critical patent/JP4383264B2/en
Publication of JP2006010430A publication Critical patent/JP2006010430A/en
Application granted granted Critical
Publication of JP4383264B2 publication Critical patent/JP4383264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)

Description

この発明は表面電位分布測定方法および測定装置に関する。   The present invention relates to a surface potential distribution measuring method and measuring apparatus.

光導電性の感光体等の誘電体における表面電荷分布あるいは表面電位分布をミクロンオーダーで高分解能に計測する方法として、特許文献1、2記載のものが知られている。これら特許文献に記載された測定方法では、測定試料の表面が荷電粒子ビームにより走査され、測定試料表面で発生する2次電子が検出される。この方法の場合、直接に測定されるのは測定試料表面の電界分布であり、この電界分布に基づいて表面電位分布が演算的に求められる。   Patent Documents 1 and 2 are known as methods for measuring surface charge distribution or surface potential distribution in a dielectric such as a photoconductive photoreceptor with high resolution on the order of microns. In the measurement methods described in these patent documents, the surface of the measurement sample is scanned with a charged particle beam, and secondary electrons generated on the measurement sample surface are detected. In the case of this method, the electric field distribution on the surface of the measurement sample is directly measured, and the surface potential distribution is calculated arithmetically based on this electric field distribution.

発明者は先に、表面電位分布を有する試料に対して荷電粒子ビームを走査し、「入射する荷電粒子の試料垂直方向の速度ベクトルが反転するような状態」が存在する条件下で測定試料の表面電位分布を測定する方法を提案した(特許文献3)。   The inventor first scans a charged particle beam with respect to a sample having a surface potential distribution, and under the condition that there exists a “state in which the velocity vector in the sample vertical direction of incident charged particles is reversed”. A method for measuring the surface potential distribution was proposed (Patent Document 3).

この方法では、測定試料の表面電位分布を測定可能であるが、荷電粒子の速度ベクトルが反転する速度領域では、荷電粒子の速度が「さほど大きくない」ため、検出手段の引き込み電圧の影響で、入射荷電粒子の軌跡が曲げられ、走査位置が「狙いの位置」からずれる虞れや、検出器の影響により荷電粒子の速度が変化する虞れがある。   In this method, it is possible to measure the surface potential distribution of the measurement sample, but in the velocity region where the velocity vector of the charged particle is inverted, the velocity of the charged particle is “not so large”, so the influence of the pull-in voltage of the detection means The trajectory of the incident charged particles may be bent, and the scanning position may be deviated from the “target position”, or the charged particle speed may change due to the influence of the detector.

特開2003−295696JP 2003-295696 A 特開2003−305881JP 2003-305881 A 特願2003−406002Japanese Patent Application No. 2003-406002

この発明は上述した事情に鑑みてなされたものであって「表面電位分布を有する測定試料に対して、荷電粒子光学系により荷電粒子ビームを走査し、試料表面に入射する荷電粒子のうち、その入射速度ベクトルの試料表面における法線方向の成分が反転した荷電粒子を検出器により捕獲検出して検出信号を得る表面電位分布測定方法」において、検出手段の引き込み電圧の影響に起因する測定誤差を防止もしくは軽減することを課題とする。   The present invention has been made in view of the circumstances described above, and “a measurement sample having a surface potential distribution is scanned with a charged particle beam by a charged particle optical system, and among the charged particles incident on the sample surface, In `` Surface potential distribution measurement method that captures and detects charged particles whose normal direction component on the sample surface of the incident velocity vector is inverted by a detector and obtains a detection signal '', the measurement error due to the influence of the pull-in voltage of the detection means The problem is to prevent or reduce.

この発明の表面電位分布測定方法は「表面電位分布を有する測定試料に対して、荷電粒子光学系により荷電粒子ビームを走査し、試料表面に入射する荷電粒子のうち、その入射速度ベクトルの試料表面における法線方向の成分が反転した荷電粒子を検出手段により捕獲検出して検出信号を得る表面電位分布測定方法」であって以下の如き特徴を有する(請求項1)。
即ち、測定試料は光導電性試料である。
測定試料である光導電性試料は保持手段により保持される。
保持手段は、誘電体層を導電層で挟持した3層構造であり、測定試料である光導電性試料は、保持手段の一方の導電層上に平面的に保持される。
このように保持手段に保持された光導電性試料に対して、荷電粒子光学系により荷電粒子ビームを2次元的に走査して照射することにより、測定試料を所望の電位に均一帯電させたのち、均一帯電された測定試料に対して光像を照射して露光を行い「測定対象としての表面電位分布である静電潜像」を形成する。
The surface potential distribution measuring method according to the present invention is described as follows: “A measurement sample having a surface potential distribution is scanned with a charged particle beam by a charged particle optical system, and of charged particles incident on the sample surface, the sample surface of the incident velocity vector thereof. Is a surface potential distribution measuring method for obtaining a detection signal by capturing and detecting charged particles whose components in the normal line direction are reversed by a detecting means (claim 1).
That is, the measurement sample is a photoconductive sample.
A photoconductive sample as a measurement sample is held by holding means.
The holding means has a three-layer structure in which a dielectric layer is sandwiched between conductive layers, and a photoconductive sample as a measurement sample is held in a plane on one conductive layer of the holding means.
The photoconductive sample held in the holding means is irradiated with a charged particle beam scanned two-dimensionally by a charged particle optical system to uniformly charge the measurement sample to a desired potential. Then, a uniformly charged measurement sample is irradiated with a light image and exposed to form an “electrostatic latent image that is a surface potential distribution as a measurement target”.

荷電粒子光学系の光軸と検出手段の捕獲部との間に、荷電粒子を通過させる2次元的なシールド部材を介在させ、保持手段の導電層にバイアス電圧を印加することにより、測定試料に形成した表面電位分布をバイアス的に変化させる。By interposing a two-dimensional shield member that allows charged particles to pass between the optical axis of the charged particle optical system and the capturing unit of the detection means, and applying a bias voltage to the conductive layer of the holding means, The formed surface potential distribution is changed in a bias manner.
そして、荷電粒子光学系により荷電粒子ビームを測定用に走査し「測定試料表面に入射する荷電粒子のうち、その入射速度ベクトルの測定試料表面における法線方向の成分が反転した荷電粒子」を検出手段により捕獲検出して検出信号を得る。Then, the charged particle optical system scans the charged particle beam for measurement, and detects “charged particles whose normal velocity components on the measurement sample surface of the incident velocity vector are reversed among the charged particles incident on the measurement sample surface”. A detection signal is obtained by detection by means.

若干補足すると、測定対象としての「表面電位分布」は、試料における実質的な表面即ち「試料表面及びその極く近傍(表面から数μm程度)の領域」における電位の分布である。表面電位分布を発生させる原因は、試料表面に存在する電荷(イオン等)や、試料の表面層にある程度局在的に存在する電荷(試料表面に撃ち込まれて捕獲されたイオンや、試料表面に撃ち込まれた電子が材料分子の電子軌道に捕獲され、上記材料分子をマイナスイオン化した状態で表面層部分に留まっているもの)である場合もあるし、試料表面部が導電性であってこの部分に外部から電圧が印加されて試料表面に電位分布を生じている場合もある。従って「表面電荷」とは、電荷分布状態が「測定試料内部方向に比して、測定試料の面内の分布範囲が大きい状態」を指す。   Supplementing a little, the “surface potential distribution” as a measurement object is a distribution of potentials on a substantial surface of the sample, that is, “a region of the sample surface and its immediate vicinity (about several μm from the surface)”. The cause of the surface potential distribution is the charge existing on the sample surface (ions, etc.), the charge existing locally on the surface layer of the sample to some extent (the ions captured by being shot and captured on the sample surface, The shot electrons are captured in the electron orbits of the material molecules and remain in the surface layer portion in a state of negative ionization of the material molecules), or the sample surface portion is conductive and this portion In some cases, a voltage is applied from the outside to generate a potential distribution on the sample surface. Therefore, the “surface charge” refers to a state in which the charge distribution state is “a state in which the in-plane distribution range of the measurement sample is larger than that in the measurement sample internal direction”.

「荷電粒子」は、電子やイオン等の「電荷を有する微粒子」であって電界や磁界の作用を受け、走査することが可能なものである。測定試料を走査する荷電粒子ビームは「電子ビームやイオンビーム」を好適に用いることができる。   “Charged particles” are “charged fine particles” such as electrons and ions, and can be scanned by the action of an electric field or a magnetic field. As the charged particle beam for scanning the measurement sample, an “electron beam or ion beam” can be preferably used.

「荷電粒子光学系」は、荷電粒子ビームを走査して、荷電粒子を測定試料の所望部位へ向けて照射する荷電粒子ビーム走査手段であり、具体的には「荷電粒子ビームの発生源として電子銃を有し、電子銃で発生した電子ビームを走査・集束する電磁レンズ等を有するもの」や、「荷電粒子ビームの発生源として液体金属イオン銃を有し、イオン銃で発生したイオンビームを走査・集束する電磁レンズ等を有するもの」を好適な例として挙げることができる。   The “charged particle optical system” is a charged particle beam scanning unit that scans a charged particle beam and irradiates the charged particle toward a desired portion of the measurement sample. Having a gun and having an electromagnetic lens or the like that scans and focuses the electron beam generated by the electron gun ”or“ having a liquid metal ion gun as the source of the charged particle beam and the ion beam generated by the ion gun What has an electromagnetic lens etc. for scanning and focusing can be mentioned as a suitable example.

荷電粒子ビームによる測定試料の測定用の走査は、2次元的に行うことも出来るし、1次元的に行っても良い。2次元的な走査を行えば測定試料表面の2次元領域の表面電位分布を測定できるし、1次元的な走査を行えば測定試料表面上の線状領域(直線でも曲線でも良く、例えば円形状の線状領域や楕円形状の線状領域も考えられる。)における表面電位分布を測定できる。 The scanning for measuring the measurement sample using the charged particle beam can be performed two-dimensionally or one-dimensionally. If the two-dimensional scanning is performed, the surface potential distribution of the two-dimensional region on the surface of the measurement sample can be measured, and if the one-dimensional scanning is performed, the linear region on the surface of the measurement sample (a straight line or a curve may be used. Or the elliptical linear region can be considered).

「2次元的なシールド部材」における「2次元的」とは、シールド部材が検出手段の引き込み電圧による電界を遮蔽できる面積領域を有することを意味し、実際の形状は平面的な形状に限らず、後述する「円筒状や半球面形状等の3次元的な形状」を有することができる。 The “two-dimensional” in the “two-dimensional shield member ” means that the shield member has an area region that can shield the electric field due to the pull-in voltage of the detection means, and the actual shape is not limited to a planar shape. , Which can be described later, “a three-dimensional shape such as a cylindrical shape or a hemispherical shape”.

「接地電位と略等電位で、荷電粒子を通過させる2次元的なシールド部材」を荷電粒子光学系の光軸と検出手段の捕獲部との間に介在させることにより、検出器の引き込み電圧による電界が「荷電粒子が2次的に走査される空間領域に対して有効に遮蔽もしくは軽減」される。
この発明の表面電位分布測定装置は「請求項1記載の表面電位分布測定方法を実施するための装置」であって、試料保持手段と、帯電手段と、露光手段と、電圧印加手段と、荷電粒子光学系と、検出手段と、測定手段と、シールド部材とを有する(請求項2)。
By interposing a “two-dimensional shield member that allows charged particles to pass through at substantially the same potential as the ground potential” between the optical axis of the charged particle optical system and the capture unit of the detection means, The electric field is “effectively shielded or mitigated against the spatial region where the charged particles are secondarily scanned”.
The surface potential distribution measuring apparatus according to the present invention is an “apparatus for carrying out the surface potential distribution measuring method according to claim 1”, and is a sample holding means, a charging means, an exposure means, a voltage applying means, It has a particle optical system, a detection means, a measurement means, and a shield member .

「試料保持手段」は、誘電体層を導電層で挟持した3層構造を有し、一方の導電層上に、測定試料である光導電性試料を、その表面電位分布を形成する面を被走査面として平面的に保持する。
「帯電手段」は、試料保持手段に保持された測定試料を均一帯電させる。
「露光手段」は、帯電手段により均一帯電された測定試料に対して光像の照射による露光を行い、測定試料に表面電位分布としての静電潜像を形成する。
「電圧印加手段」は、試料保持手段の一方の導電層にバイアス電圧を印加し、測定試料に形成された表面電位分布をバイアス的に変化させる。
「荷電粒子光学系」は、試料保持手段に保持された測定試料の被走査面を荷電粒子ビームで測定用に走査する手段であって、上記帯電手段を兼ねる。従って、測定試料表面を帯電させる電荷と、測定用に走査される荷電粒子ビームの荷電粒子は同極性である。
The “sample holding means” has a three-layer structure in which a dielectric layer is sandwiched between conductive layers. On one conductive layer, a photoconductive sample as a measurement sample is covered with a surface on which the surface potential distribution is formed. It is held in a plane as a scanning plane.
The “charging unit” uniformly charges the measurement sample held by the sample holding unit.
The “exposure unit” exposes the measurement sample uniformly charged by the charging unit by irradiation with a light image, and forms an electrostatic latent image as a surface potential distribution on the measurement sample.
The “voltage applying unit” applies a bias voltage to one conductive layer of the sample holding unit, and changes the surface potential distribution formed on the measurement sample in a bias manner.
"Charged particle optical system" is a means for scanning the scan surface of the measuring sample held by the sample holding means for measuring a charged particle beam, also serves as the charging means. Therefore, the charge for charging the measurement sample surface and the charged particles of the charged particle beam scanned for measurement have the same polarity.

「検出手段」は、測定用に走査される荷電粒子ビームのうちで「その入射速度ベクトルの試料表面における法線方向の成分が反転した荷電粒子」を捕獲して検出する。
「測定手段」は、検出手段による検出結果に基づき測定試料の表面電位を演算する手段であり具体的にはマイクロコンピュータ等で構成できる。
The “detecting means” captures and detects “charged particles whose components in the normal direction of the incident velocity vector on the sample surface are reversed” among the charged particle beams scanned for measurement .
The “measuring unit” is a unit that calculates the surface potential of the measurement sample based on the detection result by the detecting unit, and can be specifically configured by a microcomputer or the like.

「2次元的なシールド部材」は、荷電粒子光学系の光軸と検出手段の捕獲部との間に配置され、接地電位と略等電位で、荷電粒子を通過させる。 The “two-dimensional shield member ” is disposed between the optical axis of the charged particle optical system and the capturing unit of the detection means, and allows the charged particles to pass therethrough at substantially the same potential as the ground potential.

2次元的なシールド部材としては「グリッドメッシュ(導電体によるメッシュ状構造物)」を好適に用いることが出来る(請求項3)、グリッドメッシュは開口効率(単位面積あたりの開口部面積の割合)が25%以上のものであることが好ましい。開口効率が25%以下であると「入射速度ベクトルの試料表面における法線方向の成分が反転した荷電粒子(以下「反転荷電粒子」と呼ぶ)」のうちで、グリッドメッシュに吸収されるものが増え、検出器による検出精度が低下する。また、開口効率が大きすぎると、検出器の引き込み電圧による電界を荷電粒子に対して有効に遮蔽することができない。開口効率の上限は90%程度が良い。 As the two-dimensional shield member, a “grid mesh (mesh-like structure made of a conductor)” can be preferably used (Claim 3), and the grid mesh has an opening efficiency (ratio of opening area per unit area). Is preferably 25% or more. Among the “charged particles in which the component in the normal direction of the sample surface of the incident velocity vector is inverted (hereinafter referred to as“ inverted charged particles ”)” when the aperture efficiency is 25% or less, what is absorbed by the grid mesh The detection accuracy by the detector decreases. On the other hand, if the aperture efficiency is too large, the electric field caused by the detector pull-in voltage cannot be effectively shielded against charged particles. The upper limit of the opening efficiency is preferably about 90% .

請求項2または3記載の表面電位分布測定装置における「2次元的なシールド部材」は、これを円筒状とし、荷電粒子光学系の光軸を囲繞するように設けることが出来る(請求項4)。また、2次元的なシールド部材を略半球面形状とし、測定試料を覆うように配置することもできる(請求項5)。勿論、2次元的なシールド部材を「平面的な形状」として、荷電粒子光学系の光軸と検出器との間に「衝立」のように配置してもよい。 "2-dimensional shielding member" in the surface potential distribution measuring apparatus according to claim 2 or 3, wherein, this was cylindrical, can be provided so as to surround the optical axis of the charged particle optical system (claim 4) . Further, the two-dimensional shield member may be formed in a substantially hemispherical shape so as to cover the measurement sample (claim 5). Of course, the two-dimensional shield member may be a “planar shape” and may be arranged like a “screen” between the optical axis of the charged particle optical system and the detector.

請求項2〜5の任意の1に記載の表面電位分布測定装置において、2次元的なシールド部材は「荷電粒子光学系の鏡筒により保持」することができる(請求項6)。
請求項2〜6の任意の1に記載の表面電位分布測定装置は上記の如く「光導電性の感光体に形成された静電潜像による表面電位分布を測定対象として測定を行う」ものであることができ、測定試料としての光導電性試料を均一帯電させる帯電手段と、均一帯電された光導電性試料に対して光像を照射して露光を行う露光手段を有する構成である。
The surface potential distribution measuring apparatus according to any one of claims 2 to 5, wherein the two-dimensional shield member can be “held by a lens barrel of a charged particle optical system” ( claim 6 ).
The surface potential distribution measuring apparatus according to any one of claims 2 to 6 , as described above, "measures the surface potential distribution by an electrostatic latent image formed on a photoconductive photosensitive member as a measurement object". It is possible to provide a charging means for uniformly charging a photoconductive sample as a measurement sample, and an exposure means for performing exposure by irradiating a light image to the uniformly charged photoconductive sample.

上記の如く、この発明では、荷電粒子光学系の光軸と検出手段の捕獲部との間に2次元的なシールド部材が介在するので、走査される荷電粒子に対する検出手段の(捕獲部に印加される)引き込み電圧による電界の作用が有効に遮蔽もしくは軽減される。このため、入射荷電粒子の軌跡が曲げられて「走査位置が狙いの位置」からずれたり、検出器の影響により荷電粒子の速度が変化したりすることが有効に防止され、もしくは軽減される。   As described above, in the present invention, since a two-dimensional shield member is interposed between the optical axis of the charged particle optical system and the capturing unit of the detecting unit, the detecting unit for the charged particle to be scanned (applied to the capturing unit). The effect of the electric field due to the pull-in voltage is effectively shielded or reduced. For this reason, it is possible to effectively prevent or reduce the trajectory of the incident charged particles from being bent and deviating from the “scanning position from the target position” or the speed of the charged particles changing due to the influence of the detector.

以下、発明の実施の形態を説明する。
図1に示す形態は「荷電粒子ビームとして電子ビームを用いる装置」である。
この表面電位分布測定装置は、測定試料0の表面電位分布を測定する装置である。装置各部は密閉ケーシング27に収められ、密閉ケーシング27内は吸引手段29により「実質的な真空状態」に減圧できるようになっている。図1(a)において、測定試料0には表面電位分布が形成されており、密閉ケーシング27内は減圧されているものとする。
Embodiments of the invention will be described below.
The form shown in FIG. 1 is an “apparatus using an electron beam as a charged particle beam”.
This surface potential distribution measuring device is a device for measuring the surface potential distribution of the measurement sample 0. Each part of the apparatus is housed in a hermetic casing 27, and the inside of the hermetic casing 27 can be decompressed to a “substantial vacuum state” by a suction means 29. In FIG. 1A, it is assumed that a surface potential distribution is formed in the measurement sample 0 and the inside of the sealed casing 27 is depressurized.

測定試料0を走査する電子ビームは電子銃10から放射され、ビームモニタ13を通過し、コンデンサレンズ15により集束しつつアパーチュア17、ビームブランカ18を通過し、偏向コイルによる走査レンズ19により2次元的に偏向される。偏向された電子ビームは対物レンズ21により測定試料0の表面に向かって集束される。 The electron beam that scans the measurement sample 0 is emitted from the electron gun 10, passes through the beam monitor 13, passes through the aperture 17 and the beam blanker 18 while being focused by the condenser lens 15, and is two-dimensionally scanned by the scanning lens 19 using a deflection coil. To be biased. The deflected electron beam is focused toward the surface of the measurement sample 0 by the objective lens 21.

ビームモニタ13は電子銃10から放射される電子ビームの強度をモニタするためのものであり、アパーチュア17は測定試料0に照射される電子ビームの「電流密度(単位時間あたりの照射粒子数)を制御する」ためのものであり、ビームブランカ18は「電子ビームをオン・オフ」するためのものである。上記電子銃10から測定試料0に至る電子ビームの照射路に配置される各部は図示されない駆動用電源に接続されており、これらは図示されないコンピュータ等の制御手段により制御される。   The beam monitor 13 is for monitoring the intensity of the electron beam emitted from the electron gun 10, and the aperture 17 is used to determine the “current density (number of irradiated particles per unit time) of the electron beam irradiated to the measurement sample 0. The beam blanker 18 is for “turning the electron beam on and off”. Each unit arranged in the electron beam irradiation path from the electron gun 10 to the measurement sample 0 is connected to a driving power source (not shown), and these are controlled by a control means such as a computer (not shown).

上記電子銃10、ビームモニタ13、コンデンサレンズ15、アパーチュア17、ビームブランカ18、走査レンズ19、対物レンズ21および図示されない駆動用電源は「荷電粒子光学系」を構成する。   The electron gun 10, beam monitor 13, condenser lens 15, aperture 17, beam blanker 18, scanning lens 19, objective lens 21 and driving power source (not shown) constitute a “charged particle optical system”.

上記の如くして、走査レンズ19により2次元的に偏向された電子ビームは測定試料0の表面を2次元的に走査する。
なお、荷電粒子ビームとしてイオンビームを用いる場合には、上記電子銃10に代えて「液体金属イオン銃」等を用いればよい。
As described above, the electron beam deflected two-dimensionally by the scanning lens 19 scans the surface of the measurement sample 0 two-dimensionally.
When an ion beam is used as the charged particle beam, a “liquid metal ion gun” or the like may be used instead of the electron gun 10.

詳細は後述するが、表面電位分布を有する測定試料0は「表面もしくは表面近傍(表面近傍の浅い内部領域)が負極性に帯電」し、帯電状態に応じた表面電位分布を持つ。測定試料0は、図の如く支持部23に平面的に支持されている。支持部23は「導電性の板状部材」で接地されている。測定試料0の表面電位分布は試料表面側の空間に、電子ビームの各電子に対してクーロン反発力を作用させる電界を形成する。支持部23は「表面電位分布を有する測定試料0の表面電位を有する面を被走査面として保持」する試料保持手段である。 Although details will be described later, the measurement sample 0 having a surface potential distribution “has a negative charge on the surface or in the vicinity of the surface (a shallow internal region in the vicinity of the surface)” and has a surface potential distribution corresponding to the charged state. The measurement sample 0 is planarly supported by the support portion 23 as shown in the figure. The support portion 23 is grounded by a “conductive plate-like member”. The surface potential distribution of the measurement sample 0 forms an electric field that causes a Coulomb repulsive force to act on each electron of the electron beam in the space on the sample surface side. The support part 23 is a sample holding means for “holding the surface having the surface potential of the measurement sample 0 having the surface potential distribution as the surface to be scanned”.

ここで、表面電位分布の原理を説明する。
図1(b)の如く、z方向を「測定試料0の表面に立てた法線の方向」とし、試料表面に平行にx軸、y軸を取り(x,y)座標を測定試料0の表面に設定する(y方向は図面に直交する方向である。)。
このとき「電子ビームにより2次元的に走査される領域:S」を、2次元座標を用いてS(x,y)で表すと、例えば、0mm≦x≦1mm、0mm≦y≦1mmである。この領域:S(x,y)に形成されている表面電位分布をVp(x,y)(<0)とする。
電子ビームによる測定試料0の2次元的な走査の、開始から終了に至る時間をT0≦T≦TFとすると、走査が行われているときの時間:Tは、走査領域:S(x,y)内の各走査位置と1:1に対応する。
Here, the principle of the surface potential distribution will be described.
As shown in FIG. 1B, the z-direction is defined as “the direction of the normal line standing on the surface of the measurement sample 0”, and the x-axis and y-axis are taken in parallel to the sample surface and the (x, y) coordinates are set to The surface is set (the y direction is a direction orthogonal to the drawing).
At this time, when “two-dimensionally scanned region: S” is represented by S (x, y) using two-dimensional coordinates, for example, 0 mm ≦ x ≦ 1 mm and 0 mm ≦ y ≦ 1 mm. . The surface potential distribution formed in this region: S (x, y) is Vp (x, y) (<0).
Assuming that the time from the start to the end of the two-dimensional scanning of the measurement sample 0 by the electron beam is T 0 ≦ T ≦ TF , the time when scanning is performed: T is the scanning region: S (x , Y) corresponds to each scanning position in 1: 1.

図1(b)は測定試料0の近傍を説明図的に示している。測定試料0における「走査される領域:S」は、走査レンズ19の倍率設定により「そのサイズを変える」ことが可能であり、例えば5mm×5mm程度の低倍率から1μm×1μm程度の高倍率まで、様々な倍率で観察することができる。   FIG. 1B illustrates the vicinity of the measurement sample 0 in an explanatory manner. The “scanned area: S” in the measurement sample 0 can be “changed in size” by setting the magnification of the scanning lens 19, for example, from a low magnification of about 5 mm × 5 mm to a high magnification of about 1 μm × 1 μm. Can be observed at various magnifications.

電子銃10から放射される電子ビームの速度を「v」とし、そのx,y,z方向の成分を「vx,vy,vz」とする。厳密には、電子ビームの走査に伴い、電子ビームにおける各電子の速度成分:vx,vy,vzは変化するが、説明の簡単のために、vx=vy=0、vz=vとする。   The velocity of the electron beam emitted from the electron gun 10 is “v”, and the components in the x, y, and z directions are “vx, vy, vz”. Strictly speaking, the velocity components of each electron in the electron beam: vx, vy, and vz change with the scanning of the electron beam, but for the sake of simplicity of explanation, vx = vy = 0 and vz = v.

電子銃10における電子ビームの「加速電圧」をVbとし、測定試料の表面電位を上記の如くVp(<0)とする。電子ビームの電子は、当初、加速電圧:Vbに相当する速度で測定試料0に向かって移動するが、試料表面に接近するに従い、測定試料の負の帯電状態によるクーロン力により反発されて減速される。   The “acceleration voltage” of the electron beam in the electron gun 10 is Vb, and the surface potential of the measurement sample is Vp (<0) as described above. The electrons in the electron beam initially move toward the measurement sample 0 at a speed corresponding to the acceleration voltage: Vb. However, as the sample surface approaches, the electron beam is repelled and decelerated by the Coulomb force due to the negatively charged state of the measurement sample. The

図2(b)は電子の加速電圧:Vbが「−Vpに対してVb>-Vp」である場合を説明図的に示している。この場合、電子は徐々に減速されるものの測定試料0に到達する。図2(a)は、電子の加速電圧:Vbが「−Vpに対してVb<-Vp」である場合を説明図的に示している。この場合、電子ビーム中の電子の速度は測定試料の反発クーロン力により漸減し、測定試料0に到達する以前に速度:vが0となり、その後反発クーロン力の作用で速度:v(試料表面における法線方向の成分:vz)の向きが反転する。このように速度:vの向きが反転した電子が前述の「反転荷電粒子」である。   FIG. 2B illustrates the case where the electron acceleration voltage Vb is “Vb> −Vp with respect to −Vp”. In this case, although the electrons are gradually decelerated, they reach the measurement sample 0. FIG. 2A illustrates the case where the acceleration voltage of electrons: Vb is “Vb <−Vp with respect to −Vp”. In this case, the velocity of electrons in the electron beam gradually decreases due to the repulsive Coulomb force of the measurement sample, and the velocity: v becomes 0 before reaching the measurement sample 0, and then the velocity: v (on the sample surface) due to the action of the repulsive Coulomb force. The direction of the component in the normal direction: vz) is reversed. Thus, the electron whose speed: v is reversed is the above-mentioned “inverted charged particle”.

このような反転荷電粒子は、図1に示す検出手段25に捕獲される。図1(b)に示すように、検出手段25(の捕獲部)には電子と逆極性(正極性)の「引き込み電圧」が電源EAから印加されており、この引き込み電圧により「反転荷電粒子(電子)」を捕獲する。捕獲された電子数は増幅され、その強度(単位時間あたりに捕獲された電子数)に応じた検出信号に変換される。   Such inverted charged particles are captured by the detecting means 25 shown in FIG. As shown in FIG. 1B, a “drawing voltage” having a polarity (positive polarity) opposite to that of electrons is applied to the detection means 25 (capture unit) from a power source EA. (Electronic) "is captured. The number of captured electrons is amplified and converted into a detection signal corresponding to the intensity (number of electrons captured per unit time).

検出手段25に捕獲される電子は、測定試料0の表面電位分布:Vp(x,y)により反発されたものであるから、時間:Tにおいて捕獲される電子の強度:F(T)は、時間:Tをパラメータとした表面電位分布:Vp{x(T),y(T)}と対応関係にある。上に説明した場合において、検出手段25に捕獲される反転荷電粒子は、Vb<−Vp(x,y)を満足する電子であるから、測定結果は「測定試料0の表面電位分布:Vp(x,y)を、電子銃10における加速電圧:Vbを測定の閾値として、領域的に2分」したものになる。   Since the electrons captured by the detection means 25 are repelled by the surface potential distribution of the measurement sample 0: Vp (x, y), the intensity of the electrons captured at time: T: F (T) is Time: Surface potential distribution with T as a parameter: Corresponding to Vp {x (T), y (T)}. In the case described above, the inverted charged particles captured by the detection means 25 are electrons satisfying Vb <−Vp (x, y). Therefore, the measurement result is “surface potential distribution of measurement sample 0: Vp ( x, y) is obtained by dividing the acceleration voltage in the electron gun 10 by a region of 2 minutes using Vb as a measurement threshold value.

即ち、走査領域:S(x,y)のうち「反転荷電粒子が捕獲された領域」は、表面電位分布:−Vp(x,y)>Vbの領域であり、反転荷電粒子が捕獲されなかった領域は、表面電位分布:−Vp(x,y)<Vbの領域である。   That is, in the scanning region: S (x, y), the “region where the inverted charged particles are captured” is a region of the surface potential distribution: −Vp (x, y)> Vb, and the inverted charged particles are not captured. The region is a region of surface potential distribution: −Vp (x, y) <Vb.

従って、検出手段25から得られる検出信号を適当な間隔でサンプリングすることにより−Vp(x,y)が測定の閾値:Vbより大きいか小さいかを「サンプリングに対応した微小領域」ごとに特定できる。このような操作は「CPUやマイクロコンピュータにより実現される測定手段」により実行される。   Therefore, by sampling the detection signal obtained from the detection means 25 at an appropriate interval, it is possible to specify for each “small area corresponding to sampling” whether −Vp (x, y) is larger or smaller than the measurement threshold value Vb. . Such an operation is executed by “measuring means realized by a CPU or a microcomputer”.

上には、荷電粒子ビームとして「電子ビーム」の場合を説明したが、上の例において電子銃10に代えて「液体金属イオン銃」を用いれば、荷電粒子ビームとしてイオンビームを使用した測定を行うことができる。測定試料0の表面電位分布:Vp(x,y)>0の場合には、荷電粒子ビームの荷電粒子として「ガリウムなどのプラスイオン」や陽子を用いればよい。   In the above, the case of the “electron beam” as the charged particle beam has been described. However, in the above example, if the “liquid metal ion gun” is used instead of the electron gun 10, the measurement using the ion beam as the charged particle beam is performed. It can be carried out. When the surface potential distribution of the measurement sample 0: Vp (x, y)> 0, “plus ions such as gallium” or protons may be used as the charged particles of the charged particle beam.

一般に、測定試料0における表面電位分布:Vp(x,y)の絶対値の最大値を、Max|V(x,y)|とするとき、加速電圧:Vbが、
Vb<Max|V(x,y)|
となる条件で荷電粒子ビームの走査を行うことにより、表面電位:Vp(x,y)の「測定の閾値:Vbに対する大小関係」を特定できることになる。
In general, when the maximum value of the absolute value of the surface potential distribution: Vp (x, y) in the measurement sample 0 is Max | V (x, y) |, the acceleration voltage: Vb is
Vb <Max | V (x, y) |
By scanning the charged particle beam under the following conditions, it is possible to specify the “surface magnitude: Vp (x, y)“ measurement threshold: magnitude relationship with respect to Vb ”.

図3に示す表面電位分布:Vp(x,y)(<0 測定試料0を支持する支持部23側の面が接地状態であるときの表面の電位分布)は、中心部(x=0)で略−520V、中心部を離れるに従い電位がマイナス方向に大きくなり、中心から0.1mm以上離れた周辺領域では略−830V程度になっている。   The surface potential distribution shown in FIG. 3: Vp (x, y) (<0, the surface potential distribution when the surface on the support portion 23 supporting the measurement sample 0 is in the grounded state) is the center portion (x = 0). The potential increases in the minus direction as the distance from the center increases, and is approximately −830 V in the peripheral region at a distance of 0.1 mm or more from the center.

このような表面電位分布:Vp(x,y)に対して、加速電圧:Vbを600V及び740Vとして測定を行ったときの、−Vp(x,y)>600Vの領域:S600、および−Vp(x,y)>750Vの領域:S750を示している。これら領域S600、S750の外側では荷電粒子ビーム(電子ビーム)の電子の多くが測定試料に到達し、反転荷電粒子が少ないため、検出手段の検出する電子数は非常に少ない。   With respect to such a surface potential distribution: Vp (x, y), an area where −Vp (x, y)> 600 V is measured when the acceleration voltage: Vb is 600 V and 740 V: S600, and −Vp Region (x, y)> 750V: S750 is shown. Outside these regions S600 and S750, most of the electrons of the charged particle beam (electron beam) reach the measurement sample, and the number of inverted charged particles is small, so the number of electrons detected by the detection means is very small.

加速電圧:Vbを複数段階に切り替えて測定を行えば、表面電位分布:Vp(x,y)を「測定ごとの加速電圧(即ち測定の閾値):Vbごとに輪切りにした領域」が得られるので、これらを用いることにより「表面電位分布:Vp(x,y)の全体的な状態」を演算により特定できる。勿論、加速電圧:Vbを切り替えるステップを細かくして測定回数を増やすほど、精度の良い測定が可能になる。測定手段による演算により「表面電位分布のプロファイル」等を求めることも容易に実現できる。   If measurement is performed by switching the acceleration voltage: Vb to a plurality of stages, the surface potential distribution: Vp (x, y) can be obtained as “acceleration voltage for each measurement (that is, threshold for measurement): a region that is rounded for each Vb”. Therefore, by using these, the “surface potential distribution: the overall state of Vp (x, y)” can be specified by calculation. Of course, the finer the step of switching the acceleration voltage: Vb and the greater the number of measurements, the more accurate measurement becomes possible. It is possible to easily obtain the “surface potential distribution profile” and the like by calculation by the measuring means.

周辺の電場環境の影響で、加速電圧:-Vbが必ずしも閾値に等しくならないような場合には、静電場環境をあらかじめ計算しておき、それをもとに補正することができる。   When the acceleration voltage: -Vb is not necessarily equal to the threshold value due to the influence of the surrounding electric field environment, the electrostatic field environment can be calculated in advance and corrected based on it.

検出手段25はシンチレータにより捕獲電子による「シンチレーション光」を発生させ、このシンチレーション光を電子増倍管等で増幅して検出信号とする。   The detection means 25 generates “scintillation light” by trapped electrons by a scintillator, and amplifies the scintillation light with an electron multiplier or the like to obtain a detection signal.

さて、図1に示すように、荷電粒子光学系の光軸と検出手段25の捕獲部との間には、2次元的なシールド部材26が配置されている。シールド部材26は、この実施の形態では図4に示すように平面的な「グリッドメッシュ」であり、検出手段25の捕獲部と荷電粒子光学系の光軸との間に「衝立」状に配置され、接地電位とされている。 As shown in FIG. 1, a two-dimensional shield member 26 is disposed between the optical axis of the charged particle optical system and the capture unit of the detection means 25. In this embodiment, the shield member 26 is a planar “grid mesh” as shown in FIG. 4, and is arranged in a “partition” shape between the capture portion of the detection means 25 and the optical axis of the charged particle optical system. To ground potential.

グリッドメッシュ26は、図4に示すように、導電体による外枠26Aとその内側に格子状に張り渡された導電細線部26Bとからなり、外枠26Aを接地することにより導電細線部26Bの張り渡された面が接地電位に略等しい2次元的な略等電位面となる。   As shown in FIG. 4, the grid mesh 26 is composed of an outer frame 26A made of a conductor and conductive thin wire portions 26B stretched in a lattice shape on the inside thereof, and the outer frame 26A is grounded to ground the conductive thin wire portions 26B. The stretched surface becomes a two-dimensional substantially equipotential surface substantially equal to the ground potential.

略接地電位にあるグリッドメッシュ26が、荷電粒子光学系の光軸と検出手段25の捕獲部との間に介在することにより、検出手段25の捕獲部に印加されている引き込み電圧による電界の影響が「測定試料0へ入射する荷電粒子ビーム」に対して遮蔽され、このため、荷電粒子ビームはその軌道を逸らされることなく、精度良く測定試料の「狙いとする位置」へ向かって入射する。   The grid mesh 26 at a substantially ground potential is interposed between the optical axis of the charged particle optical system and the capture unit of the detection unit 25, so that the influence of the electric field due to the drawing voltage applied to the capture unit of the detection unit 25 is achieved. Are shielded against the “charged particle beam incident on the measurement sample 0”, so that the charged particle beam is incident on the “target position” of the measurement sample with high accuracy without being deviated from its trajectory.

一方で、反転荷電粒子はグリッドメッシュ26の接地電位に引かれてグリッドメッシュ26へ向かい、その開口部(導電細線部の間)を通過すると引き込み電圧による電界の作用で検出手段25の捕獲部に向かう。   On the other hand, the inverted charged particles are attracted to the ground potential of the grid mesh 26 and travel toward the grid mesh 26 and pass through the opening (between the conductive thin wire portions). Head.

グリッドメッシュ26の開口率は、前述の如く25%以上で90%程度以下であることが好ましいが、導電細線部26Bのピッチを1mmとした場合、導電細線の幅を0.5mm以下とすれば、開口率:25%以上を実現できる。1mmピッチで導電細線の幅を0.1mmとすれば、略80%の開口率を実現できる。 As described above, the aperture ratio of the grid mesh 26 is preferably 25% or more and about 90% or less. However, when the pitch of the conductive thin wire portions 26B is 1 mm, the width of the conductive thin wires is 0.5 mm or less. Opening ratio: 25% or more can be realized. If the width of the thin conductive wire is 0.1 mm at a pitch of 1 mm, an aperture ratio of about 80% can be realized .

グリッドメッシュ26を構成する材料としては導電性のものを適宜に用いることができるが、特にアルミニウム・銅などの非磁性材料、SUS等の弱磁性材料を用いることにより、磁場の影響を極力抑えることが出来る。   As the material constituting the grid mesh 26, a conductive material can be used as appropriate. However, by using a nonmagnetic material such as aluminum or copper, or a weak magnetic material such as SUS, the influence of the magnetic field is suppressed as much as possible. I can do it.

上に説明した表面電位分布測定装置は、表面電位分布を有する測定試料0の表面電位を有する面を被走査面として保持する試料保持手段23と、この試料保持手段に保持された測定試料0の被走査面を荷電粒子ビームで走査する荷電粒子光学系10〜21等と、荷電粒子ビームのうちで、その入射速度ベクトルの試料表面における法線方向の成分が反転した荷電粒子を捕獲して、その強度を試料表面上の位置に対応させて検出する検出手段25と、この検出手段による検出結果に基づき測定試料の表面電位を演算する測定手段(図示されず)と、荷電粒子光学系の光軸と検出手段の捕獲部との間に配置され、接地電位と略等電位で、荷電粒子を通過させる2次元的なシールド部材26とを有する。 The surface potential distribution measuring apparatus described above includes a sample holding means 23 that holds a surface having a surface potential of a measurement sample 0 having a surface potential distribution as a scanned surface, and a measurement sample 0 held by the sample holding means. A charged particle optical system 10 to 21 that scans a surface to be scanned with a charged particle beam, and the charged particle beam that captures charged particles whose components in the normal direction of the sample surface of the incident velocity vector are inverted, Detection means 25 for detecting the intensity corresponding to the position on the sample surface, measurement means (not shown) for calculating the surface potential of the measurement sample based on the detection result by the detection means, and light from the charged particle optical system A two-dimensional shield member 26 is disposed between the shaft and the capturing part of the detection means and allows charged particles to pass therethrough at substantially the same potential as the ground potential .

そして、この装置により、表面電位分布を有する測定試料0に対して、荷電粒子光学系により荷電粒子ビームを走査し、試料表面に入射する荷電粒子のうち、その入射速度ベクトルの試料表面における法線方向の成分が反転した荷電粒子を検出手段25により捕獲検出して検出信号を得る表面電位分布測定方法において、荷電粒子光学系の光軸と検出器との間に、接地電位と略等電位で、荷電粒子を通過させる2次元的なシールド部材26を介在させる表面電位分布測定方法が実施されるWith this apparatus, a charged particle beam is scanned by a charged particle optical system on a measurement sample 0 having a surface potential distribution, and among charged particles incident on the sample surface, the normal line on the sample surface of the incident velocity vector. In the surface potential distribution measurement method for obtaining a detection signal by capturing and detecting charged particles whose direction components are reversed by the detection means 25, the ground potential is approximately equipotential between the optical axis of the charged particle optical system and the detector. Then, a surface potential distribution measuring method is performed in which a two-dimensional shield member 26 that allows charged particles to pass through is interposed.

図5は実施の形態を要部のみ示している。
この実施の形態では、測定試料0を平面的に支持する試料保持手段230は、誘電体層232を導電層231、233により挟持した3層構造となっており、導電層233は接地され、導電層231には可変直流電源EBからバイアス電圧が印加されるようになっている。
FIG. 5 shows only the main part of the embodiment .
In this embodiment, the sample holding means 230 for supporting the measurement sample 0 in a plane has a three-layer structure in which the dielectric layer 232 is sandwiched between the conductive layers 231 and 233, and the conductive layer 233 is grounded and conductive. A bias voltage is applied to the layer 231 from the variable DC power supply EB.

導電層231にバイアス電圧が印加されると、試料0の表面側の電位分布は、測定試料0の表面電位分布に「均一なバイアス電位」を重畳したものとなる。荷電粒子ビームとして電子ビームを用いる場合であれば、電子ビームの加速電圧:Vbを予め十分に大きくしておき、導電層231に印加されるバイアス電圧の極性を負極性として、電子ビームとして入射する電子を反発するバイアス電位を形成するようにする。   When a bias voltage is applied to the conductive layer 231, the potential distribution on the surface side of the sample 0 is obtained by superimposing a “uniform bias potential” on the surface potential distribution of the measurement sample 0. In the case of using an electron beam as the charged particle beam, the electron beam acceleration voltage: Vb is sufficiently increased in advance, and the polarity of the bias voltage applied to the conductive layer 231 is set to have a negative polarity so as to be incident as an electron beam. A bias potential that repels electrons is formed.

バイアス電圧:Vgを印加すると、測定試料表面の表面電位分布:Vp(x、y)は、
Vp(x,y)=Vs(x、y)+Vg
となる。
When the bias voltage: Vg is applied, the surface potential distribution on the measurement sample surface: Vp (x, y) is
Vp (x, y) = Vs (x, y) + Vg
It becomes.

図1の場合のように、測定試料0の背面側を支持する試料保持手段23が接地されている場合であれば、Vg=0であり、Vp(x,y)=Vs(x、y)である。
図5のように、バイアス電圧:Vgを印加する場合、例えば、Vg=−1000Vを印加すれば、図4に示した電位分布の例では中心(x=0)での表面電位が略−1520V(=−520V−1000V)となり、中心から0.1mmはなれた部分では、略−1830Vとなり、表面電位は全体的に1000V下がる。
As in the case of FIG. 1, if the sample holding means 23 supporting the back side of the measurement sample 0 is grounded, Vg = 0 and Vp (x, y) = Vs (x, y) It is.
As shown in FIG. 5, when a bias voltage: Vg is applied, for example, when Vg = −1000 V is applied, the surface potential at the center (x = 0) is approximately −1520 V in the example of the potential distribution shown in FIG. (= −520V−1000V), and in a portion away from the center by 0.1 mm, it becomes approximately −1830V, and the surface potential is lowered by 1000V as a whole.

測定試料に入射する荷電粒子ビームの「入射速度ベクトルの試料表面における法線方向の成分が反転」する条件は、加速電圧:Vbとバイアス電位:Vgとで定まり、反転の生じる閾値:Vthは、
Vth=−(Vb+Vg)
となり、この場合に図3のS600の領域と同じ検出信号を得るためには、Vb=1.6kV、Vg=−1000Vとすれば良く、S750の領域と同じ検出信号を得るには、Vb=1.75kV、Vg=−1000Vとするか、あるいはVb=1.6kV,Vg=−850Vとしてもよい。
The condition for “the normal component of the incident velocity vector on the sample surface to be reversed” of the charged particle beam incident on the measurement sample is determined by acceleration voltage: Vb and bias potential: Vg.
Vth =-(Vb + Vg)
In this case, Vb = 1.6 kV and Vg = −1000 V can be obtained in order to obtain the same detection signal as in the region of S600 in FIG. 3, and Vb = 1.6V in order to obtain the same detection signal as in the region of S750. It may be 1.75 kV and Vg = −1000 V, or Vb = 1.6 kV and Vg = −850 V.

このように、測定試料0の表面電位分布をバイアス的に変化させる電圧印加手段(試料保持手段230と可変直流電源EB)を有することにより、加速電圧:Vbを固定した状態でも上記Vthを変えて表面電位分布を測定することが可能となる。上記電圧印加手段による印加電圧を変える場合、印加電位の変化ステップを細かく設定することにより、反転の閾値:Vthを「より細かく設定」できる。また、表面電位分布が「プラスからマイナスに変化しているような分布」であっても測定が可能となる。   In this way, by having voltage application means (sample holding means 230 and variable DC power supply EB) that changes the surface potential distribution of the measurement sample 0 in a bias manner, the above-mentioned Vth can be changed even when the acceleration voltage Vb is fixed. It is possible to measure the surface potential distribution. When changing the voltage applied by the voltage applying means, the inversion threshold value Vth can be set “more finely” by finely setting the change step of the applied potential. Further, measurement is possible even when the surface potential distribution is “a distribution that changes from plus to minus”.

なお、測定試料における表面電位分布が「導体パターンによる電位分布」の場合、背面に電圧を印加する方法のほかに、導体にかかる電圧自身に電位バイアスを印加する方法を用いても良い。荷電粒子ビームが正電荷を帯びている場合には、反転の閾値:Vthは、
Vth=Vb−Vg
となる。
When the surface potential distribution in the measurement sample is “potential distribution by the conductor pattern”, a method of applying a potential bias to the voltage itself applied to the conductor may be used in addition to the method of applying a voltage to the back surface. When the charged particle beam is positively charged, the inversion threshold: Vth is
Vth = Vb-Vg
It becomes.

図6に示すのは、表面電位分布測定装置の1形態を要部のみ示すものである。混同の虞がないと思われるものについては、図5におけると同一の符号を付した。 FIG. 6 shows only one part of one form of the surface potential distribution measuring apparatus . Those which are not likely to be confused are given the same reference numerals as in FIG.

この形態では、2次元的なシールド部材が円筒状であって、荷電粒子光学系の光軸を囲繞するように設けられる。即ち、2次元的なシールド部材は円筒形状のグリッドメッシュ(図4に示した如きものを円筒状に巻くように形成したもの)26Aであり、荷電粒子光学系の光軸まわりの試料近傍に図の如く配置される。検出手段25の引き込み電圧が及ぼす電界は、走査される試料領域と検出手段の捕獲部を結ぶ領域のみならず、その周辺部にも影響するので、荷電粒子光学系の光軸の周り全体を囲繞するように円筒状のグリッドメッシュ26Aで覆うと、引き込み電圧による電界の作用を囲繞された領域内で有効に遮蔽できる。 In this embodiment , the two-dimensional shield member is cylindrical and is provided so as to surround the optical axis of the charged particle optical system. That is, the two-dimensional shield member is a cylindrical grid mesh 26A (formed so as to be wound in a cylindrical shape as shown in FIG. 4) 26A, and is shown near the sample around the optical axis of the charged particle optical system. It is arranged as follows. The electric field exerted by the pull-in voltage of the detection means 25 affects not only the area where the sample area to be scanned and the capture part of the detection means are connected, but also the periphery thereof, and therefore surrounds the entire optical axis of the charged particle optical system. When covered with the cylindrical grid mesh 26A as described above, the action of the electric field due to the pull-in voltage can be effectively shielded in the enclosed region.

このように円筒形状のグリッドメッシュ26Aを用いることにより、これを用いない場合における「入射荷電粒子(電子)の軌跡のシフト」を1/5以下に減少させることができることが実験的に確認された。   By using the cylindrical grid mesh 26A in this way, it has been experimentally confirmed that the “shift of the locus of incident charged particles (electrons)” when this is not used can be reduced to 1/5 or less. .

図7に示すのは、表面電位分布測定装置の1形態の要部であり、混同の虞がないと思われるものについては図5に置けると同一の符号を付した。 FIG. 7 shows the main part of one form of the surface potential distribution measuring apparatus , and those which are not likely to be confused are given the same reference numerals when placed in FIG.

この実施の形態においては、2次元的なシールド部材26B1は略半球面形状のグリッドメッシュであって、測定試料0の試料表面を覆うように配置されている。この実施の形態の場合、測定試料表面に入射する荷電粒子(電子)に対する検出手段25の引き込み電圧の影響が軽減されるとともに、グリッドメッシュ26B1の外へ出た反転荷電粒子の検出手段25による収集効率は、図6の実施の形態よりも高い。 In this embodiment, the two-dimensional shield member 26B1 is a substantially hemispherical grid mesh, and is disposed so as to cover the sample surface of the measurement sample 0. In the case of this embodiment, the influence of the pull-in voltage of the detection means 25 on the charged particles (electrons) incident on the surface of the measurement sample is reduced, and the reverse charged particles that have gone out of the grid mesh 26B1 are collected by the detection means 25. The efficiency is higher than the embodiment of FIG.

この実施の形態ではまた、グリッドメッシュ26B1のほかに、これよりも若干大きい第2のグリッドメッシュ26B2を、グリッドメッシュ26B1の外側に設けて、直流電圧電源ECから適宜の電圧を印加できるようにしている。例えば、グリッドメッシュ26B1を接地し、外側のグリッドメッシュ26B2に直流電圧電源ECにより−100Vを印加すると、反転荷電粒子は検出手段25に到達しやすくなり、また、グリッドメッシュ26B2に印加する電圧をプラス電圧にすると、反転荷電粒子は検出手段26に到達し難くなるので、外側のグリッドメッシュ26B2に「エネルギフィルタ」の機能を持たせることができる。   In this embodiment, in addition to the grid mesh 26B1, a second grid mesh 26B2 slightly larger than the grid mesh 26B1 is provided outside the grid mesh 26B1 so that an appropriate voltage can be applied from the DC voltage power supply EC. Yes. For example, when the grid mesh 26B1 is grounded and −100V is applied to the outer grid mesh 26B2 by the DC voltage power supply EC, the inverted charged particles easily reach the detection means 25, and the voltage applied to the grid mesh 26B2 is increased. When the voltage is applied, the inverted charged particles are difficult to reach the detection means 26, and thus the outer grid mesh 26B2 can have the function of “energy filter”.

図8に示すのは、表面電位分布測定装置の1形態の要部であり、混同の虞がないと思われるものについては図5に置けると同一の符号を付した。 FIG. 8 shows a main part of one form of the surface potential distribution measuring apparatus , and those which are not likely to be confused are given the same reference numerals when placed in FIG.

この実施の形態においては、2次元的なシールド部材26Cが、荷電粒子光学系の鏡筒21Cにより保持されている。2次元的なシールド部材26Cは「導電性材料による円筒」であって、走査される荷電粒子ビームが通過する空間領域を囲繞するようにして設けられ、接地されている。 In this embodiment, a two-dimensional shield member 26C is held by a lens barrel 21C of a charged particle optical system. The two-dimensional shield member 26 </ b > C is a “cylinder made of a conductive material”, is provided so as to surround a space region through which a charged particle beam to be scanned passes, and is grounded.

このようなシールド部材26Cを用いると、荷電粒子光学系の対物レンズ21と測定試料0との間の距離が10mm程度以上と大きく、引き込み電圧による電界の作用を受ける粒子軌道領域が大きいような場合に上記電圧の影響(粒子の軌道の変動や速度の変動)を有効に軽減させることができる。また、この実施の形態では、2次元的なシールド部材26Cのほかに、グリッドメッシュ26も設けられている。このように、2次元的なシールド部材は複数個が用いられることもできる。グリッドメッシュ26も鏡筒21Cに保持させることができることは言うまでもない。 When such a shield member 26C is used, the distance between the objective lens 21 of the charged particle optical system and the measurement sample 0 is as large as about 10 mm or more, and the particle trajectory region subjected to the effect of the electric field due to the pull-in voltage is large. In addition, the influence of the voltage (particle orbital variation and velocity variation) can be effectively reduced. In this embodiment, a grid mesh 26 is also provided in addition to the two-dimensional shield member 26C . Thus, a plurality of two-dimensional shield members can be used. It goes without saying that the grid mesh 26 can also be held in the lens barrel 21C.

即ち、上記表面電位分布測定装置において、帯電粒子光学系の鏡筒に保持されるのは、請求項3〜5に記載のシールド面部材自体であることもできるし、これらとは別体のシールド面部材であることもできる。 That is, in the surface potential distribution measuring apparatus, what is held in the lens barrel of the charged particle optical system can be the shield surface member itself according to claims 3 to 5 , or a shield separate from these members. It can also be a surface member.

図9に示すのは、請求項2記載の表面電位分布測定装置の実施の1形態の要部である。混同の虞がないと思われるものについては、図8におけると同一の符号を付した。
図9の表面電位分布測定装置は「光導電性の感光体に形成された静電潜像による表面電位分布」を測定対象として測定を行うもので、測定試料0は「光導電性試料」である。
また、測定試料を保持する保持手段230は、図5〜図8に即して説明した「3層構造のもの」である。
FIG. 9 shows a main part of one embodiment of the surface potential distribution measuring apparatus according to claim 2 . Those that are not likely to be confused are given the same reference numerals as in FIG.
The surface potential distribution measuring apparatus in FIG. 9 performs measurement using “surface potential distribution by an electrostatic latent image formed on a photoconductive photoreceptor” as a measurement target, and measurement sample 0 is “photoconductive sample”. is there.
Further, the holding means 230 for holding the measurement sample is the “three-layer structure” described with reference to FIGS.

この表面電位分布測定装置は、光導電性試料である測定試料0を均一帯電させる「帯電手段」と、均一帯電された光導電性試料に対して光像を照射して露光を行う「露光手段」とを有する。   This surface potential distribution measuring apparatus includes a “charging unit” that uniformly charges a measurement sample 0 that is a photoconductive sample, and an “exposure unit” that performs exposure by irradiating a light image onto the uniformly charged photoconductive sample. It has.

この実施の形態において、測定試料0を均一帯電させるための帯電手段としては、帯電粒子光学系が用いられる。「荷電粒子光学系」として「電子ビームを用いるもの」を例として説明する。   In this embodiment, a charged particle optical system is used as a charging means for uniformly charging the measurement sample 0. The “charged particle optical system” will be described by taking “an electron beam using system” as an example.

測定試料0に対し、電子ビームを2次元的に走査して測定試料0を均一に帯電させる。このとき、電子ビームの加速電圧:Vbを「2次電子放出比:δが1となる加速電圧」よりも高い加速電圧に設定する。このようにすると、入射電子量が「放出される2次電子量を上回る」ため測定試料に電子が蓄積され、測定試料は負極性に均一帯電する。   The measurement sample 0 is two-dimensionally scanned with the electron beam to charge the measurement sample 0 uniformly. At this time, the acceleration voltage Vb of the electron beam is set to an acceleration voltage higher than “secondary electron emission ratio: acceleration voltage at which δ becomes 1”. In this case, since the amount of incident electrons is “exceeding the amount of secondary electrons emitted”, electrons are accumulated in the measurement sample, and the measurement sample is uniformly charged negatively.

加速電圧:Vbと照射時間を適切に調整することにより、測定試料を所望の表面電位に帯電させることができる。帯電手段としては、上記のものとは別に、接触帯電や注入帯電、イオン照射帯電等の使用も可能である。   By appropriately adjusting the acceleration voltage: Vb and the irradiation time, the measurement sample can be charged to a desired surface potential. As charging means, apart from the above, contact charging, injection charging, ion irradiation charging, etc. can be used.

「露光手段」は、光源である半導体レーザ90と、コリメートレンズ91、アパーチュア92、イメージパターン93、ミラーM1、M2、結像レンズ94を有する。半導体レーザ90を点灯させると、放射されたレーザ光はコリメートレンズ91で平行光束化され、アパーチュア92を介して透光性のイメージパターン93を照射する。   The “exposure means” includes a semiconductor laser 90 as a light source, a collimating lens 91, an aperture 92, an image pattern 93, mirrors M 1 and M 2, and an imaging lens 94. When the semiconductor laser 90 is turned on, the emitted laser light is converted into a parallel light beam by the collimator lens 91 and irradiates a translucent image pattern 93 through the aperture 92.

イメージパターン93を透過した光はミラーM1により反射され、結像レンズ94を透過し、ミラーM2で反射されて測定試料0に照射され、測定試料0の表面にイメージパターン92の光像を結像する。この光像により測定試料0が露光され、測定試料0にイメージパターン92に対応する静電潜像が形成される。この静電潜像が測定対象としての表面電位分布であり、上に説明した如くして測定される。   The light that has passed through the image pattern 93 is reflected by the mirror M 1, passes through the imaging lens 94, is reflected by the mirror M 2, and irradiates the measurement sample 0, and forms an optical image of the image pattern 92 on the surface of the measurement sample 0. To do. The measurement sample 0 is exposed by this optical image, and an electrostatic latent image corresponding to the image pattern 92 is formed on the measurement sample 0. This electrostatic latent image is a surface potential distribution as a measurement target, and is measured as described above.

表面電位分布測定装置の実施の別形態を図10に示す、混同の虞がないと思われるものについては、図1以下の各図面におけると同一の符号を付した。
光導電性の感光体に形成される静電潜像は、暗減衰のため「測定可能な時間」が数十秒程度しかないので、測定試料0が光導電性の感光体(光導電性試料)である場合には、密閉ケーシング内に「静電潜像形成手段」が配置される。
FIG. 10 shows another embodiment of the surface potential distribution measuring apparatus , which is considered not to be confused with the same reference numerals as those in FIG.
Since the electrostatic latent image formed on the photoconductive photoconductor has a “measurable time” of several tens of seconds due to dark decay, the measurement sample 0 is a photoconductive photoconductor (photoconductive sample). ), The “electrostatic latent image forming means” is disposed in the sealed casing.

図10において、電子銃10、ビームモニタ13、コンデンサレンズ15、アパーチュア17、ビームブランカ18、走査レンズ19、対物レンズ21、支持部23の部分は、図1に示した実施の形態におけると同様のものであり、したがって図1に関する説明を援用する。   10, the electron gun 10, beam monitor 13, condenser lens 15, aperture 17, beam blanker 18, scanning lens 19, objective lens 21, and support portion 23 are the same as those in the embodiment shown in FIG. Therefore, the description relating to FIG. 1 is incorporated.

なお、電子銃10、ビームモニタ13、コンデンサレンズ15、アパーチュア17、ビームブランカ18、走査レンズ19、対物レンズ21は、荷電粒子走査系11Aを構成し、荷電粒子走査系11Aの各構成部分は、荷電粒子ビーム制御部31により制御されるようになっており、荷電粒子走査系11Aと荷電粒子ビーム制御部31とは「荷電粒子光学系」を構成している。測定試料0は「光導電性の感光体」であり、接地された導電性の支持部23の上面に平面的に支持される。   The electron gun 10, the beam monitor 13, the condenser lens 15, the aperture 17, the beam blanker 18, the scanning lens 19, and the objective lens 21 constitute a charged particle scanning system 11A, and each component of the charged particle scanning system 11A includes: The charged particle beam control unit 31 is controlled, and the charged particle scanning system 11A and the charged particle beam control unit 31 constitute a “charged particle optical system”. The measurement sample 0 is a “photoconductive photoreceptor”, and is supported in a planar manner on the upper surface of the grounded conductive support portion 23.

符号34は光源である半導体レーザ、符号35はコリメートレンズ、符号36はアパーチュア、符号37はマスク、符号38、39、40は「結像レンズ」を構成するレンズを示している。これらは「光像照射部」を構成し、半導体レーザ制御部33や図示されない光像照射制御部とともに「露光手段」を構成している。   Reference numeral 34 denotes a semiconductor laser as a light source, reference numeral 35 denotes a collimating lens, reference numeral 36 denotes an aperture, reference numeral 37 denotes a mask, and reference numerals 38, 39, and 40 denote lenses constituting an “imaging lens”. These constitute a “light image irradiating unit” and constitute an “exposure unit” together with the semiconductor laser control unit 33 and a light image irradiation control unit (not shown).

図示されない光像照射制御部は、結像レンズ38、39、40とマスク37との位置関係の調整によるフォーカシングや倍率変換を行い得るようになっている。   A light image irradiation control unit (not shown) can perform focusing and magnification conversion by adjusting the positional relationship between the imaging lenses 38, 39, and 40 and the mask 37.

符号25は検出手段、符号260は信号処理部、符号260Aはモニタ、符号280はプリンタ等のアウトプット装置を示している。信号処理部260、モニタ260A、アウトプット装置280は「測定手段」を構成する。符号290は除電用の発光素子を示す。   Reference numeral 25 denotes a detection means, reference numeral 260 denotes a signal processing unit, reference numeral 260A denotes a monitor, and reference numeral 280 denotes an output device such as a printer. The signal processor 260, the monitor 260A, and the output device 280 constitute “measurement means”. Reference numeral 290 denotes a light-emitting element for static elimination.

上記各部は、図示の如くケーシング30内に配設され、ケーシング内部は吸引手段32により高度に減圧できるようになっている。即ち、ケーシング30は「真空チャンバ」としての機能を有している。また、装置の全体はホストコンピュータ50(制御手段、装置の各部を総合的に制御する)により制御されるようになっている。上述の荷電粒子ビーム制御部31や信号処理部260等は、ホストコンピュータ50に「その機能の一部」として設定することもできる。   Each of the above parts is disposed in the casing 30 as shown in the figure, and the inside of the casing can be highly decompressed by the suction means 32. That is, the casing 30 has a function as a “vacuum chamber”. The entire apparatus is controlled by a host computer 50 (control means, which controls each part of the apparatus comprehensively). The charged particle beam control unit 31 and the signal processing unit 260 described above can be set as “part of the function” in the host computer 50.

図10に示す状態において、表面を均一に帯電された測定試料0は支持部23上に載置され、ケーシング30内部は高度に減圧されている。この状態で、半導体レーザ34を点灯し、マスク37の光像を測定試料0の均一帯電された面上に結像させる。この露光により測定試料0に、照射された光像に応じた静電潜像のパターンが形成される。   In the state shown in FIG. 10, the measurement sample 0 whose surface is uniformly charged is placed on the support portion 23, and the inside of the casing 30 is highly decompressed. In this state, the semiconductor laser 34 is turned on and an optical image of the mask 37 is formed on the uniformly charged surface of the measurement sample 0. By this exposure, a pattern of an electrostatic latent image corresponding to the irradiated light image is formed on the measurement sample 0.

このように静電潜像のパターンが形成された面を、電子ビームにより2次元的に走査し、前述の如く、測定試料0の表面電位により反発された反転荷電粒子(電子)を、接地されたグリッドメッシュ26を介して検出手段25により捕獲し、その強度を検出して電気信号に変換する。   The surface on which the pattern of the electrostatic latent image is formed is scanned two-dimensionally with an electron beam, and as described above, the inverted charged particles (electrons) repelled by the surface potential of the measurement sample 0 are grounded. It is captured by the detection means 25 through the grid mesh 26, and its intensity is detected and converted into an electrical signal.

先に説明した実施の形態と同様に、加速電圧:Vbを切り替え、切り替えるたびに測定を繰り返して静電潜像の「表面電位分布のプロファイル」を、ホストコンピュータ50により制御される「演算手段」としての信号処理部260により演算算出して、アウトプット装置280に出力することができる。   As in the embodiment described above, the acceleration voltage: Vb is switched, and the measurement is repeated each time the switching is performed, and the “surface potential distribution profile” of the electrostatic latent image is controlled by the host computer 50. The signal processing unit 260 can calculate and output to the output device 280.

光導電性試料である測定試料0に静電潜像のパターンを形成するには、光像による露光に先立ち、その表面を均一に帯電する必用があるが、この均一帯電は、図9に即して説明した実施の形態の場合と同様、電子ビームの2次元的走査を利用して行う。   In order to form a pattern of an electrostatic latent image on the measurement sample 0, which is a photoconductive sample, it is necessary to uniformly charge the surface prior to exposure with the light image. Similarly to the embodiment described above, the two-dimensional scanning of the electron beam is used.

図11には、光導電性の感光体に形成される静電潜像を測定の対象とする表面電位分布測定装置の他の実施形態を示す。繁雑を避けるべく、混同の虞が無いと思われるものについては、図1、図10におけると同一の符号を付した。   FIG. 11 shows another embodiment of a surface potential distribution measuring apparatus that measures an electrostatic latent image formed on a photoconductive photoreceptor. In order to avoid confusion, the same reference numerals as those in FIGS. 1 and 10 are assigned to those which are not likely to be confused.

荷電粒子走査系11Aを構成する、電子銃10、アパーチュア13、コンデンサレンズ15、アパーチュア17、ビームブランカ18、走査レンズ19および対物レンズ21は図1、図10におけるものと同様の構成であり、メッシュグリッド26、検出手段25および図示されない信号処理部等も、図10に即して上に説明したものと同様である。符号300はケーシングを示す。   The electron gun 10, the aperture 13, the condenser lens 15, the aperture 17, the beam blanker 18, the scanning lens 19, and the objective lens 21 constituting the charged particle scanning system 11A have the same configuration as that shown in FIGS. The grid 26, the detection means 25, the signal processing unit (not shown), and the like are the same as those described above with reference to FIG. Reference numeral 300 denotes a casing.

光導電性の感光体である測定試料01は、光導電性の感光体の一般的形態であるドラム状に形成され、図示されない駆動手段により矢印方向(反時計方向)へ等速回転される。測定試料01がケーシング300内にセットされたのち、ケーシング300内部は図示されない吸引手段により高度に減圧される。   A measurement sample 01, which is a photoconductive photoconductor, is formed in a drum shape, which is a general form of a photoconductive photoconductor, and is rotated at a constant speed in the direction of the arrow (counterclockwise) by a driving unit (not shown). After the measurement sample 01 is set in the casing 300, the inside of the casing 300 is highly decompressed by suction means (not shown).

符号42で示す帯電部は、例えば、帯電ブラシや帯電ローラ等による接触式の帯電手段であり、減圧下のケーシング内で測定試料01を均一に接触帯電させる。このとき、測定試料01は矢印方向(反時計回り)に等速回転される。勿論、図10に即して説明した例のように、電子ビームを利用した帯電により測定試料01の帯電を行うこともできる。   The charging portion denoted by reference numeral 42 is, for example, a contact-type charging means such as a charging brush or a charging roller, and uniformly charges the measurement sample 01 in the casing under reduced pressure. At this time, the measurement sample 01 is rotated at a constant speed in the direction of the arrow (counterclockwise). Of course, as in the example described with reference to FIG. 10, the measurement sample 01 can be charged by charging using an electron beam.

符号41で示す「露光部」は、均一帯電された試料01に対して光像を照射して露光を行う。露光部41としては例えば、光プリンタ等に関連して広く知られた「光走査装置」を用い、光書込みにより「光像の照射」を行うことができる。このように「光像の照射」を光書込みで行うと、書込みで形成する静電潜像のパターンの形態を任意に変化させることができ、静電潜像の所望のパターン(エリアパターンやラインパターン)を容易に形成できる。   The “exposure section” denoted by reference numeral 41 performs exposure by irradiating the uniformly charged sample 01 with a light image. As the exposure unit 41, for example, an “optical scanning device” that is widely known in connection with an optical printer or the like can be used, and “optical image irradiation” can be performed by optical writing. When “irradiation of an optical image” is performed by optical writing in this way, the pattern form of the electrostatic latent image formed by writing can be arbitrarily changed, and a desired pattern (area pattern or line) of the electrostatic latent image can be changed. Pattern) can be easily formed.

なお、露光部41として光走査装置を用いる場合、光走査装置が大きくなってケーシング300内への設置が困難であるような場合には、光走査装置をケーシング300の外部に設け、ケーシング300に透明な窓部を設けて、この窓部を介して外部から光導電性試料01への光像の照射を行うようにしてもよい。   When an optical scanning device is used as the exposure unit 41, if the optical scanning device is large and difficult to install in the casing 300, the optical scanning device is provided outside the casing 300, and the casing 300 is A transparent window part may be provided, and the photoconductive sample 01 may be irradiated with a light image from the outside through this window part.

荷電粒子走査系11Aによる電子ビームの走査は、図1、図10の実施の形態と同様に、電子ビームを2次元的に偏向させて行っても良いが、測定試料01は矢印方向へ等速回転しつつ走査を受けるので、電子ビームを図面に直交する方向へ1次元的に偏向させ、この偏向と測定試料01の回転とを組合せて2次元的な走査を実現することもできる。   The scanning of the electron beam by the charged particle scanning system 11A may be performed by deflecting the electron beam two-dimensionally as in the embodiment of FIGS. 1 and 10, but the measurement sample 01 is at a constant speed in the direction of the arrow. Since scanning is performed while rotating, the electron beam can be deflected one-dimensionally in a direction orthogonal to the drawing, and two-dimensional scanning can be realized by combining this deflection and rotation of the measurement sample 01.

なお、測定試料としての光導電性試料は公知の適宜のものであることができ、導電性基体上に単層の光導電層を設けた構造のものや、導電性支持体上に電荷発生層と電荷輸送層を形成した「機能分離型感光体」であることができる。   The photoconductive sample as a measurement sample can be a known appropriate one, and has a structure in which a single photoconductive layer is provided on a conductive substrate, or a charge generation layer on a conductive support. And a “function-separated type photoreceptor” in which a charge transport layer is formed.

若干付言すると、走査電子顕微鏡等には「反射電子を検出する測定方法」があるが、この反射電子とは、一般的に「走査される電子ビームと試料物質の相互作用」により、入射電子が試料後方に散乱され、試料の表面から飛び出す電子である。反射電子のエネルギーは入射電子のエネルギーに匹敵し、反射電子の強度は試料の原子番号が大きいほど大きいといわれ、試料の組成の違い、凹凸を検査するための測定方法である。   To add a little, a scanning electron microscope or the like has a “measurement method for detecting reflected electrons”, and this reflected electron is generally defined as “electron beam to be scanned and the interaction between the sample material” and incident electrons. The electrons are scattered behind the sample and jump out of the surface of the sample. The energy of the reflected electrons is comparable to the energy of the incident electrons, and the intensity of the reflected electrons is said to increase as the atomic number of the sample increases. This is a measurement method for inspecting the difference in the composition of the sample and unevenness.

この発明における「反転荷電粒子」は、上に説明したように、測定試料表面の電位分布の影響を受けて「試料表面に到達する前に反転する荷電粒子」であり、このような反転荷電粒子を検出して表面電位分布を測定するこの発明の測定方法は、反射電子を検出する測定方法とは全く異なる測定方法である。   As described above, the “inverted charged particle” in the present invention is a “charged particle that is inverted before reaching the sample surface” under the influence of the potential distribution on the surface of the measurement sample. The measurement method according to the present invention for measuring the surface potential distribution by detecting the difference is completely different from the measurement method for detecting the reflected electrons.

表面電位分布測定装置の1形態を説明するための図である。It is a figure for demonstrating one form of a surface potential distribution measuring apparatus . 表面電位分布による荷電粒子の反転を説明するための図である。It is a figure for demonstrating inversion of the charged particle by surface potential distribution. 測定された表面電位分布の例を説明するための図である。It is a figure for demonstrating the example of the measured surface potential distribution. 2次元的なシールド部材の1例としてのグリッドメッシュを説明するための図である。It is a figure for demonstrating the grid mesh as an example of a two-dimensional shield member . 表面電位分布測定装置の別形態の要部を示す図である。It is a figure which shows the principal part of another form of a surface potential distribution measuring apparatus . 表面電位分布測定装置の他の形態の要部を示す図である。It is a figure which shows the principal part of the other form of a surface potential distribution measuring apparatus . 表面電位分布測定装置の他の形態の要部を示す図である。It is a figure which shows the principal part of the other form of a surface potential distribution measuring apparatus . 表面電位分布測定装置の他の形態の要部を示す図である。It is a figure which shows the principal part of the other form of a surface potential distribution measuring apparatus . 光導電性試料の静電線像の表面電位分布を測定する実施の形態を説明するための図である。It is a figure for demonstrating embodiment which measures the surface potential distribution of the electrostatic ray image of a photoconductive sample. 光導電性試料の静電線像の表面電位分布を測定する実施の別形態を説明するための図である。It is a figure for demonstrating another form of implementation which measures the surface potential distribution of the electrostatic ray image of a photoconductive sample. 光導電性試料の静電線像の表面電位分布を測定する形態を説明するための図である。It is a figure for demonstrating the form which measures the surface potential distribution of the electrostatic ray image of a photoconductive sample.

符号の説明Explanation of symbols

0 測定試料
10 電子銃
21 対物レンズ
25 検出手段
0 Measurement sample
10 electron gun 21 objective lens 25 detection means

Claims (6)

表面電位分布を有する測定試料に対して、荷電粒子光学系により荷電粒子ビームを走査し、試料表面に入射する荷電粒子のうち、その入射速度ベクトルの上記試料表面における法線方向の成分が反転した荷電粒子を検出手段により捕獲検出して検出信号を得る表面電位分布測定方法により、測定試料である光導電性試料の表面電位分布を測定する方法であって、
誘電体層を導電層で挟持した3層構造の保持手段の、一方の導電層上に測定試料である光導電性試料を平面的に保持させ、
上記保持手段に保持された光導電性試料に、荷電粒子光学系により荷電粒子ビームを2次元的に走査して照射することにより、上記測定試料を所望の電位に均一帯電させたのち、均一帯電された測定試料に対して光像を照射して露光を行い、測定対象としての表面電位分布である静電潜像を形成し、
上記荷電粒子光学系の光軸と検出手段の捕獲部との間に、荷電粒子を通過させる2次元的なシールド部材を介在させ、
上記保持手段の導電層にバイアス電圧を印加することにより、上記測定試料に形成した表面電位分布をバイアス的に変化させ、
上記荷電粒子光学系により荷電粒子ビームを測定用に走査し、上記測定試料表面に入射する荷電粒子のうち、その入射速度ベクトルの上記測定試料表面における法線方向の成分が反転した荷電粒子を検出手段により捕獲検出して検出信号を得ることを特徴とする表面電位分布測定方法。
A charged particle beam is scanned by a charged particle optical system on a measurement sample having a surface potential distribution, and among the charged particles incident on the sample surface, the component in the normal direction of the sample surface of the incident velocity vector is inverted. A method for measuring a surface potential distribution of a photoconductive sample as a measurement sample by a surface potential distribution measurement method for obtaining a detection signal by capturing and detecting charged particles by a detection means,
A holding means having a three-layer structure in which a dielectric layer is sandwiched between conductive layers, a photoconductive sample as a measurement sample is held flat on one conductive layer,
The photoconductive sample held by the holding means is irradiated with a charged particle beam scanned two-dimensionally by a charged particle optical system, so that the measurement sample is uniformly charged to a desired potential and then uniformly charged. The measured sample is exposed to a light image and exposed to form an electrostatic latent image that is a surface potential distribution as a measurement target.
Between the optical axis of the charged particle optical system and the capturing part of the detection means, a two-dimensional shield member that allows charged particles to pass through is interposed,
By applying a bias voltage to the conductive layer of the holding means, the surface potential distribution formed on the measurement sample is changed in a bias manner,
The charged particle optical system scans a charged particle beam for measurement, and detects charged particles whose normal velocity component on the measurement sample surface of the measurement sample surface is reversed among the charged particles incident on the measurement sample surface. A surface potential distribution measuring method, characterized in that a detection signal is obtained by capture detection by means.
請求項1記載の表面電位分布測定方法を実施するための装置であって、
誘電体層を導電層で挟持した3層構造を有し、一方の導電層上に、測定試料である光導電性試料を、その表面電位分布を形成する面を被走査面として平面的に保持する試料保持手段と、
この試料保持手段に保持された上記測定試料を均一帯電させる帯電手段と、
上記帯電手段により均一帯電された測定試料に対して光像の照射による露光を行い、上記測定試料に表面電位分布としての静電潜像を形成する露光手段と、
上記試料保持手段の一方の導電層にバイアス電圧を印加し、上記測定試料に形成された表面電位分布をバイアス的に変化させる電圧印加手段と、
上記露光手段により静電潜像を形成された上記測定試料の上記被走査面を荷電粒子ビームで測定用に走査する、上記帯電手段を兼ねた荷電粒子光学系と、
上記走査される荷電粒子ビームのうち、その入射速度ベクトルの上記測定試料表面における法線方向の成分が反転した荷電粒子を捕獲する検出手段と、
この検出手段による検出結果に基づき上記測定試料の表面電位を演算する測定手段と、
上記荷電粒子光学系の光軸と上記検出手段の捕獲部との間に配置され、上記荷電粒子を通過させる2次元的なシールド部材とを有することを特徴とする表面電位分布測定装置。
An apparatus for carrying out the surface potential distribution measuring method according to claim 1,
It has a three-layer structure in which a dielectric layer is sandwiched between conductive layers, and a photoconductive sample as a measurement sample is held on one conductive layer in a plane with the surface forming the surface potential distribution as the surface to be scanned. Sample holding means,
Charging means for uniformly charging the measurement sample held by the sample holding means;
Exposure means for performing exposure by irradiation of a light image on a measurement sample uniformly charged by the charging means, and forming an electrostatic latent image as a surface potential distribution on the measurement sample;
A voltage applying means for applying a bias voltage to one of the conductive layers of the sample holding means to change the surface potential distribution formed on the measurement sample in a bias manner;
A charged particle optical system also serving as the charging unit, which scans the surface to be scanned of the measurement sample on which the electrostatic latent image is formed by the exposure unit with a charged particle beam; and
Detecting means for capturing charged particles in which the normal component of the incident velocity vector on the surface of the measurement sample is inverted among the charged particle beams to be scanned;
Measurement means for calculating the surface potential of the measurement sample based on the detection result by the detection means;
A surface potential distribution measuring apparatus comprising: a two-dimensional shield member that is disposed between an optical axis of the charged particle optical system and a capturing unit of the detecting means and allows the charged particles to pass therethrough.
請求項2記載の表面電位分布測定装置において、
2次元的なシールド部材が、グリッドメッシュであることを特徴とする表面電位分布測定装置。
In the surface potential distribution measuring apparatus according to claim 2,
A surface potential distribution measuring apparatus, wherein the two-dimensional shield member is a grid mesh.
請求項2または3記載の表面電位分布測定装置において、In the surface potential distribution measuring apparatus according to claim 2 or 3,
2次元的なシールド部材が円筒状であって、荷電粒子光学系の光軸を囲繞するように設けられることを特徴とする表面電位分布測定装置。  A surface potential distribution measuring apparatus, wherein the two-dimensional shield member is cylindrical and is provided so as to surround the optical axis of the charged particle optical system.
請求項2または3記載の表面電位分布測定装置において、
2次元的なシールド部材が半球面形状であって、測定試料を覆うように配置されることを特徴とする表面電位分布測定装置
In the surface potential distribution measuring apparatus according to claim 2 or 3,
A surface potential distribution measuring apparatus, wherein the two-dimensional shield member has a hemispherical shape and is arranged so as to cover a measurement sample .
請求項2〜5の任意の1に記載の表面電位分布測定装置において、  In the surface potential distribution measuring apparatus according to any one of claims 2 to 5,
2次元的なシールド部材が、荷電粒子光学系の鏡筒により保持されることを特徴とする表面電位分布測定装置。  A surface potential distribution measuring apparatus, wherein a two-dimensional shield member is held by a lens barrel of a charged particle optical system.
JP2004186177A 2004-06-24 2004-06-24 Surface potential distribution measuring method and measuring apparatus Expired - Fee Related JP4383264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186177A JP4383264B2 (en) 2004-06-24 2004-06-24 Surface potential distribution measuring method and measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186177A JP4383264B2 (en) 2004-06-24 2004-06-24 Surface potential distribution measuring method and measuring apparatus

Publications (2)

Publication Number Publication Date
JP2006010430A JP2006010430A (en) 2006-01-12
JP4383264B2 true JP4383264B2 (en) 2009-12-16

Family

ID=35777860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186177A Expired - Fee Related JP4383264B2 (en) 2004-06-24 2004-06-24 Surface potential distribution measuring method and measuring apparatus

Country Status (1)

Country Link
JP (1) JP4383264B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612570B2 (en) 2006-08-30 2009-11-03 Ricoh Company, Limited Surface-potential distribution measuring apparatus, image carrier, and image forming apparatus
JP5369369B2 (en) * 2006-09-19 2013-12-18 株式会社リコー Surface potential distribution measuring method, surface potential measuring device, photoconductor electrostatic latent image measuring device, latent image carrier, and image forming apparatus
JP2008076100A (en) * 2006-09-19 2008-04-03 Ricoh Co Ltd Measuring method of surface charge distribution or surface potential distribution, measuring device, and image forming device
CN112305326B (en) * 2019-07-31 2024-07-05 中国科学院国家空间科学中心 Device for measuring moon surface potential in place
CN113009242B (en) * 2021-02-25 2022-10-04 西安理工大学 Device and method for measuring surface potential distribution and attenuation of array fluxgate

Also Published As

Publication number Publication date
JP2006010430A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
US7400839B2 (en) Method and device for measuring surface potential distribution, method and device for measuring insulation resistance, electrostatic latent image measurement device, and charging device
KR101101558B1 (en) Apparatus and method for investigating or modifying a surface with beam of charged particles
JP4559063B2 (en) Method for measuring surface potential distribution and apparatus for measuring surface potential distribution
US8153966B2 (en) Electrode unit and charged particle beam device
JP4702880B2 (en) Surface potential distribution measuring method and surface potential distribution measuring apparatus
KR20220153059A (en) Charged particle beam apparatus and imaging method with multiple detectors
JP2009300535A (en) Electrostatic latent image evaluation device, electrostatic latent image evaluation method, electrophotographic photoreceptor, and image forming device
US20240079204A1 (en) Operation methods of 2d pixelated detector for an apparatus with plural charged-particle beams and mapping surface potentials
JP2006054094A (en) Scanning electron microscope
JP4344909B2 (en) Electrostatic latent image measuring apparatus and electrostatic latent image measuring method
JP2004251800A (en) Method and instrument for measuring surface charge distribution
JP2003295696A (en) Method and apparatus for forming electrostatic latent image and measurement method and measurement instrument for electrostatic latent image
JP2004014485A5 (en)
JP4383264B2 (en) Surface potential distribution measuring method and measuring apparatus
JP4438439B2 (en) Surface charge distribution measuring method and apparatus, and photoreceptor electrostatic latent image distribution measuring method and apparatus
JP5091081B2 (en) Method and apparatus for measuring surface charge distribution
JP5116134B2 (en) Surface potential distribution measuring apparatus, latent image carrier and image forming apparatus
JP2004233261A (en) Electrostatic latent image observation method and system
JP4619765B2 (en) Method and apparatus for measuring surface charge distribution or surface potential distribution
JP2005191017A (en) Scanning electron microscope
JP5089865B2 (en) Surface potential distribution measuring method and surface potential distribution measuring apparatus
JP2021068505A (en) Electron beam device and electrode
JP2008096347A (en) Method and device for measuring surface potential distribution
JP5369369B2 (en) Surface potential distribution measuring method, surface potential measuring device, photoconductor electrostatic latent image measuring device, latent image carrier, and image forming apparatus
JP2008026496A (en) Apparatus for measuring electrostatic latent image, method for measuring electrostatic latent image, program, and apparatus for measuring latent image diameter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4383264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees